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Abstract 

In the face of worldwide amphibian declines, integrative studies combining individual-based 

information and genetic data represent a powerful approach to produce robust, reliable and 

comparable assessments of demographic dynamics. The Iberian painted frog (Discoglossus galganoi) 

is endemic to Spain and Portugal and shows decreasing population trends across its range, but few 

studies have attempted to estimate census sizes or assess genetic diversity in wild populations, and 

little is known about their reproductive biology. We applied an integrative approach based on the 

combination of capture-mark-recapture data and multilocus genotypes to monitor a breeding 

population of D. galganoi in central Spain during two consecutive breeding seasons, focusing on the 

estimation of demographic parameters and their temporal variation. Specifically, we estimated the 

number of adults (Na), the effective population size (Ne) and the effective number of breeders (Nb), 

as well as survival and migration rates. We documented a >50% decrease in the estimated number 

of adults of both sexes between the breeding seasons of 2018 and 2019, probably associated with 
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reduced rainfall in the latter. Estimates of Nb and the Nb/Na ratio were low in both seasons, with a 

20-30% decrease in Nb and a 47% increase in the Nb/Na ratio in 2019. Based on the reconstruction of 

pedigrees from larval and adult genotypes, we provide the first genetic evidence of polygamy in 

males and females of D. galganoi and the first estimates of breeding success in the species.  

Key words: Amphibians, demography, effective population size, genetic diversity, breeding success, 

polygamy. 

<PE-FRONTEND> 

 

1. Introduction 

The global amphibian crisis has brought to light a major knowledge gap on amphibian demography 

and population dynamics, which hinders attempts to infer ultimate causes of decline (Stuart et al. 

2004; Hoffmann et al. 2010). To address this shortfall, there is an urgent need for solid knowledge 

about the natural history and biology of amphibians, including detailed information about their 

demographic trends, habitat requirements and reproductive biology (Gascon et al. 2007; Toledo et 

al. 2014). The continuous development of analytic formulations for individual-based data and the 

widespread availability of molecular resources for ecological research have set a powerful 

framework for integrative approaches providing robust, reliable and comparable estimates of key 

demographic parameters (Clutton-Brock & Sheldon 2010; Allendorf 2017). Integrative studies 

represent a cornerstone in the assessment of population trends and in the detection of potential 

declines before populations plunge towards extinction (Brooks et al. 2004; Verdade et al. 2012).  

Accurate and robust estimates of census size (Nc) or the number of adults of the population 

(Na) are essential to characterize amphibian demographic dynamics (Frankham 1995; Witmer 2005), 

as well as survival and migration rates, which help contextualize observed fluctuations in population 

size over time. Capture-mark-recapture studies provide the most accurate estimates, although N-
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mixture models have proven a reliable alternative when intensive individual marking effort is not 

feasible (Ficetola et al. 2018). Additionally, accounting for temporal variation in patterns of genetic 

diversity provides key information on long-term population viability (Nunney & Campbell 1993; 

Frankham 1995; Luikart et al. 2010; Banks et al. 2013). Important parameters in this context include 

the effective population size (Ne), which is proportional to the capacity of a population to maintain 

its genetic diversity (Wright 1931; Merrel 1981), and the effective number of breeders (Nb), which 

represents the genetic contribution of adults generating an offspring cohort in a single breeding 

season (Waples et al. 2014). The relationship between the potential of a population to maintain 

genetic diversity and its size can be approximated by the effective to census population size ratio 

(Ne/Nc, Palstra & Fraser 2012). This ratio provides information on the long-term viability of 

populations (Frankham 1995; Luikart et al. 2010) and can be used to estimate the minimum viable 

population size (Nunney & Campbell 1993). The ratio between the effective number of breeders (Nb) 

and the number of potentially breeding adults of a population (Na) can be regarded as an 

approximation to the Ne/Nc ratio in a single breeding season (Sánchez-Montes et al. 2017). The 

estimation of this set of demographic parameters in integrative population monitoring programs 

represents a powerful asset to improve our understanding of amphibian population dynamics. 

Modelling population turnover rates and the maintenance of genetic diversity also requires 

knowledge about the biology of target species (Balloux & Lehmann 2003; Holman & Kokko 2013; 

Gao et al. 2019), including mating system and variation in breeding success (Byrne & Roberts 2012). 

However, this information is lacking for most amphibian species in the wild (O’Brien et al. 2018). 

Pedigree information from direct records or parentage reconstruction from genetic methods can 

provide robust inferences about the number of successfully breeding males and females and the 

rates of polygamy of each sex, therefore allowing exploration of the mating system and breeding 

success of target species (Vieites et al. 2004; Rovelli et al. 2015; Levine et al. 2019). The sibship 

frequency method infers the parentage of an offspring sample jointly with an estimate of the 

effective population size (Wang 2009b; Mangold et al. 2015). However, the accuracy of 
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reconstructed parentage should be calibrated with direct observations (for example from capture-

mark-recapture studies), which are seldom available for wild amphibian populations (Sánchez-

Montes et al. 2017). As a consequence, the possibilities of integrative approaches remain 

underexploited and basic aspects of the reproductive biology of many amphibian species worldwide 

remain unknown (O’Brien et al. 2018). 

The Iberian Peninsula is home to a rich amphibian fauna, including many endemic species 

that attest to the long and complex tectonic and climatic history of the region (Abellán & Svenning 

2014). Local extinctions and population declines have been reported in several species, mostly as a 

result of habitat loss (Márquez & Lizana 2002). However, for many of these species there is scarce 

information about basic aspects of their natural history, demography or genetic diversity, which calls 

for integrative demographic studies to understand their population dynamics. Here we adopted an 

integrative approach, based on the combination of capture-mark-recapture data and multilocus 

genotypes, to monitor a breeding population of the Iberian painted frog, Discoglossus galganoi 

Capula, Nascetti, Lanza, Bullini, & Crespo (1985). Two major lineages occupying western and eastern 

Iberia have been identified in previous studies, first considered at the species level (D. galganoi and 

D. jeanneae) and currently as subspecies: D. g. galganoi and D. g. jeanneae (Carretero et al. 2014; 

Dufresnes et al. 2020). Populations of D. galganoi are in decline, especially in the east, where 

populations are highly fragmented and local extinctions have been reported in the recent past 

(Martínez-Solano & García-París 2002). Discoglossus galganoi is a generalist species, present in a 

broad variety of habitats, including urban parks (Sánchez et al. 2015), but little is known about its 

breeding biology, population sizes or genetic diversity (Galán 1999; Martínez-Solano 2014).  

We monitored a breeding population of D. galganoi in central Spain during two consecutive 

breeding seasons (2018 and 2019) to estimate several demographic parameters, namely the number 

of adults (Na), the effective population size (Ne), the effective number of breeders (Nb) and survival 

and migration rates. We also investigated other aspects of the reproductive biology of the species, 
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including the breeding success and polygamy rates in both sexes, based on the reconstruction of 

pedigrees from genotypes of adults and larval cohorts for each breeding season. We discuss the 

benefits of our integrative approach for the study of amphibian populations. 

 

2. Materials and Methods 

2.1. Study area 

The study area is located in Monte de El Pardo, Madrid, central Spain (40°30'N, 3°44'W). The habitat 

is characterized by an anthropized landscape of promenade parks and olive tree crops. A population 

of D. galganoi breeds in a small (3x2m) spring and its effluent, semi-permanent stream that runs 

superficially for 100-150 meters before filtering underground. This breeding habitat is shared with 

another amphibian species, the Iberian common toad (Bufo spinosus), and two alien predators: the 

red swamp crayfish (Procambarus clarkii) and the goldfish (Carassius auratus). 

 

2.2. Capture-mark-recapture (CMR) and tissue sampling 

We conducted nocturnal transects in search of adults of D. galganoi every week from September 

2017 to June 2019, except during the dry summer months (June-August), when the species is not 

active. Thus, our sampling sessions included the breeding seasons (March to May, approximately) of 

2018 and 2019. We chose nights with favorable conditions for amphibian activity: mild 

temperatures, high humidity and little or no wind, and actively and exhaustively searched for adults 

along stream margins and potential shelters, including leaf litter and rocks. All captured individuals 

were sexed based on sexually dimorphic characters (García-París et al. 2004; Martínez-Solano 2014). 

We also measured their snout to vent length and body mass and obtained a tissue sample 

corresponding to the terminal 2-3 phalanges of the fourth toe of the right hind leg. All individuals 

were marked for identification with a passive integrated transponder (PIT) tag, then released back 

into the place of capture. 
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In addition to the nocturnal sampling sessions for CMR data of adults, we sampled larval 

tissues at the end of the 2018 and 2019 breeding seasons (in June 2018 and 2019, respectively), in 

order to obtain a representation of the offspring cohort of each year. We clipped a small fragment of 

the tail of each sampled tadpole (n = 81 individuals in the 2018 cohort and n = 44 in the 2019 

cohort). All tissue samples were preserved in absolute ethanol until their subsequent processing for 

genetic analyses. 

 

2.3. Estimates of Na and survival and migration rates 

Capture histories of adult individuals were used to estimate Na for males and females, jointly with 

survival and migration rates. We first constructed a complete capture history matrix, including the 

sex of each individual and coding whether it was captured (1) or not captured (0) in each sampling 

session. This matrix was then analyzed with two different formulations implemented in software 

MARK (White & Burnham 1999): the POPAN formulation, suited to estimate the size of open 

populations (Schwarz & Arnason 1996), and the robust design, developed to model fluctuations in 

population size mediated by survival and migration rates (Pollock 1982). 

Two POPAN analyses were performed, each aimed to estimate the number of adult 

individuals that were present at the study area during the hydrometeorological year encompassing 

either one of the two breeding seasons of study. Accordingly, the first POPAN analysis included 

sampling sessions from September 2017 to June 2018 (hereafter the 2017-2018 period, thus 

encompassing the 2018 breeding season), and the second POPAN analysis included sampling 

sessions from September 2018 to June 2019 (hereafter the 2018-2019 period, thus encompassing 

the 2019 breeding season). In both analyses, we discarded all sampling sessions with less than five 

captures to avoid overparameterization of models. Thus, final datasets included a total of 20 

sampling sessions for the 2017-2018 period (from November 24, 2017 to May 29, 2018), and 21 

sampling sessions for the 2018-2019 period (from September 26, 2018 to June 13, 2019). 
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Models in POPAN analyses were constructed by combining the parameters p (probability of 

capture), φ (apparent survival) and pent (probability of entrance of new individuals in the study 

area) as either constant (.) or dependent on sex (g), time (t) or both factors and their interaction 

(g*t). Because males of pond-breeding amphibians often spend more time near breeding sites than 

females and their detectability is thus higher, the p parameter was modeled only as dependent on 

sex (g), or sex and time along with their interaction (g*t). Also, since attendance to breeding sites is 

higher during the reproductive season in the spring (March-May), we modeled pent as time-

dependent in all cases (models (t) and (g*t)). The resulting 12 models were constructed, run and 

finally ranked according to the Akaike Information Criterion corrected for small sample size or AICc 

(Akaike 1974), which takes into account the likelihood of each model penalized by the number of 

parameters. Global estimates of Na for each period and partial estimates of Na derived for each 

session were calculated as the weighted average of model estimates based on their AICc.  

Unlike the POPAN formulation, the robust design approach allows estimation of the 

probability of temporary migration of individuals outside the study area (γ’’) and their probability of 

return (1-γ’). The robust design is a combination of the Cormack-Jolly-Seber (CJS) model (Cormack 

1964; Jolly 1965; Seber 1965) and closed capture-recapture models, which assume that the 

population does not grow or decrease during a particular period of time. This combination is 

implemented through the hierarchical organization of primary and secondary sampling occasions, 

each primary occasion encompassing several secondary occasions close in time, with the assumption 

that the population size remains constant during that period (Table S1). Accordingly, the intervals 

between primary occasions should be sufficient for the population to grow (by births and 

immigration) or decrease (by deaths and emigration), while the interval between secondary 

occasions within each primary occasion should be short enough to assume that no changes in size 

occur in the population (Kendall & Nichols 1995). 
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A single robust design analysis was conducted for the entire study period, covering from 

November 2017 to June 2019. For this purpose, we selected 31 sampling sessions organized in 6 

primary occasions (approximating climatic seasons: autumn, winter and spring for each period) with 

a minimum of one month separation between each consecutive pair (Table S1). Twelve models were 

built combining 1) the probabilities of emigration and immigration as either dependent on the last 

state of the individual (“markovian” model: γ’’ ≠ γ’), random (“random movement” model: γ’’ = γ’) or 

null (“no movement” model: γ’’ = γ’ = 0); and 2) the (real) probability of survival (S) as either 

constant (.) or dependent on sex (g), time (t), or sex, time and their interaction (g*t). Final estimates 

of the parameters and derived estimates of Na for each primary occasion were obtained by weighted 

average of the models based on their AICc. 

To check whether capture histories conform to the assumptions of the corresponding 

formulation, we ran goodness of fit (GOF) tests on the input data matrices of both POPAN and 

robust design analyses using the program U-Care (Choquet et al. 2005). The 3.SR test was used to 

verify the possible existence of transience effects caused by dispersing individuals, which would 

violate the assumption that all individuals in the population have the same probability of being 

recaptured (Pradel et al. 1997). The 2.CT test was run to test the assumption that marking has no 

effect on the probability of recapture (i.e., there is no trap-dependence), neither by increasing it 

(trap-happiness) nor by decreasing it (trap-shyness) (Pradel & Sanz-Aguilar 2012). 

 

2.4. DNA extraction and genotyping 

Genomic DNA from all larval (n = 125) and adult (n = 212) tissue samples was isolated with 

commercial Qiagen DNeasy Blood & Tissue Kits following the instructions of the manufacturer. For 

genotyping, we selected 15 microsatellites among the set described in Gutiérrez-Rodríguez et al. 

(2014). These loci were grouped into three multiplex reactions (Table S2) with Multiplex Manager 

1.0 (Holleley & Geerts 2009), establishing a minimum distance of 20 base pairs between loci. 
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Microsatellite amplification was implemented by polymerase chain reaction (PCR) in a total volume 

of 15.2 μL, with 7.5 μL of Type-it Master Mix (Qiagen), 1.2 μL of primer mix, 5.3 μL of RNase-free 

H2O, and 1.2 μL of template DNA.  

PCR cycling conditions consisted of an initial denaturation step at 95ºC for 5 minutes, 

followed by 30 denaturation cycles for 30 seconds at 95 ºC, annealing for 90 seconds at 60ºC and 

extension for 30 seconds at 72ºC, with a final extension phase of 10 minutes at 60ºC. The quantity 

and quality of PCR products was verified through electrophoresis in 2% agarose gels, including 

negative controls in each PCR to detect possible contamination. PCR products were genotyped in an 

ABI PRISM 3730 sequencer with the GeneScan 500 LIZ size standard (Applied Biosystems). Finally, 

the multilocus genotype of each individual was assigned based on the size of the amplified 

fragments using GENEMAPPER v4.0 (Applied Biosystems). 

 

2.5. Genetic diversity, Ne, Nb, breeding success and polygamy rates  

We used GenAlEx 6.503 (Peakall & Smouse 2006, 2012) to calculate the number of alleles or allelic 

richness (AR), observed heterozygosity (HO) and expected heterozygosity (HE) for each locus, and the 

corresponding multilocus estimates and the number of private alleles (PA) for samples of the 2017-

2018 and 2018-2019 periods separately. 

 We then used software Colony (Jones & Wang 2010) to estimate Ne and Nb and to 

reconstruct parentage of larval samples (Wang 2009b), which was in turn the source information 

used to infer the breeding success and polygamy rates of individuals of both sexes. For Ne, we 

obtained a single estimate based on the analysis as offspring sample of the genotypes of all adults 

captured. Nb analyses were carried out separately for each of the periods of study (2017-2018 

including the 2018 breeding season and 2018-2019 including the 2019 breeding season), including 

the larvae sampled in each period as offspring sample, and all the genotyped males and females as 

candidate parental and maternal samples, respectively. 
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Analyses were performed with different a priori probabilities that the progenitors of 

sampled larvae are among the genotyped samples of males and females. These a priori probabilities 

were calculated for males and females separately by dividing either 1) the number of individuals of 

the corresponding sex captured in each period by the POPAN estimate of Na of the corresponding 

sex in the same period (see Results), or 2) the total number of genotyped individuals of the 

corresponding sex by the POPAN estimate of Na of the same sex in the corresponding period. 

According to this procedure (see Results), a priori probabilities of presence of actual parents among 

the candidate parents were calculated as follows: 1) fathers: 88/116 = 0.76 and mothers: 77/135 = 

0.57 for 2017-2018, and fathers: 40/49 = 0.82 and mothers: 45/65 = 0.69 for 2018-2019; and 2) 

fathers: 101/116 = 0.87 and mothers: 111/135 = 0.82 for 2017-2018, and fathers: 101/49 >1 (a 

probability of 0.99 was used) and mothers: 111/65 >1 (a probability of 0.99 was used) for 2018-2019. 

In all Ne and Nb analyses we allowed for the possibility of polygamy in both sexes. The final 

analysis was performed with the maximum run length and using the Full-Likelihood (FL) analysis 

method with maximum precision. Two runs of each analysis were conducted to assess the 

consistency of results. In addition, different analyses were carried out using or not a weak maternal 

and paternal sibship size prior = 1 (i.e., a priori information about the average number of 

representatives of each family in the offspring sample, see Sánchez-Montes et al. 2017). 

Monomorphic loci (see Table S2) were excluded from analyses and, for polymorphic loci, a priori 

genotyping error rates were set to 0.01. 

 

3. Results 

3.1. Estimates of Na and survival and migration rates 

The GOF tests of POPAN datasets showed evidence of transience and trap-dependence effects in 

males in 2017-2018 (standardized log odds ratio (LOR) statistic for transience = 2.146, p = 0.032; LOR 

for trap-dependence = -2.452, p = 0.014), and trap-dependence in males in 2018-2019 (LOR = -2.052, 
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p = 0.040). The model {p(g*t) φ(g) pent(t)} was the best ranked with an AICc weight > 0.9 both in 

2017-2018 and 2018-2019 (Table 1). Global estimates of Na showed a sex-ratio in favour of females 

in both periods and a substantial decrease (>50%) in the number of individuals of both sexes in 

2018-2019 compared to the previous period (Table 2). Derived Na estimates for each sampling 

session showed a strong association with the dynamics of individual entries into the breeding area, 

represented by parameter pent (Fig. 1). Values of this parameter were inferred to be similar across 

sexes in both years, with models with higher AICc weights sharing a time-dependence for pent (Table 

1). An initial decline in Na was observed when the probability of entrance of individuals to the 

breeding area was virtually reduced to zero between December 2017 and February 2018. At the end 

of March 2018, when pent increased to almost 0.4, the number of males increased from 18 (95% CI: 

11-25) to 70 (53-88), and the number of females from 16 (9-24) to 73 (47-99). In the period 2018-

2019, two main entrance events were inferred on December 4 and February 7, although they did not 

result in strong increases in Na as in the previous period. 

None of the GOF tests showed evidence of significant deviations from model assumptions in 

any of the seasons of the robust design dataset. The model with the best AICc was the "markovian" 

with time-dependent survival, with an AICc weight of 0.7 (Table 3). The model {Random Movement 

S(t)} also ranked high in the results table, with an AICc weight of 0.28. The first three models, which 

amounted to > 99% of the AICc weight, shared time-dependence on survival (Table 3). Estimates of 

Na showed different fluctuations on the number of males and females across the two study periods. 

In the first period there was an important increase in the number of individuals of both sexes from 

winter to spring. Estimates then decreased in the following autumn and did not recover in the spring 

(Table 2), which was characterized by low precipitation. Monthly survival estimates were high over 

the two years of study, except between winter 2017-2018 and spring 2018 (Fig. 2). Migration rates 

differed between periods and seasons, and also between sexes. No informative estimates of 

immigration rates were obtained (1-γ’), as their 95% confidence intervals were very wide in most 

cases (for this reason they are not represented in Fig. 2). 
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3.2. Genetic diversity, Ne, Nb, breeding success and polygamy rates  

The four indices of genetic diversity showed very low and nearly identical values in both periods of 

study (Table 4). The estimate of effective population size (Ne) ranged between 40 and 50 individuals, 

depending on the use (mean: 50, 95%CI: 35-74) or not (mean: 40, 95%CI: 27-62) of the sibship size 

prior. Estimates of Nb were robust to the priors, with values in the 2019 breeding season being 20-

30% lower than those in 2018 breeding season (Table 5). The corresponding Nb/Na ratios were higher 

in 2018-2019 compared to the previous period (0.22 and 0.15, respectively, based on baseline 

pedigrees, see below).  

We defined one baseline pedigree for each of the two breeding seasons of study by selecting 

the pedigrees showing higher concordance with most of the remaining pedigrees among all Nb 

analyses (Appendices 3 and 4). The two selected pedigrees were reconstructed without the use of 

sibship size prior, setting a priori probabilities of the presence of progenitors among the genotyped 

adult sample of 0.76 for males and 0.57 for females in 2018 and 0.82 for males and 0.69 for females 

in 2019. Breeding success, calculated as the proportion of individuals of each sex that was inferred to 

be the parent of at least one tadpole in the pedigrees, was low and similar across sexes: 19/116 = 

0.16 for males and 17/135 = 0.13 for females in 2018, and 12/49 = 0.24 in males and 16/65 = 0.25 in 

females in 2019. Among individuals who bred successfully in 2018, 89.47% of males and 76.47% of 

females produced offspring with more than one partner. In 2019, 66.67% and 62.50% of successfully 

breeding males and females, respectively, mated with more than one partner (Fig. 3). 
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4. Discussion 

Amphibians are characterized by strong apparent fluctuations in abundance, usually in response to 

external factors like temperature or precipitation (Skelly et al. 2003; Greenberg et al. 2018). Also, 

recruitment of juveniles is highly variable over the years (Pechmann et al. 1991; Pechmann & Wilbur 

1994; Trenham et al. 2003), which has a strong impact on population dynamics (Berven 1990). Our 

results, while limited in timeframe, are the first data on population size variation (at least the 

breeding portion of the population) in D. galganoi. GOF tests of the POPAN (but not robust design) 

dataset revealed slight but significant trap-happiness and transience effects in males, indicating that 

they are more likely recaptured after being marked, and that there are individuals migrating in and 

out of the breeding area. This suggests that the population dynamics of the species is best modeled 

by robust design analyses, which account for the possibility of temporary migration of individuals 

through estimation of γ parameters. At any rate, estimates from POPAN and robust design analyses 

coincide in showing a reduction in the number of individuals of both sexes during the second year of 

monitoring. This decrease in the number of individuals present at the breeding area in the second 

year may reflect an actual, ongoing decline or may be part of a natural fluctuation. Extending our 

integrative monitoring approach further in time will allow a more comprehensive characterization of 

population size variation in D. galganoi, but our preliminary results suggest a major role of the 

variation in climatic conditions in the abundance of breeding adults. 

The main difference between the population size estimates in both years is driven by a 

major entry event of breeding males and females to the breeding area in the spring of 2018 that did 

not occur in the following breeding season. This is associated with differences in the precipitation 

regimes between the springs of 2018 (very rainy) and 2019 (virtually no precipitations) (Fig. 1), which 

suggests that spring rainfall may have had an impact on the breeding success of the population. This 

potential link should be further tested with data from a longer time series. Although D. galganoi 
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does not present a true hibernation (Martínez-Solano 2014), adults often remain inactive when 

temperature and humidity conditions are unfavorable (García-París 1985; Barbadillo 1987; Salvador 

& García-París 2001). Our results suggest that some individuals in the population reduce or cease 

their activity in the winter and summer, when conditions are more adverse, and subsequently re-

activate and enter the breeding area when climate ameliorates in autumn and spring. However, 

adults of D. galganoi can also be active with low air temperatures, between 1ºC and 5ºC 

(Pleguezuelos & Moreno 1990), and our results indeed show that at least part of the population 

remains active all year round. In addition to the re-activation of part of the population, the arrival of 

individuals from terrestrial refugia or other populations nearby for reproduction may also result in 

higher estimates of pent in some periods. However, we have not detected displacements of marked 

individuals from/to the closest known breeding site, which is located at about 2 km and has also 

been subject to periodical monitoring. Little is known about the dispersal capacity of D. galganoi, but 

the related species D. pictus has been shown to be able to expand rapidly outside of its native range 

(Llorente et al. 2015). Future studies should focus on quantifying connectivity at short spatial scales 

in order to improve our understanding of population dynamics in D. galganoi. 

Our results illustrate the usefulness of integrative approaches to the study of population 

dynamics in the context of intrinsic factors like the reproductive biology of the species and its 

population genetic diversity. Previous studies estimating Ne or Nb in anurans have mainly focused on 

ranids and bufonids, showing wide variation among populations and species (Hoffman et al. 2004; 

Beebee 2009; Phillipsen et al. 2011). In general, bufonid species are characterized by low Ne values, 

generally below 100 (Scribner et al. 1997; Rowe & Beebee 2004; Brede & Beebee 2006; Wang 

2009a). A study estimating Ne in a temporal series using the sibship frequency method revealed a 

2.3-fold difference across a 6-years interval in a population of Bufo bufo (Coles et al. 2019). 

Whenever census size has been approximated, resulting Ne/Nc ratios are usually very low, in the 

range of 0.02-0.2 (Rowe & Beebee 2004; Brede & Beebee 2006; Coles et al. 2019), but higher Ne/Nc 

ratios have also been documented in small populations, suggesting genetic compensation 
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mechanisms (Beebee 2009). In ranid frogs, on the other hand, Ne reports are in the range of 

hundreds to a few thousands, although much lower estimates are also common (Hoffman et al. 

2004; Brede & Beebee 2006; Schmeller & Merilä 2007; Ficetola et al. 2010; Phillipsen et al. 2011; 

Hinkson & Richter 2016). The Ne/Nc ratios in ranids are usually higher and more variable than in 

bufonids, with reported estimates in the range of 0.1-1, and even >1 (Hoffman et al. 2004; Schmeller 

& Merilä 2007; Ficetola et al. 2010). Our Ne (40-50) and Nb/Na (0.15-0.22) estimates for D. galganoi 

are within the range reported for bufonids and in the lower range of estimates in ranids, suggesting 

a high risk of erosion of genetic diversity. Indeed, genetic diversity in our study population is lower 

than in other studied populations of D. galganoi (Gutiérrez-Rodríguez et al. 2014). 

In small and genetically depauperated populations, genetic compensation mechanisms may 

contribute to increase Nb and Ne via an increment in the average breeding success of individuals 

(Beebee 2009; Sánchez-Montes et al. 2017), and this in turn may be related with higher polygamy 

rates (Byrne & Roberts 2012; Gao et al. 2019). In our study population we observed high polygamy 

rates in both males and females, according to inferred pedigrees. This is the first genetic evidence of 

polygamy and breeding success in D. galganoi, although reconstructed pedigrees must be taken with 

caution due to the low levels of genetic polymorphism detected. The high numbers of inferred 

mating partners per breeding individual are consistent with the breeding behaviour reported for D. 

galganoi, characterized by the concentration of large numbers of adults in small ponds, with short 

amplexus times and high numbers of eggs that are laid by females and can be fertilized by multiple 

males (García-París 1985; González de la Vega 1988; Galán 2003; Díaz-Paniagua et al. 2005; 

Martínez-Solano 2014). However, despite the high inferred polygamy rates, average breeding 

success in males and females (13-25%) was still relatively low in comparison with other anurans (e.g. 

30-94% reported in Broquet et al. 2009; Mangold et al. 2015; O’Brien et al. 2018). Low average 

breeding success is probably the main factor contributing to the low estimated values of Ne. 
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The combination of field data, with intensive monitoring and marking of hundreds of adult 

individuals, and genetic data (genotypes of large samples of adults and larvae) provided the first 

estimates of population size in the species (Na), as well as the effective population size and the 

variation in the effective number of breeders (Nb) between breeding seasons. This in turn allowed 

estimation of the Nb/Na ratio, which provides relevant information about the evolutionary potential 

of the population (Frankham 1995). Moreover, inferred pedigrees allowed thorough exploration of 

the mating system of D. galganoi, suggesting possible intrinsic mechanisms for the observed 

demographic pattern. Further integrative studies applying similar procedures to characterize the 

natural variation of demographic parameters in different species and in long-term programs will 

complement our understanding of amphibian population dynamics, with wide potential implications 

for evolutionary and conservation research. 
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SUPPLEMENTARY MATERIALS 

Table S1 Structure of primary and secondary occasions used in robust design analyses 

Table S2 Set of microsatellites used to genotype D. galganoi individuals (original reference: 

Gutiérrez-Rodríguez et al. (2014)). Locus name, multiplex reaction, volume of 100 μM stock of 

each F and R primer required for 250 μL of primer mix, allelic richness (AR), expected 

heterozygosity (HE) and observed heterozygosity (HO) for each locus. 

Table S3 Pedigrees for the 2018 D. galganoi larvae according to the final baseline analysis, and 

concordance in replicated analyses 1) with the same parameters (changing the random seed 

(Seed)), 2) with different a priori probability of the presence of parents among the sample of 

genotyped adults (Prob) and 3) using the weak sibship size prior = 1. 

Table S4 Pedigrees for the 2019 D. galganoi larvae according to the final baseline analysis, and 

concordance in replicated analyses 1) with the same parameters (changing the random seed (Seed)), 

2) with different a priori probability of the presence of parents among the sample of genotyped 

adults (Prob) and 3) using weak sibship size prior = 1. 
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Table 1 Best POPAN models (AICc weight>0) for the 2017-2018 and 2018-2019 periods. Param: 

number of parameters of the model 

 

Period Model AICc AICc weight Param. Deviance 

2017-

2018 

{p(g*t) φ(g) pent(t)} 1234.20 0.9908 62 -144.62 

{p(g) φ(t) pent(t)} 1243.69 0.0086 41 -77.60 

{p(g) φ(g) pent(t)} 1249.65 0.0004 24 -30.37 

{p(g*t) φ(t) pent(t)} 1251.50 0.0002 77 -173.68 

2018-

2019 

{p(g*t) φ(g) pent(t)} 941.31 0.9142 65 164.58 

{p(g) φ(g) pent(t)} 946.05 0.0858 25 291.56 
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Table 2 Average Na estimates based on POPAN and robust design analyses with their 95% 

confidence intervals (in parentheses) 

 

 

  

Period 
Na POPAN 

Season 
Na Robust design 

Males Females Males Females 

2017-2018 116 (99-134) 135 (102-169) 

Autumn 1 27 (21-33) 97 (1-194) 

Winter 1 24 (20-28) 29 (21-36) 

Spring 1 69 (60-78) 59 (43-76) 

2018-2019 49 (39-59) 65 (48-82) 

Autumn 2 26 (13-39) 19 (11-27) 

Winter 2 20 (4-36) 47 (0-107) 

Spring 2 25 (24-26) 22 (20-24) 
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Table 3 Best robust design models (AICc weight>0) ranked by their AICc. Param: number of 

parameters of the model 

 

Model AICc AICc weight Param. Deviance 

{Markovian S(t)} 2321.19 0.7002 81 1955.11 

{Random Movement S(t)} 2323.02 0.2817 75 1973.54 

{No Movement S(t)} 2329.02 0.0140 68 1998.36 

{Markovian S(.)} 2332.76 0.0022 79 1972.26 

{Markovian S(g*t)} 2334.80 0.0008 86 1954.53 

{Markovian S(g)} 2335.39 0.0006 80 1972.11 

{Random Movement S(g*t)} 2335.63 0.0005 80 1972.34 

{No Movement S(g*t)} 2339.41 0.0001 73 1995.37 
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Table 4 Estimates of the number of alleles (AR), number of private alleles (PA), observed (HO) and 

expected heterozygosity (HE) with their 95% CIs for the breeding populations of D. galganoi in 

2017-18 and 2018-19. 

 

 

 

 

 

  

Period AR PA HO HE 

2017-2018 3.4 (2.24-4.56) 0.07 (0-0.2) 0.35 (0.22-0.49) 0.37 (0.23-0.50) 

2018-2019 3.4 (2.27-4.53) 0.07 (0-0.2) 0.36 (0.22-0.51) 0.37 (0.23-0.51) 
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Table 5 Nb estimates (with their 95% CI) for the breeding populations of D. galganoi in 2018 and 

2019. Different analyses used different a priori probabilities of parents being included in the 

genotyped sample (Prob) and were conducted using or not a weak sibship size prior = 1 (Sib. 

Prior). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Breeding season 
Prob Sib. Prior Nb 

2018 

males: 0.76 

  females: 0.57 

No 
37 (24-59) 

33 (22-55) 

Weak 
37 (24-59) 

38 (25-31) 

males: 0.87 

females: 0.82 

No 
35 (21-58) 

33 (21-53) 

Weak 
34 (22-56) 

38 (25-60) 

2019 

males: 0.82 

females: 0.69 

No 
25 (15-46) 

24 (15-44) 

Weak 
30 (19-52) 

26 (15-46) 

males: 0.99 

females: 0.99 

No 
25 (15-46) 

24 (14-44) 

Weak 
26 (15-47) 

26 (16-46) 
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Figure 1 Temporal dynamics in the probability of entrance of individuals into the population (pent) 

and partial estimates of Na for each session according to POPAN results of the best ranked model 

over the two periods of study. Columns represent accumulated precipitation (in mm) in each 

hydrometeorological year. 
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Figure 2 Dynamics of Na, survival (S) and migration rates (γ’’) estimated from robust design 

analyses. 
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Figure 3 Number of partners per successfully breeding individual inferred from the reconstructed 

pedigrees for the 2018 (left) and 2019 (right) breeding seasons. 

 


