The SWAIS 2C Project - Sensitivity of the West Antarctic Ice Sheet in a Warmer World

Richard Levy1,7, Molly Patterson2, Tina van De Flierdt3, Francis Espejo4, Paolo Stocchi5, Johan Klages6, Gavin Dunbar7, Denise Kulhanek8, Kyu Cheul Yoo9, David Harwood10, Andreas Laufer11, Fabio Florindo12, Jae Il Lee9, Timothy Naish7, Florence Colleoni13, Yusuke Suganuma14, Osamu Seki15, Edward Gasson16, Christian Ohneiser17, José-Abel Flores18

1GNS Science, Wellington, New Zealand, 2Binghamton University, New York, USA, 3Imperial College, London, United Kingdom, 4Inst. Andaluz de Ciencias de la Tierra, Granada, Spain, 5Royal Netherlands Institute for Sea Research, Texel, Netherlands, 6Alfred Wegener Institute, Bremerhaven, Germany, 7Victoria University of Wellington, Wellington, New Zealand, 8Texas A&M University, College Station, USA, 9Korean Polar Research Institute, Songdo City, South Korea, 10University of Nebraska - Lincoln, Lincoln, USA, 11Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany, 12Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy, 13Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste, Italy, 14National Institute of Polar Research, Tokyo, Japan, 15Hokkaido University, Sapporo, Japan, 16University of Bristol, Bristol, United Kingdom, 17University of Otago, Dunedin, New Zealand, 18University of Salamanca, Salamanca, Spain

Antarctic ice sheet dynamics remain the largest uncertainty in projections of future sea level rise. The SWAIS 2C Project is a new international effort that aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere and associated average global temperature scenarios to and beyond the 2°C target of the Paris Climate Agreement. A primary goal of SWAIS 2C is to acquire geological records of WAIS extent from past intervals of warmth including Quaternary super-interglacials. Previous drilling by the Deep-Sea Drilling Project (DSDP), Ocean Drilling Program (ODP), and recent International Ocean Discovery Program (IODP), MeBO, and ANDRILL recovered stratigraphic records of past ice sheet behaviour across the mid to outer continental shelf. Similarly, the response of WAIS to past warmer-than-present climates has been inferred from far-field globally-integrated records of sea level and ocean δ18O. We will utilize new drilling technology to obtain a sedimentary history of past ice sheet dynamics at two locations (Kamb Ice Stream and Crary Ice Rise) along the Siple Coast in the West Antarctic interior. Geological records from this location have proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean temperature up to 2°C.