
1

Empirical mathematical model of microprocessor
sensitivity and early prediction to proton and

neutron radiation-induced soft errors
Alejandro Serrano-Cases1 , Leonardo Maria Reyneri2 , Yolanda Morilla3 , Sergio Cuenca-Asensi1

and Antonio Martı́nez-Álvarez1�

Abstract—A mathematical model is described to predict mi-
croprocessor fault tolerance under radiation. The model is
empirically trained by combining data from simulated fault-
injection campaigns, and radiation experiments, both with pro-
tons (at the CNA facilities, Seville, Spain) and with neutrons
(at the LANSCE Weapons Neutron Research facility at Los
Alamos, USA). The sensitivity to soft errors of different blocks of
commercial processors is identified to estimate the reliability of
a set of programs that had previously been optimized, hardened,
or both. The results showed a standard error under 0.1, in the
case of the ARM processor, and 0.12, in the case of the MSP430
microcontroller.

Index Terms—Fault tolerance, single event upset, pro-
ton/neutron irradiation effects, soft errors

I. INTRODUCTION

CRITICAL system developers are increasingly concerned,
in view of the continuous reduction in transistor sizes and

the consequent effects, because smaller transistors are more
prone to errors caused by ionizing particles [1], [2]. Modern
electronic devices offer energy-aware and high-performance
solutions, however new technological trends focus on low-
consumption devices with reduced noise margins, which in-
crease their sensitivity to noise and disruption. For instance,
faults caused by ionizing particles [3], [4] could lead to
a catastrophic situation in a critical system, installed in a
satellite, an airplane or an autonomous vehicle, if the system
were to enter a non-operative or an unstable state that can
provoke erroneous decisions.

The focus of this study is on radiation-induced transient
faults, also known as soft errors. Such faults mainly affect the
storage elements of the processors (latches, registers, memory
cells,...), provoking temporary data errors and interrupting, for
example, the flow of instructions. In this field, the literature
offers a large number of techniques designed to increase
the reliability of critical systems, which can be classified in
accordance with where they are applied, as: hardware, software
or hybrid.

Redundancy-based techniques are commonly used for
greater reliability. It is known that their exhaustive analysis

1Dept. of Computer Technology, Ctra. San Vicente del Raspeig s/n, 03690,
San Vicente del Raspeig - Alicante, Spain, (�) e-mail: amartinez@dtic.ua.es

2Dept. of Electronics, Politecnico di Torino, Corso Duca d. Abruzzi 24,
Turin, Italy, leonardo.reyneri@polito.it

3Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC, JA).
Avda. Tomás Alba Edison 7, Sevilla, Spain

can locate and identify possible side effects, thereby reducing
the other overheads associated with these sorts of techniques,
such as: design and fabrication costs, flexibility, energy con-
sumption, performance, fault-coverage and area. In the case
of hardware approaches, Triple Modular Redundancy (TMR)
[5], [6] is a widely used technique, which shows high error
resilience and performance. However, it has high associated
costs, such as lengthy development times and high-power
consumption. In addition, the resulting custom hardware is
targeted at a specific device and therefore a very expen-
sive solution. In contrast, Software-Implemented Hardware
Fault Tolerance (SIHFT) [7], [8] is a software programming
approach to deal with faults affecting the hardware. These
approaches are less expensive and have shorter development
timelines than the hardware approaches. However, they are
not exempt from overheads, because replication is produced
spatially and temporally. Hybrid approaches emerge as a way
of improving both aforementioned strategies, by reducing
their overheads [9]–[11]. Finally, the literature presents several
approaches, such as the work of [12], which do not fit into
any of the aforementioned classifications, because neither the
hardware nor the software (source code) is modified for greater
reliability. Instead, the code generation is tuned to improve
reliability, performance and size.

Designing a fault-tolerant system, using one of the above-
mentioned techniques, usually requires an analysis of various
configurations, considering at all times the requirements of
each task, for an ideal combination of hardening parameters
(e.g. registers refresh rate, number and location of redun-
dancies, error-checking mechanism, etc.). Each configuration
must be evaluated according to the task requirements, looking
for the best trade-off between reliability and overheads. In
this sense, fault injection campaigns [13]–[15] have been
extensively used, because of their flexibility, observability,
and low-cost features. However, neither simulation models
nor emulation tools possess the fine-grained architectural in-
formation and/or accessibility to produce accurate reliability
forecasts. Therefore, fault injection is usually consigned to
early development stages, while accelerated radiation tests are
mandatory in the final stages, prior to the system deployment
phase.

Radiation experiments normally involve particle accelera-
tors that expose the devices to realistic conditions where their
behavior can be assessed throughout their service life [16].
However, a single test may take several days to be completed,

This is a previous version of the article published in IEEE Transactions on Nuclear Science. 2020, 67(7): 1511-1520. doi:10.1109/TNS.2020.2993637

https://orcid.org/0000-0001-9794-8495
https://orcid.org/0000-0002-4154-3146
https://orcid.org/0000-0003-0261-2265
https://orcid.org/0000-0002-5830-6104
https://orcid.org/0000-0002-1500-857X
https://doi.org/10.1109/TNS.2020.2993637

2

its repeated use is financially prohibitive, and the particle
beam time slots at most facilities are very limited. Under
such circumstances, an exhaustive evaluation of the different
hardware/software/hardening configurations of the system is
impractical.

To alleviate those difficulties, the present work proposes
a model to predict the fault tolerance of the applica-
tion/microprocessor pair under radiation. Our model combines
simulated results from fault injection campaigns with results
obtained in radiation tests. We used a Multiple Linear Re-
gression approach with a gradient descent algorithm to fit
the model parameters. It is intended to help the designers
with the exploration of the trade-offs when SIHFT techniques
are applied to the programs. To this end, and contrary to
other approaches, different cross-sections were considered for
different processor blocks, thus adding more flexibility to
the model. Furthermore, those cross-sections are not directly
measured in one unique radiation test, but empirically adjusted
by a number of experimental and simulated campaigns. In this
way, the model has a previous training phase where several
parameters are fitted to optimize its performance. Once trained,
the model can be used to estimate the sensitivity to soft-errors
of the different processor blocks and to predict their reliability
under radiation.

A preliminary work was presented in [17] that focused on
optimizing the application of a High Level SIHFT technique
to a reduced number of programs. This work extends that
effort in two ways: 1) characterizing two platforms (ARM
and MSP430) using the parameters obtained from the trained
models; and, 2) analyzing and optimizing the application of
three different SIHFT techniques to the benchmark suite: low-
level implemented, high-level implemented and non-intrusive.

The remainder of this paper will be organized as follows:
related works will be reviewed in Section II; in Section III
the model will be described; in Section IV the test boards,
facilities, fluxes and benchmarks will be specified; likewise,
in Section V, each training step for each model and the model
evaluation procedure will be detailed; then, an introduction to
the operation of the model for early reliability characterization
of applications and hardening techniques will be presented in
Section VI. Finally, the conclusions and the contributions of
this study will be highlighted in Section VII.

II. RELATED WORKS

Two main algorithmic approaches have been proposed to
overcome the limitations, in terms of observability and eco-
nomic cost, of radiation experiments: Machine Learning-based
(ML-based) and Model-based (M-based).

On the one hand, Machine Learning methods rely on the
capability of its algorithms to learn from examples, with
no prior knowledge of the relation between the input (i.e.
application and processor features) and output variables (i.e.
soft-error rate). ML-based methods have been used in several
ways. Vishnu et al. [18] proposed a combination of eight ML
algorithms, to assess the impact of multi-bit memory errors
on HPC applications and to compare their predictions with
the fault-injection results. In [19], the authors used linear-
regression techniques to backtrack the propagation of soft

errors through processes dependent on many-core processor
systems. Considering the application of non-intrusive SIHFT
methods, the works described in [20] and [21] employed
genetic algorithms that select the best compilation flags of
certain applications for their reliability optimization. Rocha
et al. [22] have recently proposed a soft-error score, which
combines supervised and unsupervised ML algorithms, to
correlate application profiles and processor characteristics with
fault-injection results. The score was devised to assist re-
searchers with the identification of the parameters that have
most influence on the reliability of the final application.

On the other hand, Model-based predictors are employed to
compensate the traceability limitations of the errors observed
in the radiation experiments with the vulnerability estimations
offered by fault injection. Rezgui et al. [23] were the first
to propose the prediction of the Single Event Upset (SEU)
program cross-section, both from the static SEU cross-section
derived from radiation testing and the error rates noted in fault-
injection campaigns. According to this model, the sensitivity
of a program to SEUs can be computed as the product between
the cross-section of the underlying processor technology and
the fraction of upsets with consequences (errors) when running
the program. Faults were emulated on real devices (microcon-
trollers) with a limited amount of memory and resources. That
model was extended to multi-core and many-core processors
[24]. Two additional moderating factors, which took account
of input from shared and cache memories, computed while
running the program, were proposed in the same study.

Recently, the original model has also been used by other
authors in [25], to predict the Failures in Time (FIT) of an
ARM processor executing a code. In this case, fault injection
campaigns were performed on a large benchmark suite running
on a cycle-accurate simulator. The contributions of the main
processor blocks (cache data and instruction memories, TLBs
and register file) were estimated and summed up by a global
vulnerability factor. In a similar way to [23], the technology-
dependent sensitivity, raw FIT in this case, was measured
on an L1 cache with neutron beam experiments and used in
the model as representative of the Cortex-A9 implemented in
Xilinx Zynq devices.

III. MATHEMATICAL MODEL AND RELIABILITY FIGURE

The key idea of our model is to modulate the intrinsic
cross-section of the different processor blocks with the error-
masking effect that is generated by the piece of code they
are running. It is well known that any soft error induced on
a bit can be masked, depending on its use by the software.
Furthermore, the inclusion of some sort of code redundancy
can improve the masking effect, such as those used in the
SIHFT techniques [26]. However, when a piece of code is
proposed for hardening, it is important to analyze all pos-
sible configurations, to assess whether the overhead that is
introduced is worthwhile. Therefore, not only is it important
to analyze the configuration parameters that affect program
performance (e.g. data replication, consistence checks, error
masking, resource optimizations, resource mapping, ...), but
it is also important to analyze the radiation sensitivity of the
solution.

3

In practical experiments, simulated fault-injection cam-
paigns are used as low-cost solutions for fast checking the
effects of these techniques, to identify the overhead that
has been introduced and to estimate the application fault
coverage. For instance, the relaxation of some constraints, such
as permitting few overheads throughout the execution time
of an application, can only be tolerated when a significant
improvement in reliability or resource availability compensates
the overhead incorporated in the system. However, costly
irradiation campaigns are still necessary to ensure the correct-
ness of the solution, because in most cases there is no clear
correlation between simulation and irradiation results [27]. The
main problem is the way in which real irradiation results
can be accurately predicted with simulated fault injection
campaigns on complex devices.

Modern microprocessors are usually composed of several
blocks the contribution of which to final device reliability is
somewhat uneven. The sensitivity of each block is dependent
on its own technological implementation and may show slight
differences from one block to another. In our approach, block
sensitivity is a parameter of a Multiple Linear Regression
model. Multiple block-sensitivity parameters are fitted by
experimental results, which offer an estimation of the static
cross-section, and fault injection results, which integrate the
software masking effect. Once trained, the model helps the
designer to estimate the reliability of each piece of code on
a given processor via simple simulations. It also helps with
speedy evaluation of the different trade-offs in simulation
(away from radiation environments) and limits the real radi-
ation measurements to the single (maybe, two or three) most
suitable configuration(s) with enhanced reliability capabilities.

A. Microprocessor blocks decomposition

In a program, two major blocks can be relatively easily
identified: storage and control. A storage block is composed
of the Register File (R) and memory subsystem, which usually
follows a specific resource mapping scheme that is dependant
on the platform and can involve several resources with differ-
ent technological implementations. General purpose compilers
usually split the programs following a standard set of blocks,
which are used to segment the code and to map them easily
on a specific platform:

• Program memory, (P): where the program instructions
are written and, depending on processor and compilation
flags, the instructions can be executed from a Read-Only
Memory (ROM) or a Random-Access Memory (RAM)
(after initial loading from the ROM). The ROM itself
can have several implementations, from true ROM (rare)
to FLASH, which are often considered immune to SEUs,
although the controller and the initialization and writing
codes are not necessarily immune.

• Data memory (D): usually implemented in static or
dynamic RAM, some processors use ferroelectric RAMs,
which have, it is claimed, greater immunity to radiation
effects [28], ie. MSP430.

• Constants: depending on the compiler and the optimiza-
tion flags that are used, constants will either form part of

the code memory (P) or will be stored in the data RAM
(D) and initialized on program start-up. (Included on D
or P depending on the compiler decisions).

• Program stack, (S): depending on the processor, the
program stack can be part of the RAM data or can be
separately implemented.

The control block, (X), is the processor part that processes
instruction fetching, opcode decoding, internal timing, periph-
eral controls and interrupts. This part is seldom simulated or
the behavior is approximated in high level instruction-accurate
or cycle-accurate simulators. Therefore, the effects within the
control block, which are often independent of the specific
code such as the essential platform configuration bits, can
be estimated as a constant parameter. In contrast, low-level
simulators are capable of simulating this part, such as Register-
transfer level (RTL) simulators. However, they are too slow for
effective trade-offs within the optimization process.

B. Model Description

As made clear in the previous subsection, our model
takes account of the following i blocks/sections (i ∈
{P,D,B1, B2, B3, ..., S,R,X}) of the test processor. They
must be separately considered, because they could have differ-
ent hardware implementations, and they are used in different
ways by different applications. They therefore have their own
cross section (σi) [29]. Our model also follows a Multiple
Linear Regression (MLR) [30] approach where the coefficients
are σi and the intercept terms integrates the contribution of
the non simulable blocks. A gradient descent algorithm [31]
is used to fit the parameters, instead of the conventional least
squares method. The gradient descent approach optimizes a
target function through a systematic selection of values within
a range that will either minimize or maximize the function
result. In this sense, the estimated SEU events, i.e. Expected
Number of Single Events (SDC for an erroneous output or
HANG for non-response states), can be modeled as follows:

P̂ (SD) = Φ · T ·
∑
i

σi · SDi = (1)

= Φ · σ∗ · NExec

{
TE

(∑
i

Ki · SDi + CSDX

)}
(2)

P̂ (HG) = Φ · T ·
∑
i

σi · HGi = (3)

= Φ · σ∗ · NExec

{
TE

(∑
i

Ki · HGi + CHGX

)}
(4)

where, Φ is the radiation flux (particles/s/cm2); σi is
the relative cross section per byte of each block, (cm2/byte)
expressed as σi = Ki · σ∗; where, Ki represents the block
sensitivity that modulates a unique cross section, σ∗, shared
by the whole platform. T is the total exposure to radiation flux,
which is also expressed as (TE ·NExec), where TE is the nominal
execution time (s) and NExec is the number of executions or
runs performed during the radiation tests. SDi (HGi) is the
average sensitivity to SDC (HANG) of each block. CSDX
(CHGX) modulates the influence of the non-simulated part.

4

SDi (HGi) are calculated by multiplying the frequency of a
given event (τi) by the block size in bytes (Si), taking into
account that larger blocks are more prone to SEUs events.
Simulated fault injection campaigns are used to obtain the
frequency of a given event (τi), calculated as the number of
events divided by the number of faults that are injected (Ri)
per block.

SDi
∆
= τSDC · Si =

#SDi
#Ri

· Si (5)

HGi
∆
= τHANG · Si =

#HGi
#Ri

· Si (6)

A relevant factor in the model is the bracketed expression
that represents the size-time figures, χSD and χHG, of the
given program, which can be used to compare the overheads
of different solution strategies and to identify the blocks
where the hardening efforts should be focused. This way, the
equations can be rewritten as:

P̂ (SD)

NExec
=Φ·σ∗ ·χSD ; χSD=TE ·

(∑
i

Ki ·SDi+CSDX

)
(7)

P̂ (HG)

NExec
=Φ·σ∗ ·χHG ; χHG=TE ·

(∑
i

Ki ·HGi+CHGX

)
(8)

Our model proposes that the error probability depends on
three independent factors:

• The radiation flux (Φ)
• The shared processor cross section (σ∗)
• The intrinsic configuration of the program (χSD and
χHG)

As a consequence, one can concentrate on guiding the hard-
ening and optimization efforts by looking exclusively at the
easy-to-obtain Size-Time figures (χSD and χHG).

Additionally, the model can be used to estimate the well
known metrics Mean Work To Failure (MWTF), first introduced
by Reis at [32], and Mean Time To Failure (MTTF). The
MWTF metric captures the average work that an application can
perform before an event is produced (number of executions).
The MTTF metric captures the average time between two
failures during a given sample time (Tsample).

MWTF =

{
1

P̂ (SD)/NExec
= 1

Φ·σ∗·χSD
for SDC

1
P̂ (HG)/NExec

= 1
Φ·σ∗·χHG

for HANG
(9)

MTTF = Tsample · MWTF (10)

IV. EXPERIMENTAL SETUP

Two devices (MSP430 and ARM) were evaluated in two
different radiation test facilities, using several benchmarks, in
order to assess the model described in the previous section.
They were classified into three groups according to whether
either optimization or hardening techniques or both were
applied.

A. DUTs - Devices Under Test - ARM & MSP430

Two Devices Under Test were proposed for the irradiation
experiment: an ARM microprocessor and a MSP430 micro-
controller.

The first DUT is a ZYBO board, equipped with a 28nm
CMOS Xilinx ZYNQ XC7Z010 System On Chip (SoC) [33].
This SoC is divided into two parts, an FPGA area (Pro-
grammable Logic – PL) and the dual-core 666MHz 32-bit
ARM cortex A9 microprocessor (Processing System – PS).
This processor has a 13-stage instruction pipeline that includes
a branch prediction block and support for two levels of
cache. The processor also has a built-in On Chip Memory
(OCM), where a bootloader or the program under test can be
loaded. The simulated fault injected campaigns of this device
were performed over a OVPsim simulator from Imperas, an
instruction-accurate processor, which can be extended using
custom plugins to perform non-intrusive injections [21].

The second DUT is the MSP430F5529 from Texas Instru-
ment [34], a 130nm micro-controller widely used in micro-
satellites (CubeSats). This device is a 16-bit RISC CPU
running at 25MHz, equipped with 128KiB of flash memory
and 8KiB of RAM. The register file is composed of 5 control
registers and 11 general purpose registers. The simulated fault
injection campaigns of this device were performed on the
NAKEN simulator, which also was extended to provide non-
intrusive fault-injection capabilities [35].

Software Simulators can be simply altered to provide non-
intrusive fault injection capabilities based on the bit-flip model.
Therefore, they can be used to obtain the fault coverage
statistics, in terms of Silent Data Corruption (SDC), when
an erroneous output is produced, and in terms of HANG
when the platform stops working [29]. In particular, simulators
such as [22], [36], [37] can estimate, given a program and its
configuration, both the SDC and the HANG values. In both
cases, the simulated fault injection was separately performed
on each register and the memory was also injected, taking
into account the program data, the program code and the stack
section.

During the radiation test, both DUTs were configured, to
send a signal to an external computer every 5 seconds reporting
the internal status in the absence of errors. Any discrepancy
between the calculated and the golden results for the DUT will
signal an SDC error, which is immediately communicated to
the external computer. If there is no communication within 10
seconds, the DUT is considered to have reached the HANG
state and it is restored by the external computer.

B. Facilities - LANSCE & CNA

Two radiation test campaigns were performed, to develop
the model and for its validation.

The first test campaign was performed in mid-2018 at the
National Centre for Accelerators, in Spain [38]. Irradiation
tests were performed using the external beam line, installed in
the cyclotron laboratory. The compact system emits a unique
proton beam (18 MeV), without any degrader films. The beam
is emitted through the window, a 125µm Mylar R© foil, and the
air distance up to the DUT (device under radiation) position.

5

In this particular case, the DUT was placed at 53.5 cm from
the exit nozzle, so that the final energy at the surface was
15.2 MeV, with an estimated spread in the order of 300 KeV.
The device package was not removed, as the energy range
of incident protons in the silicon active area (8 to 10 MeV)
was sufficient to produce events, which has previously been
validated by the CNA group in similar campaigns conducted
with these types of boards [7]. The final energy of the incident
beam on the surface and in the active area was obtained with
energy-loss data calculated with the SRIM2013 code [39]. A
medium flux value was calculated at the base of the pulses,
registered by a counter on the 10 pA sensitive scale. The
flux value was monitored within a 5% fluctuation during each
run. Finally, the fluence at the DUT was calculated using the
exposure time for each run (109) to an accuracy of 10%. The
radiation field, defined by a mask on the device, covered the
active area with a uniformity that was higher than 90%.

The second test campaign, the neutron SEE campaign, was
performed at the Los Alamos Neutron Science Center (LAN-
SCE) in September 2018 [40], [41]. The experiments were
performed at the Weapons Neutron Research Facility (WNR),
using Target 4 Flight Path 30L (ICE I). The neutron beam was
produced from a tungsten spallation source at approximately
30 degrees to the left of the main beam. The shape of the
neutron spectrum was very similar to the one produced in the
atmosphere by cosmic rays. During the campaign, the DUT
remained at 23 m from the neutron source, and the beam was
collimated, so that a spot with a diameter in the order of 30 mm
was obtained. This size covers the active area with a higher
uniformity than 90%. The LANSCE dosimetry data yielded a
constant neutron flux of 1.7 · 105n/(s · cm2), above 10MeV.
Taking into account the times to complete each run, the total
fluence was calculated with an accuracy of 10%.

C. Benchmarks

During the experiment, several programs from ”Benchmarks
for Energy Measurements on Embedded Platforms” (BeeBs)
[42] were hardened and evaluated using simulated fault in-
jections. All the benchmarks were evaluated, by injecting
1000 faults per resource (registers and memory sections) that
constituted the platform under simulation. For the sake of
simplicity, only the most significant program versions were
proposed for radiation testing at LANSCE and CNA:

• Bubblesort (BB): A sorting algorithm that swaps con-
tiguous elements of a vector until the vector is shortened.

• Dijkstra (DK): A shortest path finder between two
points, given an adjacency matrix.

• NDES (ND): A block encryption algorithm with which
the ”key” matrix must be preserved, in order to cypher
and to decypher the messages.

All the aforementioned benchmarks were hardened using
several strategies, based on SIHFT techniques applied at dif-
ferent levels from the assembly level to sophisticated structures
present in a general purpose programming language such as
C++.

• MOOGA (M) [21]: a genetic algorithm guided by a
multi-objective optimization algorithm was used to op-

timize an application by means of the compiler flags,
which is able to generate a huge number of equivalent
applications with improved features such as size, time,
and fault coverage altogether.

• SHE (S) [43] Software Hardening Environment: assembly
to assembly compiler capable of adding automatic pro-
tection to the MSP430 designs, by using the S-SWIFT-R
technique. The compiler has the capability of producing
selective register hardening, in order to reduce the time
overheads of replica computation.

• HData (H) [17] - Hardened Data: classes templates on
C++ that replace the basic language types, in order to
implement automated and transparent TMR protection.

Benchmarks were coded using the following name conven-
tion: first the benchmark name, then the hardening technique
applied, and finally the version number. For instance, BB-M-
10 corresponds to the 10th version of Bubblesort algorithm
hardened using MOOGA. In addition, those versions match-
ing with the standard optimization flags are indicated using
parentheses (e.g. BB-M-3 (O3)).

V. MODEL TRAINING AND EVALUATION

All the benchmarks were evaluated and characterized prior
to the radiation experiment, to analyze the impact of hardening
techniques on program reliability. Once the measures had been
obtained following radiation, the model was adjusted to set
the sensitivity parameters. Finally, the model was evaluated
against a control group of versions not used in the training
phase.

A. Programs evaluation (SDi and HGi)

Table I summarizes the average sensitivity of the different
blocks present in the algorithms selected for radiation. The
table classifies them by the DUTs under evaluation and the
exposed particles.

The LANSCE ARM-n0 applications showed that the ref-
erence version of the Dijkstra algorithm (DK-M) achieved
better results in all blocks with the exception of the SDD
(RAM), which was improved 25× by DK-H. On the contrary,
Bubblesort offered improvements in most of the blocks under
analysis, with the exception of HGS (stack) and HGP (Program)
where the hardening technique had an adverse influence, due
to block-size growth.

The CNA ARM-p+ and the *ARM-p+ applications pro-
vided a clear view of the best version of the program (11
and 14), which corresponded with the hardened version of the
Bubblesort algorithm. This version achieved the best results in
almost all block and SEU events, which implies a program of
greater reliability. In contrast, the NDES algorithm provided
no clearly reliable version, due to the strengths and weaknesses
of each version.

No clear indicator was found to ascertain which version
among the LANSCE MSP430-n0 applications offered major
reliability enhancements, however the effects of each hard-
ening technique were visible. For instance, SHE builds are
focused on enhancing the register file reliability, an objective
achieved by both. As the HData technique is focused on data

6

TABLE I
SIMULATED SDi AND HGi VALUES FOR ALL BENCHMARKS IRRADIATED.

BOLD BENCHMARK NAMES ARE USED AS REFERENCE BUILD FOR
COMPARATIVE PURPOSES. LOWER VALUES ARE BETTER (HIGHLIGHTED).

ARM-n0 Register RAM STACK Program
Training SDR HGR SDD HGD SDS HGS SDP HGP

BB-M-16 2.1 12.1 896 14.1 4.9 5.9 0 318
BB-H-1 0.2 9.1 3.8 7.3 0 17.7 0 373

DK-M-17 3.6 9.9 401 339 11.8 18.7 128 1282
DK-H-2 6.3 19.1 16.0 540.6 13.9 21.2 244 2929

*ARM-p+ Register RAM STACK Program
Control SDR HGR SDD HGD SDS HGS SDP HGP

BB-M-10 2.6 15.6 397 14.2 0 5.4 56.8 375
BB-H-11 0.24 8.8 4.1 8.0 0 11.1 0 504
BB-M-12 22.2 12.9 401 13.8 0 5.1 263 323
BB-M-13 1.6 11.3 270 151 1.7 6.0 115 435
BB-H-14 0.2 8.8 4.1 8.0 0 11.1 0 504
BB-M-15 1.6 11.3 270 152 1.7 6.0 115 435

ARM-p+ Register RAM STACK Program
Training SDR HGR SDD HGD SDS HGS SDP HGP

BB-M-1 22.2 12.9 400 13.8 0 5.12 263 323
BB-M-2 1.5 12.6 256 144 3.4 3.13 95.4 371
BB-M-3 2.3 16.2 395 24.8 0 4.27 335 345
BB-M-4 1.6 11.3 270 151.6 1.7 5.97 115 435
BB-M-5 1.8 15.6 377 14.3 0 5.97 61.7 288

ND-M-6 0.7 13.9 31.9 168 6.8 29.9 1295 534
ND-M-7 26.2 9.8 186 0.8 20.5 12.5 2891 702
ND-M-8 0.8 14.0 37.3 176 6.8 29.0 1202 641
ND-M-9 0.8 14.0 37.3 176 6.8 29.0 1202 641

MSP430-n0 Register RAM STACK Program
Training SDR HGR SDD HGD SDS HGS SDP HGP

BB-M-18 5.9 4.5 99.1 0 0 1.2 256 0
BB-S-5 0 3.1 0 0 0 1.3 0 1.4
BB-H-3 0.3 5.0 0 0 0.2 3.9 59.4 204

DK-M-19 3.7 7.2 158 44.8 1.2 6.0 61.03 261
DK-S-4 0.1 3.1 177 61.6 2.9 3.3 110.5 413
DK-H-4 1.0 3.9 0 116 2.1 3.1 671 1208

triplication, SDD showed improvements in both cases. However,
both techniques introduce new vulnerabilities into the program
code, which may not be taken into consideration, because
the program code block is immune to radiation, as will be
explained in connection with the model.

B. Model Training and Validation

A limited set of applications for irradiation was proposed
for training the model, due to time constraints on access to
the facilities and fluxes. The model coefficients were obtained
using the gradient descent method to adjust equations 7 and
8. The error function (equation 11) was used to optimize the
model, during the gradient descent training process. ε needs

to be minimized to obtain values close or equal to 1, which
meant that the model estimations exactly matched the real
irradiation measurements. The equation penalizes the higher
differences between the expected number of faults provided by
the model (P̂ (Event)) and the real irradiation measurements
(P (Event)).

ε = 10
mean

(
|log10 P (SD)−log10 P̂ (SD)|3+|log10 P (HG)−log10 P̂ (HG)|3

)
(11)

Table II shows the different Ki sensitivity parameters per
block and the common shared processor cross section (σ∗)
obtained from the training phase. Also, an analysis of the
results is presented in Table II by measuring the goodness of
the correlation between both the real and the predicted events
for the different DUTs and the particles: i.e. the respective
correlations using a Simple Linear Regression model (being
m the slope of the regression line and Std the standard error)
and Pearson’s coefficient (R2).

TABLE II
TRAINED MODEL SENSITIVITY PARAMETERS AND CORRELATION METRICS

FOR DIFFERENT DUTS AND PARTICLES.

σ∗(cm2/byte) KR KD KS KP CSDX CHGX m Std R2

ARM-n0 6.66·10−14 23 1 1 1 44 0 1.04 0.06 0.91
ARM-p+ 2.27·10−14 23 1 1 1 44 0 0.87 0.08 0.91

MSP430-n0 7.90·10−13 5 1 1 0 4 0 1.32 0.12 0.86

TABLE III
CORRELATION MODEL RESULTS FROM CONTROL GROUP

m Std R2

*ARM-p+ 0.88 0.07 0.89

An overview of the trained sensitivity parameters showed
that all memory blocks sharing the same technology also
shared the same Ki (see RAM KD and stack KS). The model
highlighted that the MSP430 Program code block was tech-
nologically protected (flash chip) and therefore immune to
radiation, although ARM may affect the effectiveness of the
SIHFT techniques whenever there are code overheads. The
control block, (X), was less prone to errors in MSP430 than
in ARM, because the logic complexity is higher in ARM than
in the MSP430 microcontroller. The KR associated with the
register file showed similar sensibility to the memory (KD) in
the MSP430, which meant that both blocks shared similar
technology. In contrast, the higher sensitivity of the ARM
device was due to the higher complexity of the register file
subsystem.

The correlation analysis revealed that the model for ARM
presented the highest correlation, with a Pearson’s coefficient
of 0.91, while the MSP430 R2 coefficient was 0.86. Focusing
on the case of ARM-n0, the line that best fitted the relation
between the real measures and the predictions (m = 1.04)
showed that the model predictions perfectly fitted the mea-
surements with a reduced Std of 0.06. In contrast, the models
for ARM-p+ and for MSP430-n0 showed under- and over-
estimation, respectively, defined by slopes of 0.87 and 1.32
with Std of 0.08 and 0.12 respectively.

7

TABLE IV
MEASURES AND PREDICTIONS UNDER NEUTRON AND PROTON

IRRADIATION. P (Events) IS THE NUMBER OF EVENTS MEASURED (95%
OF CONFIDENCE INTERVALS ARE SHOWN AS SUBSCRIPT AND

SUPERSCRIPT). P̂ (Events) IS THE NUMBER OF EVENTS ESTIMATED BY
OUR MODEL. T(s) IS THE TOTAL RADIATION TIME IN SECONDS.

ARM-n0 T Measured Predicted

(105s) P (SD) P (HG) P̂ (SD) P̂ (HG)

BB-M-16 3.97 12216 4101 15 9

BB-H-1 4.00 160 8163 1 9

DK-M-17 4.09 182911 365125 10 29

DK-H-2 4.11 13237 425830 7 62

ARM-p+ T Measured Predicted

Training (105s) P (SD) P (HG) P̂ (SD) P̂ (HG)

BB-M-1 0.43 11213985 14248 90 47

BB-M-2 0.66 769758 405628 46 86

BB-M-3 0.38 7910161 365125 56 50

BB-M-4 0.24 698952 456132 24 43

BB-M-5 0.31 658549 385326 38 48

ND-M-6 0.16 729355 355024 53 40

ND-M-7 0.81 9111571 15258 74 19

ND-M-8 0.22 8010262 334722 61 54

ND-M-9 0.16 8211463 294219 45 40

*ARM-p+ T Measured Predicted

Control (105s) P (SD) P (HG) P̂ (SD) P̂ (HG)

BB-M-10 0.79 15258 516837 20 74

BB-H-11 0.54 391 9912475 13 107

BB-M-12 0.30 324621 698851 89 50

BB-M-13 0.19 9174 445930 9 29

BB-H-14 0.18 160 889657 5 79

BB-M-15 0.22 5122 456132 11 36

MSP430-n0 T Measured Predicted

(105s) P (SD) P (HG) P̂ (SD) P̂ (HG)

BB-M-18 3.05 274017 5122 26 5

BB-S-5 22.2 160 7153 1 3

BB-H-3 46.2 160 270 1 6

DK-M-19 35.5 435930 16269 34 16

DK-S-4 106 8110362 9174 35 15

DK-H-4 269 270 15258 2 27

Several irradiated applications were used as a control group
(*ARM-p+), to verify the model that was trained for the ARM
proton campaign (ARM-p+). The control group (applications
excluded from the training set) was formed with several
applications with a deactivated cache and the RAM block
forced outside the beam, to highlight the relevance of the
register file. Within this control group, two new applications
were found, one of which was hardened with the HData
technique, which presented 2 versions (11 and 14), which
were configured so that the former was outside and the latter
inside the radiation flux respectively. Table III shows the
regression analysis performed over the control group, using
the parameters obtained after training the model. This analysis
revealed a high model consistency, because the trend line slope

was preserved (0.88±0.07) and the R2 showed little variation
(0.89).

Finally in Table IV, the expected values of the model are
shown alongside the real irradiation measurements and confi-
dence intervals calculated using [16]. Also, Figure 1 shows the
model predictions for the versions of Bubblesort used as con-
trol group and the measurements obtained from the radiation
campaign. As can be seen, most of the predictions are within
the confidence intervals. The model tends to overestimate the
SDC events slightly, with the only notable exception of BB-M-
12, which exceeds this behavior due possibly to an inaccuracy
in the radiation experiments. In addition, to a certain extent
the model overestimation of SDC is compensated with the
underestimation of the HANG number. The program versions
are arranged in order of increasing number of events, in this
way, it can be observed that the predictions follow the same
trend as the radiation results. Therefore, the model can identify
the most sensitive versions (BB-M-12 to SDC and BB-H-11
to HANG) and the less sensitive versions (BB-H-14 to SDC
and BB-M-13 to HANG).

B
B

-H
-1

4

B
B

-H
-1

1

B
B

-M
-1

5

B
B

-M
-1

3

B
B

-M
-1

0

B
B

-M
-1

2

B
B

-M
-1

3

B
B

-M
-1

5

B
B

-M
-1

0

B
B

-M
-1

2

B
B

-H
-1

4

B
B

-H
-1

1

0

20

40

60

80

100

120

1 3 5
9

15

32

5
13 11 9

20

89

44 45
51

69

88

99

29
36

74

50

79

107

Measured SDC Predicted SDC Measured HANG Predicted HANG

Version

E

ve
nt

s

Fig. 1. SDC and HANG events for the applications of the control group.
The figure shows the experimental measures obtained with 95% confidence
interval and the number of events predicted by the model.

VI. EARLY PROGRAM SECTIONS SENSITIVITY
CHARACTERIZATION

The operation of the model for early reliability characteri-
zation of applications and hardening techniques is presented
in this section. First, the parameters obtained during the model
training are used to evaluate the contribution of the different
processor blocks to the program reliability. Then, the size-time
figures (χSD and χHG) are calculated taking into account
not only the sensitive area but also the program exposed
time under the different configurations. Finally, the MWTF
and MTTF metrics, obtained from the size-time figures, help
to estimate the real impact of different hardening techniques
under real irradiation.

For the sake of simplicity, only some Bubblesort versions
are discussed for both architectures (ARM and MSP430).

1) Block contribution to the Size-time figures: the pro-
cessor blocks sensitivity to SDC and HANG jointly with
the execution times of each version are shown in Figures 2
and 3. For comparison purposes all numbers are normalized

8

to a baseline version compiled with -O0 flag (without any
optimization). The evaluation of each build and optimization
can be performed quite reasonably, by taking account of each
technique and the time overhead that it introduces.

9.37

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.41

1.61

1.81

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

BB-M-21(O1) BB-M-22(O2) BB-M-5 BB-H-14

TESDC/HANG

SD REG SD DAT SD STACK SD PROG HG REG

HG DAT HG STACK HG PROG time

Fig. 2. Normalized execution time (triangles) and contribution to the size-time
figures (SDC: gray bars; HANG: dark bars) of the ARM processor blocks.
Baseline version -O0.

Related to ARM processor (figure 2), only MOOGA op-
timization and HData technique were applied to the bench-
marks. It can be observed that MOOGA achieved a meaningful
reduction in execution time up to 5× (0.18×), because of
aggressive performance optimizations, while HData produced
an increase by around 2×, due to the extra calculations needed
to perform the TMR.

Regarding the individual contribution of the processor’s
block, the Register file and the Data section achieved an
increase at the SDC in the optimized versions obtained by
the MOOGA. Due to the extensive use of those resources,
the increase in their susceptibility to failure was very relevant
in the case BB-M-21, which increased by almost 10×. In
contrast, it was the HData version BB-H-14 that managed to
achieve an important reduction because of the registers and
variables replication. Both techniques achieved reductions in
the Program block, especially in the HData version BB-H-14
where is reduced to 0.

Finally, the Stack block was, in all cases (including the
baseline) of little interest from the point of view of SDC,
because of its negligible susceptibility to this kind of faults.
However, it is remarkable the rise in its HANG sensitivity
that increased by 2.3× with MOOGA (B-M-22) and up to
3.7× with HData (BB-H-14). The Register file contribution
to HANG was also, but to a lesser extent, negatively affected
by the hardening techniques. For instance, BB-M-5 presents a
sensitivity 1.23× greater than the baseline and 1.4× the BB-
H-14 version. On the contrary, the Data section susceptibility
to HANG was minimized to almost zero in all the versions,
and also the contribution of the Program block is reduced, by
MOOGA optimization, between 0.60× (BB-M-22) and 0.78×
(BB-M-5). Only HData version increased this figure by 1.36×.

In summary MOOGA technique reduces the exposure time
of the application but increases the sensitivity to SDC of the

Register file and Data and the sensitivity to HANG of the
Stack. In addition, MOOGA achieves an almost full mitigation
of HANG events in the Data memory and a minor reduction
on Program memory. On the other hand, HData produces a
high time overhead but achieves an efficient protection of all
the blocks against the SDC events. Its main drawback is the
increase of HANG susceptibility, mainly of the Stack section.

In a similar way, Figure 3 shows the normalized values of
some representative versions hardened by MOOGA, HData
and SHE techniques. As evidenced by the model parameters,
the Program section that is implemented in FLASH memory
was unaffected by radiation. Therefore its contribution, zero
in all the versions including the baseline, is not shown in the
figure.

0.00

0.50

1.00

1.50

2.00

2.50

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

BB-M-24(O1) BB-M-18(O2) BB-H-3 BB-S-1 BB-S-2 BB-S-4 BB-S-5

TESDC/HANG

SD REG SD DAT SD STACK HG REG

HG DAT HG STACK time

Fig. 3. Normalized execution time (triangles) and contribution to the size-
time figures (SDC: gray bars; HANG: dark bars) of the MSP430 processor
blocks. Baseline version -O0.

As can be seen, versions optimized with MOOGA (BB-
M-24 and BB-M18) present the same behavior described for
the corresponding versions in the ARM processor. In this case,
the contribution of the Data section to the HANG sensitivity is
negligible and remains stable along all the versions. The HData
version (BB-H-3) also follows the same trend than previously,
and corroborates the efficiency of the technique for mitigating
SDC faults. The SHE technique was applied selectively to
the registers of the Register file. It produced versions with
different time overheads, from 1.2× (BB-S-4) to 2.32× (BB-
S-1), depending on the level of use of the protected resources.
As the figure shows, the technique improves the mitigation
of SDC faults, mainly by reducing the contribution of the
Register file and the Data section, but increasing the sensitivity
of the Stack to HANG faults by 2.0× (BB-S-1 and BB-
S-2). Selecting carefully the registers by their vulnerability,
the protection can be improved and extended to the Stack
block without worsening the HANG sensitivity (see the BB-
S-5 version).

2) χSD/χHG and MWTF/MTTF performance metrics:
Despite the good estimations that were offered by both SDC
and HANG on each technique and its impact on the fault
coverage of each test application, the execution time was not
taken into account. The χSD/χHG metrics shown in Figures 4
and 5 captured this impact and evaluated whether the execution
time overhead of the technique was worthwhile.

9

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

BB-M-21(O1) BB-M-22(O2) BB-M-10(O3) BB-M-5 BB-H-14

ΧSD ΧHG MWTF MTTF

Fig. 4. Normalized χEvent figures, MWTF and MTTF metrics for ARM cal-
culated using the model parameters for protons (σ∗ = 2.27·10−14cm2/byte),
a radiation flux of 109p/cm2 ·s; and a sample time of 20ms. Baseline version
-O0.

As can be seen in Figure 4, the reference version (O0)
showed the worst results in terms of χSD and χHG, with
the exception of the BB-H-14 version, which achieved the
highest rates of χHG. Focusing on this HData version, even
though it was a build with better fault coverage for SDC, the
execution time and the Program memory size overheads were
decisive in the lower rate of MWTF and MTTF. MOOGA
version BB-M-5, in contrast, achieved the highest results, even
presenting an important HANG overhead in Stack and Data
sections, however the reduced execution time was decisive in
the amount of work it was capable of completing before a
SEU event was produced.

6.71

0.00

1.00

2.00

3.00

4.00

5.00

BB-M-21(O1) BB-M-22(O2) BB-M-10(O3) BB-H3-3 BB-S-1 BB-S-2 BB-S-4 BB-S-5

ΧSD ΧHG MWTF MTTF

Fig. 5. Normalized χEvent figures, MWTF and MTTF metrics for
MSP430 calculated using the model parameters for protons (σ∗ = 2.27 ·
10−14cm2/byte), a radiation flux of 109p/cm2 · s; and a sample time of
20ms. Baseline version -O0.

Figure 5 shows the expected results for MSP430 under a
neutron campaign.

It shows how the hardening techniques achieved the most
similar results to the reference version (O0) and, in several
cases, they showed a worsening. The overhead time was deci-
sive for achieving comparable improvements to the optimized
applications, which could process 3× more information before
an SEU was detected.

VII. CONCLUSION

In this study, an empirical model has been presented that is
capable of predicting the effects of radiation on different DUTs
under real irradiation campaigns (protons and neutron). The
model has been trained and tested with several applications of
interest under different irradiation campaigns at the CNA and

the LANSCE facilities. The results showed a good correlation
between the predictions and the real results in both cases, the
training and the control group of versions.

A case of use has also been presented, where the sensitivity
of different program blocks has been estimated for several pro-
grams of interest. Likewise, several hardening proposals and
optimized applications have been evaluated. The evaluation
results have not only emphasized the importance of fault cov-
erage obtained from simulated fault injections for increasing
the reliability of an application, but also the importance of
reducing the sizes and the performance overheads introduced
by these techniques.

ACKNOWLEDGMENT

This work has been supported in part by the projects ESP-
2015-68245-C4-3-P and ESP-2015-68245-C4-4-P (Spanish
MINECO). The authors would like to convey their gratitude
to Los Alamos Neutron Science Center, and especially to its
staff for their support during the test campaign.

REFERENCES

[1] J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, and T. Turflinger,
“Digital single event transient trends with technology node scaling,”
IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3462–3465,
Dec. 2006.

[2] D. M. Fleetwood, “Evolution of total ionizing dose effects in MOS
devices with Moore’s law scaling,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1465–1481, Aug. 2018.

[3] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, Sep. 2005.

[4] T. Karnik and P. Hazucha, “Characterization of soft errors caused
by single event upsets in CMOS processes,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 2, pp. 128–143, Apr.
2004.

[5] L. A. C. Benites, F. Benevenuti, A. B. De Oliveira, F. L. Kastensmidt,
N. Added, V. A. P. Aguiar, N. H. Medina, and M. A. Guazzelli,
“Reliability Calculation With Respect to Functional Failures Induced by
Radiation in TMR Arm Cortex-M0 Soft-Core Embedded Into SRAM-
Based FPGA,” IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1433–1440, Jul. 2019.

[6] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step
(TCLS) ARM R© cortex R©-r5 processor for safety-critical and ultra-
reliable applications,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W).
IEEE, Jun. 2016, pp. 246–249.

[7] A. Lindoso, M. Garcı́a-Valderas, L. Entrena, Y. Morilla, and P. Martı́n-
Holgado, “Evaluation of the suitability of neon simd microprocessor
extensions under proton irradiation,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1835–1842, Aug. 2018.

[8] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient soft error
protection for embedded microprocessors,” in Proceedings of the 2006
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, ser. CASES ’06. New York, NY, USA: ACM,
2006, pp. 421–431.

[9] P. Bernardi, L. B. Poehls, M. Grosso, and M. S. Reorda, “A hybrid
approach for detection and correction of transient faults in SoCs,” IEEE
Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp.
439–445, Oct. 2010.

[10] A. Martı́nez-Álvarez, F. Restrepo-Calle, S. Cuenca-Asensi, L. M.
Reyneri, A. Lindoso, and L. Entrena, “A Hardware-Software Approach
for On-Line Soft Error Mitigation in Interrupt-Driven Applications,”
IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 4,
pp. 502–508, Jul. 2016.

[11] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. Garcı́a-Valderas,
L. Entrena, A. Martı́nez-Álvarez, and S. Cuenca-Asensi, “Dual-core
lockstep enhanced with redundant multithread support and control-flow
error detection,” Microelectronics Reliability, vol. 100-101, no. 113447,
pp. 1–5, Sep. 2019.

10

[12] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects
of compiler optimizations on application reliability,” in 2011 IEEE
International Symposium on Workload Characterization (IISWC), Nov.
2011, pp. 184–193.

[13] P. Yuste, J. C. Ruiz, L. Lemus, and P. Gil, “Non-intrusive software-
implemented fault injection in embedded systems,” in Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2003, pp. 23–38.

[14] J. Frtunikj, J. Fröhlich, T. Rohlfs, and A. Knoll, “Qualitative evaluation
of fault hypotheses with non-intrusive fault injection,” in 2015 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), Nov. 2015, pp. 160–167.

[15] D. Ferraretto and G. Pravadelli, “Simulation-based fault injection with
QEMU for speeding-up dependability analysis of embedded software,”
Journal of Electronic Testing, vol. 32, no. 1, pp. 43–57, Jan. 2016.

[16] European Space Agency, ESA, “ESCC Basic Specification No. 25100:
Single event effects test method and guidelines, Issue 2,” ESA, Noord-
wijk, Netherlands, Oct. 2014.

[17] L. M. Reyneri, A. Serrano-Cases, Y. Morilla, S. Cuenca-Asensi, and
A. Martı́nez-Álvarez, “A Compact Model to Evaluate the Effects of High
Level C++ Code Hardening in Radiation Environments,” Electronics,
vol. 8, no. 6–653, pp. 1–13, Jun. 2019.

[18] A. Vishnu, H. V. Dam, N. R. Tallent, D. J. Kerbyson, and A. Hoisie,
“Fault modeling of extreme scale applications using machine learning,”
in 2016 IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, 2016, pp.
222–231.

[19] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” in SC ’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov. 2015, pp. 880–891.

[20] N. Narayanamurthy, K. Pattabiraman, and M. Ripeanu, “Finding
resilience-friendly compiler optimizations using meta-heuristic search
techniques,” in 2016 12th European Dependable Computing Conference
(EDCC), Sep. 2016, pp. 1–12.

[21] A. Serrano-Cases, Y. Morilla, P. Martin-Holgado, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “Nonintrusive automatic compiler-guided reliabil-
ity improvement of embedded applications under proton irradiation,”
IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1500–1509,
Jul. 2019.

[22] F. R. da Rosa, R. Garibotti, L. Ost, and R. Reis, “Using machine
learning techniques to evaluate multicore soft error reliability,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6,
pp. 2151–2164, Jun. 2019.

[23] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, and J. R. Mingo, “Esti-
mating error rates in processor-based architectures,” IEEE Transactions
on Nuclear Science, vol. 48, no. 5, pp. 1680–1687, Oct. 2001.

[24] V. Vargas, P. Ramos, V. Ray, C. Jalier, R. Stevens, B. Dupont De
Dinechin, M. Baylac, F. Villa, S. Rey, N. Zergainoh, J. Méhaut, and
R. Velazco, “Radiation experiments on a 28 nm single-chip many-core
processor and seu error-rate prediction,” IEEE Transactions on Nuclear
Science, vol. 64, no. 1, pp. 483–490, Jan. 2017.

[25] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Jun. 2019, pp. 26–38.

[26] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated in-
structions in super-scalar processors,” IEEE Transactions on Reliability,
vol. 51, no. 1, pp. 63–75, Mar. 2002.

[27] F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, “Register
file criticality and compiler optimization effects on embedded micro-
processor reliability,” IEEE Transactions on Nuclear Science, vol. 64,
no. 8, pp. 2179–2187, Aug. 2017.

[28] S. Gerardin and A. Paccagnella, “Present and future non-volatile mem-
ories for space,” IEEE Transactions on Nuclear Science, vol. 57, no. 6,
pp. 3016–3039, Dec. 2010.

[29] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., Dec. 2003, pp. 29–40.

[30] J. D. Jobson, Multiple Linear Regression. New York, NY: Springer
New York, 1991, pp. 219–398.

[31] J. A. Snyman and D. N. Wilke, Practical Mathematical Optimization:
Basic Optimization Theory and Gradient-Based Algorithms. Springer
International Publishing, 2018.

[32] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and
D. I. August, “Design and evaluation of hybrid fault-detection systems,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
Jun. 2005, pp. 148–159.

[33] Xilix, UG585, “Zynq-7000 all programmable SoC: Technical reference
manual,” 2016.

[34] T. Instruments, “MSP430x5xx and MSP430x6xx Family User’s Guide
(SLAU208M).”

[35] A. Serrano-Cases, J. Isaza-Gonzalez, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “On the influence of compiler optimizations
in the fault tolerance of embedded systems,” in 2016 IEEE 22nd
International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, Jul. 2016, pp. 207–208.

[36] E. Carlisle and A. George, “Dynamic robust single-event upset simu-
lator,” Journal of Aerospace Information Systems, vol. 15, no. 5, pp.
282–296, May. 2018.

[37] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS). IEEE, Oct. 2015, pp.
211–214.

[38] C. N. de Aceleradores, “Seville, Spain,” http://www.cna.us.es, Last
visited: July 10th.

[39] J. Z. et al., “SRIM the stopping and range of ions in matter. SRIM co.”
http://www.srim.org, 2010.

[40] S. A. Wender and P. W. Lisowski, “A white neutron source from 1
to 400 MeV,” Nuclear Inst. and Methods in Physics Research, B, vol.
24-25, no. PART 2, pp. 897–900, 1987.

[41] P. W. Lisowski and K. F. Schoenberg, “The Los Alamos Neutron Science
Center,” Nuclear Instruments and Methods in Physics Research, Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 562, no. 2, pp. 910–914, 2006.

[42] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open bench-
marks for energy measurements on embedded platforms,” CoRR, vol.
abs/1308.5174, 2013.

[43] A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F. R. P. Pinto,
H. Guzman-Miranda, and M. A. Aguirre, “Compiler-directed soft error
mitigation for embedded systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 2, pp. 159–172, Mar. 2012.

http://www.cna.us.es
http://www.srim.org

	Introduction
	Related works
	Mathematical Model and Reliability Figure
	Microprocessor blocks decomposition
	Model Description

	Experimental Setup
	DUTs - Devices Under Test - ARM & MSP430
	Facilities - LANSCE & CNA
	Benchmarks

	Model Training and Evaluation
	Programs evaluation (SDi and HGi)
	Model Training and Validation

	Early Program Sections Sensitivity Characterization
	Block contribution to the Size-time figures
	SD/HG and MWTF/MTTF performance metrics

	Conclusion
	References

