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ABSTRACT
In this paper, we introduce the DEEPZ deep learning photometric redshift (photo-z) code. As a test case, we apply the code to the
PAU survey (PAUS) data in the COSMOS field. DEEPZ reduces the σ 68 scatter statistic by 50 per cent at iAB = 22.5 compared
to existing algorithms. This improvement is achieved through various methods, including transfer learning from simulations
where the training set consists of simulations as well as observations, which reduces the need for training data. The redshift
probability distribution is estimated with a mixture density network (MDN), which produces accurate redshift distributions.
Our code includes an autoencoder to reduce noise and extract features from the galaxy SEDs. It also benefits from combining
multiple networks, which lowers the photo-z scatter by 10 per cent. Furthermore, training with randomly constructed coadded
fluxes adds information about individual exposures, reducing the impact of photometric outliers. In addition to opening up the
route for higher redshift precision with narrow bands, these machine learning techniques can also be valuable for broad-band
surveys.

Key words: methods: data analysis – techniques: photometric – galaxies: distances and redshifts.

1 IN T RO D U C T I O N

Galaxy surveys provide invaluable information for a wide set of
science applications. They enable a census of the galaxy population
and can constrain cosmological models (Gaztañaga et al. 2012;
Weinberg et al. 2013; Eriksen & Gaztañaga 2015), where the galaxies
act as tracers of the underlying dark matter field or are used to
measure weak gravitational lensing (Bartelmann & Schneider 2001;
Hoekstra & Jain 2008). There are two main types of galaxy surveys:
spectroscopic and photometric. Spectroscopic surveys have high
redshift precision, but for limited galaxy samples. Photometric broad-
band surveys cover larger volumes and fainter galaxies, but their
redshift precision is much lower (Baum 1962; Koo 1985; Benı́tez
2000; Hildebrandt et al. 2010; Salvato, Ilbert & Hoyle 2019).

� E-mail: eriksen@pic.es
†Also at Port d’Informació Cientı́fica (PIC), Campus UAB, C. Albareda s/n,
E-08193 Bellaterra (Cerdanyola del Vallès), Spain.

The redshift precision of broad-band surveys is limited by their
filter width. An alternative approach is to use narrow-band imaging
to obtain high precision redshift estimates for a large sample of
galaxies. The Physics of the Accelerating Universe Survey (PAUS)
implements this idea using 40 narrow bands spaced uniformly in
the optical wavelength range from 4500 to 8500 Å (Padilla et al.
2019). This higher wavelength resolution allows for detecting more
features in the spectral energy distribution (SED), leading to a better
redshift determination (Martı́ et al. 2014; Eriksen et al. 2019). For
iAB < 22.5, Eriksen et al. (2019) demonstrated that PAUS attains
its intended precision, reaching σ z = 0.0037(1 + z) for a selected
50 per cent of galaxies with secure spectra in zCOSMOS DR3 (Lilly
et al. 2007). This precision is about a magnitude better than with a
typical broad-band survey.

The redshift estimates by Eriksen et al. (2019) were derived
with BCNZ2, a template based photometric redshift code tailored
to achieve high precision redshifts with PAUS. This code used
a linear interpolation between continuum SED, added additional
emission lines and also fitted for zero-points. A global zero-point
was determined per band, while the code additionally allowed for

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/4565/5881977 by Secretaria G
eneral Adjunta de Inform

atica user on 10 April 2021

http://orcid.org/0000-0001-8318-6813
http://orcid.org/0000-0001-9632-0815
http://orcid.org/0000-0002-0641-3231
mailto:eriksen@pic.es


4566 M. Eriksen et al.

a free scaling between the broad and narrow bands per galaxy. The
use of a template based code was chosen for two reasons. Initially
we needed to derive the redshift for samples of hundreds of galaxies,
which are insufficient for training. Furthermore, previous tests on
machine learning (ML) codes on simulations had not managed to
achieve the target PAUS photo-z precision with a realistic training
sample.

Despite theoretically being a versatile method, the BCNZ2 template
fitting code is hard to extend in different directions (Appendix A). For
example, the non-linear minimization was difficult to combine with
a model where the individual emission line strengths were varying
with correlated priors between the lines. Other difficulties included
extending the statistical fitting to also account for photometric
outliers (Appendix B) or efficiently including priors on the different
galaxy types during the minimization. Also, formally one should
estimate the redshift by integrating over the space of linear SED
combinations and not only consider the minimum (Alarcon et al.
2020). Together with other difficulties, technical issues have made
the template fitting approach hard to develop further. In this paper,
we instead investigate applying machine learning techniques to
determine PAUS redshifts.

Machine learning redshift determination has a long history, with
the ANNZ (Collister & Lahav 2004) neural network code being
one of the earliest examples. Furthermore, there are many codes,
implementing common machine learning algorithms like neural net-
works (SKYNET) (Bonnett 2015), support vector machines (SPIDERZ)
(Jones & Singal 2017) and tree based codes (TPZ) (Kind & Brunner
2013). Machine learning codes offer certain advantages over template
fitting methods. Since the machine learning methods directly map
magnitudes and/or colours to redshifts, one is not required to model
the SEDs, which can be challenging at high redshifts. For PAUS,
the accurate SED modelling started to become a potential limitation
for the high redshift precision target. Furthermore, the direct colour-
redshift mapping makes the model insensitive to global zero-points.

Constructing the training sample is a central problem to estimate
photometric redshifts with machine learning. This sample has been
built from precise redshift information from spectroscopic surveys,
e.g. zCOSMOS (Lilly et al. 2007) or VIMOS VLT Deep Survey
(VVDS) (Le Fèvre et al. 2005). These spectra are also required to
cover the colour space (Masters et al. 2015), sampling different types
of galaxies. These limited training sets already pose serious problems
for broad-band photo-z and become a challenge for a magnitude
better photo-z precision that PAUS aims to achieve.

Transfer learning is an approach for reducing the requirement
on the training sample (Pan & Yang 2010). Instead of training the
network from scratch, one can start training a network which has
previously been trained on different data. The network can even
benefit from using networks trained on quite different data. In this
paper, we focus on simulations that resemble the observations.
Combining the simulations and data has the ability of reducing
the need for training data. While attempted in various forms (e.g.
Vanzella et al. 2004; Hoyle et al. 2015), it is not commonly used.

Machine learning techniques can be divided into different cate-
gories. The most widely used is supervised learning, which compares
a prediction with a label (truth value). Even with dedicated surveys,
redshift measurement of the faintest galaxies is considered time
consuming (Masters et al. 2019). These surveys usually include tens
to hundreds of thousands of spectra for specific targets. By contrast,
e.g. the Dark Energy Survey (DES) and Kilo-Degree Survey (KiDS)
offer hundreds of millions of galaxies to iAB < 24, with photometric
information. In this paper we study the use of autoencoders, which
can be used without knowing the redshift (unsupervised) and has the

potential advantage of potentially being able to train using a million
of galaxies from PAUS.

This paper is built up in the following manner. First, Section 2
describes the PAUS data, the network architecture and the training
procedure. In Section 3 we study the usage of transfer learning from
simulations. Then Section 4 shows how autoencoders can be used to
reduce the noise. Later in Section 5, we develop and test a method
for including individual exposures. In Section 6, we validate the
redshift probability distributions and introduce quality cuts, and we
summarize and conclude in Section 7.

2 D EEP LEARNI NG PHOTOMETRI C
REDSHI FTS

This paper uses the same input data as Eriksen et al. (2019) (BCNZ2)
and Cabayol-Garcia et al. (2019). For completeness, Section 2.1
briefly describes the PAUS data, the external broad bands, and the
spectroscopic catalogue. In Section 2.2, we describe the network
architecture, in Section 2.3 the mixture density network to estimate
the redshift distributions, and in Section 2.4 the training procedure.

2.1 Input data

This paper focuses on the data from the Cosmological Evolution
Survey (COSMOS) field1 where we have PAUS observations and
there are abundant spectroscopic measurements. The COSMOS field
also has a large set of photometric surveys, covering the wavelength
range from ultraviolet to infrared. Our fiducial setup uses the Canada–
France–Hawaii Telescope Lensing Survey (CFHTLenS) u-band and
the B, V, r, i, z bands from the Subaru telescope as in Eriksen
et al. (2019). As the spectroscopic catalogue, we use 8566 secure
(3 ≤ CLASS ≤ 5) redshifts from the zCOSMOS DR3 survey (Lilly
et al. 2009) that are observed with all 40 narrow bands.

The PAUS data are acquired at the William Herschel Telescope
(WHT) with the PAUCam instrument and transferred to the Port
d’Informació Cientı́fica (PIC; Tonello et al. 2019). First the images
are detrended in the NIGHTLY pipeline (Serrano et al., in preparation).
Our astrometry is relative to Gaia DR2 (Brown et al. 2018), while
the photometry is calibrated relative to the Sloan Digital Sky Survey
(SDSS) by fitting the Pickles stellar templates (Pickles 1998) to the
u, g, r, i, z broad bands from SDSS (Smith et al. 2002) and then
predicting the expected fluxes in the narrow bands. The final zero-
points are determined by using the median star zero-point for each
image.

PAUS observes weak lensing fields (CFHTLenS: W1, W3, and
W4) with deeper broad-band data from external surveys. PAUS uses
forced photometry, assuming known galaxy positions, morphologies,
and sizes from external catalogues. The photometry code determines
for each galaxy the radius needed to capture a fixed fraction of light,
assuming the galaxy follows a Sérsic profile convolved with a known
Point Spread Function (PSF). The algorithm uses apertures that
measure 62.5 per cent of the light, since this is considered statistically
optimal. A given galaxy is observed several times (3–10) from
different overlapping exposures. The coadded fluxes are produced
using inverse variance weighting of the individual measurements.
As described in Section 5, we also train the network using individual
fluxes.

1http://cosmos.astro.caltech.edu/
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Figure 1. The network architecture. Top: The autoencoder formed by an
encoder and a decoder network. The layers are linear and the figure indicates
the output dimension. Both networks include 10 layers with 250 nodes.
Following the intermediate linear layers are ReLU non-linearities, batchnorm
layer, and a 2 per cent dropout after all linear layers, except the last three.
Bottom: We feed the galaxy flux ratios and the autoencoder features into the
photo-z network. Here the layers follow the same structure as the autoencoder,
but with 1 per cent dropout after all linear layers. This network is a mixture
density network and describe the redshift distribution as a linear mixture of
10 normal distributions.

2.2 Network architecture

For a reminder of the basics of neural networks, we refer the reader
to LeCun, Bengio & Hinton (2015). Moreover, Appendix C provides
some basics on neural networks and introduces the terminology used
in this paper.

Fig. 1 shows the network architecture of DEEPZ, which uses
a configuration with three linear neural networks. The first two
constitute an ‘autoencoder’: a type of unsupervised neural network
whose intent is to reduce noise and extract features without knowing
the redshift, making it possible to train it with a larger data set. We
input the flux ratios by dividing on the i-band flux. In the first step, the
‘encoder’ maps raw information into a lower dimensionality feature
space, whereas the second step attempts to map it to the original
input data in the original dimensions. The usage of the autoencoder
is further discussed in Section 4.

The network for predicting the photometric redshifts receives both
the encoded latent variables and the original input flux ratios. While
the latent variables include important information about the galaxy,
this information alone is insufficient for producing high precision
PAUS redshifts. As discussed in Section 4.2, this is potentially
due to the autoencoder not being optimal for extracting sharp
features in the spectra, like the emission lines. The two sources of
information are concatenated together before given to the network.
Combining information processed in slightly different ways is a
common technique in machine learning (see e.g. Huang, Liu &
Weinberger 2016).

All three networks use linear layers. Each linear layer is followed
by a batch normalization layer (Ioffe & Szegedy 2015) and a non-
linear ReLU activation function (Nair & Hinton 2010). In addition,
we add dropout in selected places (see Fig. 1 caption) (Srivastava
et al. 2014). Instead of using linear layers, we have tested including
a convolutional neural network (CNN) (LeCun, Huang & Bottou
2004; Krizhevsky, Sutskever & Hinton 2017) for the PAUS fluxes.
After testing various architectures, we conclude that adding a CNN

component both degrades the photo-z result and leads to a slower
convergence. We therefore use linear networks by default. The DEEPZ

predicts the galaxy redshift probability density functions with the
method described in the next subsection.

2.3 Predicting the probability density functions

Estimating only the best-fitting redshift is insufficient for many
science applications (e.g. Hoyle et al. 2018). Often the users expect
the photo-z code to return a full probability distribution, specifying
how probable the galaxy actually is at different redshifts. For a
machine learning code, one might achieve this in different ways.
The most straightforward approach is to bin the redshift range into
classes and cast the problem into a classification problem (e.g. Gerdes
et al. 2010). In this way, the network can return a list of probabilities,
each giving the probability of finding the galaxy in a given bin.

Alternatively, one can use a mixture density network (MDN)
(Bishop 1994). In an MDN, the network outputs three vectors
(β, μ, and σ ) that parametrize the probability distribution as
follows:

p(z) ∝
M∑
i=1

βiN (μi, σi), (1)

where N(μ, σ ) is a Gaussian with mean μ and standard devia-
tion σ . The amplitudes (β) give the relative contributions from
each of the M Gaussian components and sum to unity. In this
paper, we use M = 10, which is complex enough to capture the
photo-z PDFs expected from simulations. This formalism can be
adapted to use more general functions, e.g. skewed Gaussian and
Cauchy distributions. For simplicity we have restricted ourselves
to a linear combination of Gaussians, since this is a good approx-
imation for our data (Section 6.1). For the redshift point-estimate
value, we use the mode (peak) of the redshift probability density
function (PDF).

Training the network requires a loss-function, which is the quantity
that one attempts to minimize. For training the MDN, we use the loss
function

loss = −
∑

i

log
(
p
(
zi

label

))
, (2)

where zlabel is the redshift label (true redshift) and the sum is over
a random subset of training galaxies (batch, see Appendix C).
For observational data, the label corresponds to the spectroscopic
redshift, while it is the true redshift in simulations. Minimizing
this expression is the same as maximizing the probability. By
default we predict the redshift PDFs using an MDN, but have also
tested the classification approach and will later comment on the
differences.

2.4 Training procedure

The network is trained on a graphical processor unit (GPU), using
the loss function (equation 2) described in the previous subsection.
We minimize using a batch size of 100, meaning the gradients
are computed using 100 galaxies. For the training procedure, we
use the Adam optimizer (Kingma & Ba 2015), using a stepwise
decaying learning rate. First we train 100 epochs with a learning
rate 10−3 and then 200 epochs with learning rates 10−4, 10−5,
and 10−6, respectively in a decreasing manner. The network is first
trained on simulations, which will be presented in Section 3.2, before
optimizing all weights in the network further with data. This simple
approach works well and is our default configuration.
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When pre-training on simulations, it is critical to include noise.
By default we add Gaussian noise with SNR = 10 (10 per cent
error) and 35 (2.9 per cent error) for the narrow and broad bands,
respectively. These values correspond to typical values for bright
galaxies observed with PAUS. For future work, we plan adjust the
noise properties to closer mimic the observed data. Without adding
noise to the simulations, the network worked remarkably well on
simulations, but could not adapt to the observed data. One can
understand this from the features used by the network. Without noise
the network can focus on some simple features, but it needs to use a
combination of them when the noise is introduced.

By default, the training is done with an 80–20 split, meaning
80 and 20 per cent of the sample are used for training and testing,
respectively. To generate the photo-zs for the full catalogue, the
network is trained five independent times so the training and test set
never overlap. All figures use the same random split.

To avoid overfitting hyper parameters, one should normally
perform all optimizations on a separate validation set. We did
not implement this from the start, mostly due to a small sample
size. To avoid overfitting, we created a different random split-
ting (still 80–20) before redoing the figures for the paper. We
also avoided overly finetuning e.g. the number of network layers.
This pragmatic solution avoids the most problematic cases of
overfitting.

3 TRANSFER LEARNING FROM SIMULATIONS

In 3.1 we explain the concept of transfer learning, while in Section 3.2
we describe the simulations, and Section 3.3 contains the main photo-
z results. Section 3.4 details the implications in redshift ranges with
fewer galaxies.

3.1 Transfer learning

Transfer learning is a common way of dealing with limited training
sets (Pan & Yang 2010). Instead of training the model from scratch,
one starts with a model that is already trained on a different data set.
This data set is not required to look identical to the data set that one
is interested in (Yosinski et al. 2014). For example, the ImageNet
curated image set with millions of images and associated classes is
a common starting point for training image classifiers (Deng et al.
2009). Using it as precursor training set leads to improved results
and requiring less training.

The transfer learning approach often works by taking the network
already trained for some purpose. One then replaces the last layers
(head) of the network, before training the network on the data of
interest. Often, this training focuses on training only the head of the
network. This works since for image inputs the first layers of the
network pick up simple shapes, like strokes and edges. The features
become progressively more complex with the layers.

Transfer learning can work even when training on quite different
data than the domain of interest. This technique has successfully been
used for problems in e.g. supernova classification (Vilalta 2018), data
mining (Schmidt, Weeds & Higgins 2020), and Inertial Confinement
Fusion (ICF) experiments (Humbird et al. 2018). In this paper, we
investigate the use of simulated galaxies to improve the photo-z
estimation. The generation of simulated galaxies has the advantage
of providing an arbitrarily large training set, limited by the fidelity
of the simulation. This gap between observed data and simulations
is expected to decrease as our understanding of the PAUS data and
simulations increases.

3.2 Galaxy simulations

This paper investigates pre-training with two sets of simulations.
In Section 3.2.1, we present a template based simulation developed
for PAUS with realistic distributions in redshift, colour, and galaxy
properties to validate codes, estimate errors, and compare with data.
Then in Section 3.2.2 we describe the FSPS simulation with a more
sophisticated SED modelling. By default this paper uses the FSPS
simulation.

3.2.1 Template based simulations

The magnitudes in this simulation are computed from the SED
templates taking into account the emission lines which are assigned
following the recipes described in Castander et. al (in preparation)
and briefly described below. First, we generate the rest-frame r-
band luminosity applying an abundance matching technique between
the halo mass function and the Sloan Digital Sky Survey (SDSS)
luminosity function (Blanton et al. 2003, 2005). Then, the galaxies
are evolved following evolutionary population synthesis models to
their redshift. Later, an SED and extinction are assigned to each
galaxy by matching them to the COSMOS catalogue of Ilbert et al.
(2009) based on their luminosity, colour, and redshift. This means
that the templates and extinction laws in this simulation correspond
to what is used in the COSMOS catalogue of Laigle et al. (2016).
From the ultraviolet (UV) flux, we compute the star formation rate,
and the flux of the Hα line following Kennicutt (1998). This recipe
is further adjusted to match the models of Pozzetti et al. (2016). The
other line fluxes are computed following observed relations. The
SED, including the emission lines, is finally convolved with the filter
transmission curves to produce the broad and narrow-band fluxes.

3.2.2 FSPS simulations

The main simulation in this paper is based on the Flexible Stellar
Population Synthesis (FSPS) code (Conroy, Gunn & White 2009;
Conroy & Gunn 2010). The FSPS code provides a state-of-the-art
stellar population model and also a Python Application Programming
Interface (API).2 We have extended the FSPS code to include the
PAUS filter transmissions.

Galaxies consist of a mixture of stars and dust. Stellar population
synthesis (SPS) models use the evolution of stars to model the galaxy
properties. We refer the reader to the FSPS papers for a description of
the SPS formalism and only report briefly on our choice for various
components. The star formation history (SFH) is an exponential
decay model

SFR(t − ti) = A exp (−τ (t − ti)) + k, (3)

where ti parametrizes the star-formation start for the galaxy and τ

the exponential decay. We have also included a component (k) with
constant star formation. This choice of parametrization is known to
fail to match the behaviour of late-type blue galaxies and passive ‘red
and dead’ galaxies (Simha et al. 2014). Using a non-parametric SFH
is a potential improvement to be considered in future work. We note,
however, that the simulations do not have to be perfect to benefit
from transfer learning (see Pan & Yang 2010).

The stellar initial mass function (IMF) uses the Chabrier (2003)
model, while included nebular continuum and emission lines are
from the FSPS integration with the CLOUDY code (Ferland et al.

2http://dfm.io/python-fsps/
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Table 1. The parameter ranges used in the simulations. The
first column give the FSPS-Python parameter name, with
a corresponding symbol in parenthesis. The simulations are
generated by uniformly sampling within the ranges specified in
the second column. A third column state the parameter unit.

Parameter Range Unit

zred [0, 1.2] Redshift
logzsol [−0.5, 0.2] Z/Z�
tage [0, 14] Gyr
tau (τ ) [0.1, 12] Gyr
const (k) [0, 0.25] Fraction
sf start (ti) [0, 14] Gyr
dust2 (E(B − V)) [0, 0.6] Colour
log gasu [−4, 1] Dimensionless

Figure 2. The σ 68/(1 + z) metric for 100 per cent of the galaxies with secure
redshifts in magnitude bins and for different codes. The dashed (red) line
is the baseline performance and it corresponds to the BCNZ2 results from
Eriksen et al. (2019). The rest of the lines show the results for various DEEPZ

configurations.

2013; Byler et al. 2017). When producing the galaxy SEDs, the ‘age’
parameter is fixed to the age at the redshift, using a Planck 2015
cosmology (Planck Collaboration XIII 2016). For dust extinction, we
use the Calzetti extinction law (dust type = 2; Calzetti et al. 2000),
parametrized by E(B − V). When running, we set the metallicity
of the gas equal to the metallicity of the galaxy, which the Python-
FSPS document suggests. The emission lines are also parametrized
using a dimensionless gas ionization fraction (log gasu), which is
proportional to the flux of hydrogen ionizing photons (equation 1 in
Ferland et al. 2013).

Table 1 gives an overview of the parameter ranges used to generate
the FSPS simulations. The simulations are generated by sampling
each parameter uniformly within the given ranges and uncorrelated
between the parameters. This parameter distribution is obviously not
realistic both in term of galaxy properties and colours. Note that we
are only using the simulation to pre-train the network, where we are
less sensitive to the distribution exactly weighing different galaxy
properties.

3.3 Photo-z with pre-training

Fig. 2 shows the main photo-z results, which uses the training
procedure explained in Section 2. For quantifying the photo-z
performance, we define

σ68 ≡ 0.5
(
z84.1

quant − z15.9
quant

)
, (4)

which is half the difference between the 84.1 and 15.9 percentile. The
σ 68 corresponds to the standard deviation for a Gaussian distribution,
but is less sensitive to outliers. Throughout the paper we also use a
strict outlier defined by

|zp − zs| / (1 + zs) > 0.02, (5)

where zp and zs are the photometric and spectroscopic redshift,
respectively. We label this outlier fraction ‘strict’, since it should
not be confused with what is an outlier in a broad-band survey.
In a broad-band survey, the photo-z scatter is much larger and the
corresponding outlier definition (equation 5) is often 10 times more
relaxed (Kuijken et al. 2015; Bilicki et al. 2018).

The dashed line (Fig. 2) shows the photo-z scatter using the BCNZ2
template fitting code as a function of differential i-band values. The
dotted line shows the performance when training DEEPZ only on
observed data. The photo-z scatter is significantly larger than for
BCNZ2, except for the faintest magnitudes (21.8 < iAB). Pre-training
the network on simulations before training with data reduces the
photo-z scatter by 50 per cent at the faint end. Not including an
autoencoder, as discussed further in the next section (Section 4),
degrades the performance at the faint end. Lastly, the solid line shows
the result when training the networks 10 different times with multiple
networks (see Section 2.4 and Section 5.2). These are the currently
best DEEPZ results. In Appendix D we have included a photo-z versus
spec-z plot to highlight the outliers.

When pre-training with either the FSPS and template simulations
(Section 3.2), we find a significant reduction in the photo-z scatter.
For the cases of no-pre-training, pre-training on template simula-
tions, and pre-training on the FSPS simulations, the σ 68/(1 + z)
without quality cuts is 0.0095, 0.0077, and 0.0069, respectively.
This indicates that a better SED modelling is more important than a
correct colour space distribution for simulation used for pre-training.
We have also tested generating the FSPS simulations fixing the
gas ionization fraction, which gave a slightly higher scatter. Other
approaches to improve the simulations could lead to an even better
performance.

3.4 Redshift intervals without spectroscopic galaxies

A fundamental limitation when training the PAUS photo-z is the
small training set. Deep neural networks are often trained with
millions of training samples, e.g. in ImageNet (Deng et al. 2009).
Transfer learning from simulation is one approach for reducing the
required number of spectroscopic galaxies.

Fig. 3 shows the photo-z scatter as a function of the number of
galaxies in the bin for bins of �z = 0.001. We want to understand
how the density of spectroscopic redshifts affects the photo-z scatter.
These bins are only used to illustrate the effect of the density and
are not used when training the MDN. With the DEEPZ code, the
photo-z scatter is clearly higher in bins with only a few galaxies. A
dotted line shows the BCNZ2 result which is much less affected by
the number of galaxies per bin, specially for very sparse bins. This
shows that the number of galaxies in the bin is the underlying reason
and not by bins with few galaxies indirectly select higher redshifts.
Pre-training on simulations reduces the difference, but there is still
a region with fewer galaxies where the template fitting works better.
Lastly, Appendix E details how to deal with low-density regions for
networks without an MDN.

In addition, we have tested using the mixup (Zhang et al. 2017)
method of data augmentation. Normally data augmentation requires
knowing which transformation can be applied without changing the
meaning of the data. For example, when classifying images one
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Figure 3. The effect of redshift ranges with a smaller number of galaxies.
On the x-axis is the number of galaxies in bins of �z = 0.001. The dotted line
shows the BCNZ2 result, while the continues and dotted lines show the DEEPZ

when pre-training or not on simulations. The shaded histogram displays the
total number of galaxies for each value on the x-axis.

might want to include rotations and slightly changing the brightness.
Instead, the mixup method uses the linear combination of a random
pair of inputs. Applying this technique to our data did not improve
the photo-z scatter.

4 AU TO E N C O D E R S

The network architecture includes an autoencoder (see Section 2.2).
Section 4.1 explains with a single SED example how autoencoders
can reduce the observational noise and extract features. Then in
Section 4.2, we discuss application of the technique to our FSPS
simulations and discusses the impact for redshift estimates.

4.1 Autoencoders

Fig. 1 (top) of the DEEPZ network architecture shows the two
autoencoder networks. The encoder network transforms its input
into the latent or feature space. In our case, the input is 46 bands
(40 NB, 6 BB) and the latent space has 10 variables, which is
a reasonable number of parameters to describe a galaxy SED. A
decoder network then attempts to reconstruct the input. One can
train these networks with a loss function comparing the recovered
values and the original input. Since the latent space is smaller than
the input, the autoencoder is required to compress the information.
The noise cannot be compressed to fewer numbers and therefore gets
removed.

To illustrate how the autoencoder works, we have generated a
set of simple simulations. Using a single elliptical SED (Ell1 A 0)
that was used both in the COSMOS2015 (Laigle et al. 2016) and
the PAUS photo-z papers (Eriksen et al. 2019), we estimate galaxy
fluxes for a uniform redshift distribution. We added Gaussian noise
with SNR = 10 and 35 for the narrow and broad bands, respectively,
which corresponds to the noise level for a bright PAUS galaxy. This
simulation is then used to train an autoencoder. Fig. 4 compares the
input, true, and noise reduced fluxes for a typical case. The recovered
output has clearly reduced noise. The autoencoder achieves this by
using the fact that galaxies in this simulation do not populate the full
colour space, but a 2D sub-manifold described by the redshift and
amplitude.

Note that an autoencoder can also be applied to broad bands alone,
where the input dimension is typically smaller than the latent space.
With the method above, the autoencoder would simply become the

Figure 4. Effect of the denoising network for one example galaxy. The
simulation is generated from a single elliptical SED with arbitrary flux units
and a uniform redshift distribution. The crosses and circles show the input
and denoised narrow-band measurements, respectively. A solid line displays
the noiseless flux of the SED.

identity mapping. This can be solved by adding Gaussian noise to
the input fluxes (Vincent et al. 2010).

4.2 Tests on FSPS simulations

Fig. 5 quantifies the impact of using an autoencoder on the FSPS
simulations (Section 3.2). The top panel compares the error in the
recovered fluxes with the input error, as a function of wavelength. A
unity mapping would give a horizontal line at unity. When using the
autoencoder, we find the flux errors decrease. For the blue bands the
error is 30 per cent of the expected value and it increases to 50 per cent
for the redder bands. For the broad bands, the ratio between the
recovered and input error is 1.04, 0.72, 0.66, 0.61, 0.22, and 0.97 for
the uBVriz bands, respectively. A problem is that the autoencoder
smooths the emission lines (see dashed line), which is a known
artefact in autoencoders (Dosovitskiy & Brox 2016). The recovered
fluxes are good for training the redshift network, but should be used
with caution for other scientific applications, e.g. estimating the mean
flux.

The bottom panel (Fig. 5) shows the correlation between the
different narrow bands. Here the broad bands are used to train the
network, but not included in the figure for clarity. When using an
autoencoder, the galaxy is transformed by the encoder into the latent
space variables, which describe the galaxy. This transformation is
affected by noise in the input and is also not perfect and this
introduces an error on the latent variables. When reconstructing
the fluxes with the decoder, this creates correlated noise between
different bands. This can be understood from the latent space
representing information related to galaxy type or dust properties.
As can be seen, the correlation is strongest with nearby bands.
Furthermore, there is a correlation between bands that are separated
by 1500 Å, resulting from confusing the OII and OIII lines.

When training the redshift network (Fig. 1), we combine the
information from the input fluxes and features produced by the
autoencoder. Combining information processed in different ways
together is a standard technique in deep learning (see e.g. Huang
et al. 2016). When training on the simulations, we combine the loss
from both the autoencoder and the redshift estimation, while ignoring
the autoencoder loss when fine-tuning on data. Fig. 2 includes a line
where the auto-encoder is disabled by setting all features to zero.
This shows the autoencoder has a significant impact on the photo-z
scatter for faint galaxies. We also expect the autoencoders to become
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PAUS deep learning redshifts 4571

Figure 5. Top: The scatter (σ 68) of the difference of the denoised (f) and true
fluxes (fTrue) relative to the known errors of the input fluxes (σ ). In the dashed
line the bands with emission lines are removed. Bottom: The correlation
matrix of the denoised flux between different narrow bands.

more important when training the autoencoder with data in the wide
fields (CFHTLenS W1 and W3) without spectra. We leave this for
future work.

5 A D D I N G I N F O R M AT I O N FRO M IN D I V I D UA L
E XPOSURES

We describe in Section 5.1 the motivation of including information
from individual exposures when training the network, while Sec-
tion 5.2 explores combining multiple networks to reduce the errors.
Lastly, Section 5.3 studies the use of individual exposures at test time.

5.1 Incorporating individual exposures

Astronomical surveys perform repeated measurements over the same
parts of the sky in systematic patterns. The purpose of making
multiple observations is often to produce a combined measurement
with reduced noise, allowing the observation of fainter objects. For
example, the Dark Energy Survey (DES) (Hoyle et al. 2018) and
the Kilo-Degree Survey (KIDS; Kuijken et al. 2019) have imaged
each position ∼8, 4–5 times in each band, respectively. The Rubin
Observatory Legacy Survey of Space and Time (LSST) will measure
each location several hundred times (LSST Science Collaboration

2009). In PAUS, the COSMOS field is nominally imaged at least
five times in each narrow band.

For estimating the redshifts, the individual measurements are
typically first combined into coadded fluxes. A standard choice is
to combine the individual measurements by an inverse variance
weighting, which is statistically optimal for a combination of
independent Gaussian measurements. However, this combination is
not optimal if there are photometric outliers. These outliers can arise
from multiple sources including scattered light (Cabayol et al. 2019),
electronic cross-talk between the charge-coupled devices (CCDs) or
data reduction issues in the calibration or photometry.

Removing problematic measurements is difficult. The PAU data
management (PAUdm) code flags many of the problematic outliers
based on image diagnostics. Outliers are however still present in the
PAUS data. The PAUS observations are often noisy (SNR < 1) and
for many (galaxy, band) combinations, we only have three exposures
after flagging measurements, making the detection of outliers for a
single band hard. Some outliers, like those resulting from negative
cross-talk, are clearly visible, since the flux is much lower than
nearby bands. However, positive flux outliers are harder to flag and
are problematic since they can be confused with emission lines,
leading to photo-z outliers.

Instead of manually removing measurements, we want the photo-z
code to select itself the correct measurements by working directly
with the individual exposures. The most obvious approach would be
to directly input the individual exposures to the network. However,
multiple problems arise when applying the technique to observational
data. For example, PAUS has a minimum of five exposures in the
COSMOS field, however, many of the observations are removed
since they contain bad data. Also, there are regions with more than
five exposures. This means the input to the photo-z code would not
be a dense array with all values present.

Furthermore, inputting all measurements individually drastically
increases the network size. In addition to at least increasing the
network with five times the inputs (number of exposures), one
should also inform the network which measurements are present.
If specifying a mask, this would lead to another doubling of
the input. Also, the ordering of individual fluxes is not unique.
Appendix F details how this problem can partially be overcome
by permuting the order of the individual flux measurements when
training. This approach does not solve the issue to the required
accuracy.

An alternative approach builds on the technique of data augmen-
tation. When training neural networks, it is common to perturb
the input to produce a slightly different input. For example, one
might crop, flip, or adjust the colours of an image. This produces
images humans essentially see as unchanged, but appear different
to the network. Adding these permutations often ends up improving
the performance and is standard for many applications (Perez &
Wang 2017).

The approach suggested in this paper is training the network
with randomized coadds, constructed on the fly with a randomized
selection of individual exposures. Each time when training the
network with a set of galaxies, the individual exposures are chosen
to be included with a probability α. Since the coadded fluxes are
constructed for each epoch, it means each galaxy will look different
to the network at each epoch. We have tested two methods to
handle galaxies not having measurements in all bands after the
random selection. In one, the galaxy is removed for a specific epoch
when the randomization leads to not having measurements in all
bands and the second modified the sampling method to ensure at
least one measurement is present in each band. The construction
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Figure 6. The σ 68/(1 + z) when varying the value of the probability of
including an exposure in the coadd when training (α). A factor of α = 1
corresponds to no randomness. The blue lines use a single network, while
black lines combine multiple networks. For the dashed lines, a galaxy is
removed when the randomness leads to a galaxy not having measurement in
all bands. Continuous lines use a randomization procedure which is required
to keep at least on measurement per band.

of randomized coadds can be computed simultaneously on a GPU
without significant computational overhead.3

Fig. 6 shows the photo-z scatter for different probabilities of using
the individual measurements (α). Including this randomness when
training significantly reduces the photo-z scatter. When predicting
with a single network, the photo-z error decreases by 20 per cent
compared with no randomization. The dashed lines show the result
when one removes galaxies which do not have measurements in all 40
bands after applying the random exposure removal. Note that which
galaxies are removed depends on the epoch, since the networks see
each galaxy multiple times (Appendix C). Below about α = 0.7, the
networks performance degrades, which follows from many galaxies
not being used in the training if not ensuring one exposure being
present. By default results in this paper use α = 0.8. The result for
the ‘Multiple networks’ will be discussed in Section 5.2.

Training a neural network means learning a mapping between
the observed colours and the redshifts. In this process, the network
also needs to discover which features are real or simply due to
bad photometry. The randomized construction of the coadds when
training leads to the network seeing the same galaxy with and
without problematic measurements. This makes it easier to learn
which features are properties of the galaxies, like the emission
lines. This method is expected to be less effective in the limit
of an infinite training sample. However, the randomization makes
an important difference for a limited training set with outlier
measurements.

5.2 Combining predictions from multiple networks

The photometric redshift results discussed until now have used a
80–20 split between the training and test sample (see Section 2.4).

3The coadded fluxes are generated on the GPU by inputting the individual
fluxes in a dense matrix. A Bernoulli distribution with fixed probabilities
is used to determine if a measurement should be included or not. We then
generate the coadded fluxes from the include exposures by an inverse variance
weighting. In benchmarks on an NVIDIA Titan-V, this operation only adds
0.02 ms for 1000 galaxies.

One could attempt to change the splitting ratio (e.g. 90–10) to
increase the number of galaxies used for training. In the extreme
limit one would have one network per galaxy, which would be
prohibitively computationally expensive. Instead we focus on com-
bining multiple networks and have defined ten (random) ways of
splitting the catalogue into a training and a test sample. With this
approach, one can train and combine the PDFs for multiple networks
for each galaxy in the training set. Note, the estimated photo-z
always use networks which have not been trained with the same
galaxy.

Fig. 2, which compares the effect from different ideas, includes a
line showing the photo-z predictions using multiple networks. The
photo-z results shown correspond to training with ten different 80–20
splits and then averaging the resulting p(z) distributions. This means
training the networks in total 50 times. Combining the networks leads
to about 10 per cent lower photo-z scatter for the faintest galaxies in
the sample (iAB = 22.5). We also tested generating the photo-z using
100 different splits. The benefit of multiple networks saturated with
fewer than 10 splits, which we use by default in the DEEPZ code.

In Fig. 6 we also study the effect of combining multiple networks
when randomly creating coadds. The two blue lines corresponding to
a single network. Two black lines show the performance combining
multiple networks. The photo-z scatter for the two methods follows
a similar trend. This result shows that combining multiple networks,
rather than being redundant, is an improvement on top of the coadd
randomization.

5.3 Test-time augmentation

In the previous subsection, we applied data augmentation when
training the network. Data augmentation can also be used when
inferring the redshift, often named test-time augmentation and can
be applied in addition to the training augmentation discussed in the
previous subsection.

Training a neural network is often computationally expensive,
although for our case, the training is faster than the BCNZ2 template
fitting method.4 Predicting the redshift is very fast with neural net-
works. This allows studying how the photo-z is affected by changes
in the photometry. In this section, we have tested systematically
removing individual fluxes, constructed the coadded fluxes, and
estimated the corresponding photometric redshifts.

Fig. 7 shows the effect of dropping different exposures for an
example galaxy. Here the vertical line marks the spectroscopic
(true) redshift, the thin lines show the p(z) for different removed
exposures, and the solid red line shows the p(z) estimated from the
coadds. In most cases, the p(z) distributions peak at a redshift that is
slightly shifted from the spectroscopic redshift. When dropping one
of the exposures, the p(z) prediction peaks around the spectroscopic
redshift. In other cases, dropping a single exposure leads to the p(z)
moving in the wrong direction and therefore produces an outlier.
From this experiment, we conclude that systematically estimating
the photo-z by dropping individual measurements is not a viable
strategy.

4Training neural networks can be computational demanding, but is accel-
erated with GPUs. Evaluating neural networks can be extremely fast. For
determining galaxy redshifts, the BCNZ2 algorithm ended up taking around
30 s per galaxy. In contrast, neural network algorithms with better results
determine the redshift of 12 000 galaxies per second on a single Titan-V
GPU. Ignoring the training time, this is a speedup of 360 000 times.
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PAUS deep learning redshifts 4573

Figure 7. Test-time augmentation, removing individual flux measurements
for a single galaxy. The vertical line indicates the redshift, while the solid red
line gives the p(z) using the full coadd. The thin lines show the p(z) estimated
without individual flux measurements.

6 VALIDATING THE REDSHIFT
DISTRIBU TION

In this section, we validate whether the redshift probability distri-
butions accurately represent the uncertainties (Section 6.1). We also
introduce redshift quality cuts (Section 6.2) to select subsamples with
better redshift determination.

6.1 Validating the redshift distributions

The DEEPZ code does not only predict a point estimate, but also
the redshift probability density. Knowing the redshift distribution
for each object is useful for various applications, like e.g. weak
gravitational lensing measurements. For this reason, it is important
that the PDFs actually represent the redshift uncertainty, not simply
peaking around the correct redshift.

A common approach for testing the quality of the probability
distribution is the probability integral transform (PIT; Dawid 1984;
Gneiting et al. 2005; Bordoloi, Lilly & Amara 2010)

PIT =
∫ zs

0
dz′p(z′), (6)

where p(z) is the probability distribution and the integration is
from zero to the spectroscopic redshift (zs). If the probability
distribution estimate actually represents the underlying distribution,
the distribution of PIT values would be uniform.

Fig. 8 shows the PIT distribution for DEEPZ of the test set. The
dashed line shows the result for a single network, while the solid line
shows the result for multiple networks. The distributions are close to
uniform, except for low and high PIT values. These peaks correspond
to photo-z outliers which are not reflected in the PDFs predicted by
the network. The main contribution behind the drop when combining
multiple network is the combined networks reduce the outlier rate,
making the p(z) simpler to estimate.

The uniformity of the PIT diagram should not be taken for granted.
In addition to problems with outliers, many redshift codes have a
problem, underpredicting the width of the redshift PDFs (Schmidt
et al. 2020). In early versions of this work, we predicted the proba-
bility distribution using a classifier, binning the galaxies in different
bins. The resulting PIT histograms were not sufficiently flat. In Guo
et al. (2017), the authors claim that the classical neural networks
have PDFs that are relatively well calibrated, but this is no longer the
case when dealing with modern architectures. These include many

Figure 8. Testing the p(z) distributions using the PIT distribution. The solid
line shows the result when combining multiple networks, while the dashed
line shows the result for a single network.

components, like the batch normalization and weight decay, which
leads to reported probabilities to not accurately represent the true
distribution. Using a mixture density network (Section 2.3) provides
better probability distributions for our application.

6.2 Quality cuts

This subsection studies introducing redshift quality cuts for the
DEEPZ code, but one should be aware of the potential side effects
of these cuts. For different science applications, one might want to
select a subset of galaxies with higher photometric redshift precision,
e.g. to cross-correlate galaxy counts with other samples to estimate
the photo-z scatter between redshift bins. A common problem with
cutting on photometric redshift quality is unintentionally introducing
clustering, since the quality might be tracing spatial patterns like
observing conditions (Ross et al. 2011; Martı́ et al. 2014). In Eriksen
et al. (2019), we reported on visible spatial patterns in the quality of
the BCNZ2 template fitting. The ODDS quality parameter introduced
in BPZ (Benı́tez 2000) is defined by

ODDS ≡
∫ z0+�z/2

z0−�z/2
dz p(z), (7)

where p(z) is the probability distribution, z0 its mode, and �z =
0.003 being the fixed interval around the most likely redshift (mode
of the distribution).

Fig. 9 shows the photo-z scatter (top) and strict outlier rate defined
in equation (5) (bottom) as a function of the completeness, which is
the fraction of galaxies kept after the cut. Introducing a quality cut
based on ODDS gives a significantly better photo-z scatter and outlier
rate. The PAUS DEEPZ redshifts for 50 per cent now clearly surpass
the target performance of σ 68 = 0.0035(1 + z) to iAB = 22.5. It is
likely that the scatter is higher, since galaxy types lacking spectral
coverage will probably have a lower quality photo-z estimate. The
optimal lines select by |zp − zs| using the spectroscopic information
and indicate there might be further room for improving the quality
cut.

In Eriksen et al. (2019) we tested the performance for a set
of quality parameters. There we also used the pz width quality
parameter that measures the distance between the 1 and 99 percentile
of the PDFs. For DEEPZ, we find that this quality parameter performs
worse. By default, the BCNZ2 results were reported using an adjusted
version of the Qz parameter (Brammer, van Dokkum & Coppi
2008), which is a multiplicative combination of the ODDS, the
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Figure 9. The effect of introducing photo-z quality cuts for the secure
redshift sample to iAB < 22.5. The top and bottom panels show the photo-z
scatter and outlier rate, respectively. Continuous line cuts based on the ODDS
parameter, defined from the probability distribution. The optimal lines cut
based on the spectroscopic redshifts to demonstrate the (idealistic) lower
limit of a quality cuts. The horizontal line in the top panel corresponds to
PAUS photo-z target for a selected 50 per cent of the sample.

pz width parameter and the χ2 of the fit. Unlike a template fitting
code, the MDN network of DEEPZ directly estimates the p(z) with
normalization. Therefore we cannot use the same quality cut.

In Section 5 we introduced a technique of randomly generating
the coadds when training the network. We have tested generating
the photo-z for these different coadds based on 80 per cent of the
exposures and then estimating the variance between the different
photo-z estimates. Our initial expectation, was that smaller photo-
z variations would indicate a more secure photometric redshift
determination. Actually, often the opposite is true. When there are
very small variations when removing exposures, a subset of the
exposures tends to drive the photo-z solution. Cutting to keep galaxies
with a higher variability in the predictions tends to perform better.
However, this is a weaker quality cut than e.g. the ODDS.

7 C O N C L U S I O N S

In this paper we introduced a new deep learning photo-z code, DEEPZ.
We use the PAUS, which has 40 narrow bands (Padilla et al. 2019), as
a test case. Previous work showed how PAUS can achieve the target
photo-z precision using a template based fitting code (Eriksen et al.
2019). This in itself is a non-trivial result, since previous attempts

to apply ANNZ and DNF (De Vicente, Sánchez & Sevilla-Noarbe
2016) to PAUS simulations were unsuccessful. The standard ANNZ

essentially ignored the narrow bands because of their lower signal-
to-noise ratio. Also, the lack of sufficient training data resulted in
the codes being unable to reach the target photo-z precision. In this
paper, we introduced a machine learning approach to overcome this
obstacle and obtained state-of-the-art PAUS redshift precision.

The network was trained using flux ratios from the 40 PAUS
narrow bands, combined with the CFHTLenS u-band and BVriz
bands from the Subaru telescope in the COSMOS field. The network
inputs are the 46 fluxes, normalized to the i-band. To train the
network, we used the zCOSMOS DR3 catalogue, limited to secure
redshifts and simulations. The network was implemented using the
PYTORCH (Paszke et al. 2017) library, a widely used framework in
the deep learning research community. Our architecture consisted
of three different networks, an autoencoder to extract information
about the galaxy, and a network to predict the redshift. The network
estimated the full PDF using an MDN (Bishop 1994) and the final
distribution is the mean redshift PDF from an ensemble of 10 different
networks.

The application of the machine learning approach based on only
observed data as a training shows worse performance than the tem-
plate method (BCNZ2). However, transfer learning from simulations
improves the photo-z precision, especially for faint magnitudes.
Combining the predictions from multiple networks further improved
the scatter. For iAB = 22.5 and without quality cuts, we found σ 68 to
be 50 per cent lower with DEEPZ compared to BCNZ2, while the strict
outlier fraction (|zp − zs| > 0.02) reduces from 17 to 10 per cent.

This paper tested transfer learning using two different simulations.
The simulation based on the FSPS code performed significantly
better than a template based simulation, indicating the SED mod-
elling being important. For both simulations, the photo-z continued
improving until reaching the maximum number of observed redshifts
available. This indicated there is further room to improve the PAUS
photo-z precision. Furthermore, the redshift performance was shown
to depend on the number of galaxies for different redshifts (Fig. 3).
For high densities, the network is clearly superior, but the template
fitting code performs better at redshifts with very few spectra. Pre-
training with simulations eases the situation, but not fully and this is
an area of ongoing investigation.

Galaxy surveys typically take multiple exposures in each band,
which are then combined into a single statistically optimal measure-
ment (coadd). Since the coadd combines multiple measurements, it
can be sensitive to outliers. We tested methods to include information
from individual flux measurements. Instead of modifying the network
architecture, we trained the network using coadds generated on
the fly from a random selection of individual exposures. This
approach resulted in a 20 per cent reduction in the photo-z scatter
(Fig. 6). Combining multiple networks led to an additional 10 per cent
improvement.

The network architecture also included an autoencoder, which is
useful to extract features and reducing noise. An autoencoder consists
of an encoder network compressing the input to a set of ten features,
while the decoder network attempts to reconstruct the original input.
Optimizing the difference between the input and reconstructed values
is known to reduce the noise. We found a 50–70 per cent reduction in
the errors, with the largest effect for the blue bands. Furthermore, we
showed how the autoencoder can lead to correlated errors between
bands. Including features extracted from the autoencoder leads to
a moderate reduction in the photo-z scatter. The autoencoder is
expected to be more important for the wider fields, since this type of
network can be trained without spectroscopic redshifts.
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The DEEPZ code estimates redshift PDF, which are not provided
by many machine learning codes. The probability distributions were
estimated using a MDN. We validated the PDFs with the probability
integral transform (PIT) and found the p(z) distributions represent
the true underlying probability distributions, with the exception of
some outliers. The PDF, when combining the networks, performed
even better, mostly due to having fewer outliers to model. Lastly, we
tested quality cuts based on the PDFs and found the DEEPZ photo-z to
exceed the PAUS target performance when selecting the 50 per cent
best galaxies based on a quality cut.

The uniqueness of PAUS is the wide fields, where PAUS have
observed a total of 47 deg2 with 11, 14, and 20 deg2 in the CFHTls
W1, W2, and W3 fields, respectively. The SNR of PAUS in the wide
fields is comparable to the COSMOS fields, although with fewer
exposures per galaxy and band (∼5 exposures in COSMOS and 3
in the wide fields). The differences between the fields are the broad
bands (CFHT Megacam instead of Subaru), the galaxy parameter
(e.g. size, ellipticity) used for the forced photometry from a different
parent catalogue, and the spectroscopic training set. All fields are
calibrated relative to the SDSS stars. We are currently working on
validating and homogenizing the data reduction for the different
fields. Potentially the DEEPZ network can be trained on COSMOS
and use transfer learning to adapt to differences between the fields.
Also, the extrapolation beyond the spectroscopic subset is as always
uncertain and should be verified using e.g. galaxy cross-correlations
(Schneider et al. 2006; Newman 2008). This is work in progress and
beyond this paper.

In this paper, we introduced an efficient deep learning technique
for high precision redshift estimation. The network was tested with
PAUS, but many ideas are not necessarily restricted to narrow-band
surveys. Pre-training with simulations holds the promise of com-
bining theoretical knowledge and empirical data from spectroscopic
surveys. Also, the technique of randomly constructing coadds should
be applicable to large weak lensing surveys, including LSST and
Euclid.
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APPENDI X A : BCNZ2 PH OTO M E T R I C
REDSHI FT CODE

In Eriksen et al. (2019), we described the BCNZ2 photometric redshift
code. This code was developed to reach good photometric redshift
precision with PAUS. The code models the galaxy SED as a linear
combination of templates

f Model
i [z, α] ≡

n∑
j=1

f
j

i (z)αj , (A1)

where f i
j is the model flux for template j in band i. The α vector

includes the weights of the different SEDs. The estimated redshift
probability distribution is given by

p(z) ∝ exp

(
−0.5 min

α≥0
χ2[z, α]

)
(A2)

()

with the χ2 expression to minimized being defined by

χ2[z, α] ≡
∑
i,NB

(
f̃i − likf

Model
i

σi

)2

+
∑
i,BB

(
f̃i − lif

Model
i

σi

)2

.

(A3)

Here the minimization algorithm (Sha et al. 2007) ensures positive
amplitudes (α). The factors li are global zero-points per band (i),
while k is a free scaling between narrow and broad bands per galaxy.
These factors were introduced to reduce the sensitivity to calibration
problems and issues in the PAUS photometry.

The zero-points li were calibrated by comparing the observed
flux and the best-fitting model when running the photo-z code at
the spectroscopic redshift. This additional zero-point calibration is
commonly used and can account for residuals in the instrumental
calibration. However, this method can effectively adjust the tem-
plates, introducing an erroneous zero-point calibration for a subset
of galaxies. We are currently in the process of building on the work
in Eriksen et al. (2019) and have studied the impact of the additional
zero-point calibration (Alarcon et al. 2020). The DEEPZ code has
the advantage of not requiring this calibration step, since it is a
machine learning method which directly maps observed quantities
to the redshift.
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Figure B1. The effect of outliers in the photometry on the strict photo-z
outlier fraction. On the x-axis is the percentage u-band flux added to all
galaxies in the test set. The result is shown for an SED fitting, a neural
network, and a neural net trained with simulations including outliers.

APPENDIX B: EFFECT OF PHOTOMETRIC
O U T L I E R S

Estimating the photometric redshift with a template fitting code relies
on an analytical likelihood function specifying the data probability
given a model. This is the case for e.g. LEPHARE (Ilbert et al. 2006;
Arnouts & Ilbert 2011) and BPZ (Benı́tez 2000). In the likelihood and
fitting, the input data are often assumed to have Gaussian and known
errors. Unfortunately, observed data also includes outliers, which
are not reflected in the likelihood. For PAUS, there are problems in
the calibration, the photometry, cross-talk between CCDs and other
issues. While removing outliers is a target of the PAU data reduction,
there will always be some errors remaining.

Ideally the photo-z code should be insensitive to outliers in
the input data. Template fitting codes can in theory be extended
to model the outliers by modelling the flux errors as a linear
combination of the standard error and a wider Gaussian describing
the outliers. In practice the idea has multiple complications. Many
photo-z codes rely on the specific functional form of the likelihood
(χ2) expression. The BCNZ2 code uses a non-negative minimization
algorithm working with quadratic functions, which makes it hard to
incorporate many ideas. Furthermore, modelling the outliers would
require setting the outlier rate, which should potentially depend on
the SNR of the input data.

Machine learning codes are often more robust towards photometric
outliers. To test this idea, we have generated a simple set of
galaxy mocks. In this test, we generate a set of 10 000 elliptical
galaxies. These use eight elliptical galaxies SEDs without extinction
or emission lines, corresponding to the first template set in BCNZ2
(run 1). We add Gaussian noise with SNR of 10 and 35 in the narrow
and broad bands, respectively. The outliers are generated by adding
an additional flux in the u-band to all galaxies in the test set (see
Fig. B1).

Fig. B1 demonstrates the impact on photometric outliers on
classical template fitting and machine learning approaches. The
figure shows the strict outlier fraction (equation 5) as a function
of an additional flux fraction applied to the u-band for all galaxies
in the test sample. For the ‘SED fitting’ line, we fit the galaxies
to elliptical templates with a minimum χ2 approach. This is an
optimistic estimate since we perfectly know the SEDs and have not
included other galaxy types. For the network, we use the architecture
and training procedure outlined in Section 2.

The template fitting is strongly sensitive to the outliers, while
the neural network is less sensitive. An approach to further reduce
the impact of photometry outliers is adding outliers to the training
data. In this way, the network learns to not blindly trust features
since they could also be photometric outliers. We have tested adding
10 per cent outliers uniformly distributed over the different bands
and with varying amplitudes which is shown in Fig. B1. Note that
we are not informing the network which galaxies have problematic
photometry. The network trained with photometry outliers becomes
remarkably insensitive to these, as indicated by the essentially flat
solid line.

APPENDI X C : D EEP LEARNI NG BA SI CS

Deep learning and artificial intelligence (AI) has become an im-
portant trend over the last years. The usage of graphical processor
units (GPUs) with massive parallelization has enabled training large
models with large amounts of data. Furthermore, this renewed
interest has introduced a new set of different techniques like
generative adversarial networks (GANs) (Goodfellow et al. 2014),
reinforcement learning (Kaelbling, Littman & Moore 1996), new
network architectures (He et al. 2015), and the attention mechanism
(Vaswani et al. 2017). While this paper only uses a small set of
techniques, it benefits from the overall activity in the field. This
includes the access to well documented, open-source libraries for
neural networks, like PYTORCH (Paszke et al. 2017) and TENSORFLOW

(Abadi et al. 2015).
Neural networks are a machine learning technique, which has a

long history with early implementations in the 1950s (Rosenblatt
1958). The usage of neural networks was in periods overpromising
with successive periods of being out of fashion. Groundbreaking
results on image classifications achieved by training a larger neural
network with many images led to renewed interest in the field
(Krizhevsky, Sutskever & Hinton 2012).

Deep learning is effectively a neural network with many layers.
The network consists of multiple layers or transformations of the
data. While the performance with a few layers tends to flatten when
increasing the amount of training data, the performance of deep
networks tends to increase with more data. This training is often
computationally expensive but can use graphics processing units
(GPUs), which supports massive multiprocessing.

There are multiple types of neural networks, including convolu-
tional neural networks (CNNs) and recursive neural networks. In this
paper, we use a linear neural network and will briefly explain these.
The network consists of a series of transformations to the data, or
layers, which are sequentially applied to the data. A linear layer is
the transformation

linear(x) ≡ Ax + b, (C1)

where x is the input data, while the matrix A and vector b are
parameters of the the neural network. These network parameters will
be initiated randomly and trained using the data.

For the network to learn a non-linear mapping from the input,
it also need to include a non-linear transformation or activation
function. A common choice is the ReLU activation function, which
is defined by

ReLU(x) ≡
{

0, for x ≤ 0

x, for 0 ≤ x
, (C2)

where the operation is performed element-wise. Explained with
words, the ReLU activation sets negative entries to zero.
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Figure D1. Density plot comparing DEEPZ (left-hand panel) and BCNZ2 (right-hand panel) redshift predictions to secure zCOSMOS DR3 spectroscopic redshifts.
The colour scale is logarithmic to view the outliers.

In addition, this work uses batch normalization (Ioffe & Szegedy
2015). The batch normalization is a layer standardizing the input to
the layer to have mean zero and unit variance. This transformation is
known to make neural networks faster to train, more robust, and
achieve better performance. When constructing the network, we
include a dropout layer, randomly dropping a few percentages of the
values. This technique is often used to hinder overfitting, the effect
of the network fitting well to the training data, but not generalizing
to data for which the network is not trained.

For supervised training, the network predictions are compared
with a known answer (or labels). One then constructs a loss, which
measures how wrong the network prediction is. In our case, the main
contribution to the loss is given by the negative logarithm of the
estimated probability at the spectroscopic redshifts (equation 2). The
training of the network is done using batched, which is a subset
of galaxies jointly used to estimate the batch loss and update the
network. Dividing in batches is done to train the network faster.
When having trained with all data once, we say the network has been
trained for an epoch.

Updating the network parameters use the Adam optimizer. When
training we include weight-decay (Krogh & Hertz 1992), which
is a technique which adds an additional loss that limits too high
parameters. In practice, this is implemented as a decay term when
updating the weights. Furthermore, how fast the network is updated
is controlled by the learning rate. A high learning rate reduces the
training time, but risk the network being stuck in a suboptimal
solution.

APPENDIX D : PHOTO -Z SCATTER

Fig. D1 shows a 2D histogram plot for DEEPZ and BCNZ2. The colour
scale is logarithmic colour scale to better visualize the outliers.
Otherwise most PAUS galaxies of the galaxies were forming a narrow
diagonal line.

APPENDIX E: LABEL SMOOTHING

While photo-z estimation is fundamentally a regression problem, it is
often implemented using a classifier (e.g. Bonnett 2015), with classes

corresponding to thin redshift bins. For a broad-band survey, one can
typically use bins of �z = 0.015. However, for PAUS we need to use
�z = 0.001 wide bins to also capture galaxies with excellent (σ 68 =
0.001(1 + z)) redshift precision at the bright end. This would require
15 times more bins. As a result, the size and number of weights in the
last linear layer, which has a large fraction of the weights, increases
dramatically. The last layer would have approximately 15 times more
parameters for a narrow-band photo-z compared to the broad-band
equivalent.

We have tried implementing a photo-z classifier with different
approaches to account for different numbers of galaxies in each
class. In Buda, Maki & Mazurowski (2018), the authors review the
state of solutions to class imbalance in the literature. They found that
oversampling, i.e. selecting samples more often from less probable
classes, tends to give the best results.

The classifier approach ignores the information from nearby
redshifts. For an example, there is no concept of nearby classes
when predicting the animal type with a traditional classifier. With
PAUS data, the fundamental limitation is redshift bins without
spectroscopic galaxies. When decreasing the bin size, there will be
bins without galaxies. No matter the weighting scheme, these bins
will remain empty. Not having a concept of nearby redshift is an
artefact of framing a regression problem as a classification.

One approach to avoid empty redshift bins is label smoothing
(Simard et al. 2012). Instead of assigning a galaxy to a single
redshift bin/class, the redshift is randomly scattered to one of the
nearby redshift bins/classes. Applying this technique when training
significantly reduces the photo-z scatter. Tests with applying different
scatter values, resulted in a different optimal scatter for bright and
faint galaxies, with the photo-z scatter reduced most significant
for large redshift scatter. Instead of using a fixed value or hard-
coded relation, we have developed a method to estimate the required
smoothing from the PDF. In each step, we predict the σ 68 of the
estimated redshift PDF. This can be done fast on the GPU with a
cumulative sum. The redshift scatter is then introduced as a Gaussian
smoothing with 15 per cent of the p(z) width. While this leads to a
significant reduction in the photo-z scatter, the resulting photo-z
scatter is comparable with an MDN without the smoothing step. In
addition, the PDFs produced by the MDNs were better giving the
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Figure F1. The scatter between the photo-z when estimating the redshift with
different exposure orders for different approaches for training the network
(see the text). The vertical lines show the σ 68 for a single exposure order.

true distribution (Section 6.1) and give better quality cuts. This paper
therefore uses the MDN for estimating the probability distributions.

APPENDIX F: N ETWORK U SING INDIVIDUAL
E XPOSURES

In this paper, the default method of including information from
individual exposures is by data augmentations when training the
network. This is done by constructing coadds during the training
from randomized subsets of exposures (see Section 5). Here we
briefly report on challenges encountered when constructing a net-
work architecture to directly estimate the redshift from individual
exposures.

A problem for creating a network using individual exposures is the
irregularity of the data. While galaxy surveys strive to obtain uniform
coverage over the field, the number of exposures will always depend
on the sky-position. The standard types of neural network work
best with regular data, for example 2D images and 1D series of
observations. This would require inputting the data with all bands
having the same number of observations. With observational data,
this would use the lowest number for all galaxies, which would lead
to dropping an unacceptable fraction of observations.

Alternatively, one can construct a larger data structure and set the
missing observations to a special value. Also, the position of the

missing values can be given to the network as an additional mask.
These approaches work partly for our data, but they do not reach
a sufficiently low photo-z scatter. This appendix uses a simplified
simulation to explain potential pitfalls with this approach. For testing
the effect of individual exposures, we use the standard network with
one modification. When inputting the individual exposures, the first
layer has the dimension needed for working with a flattened array
of the individual exposures. For simplicity, we did not include the
broad-band measurements.

One needs to define an order of the exposures when inputting the
individual exposures as a matrix (tensor). Given the exposures are
a set, the network will need to learn that these measurements have
the same meaning. One approach is using training augmentation,
randomly mixing the order of the individual fluxes. This allows the
network to learn more easily the meaning of the individual exposures
from the limited spectroscopic data set.

Furthermore, the order also makes a difference when estimating
the redshifts. Fig. F1 shows scatter between photo-z predicted with
different exposures order for different randomization strategies when
training the network. Here only 30 per cent of all individual fluxes
are present and the input is given as a dense matrix without inputting
an additional mask. After training the network, we test predicting the
photo-z for different orders of the exposure. The x-axis shows the
photo-z scatter between specifying the individual fluxes in a different
order. This is not the normal photo-z error, but an additional error
coming only from the ordering of the individual fluxes.

The ‘No augmentation’ line is trained without any data augmenta-
tion, leading to a large photo-z scatter. Reordering the measurements
during training can be computationally expensive. One simple
approach is to only switch the order of the input fluxes in each batch.
This still produces 5! = 120 orders of the input per band for five
exposures. As shown in the ‘Same shuffle’ line, this decreases the
spread among the predictions. Finally, we have tested fully permuting
the different inputs when training. For 40 bands, this implies 40120

different configurations of which we will only sample a small subset.
The ‘Independent shuffle’ line shows the result when fully randomly
selecting the exposure order for each galaxy and band, each time the
network is trained (epoch). This further improves the scatter, but it’s
still too large.
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