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Abstract: Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated
with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence
of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features.
DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and
management of genetic diseases by analysing the features of affected individuals. Here, we performed
a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes
in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the
profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9%
of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the
prediction accuracy, whereas our results indicate a correlation between the clinical score and affected
genes. Furthermore, each gene presents a different pattern recognition that may be used to develop
new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we
conclude that computer-assisted image analysis based on deep learning could support the clinical
diagnosis of CdLS.
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1. Introduction

Cornelia de Lange syndrome (CdLS, OMIM #122470, #300590, #610759, #614701, #300882) is a rare
congenital condition characterized by a wide spectrum of symptoms and physical features, with a
characteristic facial gestalt, intellectual disability, limb reduction and growth retardation as the main
phenotypic manifestations [1]. Since symptoms and clinical presentation vary widely in range and
severity among affected individuals, clinical diagnosis is often challenging.

CdLS has mainly been associated with genetic variants in genes encoding different structural
and regulatory elements of the cohesin complex. In fact, approximately 80% of CdLS patients show
pathogenic variants in one of these cohesin complex associated genes. NIPBL is the major causative
gene and accounts for about 70% of patients with CdLS, while approximately 5%–10% of CdLS
patients carry pathogenic variants in SMC1A, SMC3, RAD21 or HDAC8, BRD4 and ANKRD11 genes [2].
Somatic mosaicism in NIPBL is frequent in CdLS patients and might further contribute to the different
expression of symptoms among patients [3–5]. Furthermore, even in the presence of variants affecting
the same causative gene, a wide clinical spectrum, from classical to mildly affected patients, is known [6].
The cohesin complex is not only involved in sister chromatids cohesion, but it also exhibits novel
biological functions, such as the regulation of gene transcription [7–9], thus extending the range
of pathomechanisms relevant for cohesinopathies and potentially explaining the variability in the
clinical manifestations of CdLS [10–13]. Furthermore, other chromatin dysregulation disorders [14],
cohesinopathies [15] and/or transcriptomopathies [16] present overlapping phenotypes with CdLS, such
as CHOPS syndrome (OMIM #616368), KBG syndrome (OMIM #148050), Rubinstein–Taybi syndrome
(RSTS, OMIM #180849, #613684), Wiedemann–Steiner syndrome (WDSTS, OMIM #605130), Coffin-Siris
syndrome (CSS, OMIM #135900) and Nicolaides–Baraitser syndrome (NCBRS, OMIM #601358).

Deep phenotyping and the standardization of terminologies in the Human Phenotype Ontology
have proved to be efficient in the differential diagnosis of many syndromes [17,18]. According to the
international consensus statement published in 2018 [2], a classification system based on cardinal and
suggestive CdLS features was proposed in order to distinguish between classic and non-classic CdLS
phenotypes and to discriminate other entities that resemble CdLS. Four out of six cardinal features are
related with facial dysmorphology: (1) Synophrys (HP:0000664) and/or thick eyebrows (HP:0000574);
(2) short nose (HP:0003196), concave nasal ridge (HP:0011120) and/or upturned nasal tip (HP:0000463);
(3) long (HP:0000343) and/or smooth philtrum (HP:0000319); (4) thin upper lip vermilion (HP:0000219)
and/or downturned corners of mouth (HP:0002714). Therefore, evaluation of facial dysmorphism is of
outmost importance for the diagnosis of CdLS. However, it largely depends on the expertise of the
examining physician.

Within the last years, artificial intelligence (AI) systems have supported several clinical and
diagnostic activities, such as visual diagnoses in pathology, radiology, dermatology and ophthalmology.
Besides, computational assistance is gaining more attention in the field of medical/clinical genetics,
in which deep learning technologies have been increasingly applied to identify facial phenotypes
of rare genetic disorders. Very recently, Gurovich et al. [19] proposed a new technology powering
Face2Gene, DeepGestalt, which comprises over 17,000 facial images for more than 200 rare diseases,
achieving 91% top-10 accuracy.

The aim of this study was to assess the current clinical utility of Face2Gene technology in CdLS
diagnosis by testing a cohort of 49 individuals already clinically and molecularly confirmed as CdLS.
We explore sensitivity for facial image recognition of CdLS patients using probands of various ages
and with causative variants in different causative genes.

2. Results

2.1. Clinical and Molecular Diagnosis of the Individuals Analysed

According to the clinical score published by Kline et al. 2018, 36 of the 49 patients showed a classic
phenotype (score > 11), six showed a non-classic phenotype (score 9–11), and three cases presented a
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clinical score of 8. For four patients, we were not able to calculate the score due to the lack of some
critical information (Table 1).

For all 49 individuals reported, causative genetic variants in known CdLS genes were identified
and confirmed. Genetic variants in NIPBL were identified in 33 individuals, five patients showed
variants in HDAC8, eight in SMC1A and three in RAD21. The 49 individuals harboured 47 unique
variants and one recurrent non-frameshift deletion (SMC1A, c.802-804delAAG) that was identified in
three unrelated patients (Table 1).

Twenty-two of these patients were reported and the remaining 27 were unpublished. Whereas
already known genetic variants were identified in 11 of those patients, 16 individuals presented new
causal variants that were not previously identified. Eleven of them affected NIPBL (two missense
variants, three nonsense variants, two splice variants, two frameshift variants and a deletion involving
exon 4), two variants affect SMC1A (one missense and one splice variant), two missense variants affect
HDAC8 and two were microdeletions, including the RAD21 gene (Table 1).

For those variants tested, the vast majority (27 of 31) were de novo. Two of the four variants
inherited from a clinically diagnosed parent affected NIPBL: One SMC1A and one RAD21 (Table 1).
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Table 1. Population description, clinical score and potential causative variants.

ID Sex Age
Photo

CdLS
Score Gene Variant Type Exon/

Intron Mutation (hg 19) Protein Inheritance Novelty

#N01 M 5 14 NIPBL missense 35 c.6242G>T p.Gly2081Val de novo Patient reported [20]
#N02 M 1 10 NIPBL splice variant 3i c.230+1G>A - de novo Patient reported [20]
#N03 F 2 13 NIPBL nonsense 10 c.2146C>T p.Gln716* de novo Patient reported [20]
#N04 F 1 15 NIPBL missense 37 c.6449T>C p.Leu2150Pro - Patient Reported [2,20]
#N05 M 14 12 NIPBL nonframeshiftDeletion 30 c.5689_5691delAAT p.Asn1897del de novo Patient Reported [2,20]
#N06 F 4 13 NIPBL frameshiftDeletion 20 c.4321G>T p.Phe1442Lysfs*3 de novo Patient reported [20]
#N07 F 13 16 NIPBL frameshiftDeletion 10 c.2479_2480delAG p.Arg827Glyfs*2 de novo Patient reported [20]
#N08 M 9 14 NIPBL nonsense 3 c.133C>T p.Arg45* de novo New CdLS Variant
#N09 F 24 9 NIPBL missense 36 c.6316G>C p.Val2106Leu de novo ClinVar
#N10 F 32 15 NIPBL missense 41 c.7012G>C p.Ala2338Pro de novo ClinVar

#N11 F 37 15 NIPBL splice variant 32i c.5862+2insGAG - de novo Similar Variant described in the
literature c.5862 + 1delG [21]

#N12 M 16 15 NIPBL frameshiftDeletion 10 c.3060_3063delAGAG p.Glu1021Thrfs*22 - Variant described in the literature [11]
#N13 F 27 13 NIPBL missense 29 c.5471C>T p.Ser1824Leu de novo New CdLS Variant

#N14 F 40 - NIPBL missense 40 c.6893G>A p.Arg2298His de novo Variant described in the
literature [11,22,23]

#N15 M 13 10 NIPBL missense 47 c.8387A>G p.Tyr2796Cys familial (m) Patient reported [24]
#N16 F 2 14 NIPBL missense 36 c.6269G>T p.Ser2090Ile de novo Patient reported [20]
#N17 M 3 13 NIPBL splice variant 28i c.5329-6T>G - familial (p) Patient reported [25]
#N18 F 8 13 NIPBL frameshiftDeletion 44 c.7438_7439delAG p.Arg2480Lysfs*5 de novo Patient reported [20]
#N19 M 16 13 NIPBL exon 4 deletion 4 - - - New CdLS Variant
#N20 F 5 15 NIPBL missense 39 c.6647A>C p.Tyr2216Ser de novo Patient reported [4]
#N21 F 7 14 NIPBL missense 36 c.6272G>A p.Cys2091Tyr - Variant described in the literature [26]
#N22 M 1 16 NIPBL splice variant 19i c.4320+5G>C - de novo Patient reported [20,25]
#N23 F 5 14 NIPBL nonsense 39 c.6880C>T p.Gln2294* de novo Patient reported [20]
#N24 F 1 15 NIPBL nonsense 9 c.1445_1448delGAGA p.Arg482Asnfs*20 - Patient reported [27]
#N25 M 3 16 NIPBL missense 39 c.6647A>G p.Tyr2216Cys de novo Patient reported [28]
#N26 F 7 13 NIPBL missense 40 c.6860T>C p.Leu2287Pro - New CdLS Variant
#N27 M 1 15 NIPBL nonsense 29 c.5455C>T p.Arg1819* de novo New CdLS Variant
#N28 F 9 15 NIPBL frameshiftInsertion 41 c.6964_6965insATTTA p.Ala2325* - New CdLS Variant
#N29 F 2 13 NIPBL splice variant 21i c.4560+4A>G - de novo New CdLS Variant
#N30 F 1 15 NIPBL frameshiftDeletion 38 c.6549_6552delCTCA p.His2183Glnfs*13 de novo New CdLS Variant
#N31 M 4 17 NIPBL splice variant 20i c.4422-1G>T - - New CdLS Variant
#N32 M 34 14 NIPBL splice variant 2i c.65-5A>G - - LOVD
#N33 F 16 15 NIPBL nonsense 9 c.992C>T p.Arg308* - New CdLS Variant
#S34 M 5 12 SMC1A missense 4 c.587G>A p.Arg196His de novo Patient reported [20,29]
#S35 F 27 14 SMC1A nonframeshiftInsertion 5 c.802_804delAAG p.Lys268del de novo Patient reported [20]
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Table 1. Cont.

ID Sex Age
Photo

CdLS
Score Gene Variant Type Exon/

Intron Mutation (hg 19) Protein Inheritance Novelty

#S36 M 4 13 SMC1A missense 13 c.2132 G>A p.Arg711Gln de novo Patient reported [20]
#S37 F 7 14 SMC1A missense 15 c.2369G>A p.Arg790Gln - Patient reported [13]
#S38 F 2 - SMC1A nonframeshiftDeletion 5 c.802_804delAAG p.Lys268del - Variant described in the literature [20]
#S39 F 2 13 SMC1A splice variant 2 c.44-1G>A - - New CdLS Variant
#S40 M 11 - SMC1A missense 22 c.3340A>T p.Asn1114Tyr familial (m) New CdLS Variant
#S41 F 41 15 SMC1A nonframeshiftDeletion 5 c.802_804delAAG p.Lys268del - Variant described in the literature [20]
#H42 F 4 8 HDAC8 missense 6 c.562G>A p.Ala188Thr de novo Clin Var
#H43 M 3 12 HDAC8 missense 9 c.958G>A p.Gly320Arg - ClinVar
#H44 F 6 9 HDAC8 missense 7 c.709G>T p.Asp237Tyr - New CdLS Variant
#H45 M 5 11 HDAC8 missense 4 c.305G>A p.Cys102Tyr de novo New CdLS Variant
#H46 F 11 8 HDAC8 missense 5 c.468T>G p.Asn156Lys de novo Patient reported [12]
#R47 F 3 8 RAD21 missense 11 c.1382C>T p.Thr461Ile familial (p) Patient reported (In press)

#R48 F 5 - RAD21 4.7 Mb deletion whole
gene 8q24.11q24.12(117765326_122494596)x1 - New CdLS Variant

#R49 M 8 10 RAD21 504 Kb deletion whole
gene 8q24.11 (117765326_118270323)x1 - New CdLS Variant

Abbreviations: M, male; F, female; (m), maternal; (p), paternal.
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2.2. Identifying Cornelia de Lange Syndrome using Face2Gene

Based on the profile images of the Spanish National CdLS Cohort with causative variants described
in NIPBL, SMC1A, HDAC8 or RAD21 genes, CdLS was submitted as one of the top five in the sorted
suggestion list of Face2Gene in 47/49 cases (97.9%). Furthermore, CdLS was suggested as the most
probable clinical diagnosis in 41/49 cases (83.7%). Among 41 cases in which CdLS was ranked in the
top five, 35 cases (71.5%) obtained the high gestalt level. Medium and low gestalt levels were achieved
in eight and four cases (16.3% and 8.1%), respectively (Figure 1; Supplementary Table S1).
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Figure 1. Face2Gene facial analysis in a cohort of 49 patients with CdLS and molecular diagnosis.
(A) Top-five sensitivity of the five most frequent syndromes listed. High, medium or low gestalt
level frequencies are shown. (B) Image comparison of a representative case (N05) with a variant in
NIPBL and the mask syndrome elaborated for CdLS, KBG and Rubinstein–Taybi syndrome (RST),
respectively. (C) Image comparison of a representative case (N09) with a variant in NIPBL gene and the
mask syndrome elaborated for CdLS, KBG and Charge syndromes, respectively.

Interestingly, all 12 cases with nonsense or frameshift variants presented a high gestalt level
for CdLS. Furthermore, regarding clinical score, CdLS was proposed as the most probable clinical
diagnosis in 32/36 (88.8%) cases with classic phenotype, and 6/9 (66.6%) cases with a clinical score <11
(Table 1 and Supplementary Table S1).

KBG syndrome was the second most suggested diagnosis. In 22/49 (44.89%) cases, it was in
the top five list. CHARGE syndrome, Rubinstein–Taybi syndrome and Moebius syndrome were
also mentioned in the top five list, with frequencies of 36.7% (18/49), 34.7% (17/49), and 18.4% (9/49),
respectively (Figure 1; Supplementary Table S1). In two cases (#N19 NIPBL gene; #S36, SMC1A
gene), KBG syndrome was the first suggested as most the probable clinical diagnosis. In one case,
Rubinstein–Taybi syndrome (#S40, SMC1A gene) and Charge syndrome were suggested as the first
diagnosis for a H46 with a variant in the HDAC8 gene. None of them presented a high gestalt level.

2.3. Face2Gene Evauation for Facial Images of CdLS Patients at Different Ages

No differences in top-one sensitivity were observed between the facial images of the youngest and
oldest probands analysed (n = 49, from 1- to 41-years-old, median = 5, mean = 10.3) (Supplementary
Table S1). However, in order to evaluate if Face2Gene performance may have been affected by the age
at which the facial images were taken, we analysed 49 photos from 15 patients at different ages (from 1-
to 33- years-old). Regarding top-one result, there was a complete agreement between images of the
same patient, even in #S36 and #H46 probands, who showed KBG and Charge syndrome as a first
option. Despite this specificity, the top-five diagnosis varied considerably between the different ages,
although the second-rank syndrome showed some consistent tendency (Supplementary Table S2).



Int. J. Mol. Sci. 2020, 21, 1042 7 of 12

2.4. Face2Gene Evaluation for Facial Image of CdLS Patients with Different Causative Genes

Next, we examined whether Face2Gene was able to discriminate facial phenotypes of CdLS
patients depending on the genetic variants in different genes. The top-five sensitivity for the NIPBL,
HDAC8, SMC1A and RAD21 clinical test set led to a similar result with little or no variation: 100%
(33/33), 80% (4/5), 87.5% (7/8) and 100% (3/3), respectively. However, the top-one sensitivity presented
more differences between genotypes: 97.0% (32/33), 60% (3/5), 50.0% (4/8), and 66.6 % (2/3), respectively.
A high gestalt level was obtained in 87.9% (29/33), 60.0% (3/5), 37.5% (3/8) and 0.0% (0/3) of patients
with causative variants described in NIPBL, HDAC8, SMC1A and RAD21 genes, respectively (Figure 2)
(Supplementary Table S1).
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Figure 2. Face2Gene evaluation for facial image of CdLS patients with variants in different causative
genes. For each gene, top-five sensitivity of the five most frequent syndromes are listed. High, medium
or low gestalt level frequency is indicated. For each gene, a representative image is shown illustrating
the mask elaborated for CdLS, KBG or RSTS syndromes (bottom) for the different photographs analysed
(top). Overlapping facial regions are indicated by the coloured halo from red to blue. (A) NIPBL
gene (n = 33), individual #N08 (B) SMC1A gene (n = 8), individual #S37. (C) HDAC8 gene (n = 5),
individual #H43. (D) RAD21 gen (n = 3), individual #R49. CdLS, Cornelia de Lange syndrome; FAS,
Fetal alcohol syndrome; KBG, KBG syndrome; MBS, Moebius syndrome; PWS, Prader–Willi syndrome;
RSTS, Rubinstein–Taybi syndrome; SRS, Silver–Russell syndrome; SCS, Saethre–Chotzen syndrome.

Interestingly, the differential diagnosis seemed to be correlated with the affected gene. Whereas
for NIPBL and RAD21 patients, KBG syndrome was the second most common diagnosis (top-five
rank), 54.5% (18/33) and 66,7% (2/3), Rubinstein–Taybi syndrome appeared most frequently in SMC1A
and HDAC8 patients, 50.0% (4/8) and 80.0% (4/5), respectively (Figure 2) (Supplementary Table S1).

At the same time, we analysed a special case, which was previously published with a duplication
involving the SMC1A gene [30]. As described, the patient showed a classical CdLS facial gestalt.
Indeed, CdLS diagnosis did not appear between the 30 diagnoses provided by Face2Gene. This allowed
us to strengthen that SMC1A duplication acts as a cohesinopathy, but not as CdLS, at least in terms of
facial features (Figure 3).
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Figure 3. Face2Gene evaluation for facial image of a patient harbouring a duplication segment
encompassing SMC1A gene.

3. Discussion

Deep learning is an exciting and promising approach that has already been successfully established
in various clinical fields and is now gaining attention in clinical genetics. It consists of a variation of
machine learning that uses neural networks to automatically extract novel features from input data [31].
In this respect, new technologies, such as a smartphone app called Face2Gene, have been recently
developed [19]. Face2Gene uses deep-learning algorithms to help genetic clinicians and paediatricians
diagnose conditions by image recognition.

This is of particular interest for CdLS, in which heterogeneity in clinical presentation and phenotype
overlap with different syndromes, and the still widely unknown molecular pathomechanisms makes
its diagnosis challenging for paediatricians. Thus, we have evaluated Face2Gene usefulness and
sensitivity in a large cohort consisting of 49 patients with CdLS syndrome molecularly confirmed by
mutations in NIPBL, SMC1A, HDAC8 and RAD21 genes.

Face2Gene technology has proved to have a high sensitivity detecting CdLS. In our cohort,
we obtained a 97.9% top-five sensitivity, which is even higher than the 95.97% overall top-ten sensitivity
rate reported by Gurovich et al. in a cohort of CdLS patients [19], and considerably higher than other
previous applications [32,33]. Since Face2Gene was built as a framework that learns from every solved
case, it can be expected that sensitivity will be even improved. However, we are aware that this high
sensitivity might decrease precision, and specificity studies are required in order to further evaluate
accuracy and clinical usage of Face2Gene.

The ages at which the photographs were taken were reported to affect Face2Gene results, at least in
patients with inborn errors of metabolism [34] and in cases with Down syndrome [35]. Additionally, it
has been proposed that the changing facial features of CdLS over time, specifically the coarsening of the
eyebrows and eyes and prognathism, may increase the difficulty of a diagnosis in older individuals [32].
Despite that, we did not find substantial differences in sensitivity regarding the age at which CdLS
facial images were taken.

Our results suggest differences in sensitivity depending on the clinical score and affected gene.
The study shows that Face2Gene was able to diagnose CdLS patients with classic phenotype (clinical
score >11) with a top-one sensitivity of 88.8%. However only 66.6% top-one sensitivity was achieved
in non-classic phenotypes (clinical score < 11). When evaluating within genetic groups, NIPBL patients
obtained the maximum sensitivity with 97% top-one sensitivity, which makes sense since individuals
with the classic CdLS phenotype are more likely to harbour variants in NIPBL gene [2].

Finally, although this study had limitations in terms of the sample size of some genotypes, it is
remarkable that each gene presented a different pattern recognition. We found that KBG syndrome
was the second diagnosis for individuals harbouring causative variants in NIPBL and RAD21 genes.
However, in SMC1A patients, it was the fifth in the list, while in HDCA8, it did not even appear in
the top five. Nevertheless, in patients with SMC1A and HDAC8 variants, Rubinstein–Taybi was the
second most common diagnosis, being the fifth in the list of NIPBL and insistent in the lists of RAD21
individuals. Furthermore, regarding gestalt score, it is noticeable that NIPBL shows pronounced
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facial features, whereas these are softened in RAD21 patients. This dramatically reduces the ability of
Face2Gene to diagnose patients with alterations in RAD21 gene. Taking into account that RAD21 is an
essential part of the cohesin ring structure, as well as SMC1A and SMC3, this difference is not easy to
explain from a molecular point of view. Perhaps it is related to the less central role of RAD21 in the
ATPase function of the other two proteins [36], but this is an extreme that should be studied in more
detail in the future.

Nevertheless, as it has been shown in Noonan syndrome [19], the differences in pattern recognition
between genes involved in CdLS will be useful for training and refining neural networks to be able
to discriminate between genetic subtypes in CdLS. For example, it has been described that thicker
eyebrows are suggestive of a mutation in SMC1A or SMC3 [32], and females containing variants in
HDAC8 tend to present hypertelorism and a slightly bulbous nasal tip [12] All these data point out that
Face2Gene can be optimized for specific CdLS phenotypic subsets if the number of photographs of
different genotypes increases considerably.

In conclusion, the application of deep learning to image recognition is an exciting area that is
developing rapidly and is primed to revolutionize clinical genetics diagnosis. The potential to offer
the ability to analyse facial image at a speed and sensitivity never seen before is giving physicians
a new tool in CdLS diagnosis management. Moreover, future studies based on deep learning will
allow us to account for genotype–phenotype correlations between mutation type and affected gene
in CdLS. There is still much work to be done to fully understand the correlations between genotype
and phenotype in individuals with CdLS and CdLS-like diagnoses, but there are fascinating emerging
applications with increasingly accurate use by clinicians.

4. Materials and Methods

Participants: We compiled a cohort comprising 49 (30 females and 19 males) individuals with
a clinical diagnosis of CdLS. We limited our analysis to patients with both molecular diagnosis and
available frontal facial photographs. Most of the patients were referred by the Spanish Association of
Cornelia de Lange Syndrome (CdLS Spain). Written informed consent from parents or guardians was
obtained. The protocol study was approved by the Ethics Committee of Clinical Research from the
Government of Aragón (CEICA; PI16/225). Only individuals that were consented for publication of
facial photographs were shown in this study.

Clinical Score: The CdLS clinical score was computed by trained physicians according to the
international consensus criteria of CdLS [2]. A combination of cardinal and suggestive features was
used to diagnose the CdLS phenotype. Classic CdLS was indicated with a score of > 11 if at least three
cardinal features were identified, while a score of 9–10 indicated non-classic CdLS and implied the
presence of at least two cardinal features.

Molecular Diagnosis: All individuals with CdLS were subjected to molecular analysis by next
generation sequencing. In the majority of cases, targeted gene-panel via deep sequencing analysis was
performed using Ion Chef and Ion S5 XL Systems (Thermo Fisher Scientific). The custom CdLS panel
was designed using the Ion AmpliSeqTM Designer online tool. The designed panel spanned 249.25 kb
of the selected genomic sequencing, including NIPBL (NM_133433.3), SMC1A (NM_006306.3), SMC3
(NM_058243.2), RAD21 (NM_006265.2), HDAC8 (NM_018486.2), BRD4 (NM_058243.2) and ANKRD11
(NM_001256183.1). The analysis was performed using Ion Reporter and IGV (Broad Institute) software.
Reportable variants were validated by Sanger sequencing. If the panel did not detect causal variants,
multiplex ligation-dependent probe amplification (MLPA) and/or comparative genomic hybridisation
(CGH) array were done. Human Genome Variation Society (www.hgvs.org) nomenclature guidelines
were used to name the mutation at the DNA level and the predicted resulting protein.

Facial and Data Analysis: We analysed the frontal images of all individuals using
Face2Gene technology (FDNA Inc., Boston, MA, USA; https://www.face2gene.com). According
to Gurovich et al. [19], we evaluated the sensitivity of Face2Gene by measuring the top-one and
top-five sensitivity. Thus, top-one sensitivity means that the correctly diagnosis syndrome was

www.hgvs.org
https://www.face2gene.com
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suggested the first in the sorted suggestion list of Face2Gene, while top-five sensitivity means that
it was suggested as one of the top five on that list. Furthermore, for each analysed individual, we
evaluated the gestalt similarity using the “gestalt level” barplot, which indicates levels of “high,”
“medium,” and “low.”

Statistical analyses and graphics were produced with GraphPad Prism 6 software.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/3/1042/s1.
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