Unraveling reaction mechanism and active sites of metal-organic frameworks for glucose transformations in water: experimental and theoretical studies

Sergio Rojas-Buzo, Avelino Corma, Mercedes Boronat* and Manuel Moliner*

Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain

Supporting Information

ABSTRACT: The catalytic performance of two different metal-organic frameworks, UiO-66 and MOF-808, containing Lewis acid active sites has been evaluated for the transformation of glucose in water, and compared with that of analogous Lewis acid Zr-Beta zeolite. While fructose is the main product obtained on Zr-Beta, the mannose production increases when using Zr-MOFs as catalysts. Kinetic studies reveal a lower activation energy barrier for glucose epimerization to mannose when using Zr-MOF catalysts (∼83-88 and ∼100 kJ/mol for glucose epimerization and isomerization, respectively). A 13C NMR study using 13C1-labelled glucose allows confirming that on Zr-MOF catalysts mannose is exclusively formed following the glucose epimerization route through 1,2-intramolecular carbon shift, whereas the two step glucose → fructose → mannose isomerization via 1,2-intramolecular proton shifts is the preferred pathway on Zr-Beta. A computational study reveals a different mode of adsorption of deprotonated glucose on Zr-MOFs that allows decreasing the activation barrier for the 1,2-intramolecular carbon shift. The combination of spectroscopic, kinetic and theoretical studies allows unraveling the nature of the metal sites in Zr-MOFs and Zr-Beta catalysts and to propose a structure-activity relationship between the different Lewis acid sites and the glucose transformation reactions. The results presented here could permit new rationalized MOF catalyst designs with the specific active sites to facilitate particular reaction mechanisms.

KEYWORDS: MOFs, Lewis acids, glucose, mannose, epimerization, structure-activity

1. INTRODUCTION
In the last two decades, many efforts have focused on attempting the efficient transformation of biomass to high value products. If one considers the possible biomass-derived platform molecules, hexoses are the most abundant monosaccharides present in nature, and, consequently, there is a growing interest on their transformation into industrially-relevant chemicals. Glucose isomerization reaction has been extensively applied to produce fructose, which not only is a well-known sweetener used as an alternative to conventional table sugar (sucrose) but also has emerged as a key intermediate in the synthesis of biofuel precursor 5-hydroxymethylfurfural (HMF). Traditionally, glucose isomerization to fructose has employed bio-enzymatic catalytic systems, such as D-Xylose Isomerase XI, containing Mg2+ or Mn2+ inside hydrophobic pockets. However, these bio-catalysts are extremely sensitive to temperature and pH modifications that can irreversibly denaturalize the enzyme structure and, in addition, they are barely separated from the reaction medium. These limitations were overwhelmed by introducing isolated Lewis acidic metal sites within hydrophobic pure-silica molecular sieves, i.e. Sn-Beta, acting as very active and stable heterogeneous catalysts for the glucose isomerization to fructose in water. This reaction involves the combined reduction of the carbonyl group in C1 position and the oxidation of the adjacent alcohol through a 1,2-intramolecular hydride shift in the ring-opened glucose chain mediated by the tetrahedral Lewis acid position of the framework. In contrast, the glucose epimerization reaction to mannose has received less attention despite many rare sugars, as it is the case of mannose, are key molecules in the design of antiviral drugs, low-calorie sweeteners, anti-inflammatory agents or chiral building blocks, among other applications. Cellulbiose 2-epimerase is able to catalyze the C2-epimerization of glucose to produce mannose, but the drawbacks associated to the use of enzymes as catalysts, such as temperature and pH restrictions, limit their application at an industrial scale. In the search for heterogeneous catalysts able to perform the epimerization of glucose, several inorganic solids including Sn-Beta, molybdenum-based and hydrotalcite-type materials have been recently reported. Focusing on Lewis-acid containing Sn-Beta zeolite, Davis et al. demonstrated that it is possible to modulate the selectivity towards fructose or mannose by modifying the environment or the nature of the active sites in
this material. Thus, Sn-Beta is able to facilitate the epimerization of glucose to mannose when using methanol as reaction solvent and, although the mechanistic origins this effect remains unclear, the authors demonstrated that this transformation occurs through the Bilik reaction, which consists in a 1,2-intramolecular carbon shift.13 On the other hand, and regarding the nature of the active sites, Davis et al. reported that alkali-free Sn-Beta zeolite favors the fructose production in aqueous media via isomerization, whereas Na-exchanged Sn-Beta zeolite facilitates the epimerization process towards mannose.21 Subsequent DFT studies proposed that sodium cations within Sn-Beta stabilize the 1,2-intramolecular carbon shift instead of the 1,2-intramolecular hydride shift mechanism by electrostatic interactions.22

Metal-organic frameworks (MOFs) are hybrid microporous crystalline materials formed by metal ions or clusters coordinated by organic ligands.23 The large and diverse number of organic linkers and metal nodes that can be employed in the synthesis of MOFs allows modifying their physico-chemical properties and, thus, adapting them to be more active and stable for target catalytic applications.24 In particular, Zr- and Hf-MOFs contain Lewis acid sites whose nature and environment could be modified through the organic linkers to finely modulate their catalytic performance. They have demonstrated high chemical, thermal, and mechanical stability, and as such they have been employed recently in organic transformations of carbonyl-containing molecules derived from biomass for the production of perfumes, flavors and fuel-preursors,25 and for cross-aldol condensation reactions even in the presence of quantitative amounts of water and organic acids.26 A few studies have evaluated the catalytic activity of other MOFs, i.e. MIL-101(Cr) and ZIF-8(Zn), for the glucose isomerization.27,28 The main goal of these researches was the improvement of the MOFs-properties (via metal cluster or organic ligand) to be applied for the one-pot synthesis of HMF from glucose.29-31 Zr-containing MOFs UiO-66(Zr) and Zr-MOF-808 have been tested for this one-pot transformation using dimethylsulfoxide as solvent, obtaining moderated HMF yields (21 and 31\%, respectively), probably due to the weak Bronsted acidity of the hydroxyl groups on metal clusters.32 However, they have been described as active materials for Meerwein-Ponndorf-Verley reduction reactions,33 and therefore they are good candidates to study the glucose transformation reactions in water. Indeed, the catalytic performance of UiO-66(Zr) and MIL-101(Cr) in aqueous glucose solutions has been studied recently, and different selectivity towards fructose and mannose has been reported.34 MIL-101(Cr) gives preferentially fructose as single product while UiO-66(Zr) produces equimolar quantities of fructose and mannose. The different selectivity was attributed to the different atomic radius of Cr and Zr that could result in a stronger electronegativity for the oxygen atoms adjacent to Zr favoring the epimerization reaction. However, additional fundamental and mechanistic studies are required to properly understand the structure-activity relationship of Zr-MOF materials in the transformation of glucose.

Herein, we have studied two different Lewis acid containing MOFs, Zr-MOF-808 and UiO-66(Zr), for the transformation of glucose in water. Kinetic studies performed for Zr-MOF-808 and UiO-66(Zr) reveal that the activation barriers to undergo the epimerization reaction are lower than those required for isomerization. To corroborate that the epimerization reaction is occurring in these Zr-MOF type-catalysts via 1,2-intramolecular carbon shift (Bilik reaction), 13C NMR studies have been performed using 13C1-labelled glucose, and the key steps of the isomerization and epimerization reaction mechanisms have been computationally investigated. NMR and IR spectroscopic techniques using probe molecules combined with theoretical calculations allow proposing a structure-activity relationship between the different Lewis acid sites present in Zr-MOFs and Zr-Beta catalysts and the glucose transformation reactions.

Table 1. Physico-chemical properties of the different Zr-MOF materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Metal a (%wt)</th>
<th>C b (%wt)</th>
<th>H b (%wt)</th>
<th>N b (%wt)</th>
<th>BET suf. area (m2/g)</th>
<th>Microp. area (m2/g)</th>
<th>Microp. Vol. (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-MOF-808</td>
<td>31.1</td>
<td>20.7</td>
<td>1.6</td>
<td>0.6</td>
<td>1531</td>
<td>1482</td>
<td>0.72</td>
</tr>
<tr>
<td>UiO-66(Zr)</td>
<td>29.3</td>
<td>29.3</td>
<td>1.6</td>
<td>0.5</td>
<td>1374</td>
<td>1370</td>
<td>0.67</td>
</tr>
</tbody>
</table>

a Measured by ICP analysis
b Measured by elemental analysis
2. RESULTS AND DISCUSSION

2.1. Synthesis and characterization of Zr-based MOFs

Both Zr-containing MOF-808 and UiO-66 are based on the same hexaametallodic node \([\text{M}_6\text{O}_4\text{(OH)}_4]^{12+}\) (Figure 1a), but their connectivity with the negatively charged organic linkers containing carboxylate groups and the resulting crystalline structure are different. UiO-66(Zr) presents a 12-connectivity on the metal cluster, and the reported pore sizes are between 8 and 11 Å.\(^{35}\) In perfect UiO-66(Zr) crystals all the metal atoms of the cluster are fully coordinated and therefore not accessible to reactants (Figure 1c), but the presence of missing linker defects creates accessible metallic Lewis acid active sites (Figure 1d). On the other hand, Zr-MOF-808 has a 6-connectivity on the metal cluster, which is lower than UiO-66(Zr), suggesting an easier accessibility of the reactants to the metallic active sites (Figure 1b).\(^{36}\) The excess positive charge in the nodes of Zr-MOF-808 is compensated by hydroxyl groups and coordinated water molecules. Moreover, Zr-MOF-808 structures show adamantane-type apertures, which results in pore windows of ~18.4 Å,\(^{37}\) which are considerably higher than those observed within the UiO-66(Zr) structure.

The Lewis-acid containing UiO-66(Zr) and Zr-MOF-808 were synthesized following previous reports in the literature (see experimental section for details).\(^{38,39}\) The resultant solids show the characteristic PXRD patterns of the UiO-66(Zr) and Zr-MOF-808 materials (see Figure 2), indicating that these materials show high-crystallinity. \(\text{N}_2\) adsorption characterization shows the microporosity of the synthesized Zr-MOF-808 and UiO-66(Zr) materials, yielding high micropore areas (between ~1300 and ~1500 m\(^2\)/g, see Table 1) and micropore volumes (~0.70 cm\(^3\)/g, see Table 1). Moreover, the characterization of the different MOFs by FTIR spectroscopy clearly shows the disappearance of the signal centered at ~1700 cm\(^{-1}\) (see Figure 3), which corresponds with the carboxylic acid group of the organic ligands, suggesting the entire interaction of the organic ligands with the metal clusters.

Finally, the different solids have been studied by field emission scanning electron microscopy (FESEM) to evaluate their crystal morphology. As seen in Figure 4, octahedral crystals can be observed for both type of MOFs, detecting smaller particle sizes for UiO-66(Zr) samples (~200-400 nm) than for Zr-MOF-808 samples (~400-800 nm).

2.2. Kinetic studies for glucose transformations using Zr-based MOFs as catalysts

Kinetic studies were performed at different temperatures (90, 110, 125 and 140°C) using Zr-MOF-808 and UiO-66(Zr) catalysts for glucose transformations in water (glucose:metal molar ratio of 25). Figure 5 summarizes the kinetic profiles for the glucose transformation reactions in water at different temperatures using Zr-MOF-808 (Figure 5-left) and UiO-66(Zr) (Figure 5-right). There, glucose conversion together with mannose and fructose concentrations have been plotted as a function of reaction time. It can be stated from the kinetic curves that the ratio of mannose to fructose is larger for UiO-66(Zr) than for Zr-MOF-808. It is also observed that the mannose/fructose ratio shows its maximum value at low temperatures [see UiO-66(Zr)-90°C in Figure 5].

The fact that fructose and mannose are formed from the first moment the reaction starts (non-zero initial rate) would indicate that both are primary products and, consequently, glucose isomerization and epimerization reactions are occurring in parallel within the MOF-type catalysts. Then, considering a pseudo-first-order dependence for both reactions (see experimental conditions for details), the kinetic rate constants for isomerization and epimerization (\(k_{\text{isom,F}}\) and \(k_{\text{epim,M}}\), respectively) have been calculated from initial reaction rates (see Table 2). The \(k_{\text{epim,M}}/k_{\text{isom,F}}\) ratios are ~1.5-2 higher on UiO-66(Zr) than on Zr-MOF-808 regardless the reaction temperature (see Table 2), clearly evidencing the improved ability of UiO-66(Zr) to facilitate the epimerization pathway over the isomerization mechanism.

The apparent activation energies for the glucose isomerization and epimerization reactions were calculated from the linearized Arrhenius equation, and the values obtained on Zr-MOF-808 were \(E_{\text{a,isom}}=100\ \text{kJ/mol}\) and \(E_{\text{a,epim}}=88\ \text{kJ/mol}\), while on UiO-66(Zr) were \(E_{\text{a,isom}}=101\ \text{kJ/mol}\) and \(E_{\text{a,epim}}=83\ \text{kJ/mol}\) (see Figure 6). These data indicate that the experimental activation energies for glucose epimerization are lower than those for glucose isomerization on...
both MOF catalysts. Moreover, the apparent activation energy for the epimerization pathway is lower on UiO-66(Zr) than in Zr-MOF-808 (83 and 88 kJ/mol, respectively, see Figure 6). Thus, taking into account that both MOF catalysts present analogous activation energy of UiO-66(Zr) for glucose epimerization compared to Zr-MOF-808 would explain the higher values observed for the mannose/fructose ratios with UiO-66(Zr).

Table 2. Measured pseudo-first-order rate constants at different temperatures for glucose-fructose isomerization ($k_{isom,F}$) and glucose-mannose epimerization ($k_{epim,M}$) on Zr-MOF-808 and UiO-66(Zr).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>T (°C)</th>
<th>$k_{isom,F}$ x 105 (s$^{-1}$)</th>
<th>$k_{epim,M}$ x 105 (s$^{-1}$)</th>
<th>$k_{epim,M}/k_{isom,F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-MOF-808</td>
<td>90</td>
<td>2.8</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>21.0</td>
<td>21.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>77.5</td>
<td>57.7</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>137.2</td>
<td>109.2</td>
<td>0.8</td>
</tr>
<tr>
<td>UiO-66(Zr)</td>
<td>90</td>
<td>1.4</td>
<td>3.0</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>9.1</td>
<td>18.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>46.0</td>
<td>55.6</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>65.4</td>
<td>72.9</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure 6. Temperature dependence (X-axis) of the kinetic catalysts constants (Y-axis) for glucose isomerization to fructose (red circles) and epimerization to mannose (black squares). The calculated apparent activation energies for glucose isomerization and epimerization reactions are included in the figure. The estimated errors for the E_a values are ± 5 kJ/mol.

2.3. Reaction mechanism study using 13C NMR spectroscopy and isotopically labeled glucose

Sn-Beta has been extensively employed in the literature as an efficient catalyst for the glucose isomerization reaction in aqueous conditions. However, considering that in the present work the catalytic behavior of different Zr-containing MOFs has been evaluated, a Zr-Beta zeolite has been proposed to properly assess the mechanistic differences between an isomorphically metal-substituted zeolite and the Zr-containing MOFs (see experimental section for details). Figure 7 summarizes the glucose conversion values obtained using these materials as a function of reaction time together with the achieved fructose/mannose molar ratios, where the experiments were performed at 90°C. Interestingly, under similar glucose conversion levels for the different Zr-containing materials...
materials, it is clearly observed that Zr-Beta shows the highest fructose/mannose ratio (∼5), while UiO-66(Zr) gives the lowest fructose/mannose ratio (∼0.3), clearly suggesting different glucose transformation pathways for them.

Figure 7. Kinetic profiles for glucose conversion (left Y-axis) and fructose/mannose molar ratio (right Y-axis) employing Zr-Beta (red line), Zr-MOF-808 (black line) and UiO-66(Zr) (blue line) as catalysts. Reaction conditions: 10 wt% glucose aqueous solutions at 90°C, glucose/metal ratios of 50 and 12 for Zr-Beta and Zr-MOFs, respectively, to facilitate similar glucose conversions for all materials.

Figure 8. Proposed routes for 13C-C1-glucose epimerization and isomerization reactions that involves 1,2-intramolecular carbon or hydride shift, respectively.

13C NMR studies were conducted to gain insight into the mechanism of the glucose isomerization and epimerization reactions (see Figure 8). For these experiments, 1%wt 13C-C1-glucose solutions were employed as starting solutions using the different Zr-containing catalysts. Reactions were performed during 2 h at 90°C, then quenched and filtered and, finally, measured by 13C NMR spectroscopy. The 13C NMR spectrum of the blank experiment made without catalyst only shows the signals centered at 96.0 and 92.2 ppm, which correspond to the 13C-C1 enriched D-glucose (see Figure 9). The 13C NMR spectra of the experiments performed using the Zr-containing catalysts show all of them the appearance of resonances at 64.0 and 62.8 ppm, which correspond to the β-pyranose and β-furanose fructose conformers that are formed through the isomerization reaction by 1,2-intramolecular hydride shift [see Zr-Beta, Zr-MOF-808 and UiO-66(Zr) in Figures 9b, 9c and 9d, respectively].43 However, other signals centered at 64.0 and 62.8 ppm. This is probably due to the heterogeneity of the interactions of TMPO with the Zr sites in MOF-808, where several Zr centers are accessible in each node.

Figure 9. 13C NMR spectra of the resulting reaction mixtures with a) no catalyst, b) Zr-Beta, c) Zr-MOF-808 and d) UiO-66(Zr). Reaction conditions: 1 wt% 13C-C1-glucose aqueous solution at 363 K for 2 h.

2.4. Nature of the Lewis acid active sites in Zr-MOFs

To evaluate the nature of the Lewis acid active sites in the catalysts tested, the Zr environment in Zr-MOF-808, UiO-66(Zr) and Zr-Beta zeolite was studied using 31P NMR spectroscopy after adsorbing trimethylphosphine oxide (TMPO) as probe molecule, a technique that has been successfully employed to distinguish active sites into different materials.45 For example, TMPO adsorbed on different metal-substituted Beta-zeolites allowed to correlate the different Lewis acid sites with the catalytic activity for glucose isomerization and cross-aldol condensation.46 According to this previous work, TMPO was adsorbed in Zr-MOF-808 and UiO-66(Zr) materials, as well as in Zr-Beta zeolite for comparison purposes (see experimental section for details), and the δiso(31P) chemical shifts of TMPO interacting with Zr-Beta and with models of Zr-MOF-808 and UiO-66(Zr) containing benzoate ligands was simulated by means of DFT calculations. The 31P MAS NMR spectrum of the TMPO-containing Zr-Beta (Figure 10a) shows three well-defined characteristic signals at 55, 57 and 61 ppm, which have been assigned to the interaction of the TMPO molecules with the isolated Lewis acid sites in the zeolitic framework.46 In agreement with this assignment, the chemical shifts obtained from DFT calculations for TMPO interacting with open- and closed-sites in Zr-Beta appear between 56 and 62 ppm, depending on the location of the Zr atom (see Table S2 and Figure S1). In the case of both MOFs, the resonances appearing at ~55-57 ppm due to the Lewis acid-TMPO interaction are also present in the 31P NMR spectra (see Figures 10b and 10c), but the peaks show less resolution, especially in MOF-808. This is probably due to the heterogeneity of the interactions of TMPO with the Zr sites in MOF-808, where several Zr centers are accessible in each node.
The δ_iso(31P) chemical shifts calculated for just one TMPO molecule interacting with either UiO-66(Zr) or Zr-MOF-808 are similar, 52 and 53 ppm, respectively, but the presence of a close TMPO molecule interacting with a proximal hydroxyl group in MOF-808 displaces the calculated δ_iso(31P) chemical shift for the Zr-bonded TMPO molecule to 59 ppm (see Table S2). Thus, the possible co-adsorption of more than one TMPO molecule on the same [Zr_6O_4(OH)_4]^{12+} node in MOF-808 would explain the better signal resolution achieved on UiO-66(Zr), where this co-adsorption is less probable. On the other hand, dehydration of the UiO-66(Zr) active site following a model described in the literature leaves two metal Lewis acid centers and a basic O_2^- atom on the hexaoxometal cluster (see Figure 1e), and displaces the calculated δ_iso(31P) signal of adsorbed TMPO to 56 ppm (Table S2), in agreement with the signals observed in the recorded NMR spectra (see Figure 10c).

Table 3. DFT calculated activation energies for the H-shift and C-shift steps leading to isomerization and epimerization of glucose on Zr-Beta, Zr-Uio-66 and Zr-MOF-808 catalyst models.

<table>
<thead>
<tr>
<th>Sample</th>
<th>E_a,isom (kJ/mol)</th>
<th>E_a,epim (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-Beta</td>
<td>86.9</td>
<td>138.1</td>
</tr>
<tr>
<td>UiO-66(Zr)</td>
<td>96.5</td>
<td>82.9</td>
</tr>
<tr>
<td>Zr-MOF-808-A</td>
<td>99.9</td>
<td>78.1</td>
</tr>
<tr>
<td>Zr-MOF-808-B</td>
<td>80.6</td>
<td>108.6</td>
</tr>
</tbody>
</table>

2.5. Computational study of the reaction mechanism in Zr-MOFs and Zr-Beta catalysts

To provide a better understanding at the molecular level of the mechanistic differences between Zr-Beta zeolite and Zr-containing MOFs in the transformation of glucose, a computational study of the key steps of the isomerization and epimerization reaction pathways was performed using cluster models of Zr-MOF-808, UiO-66(Zr) and Zr-Beta catalysts (see Figures 1 and 12). The models employed to simulate the Zr-MOFs consist of one [Zr_6O_4(OH)_4]^{12+} node surrounded by the corresponding number of formiate ligands, charge-compensating hydroxyl groups and additional stabilizing water molecules (see experimental section for computational details), while the model for Zr-Beta zeolite was cut out from the periodic crystalline structure and contains one framework Zr atom with one hydrolyzed Zr-OH bond (open-site, see Figure 12).

According to previous mechanistic studies of glucose transformation on Sn-Beta catalysts, the first step of the reaction is the ring-opening of glucose and its deprotonation assisted by a hydroxyl group to form a bidentate complex in which the two O1 and O2 atoms of the monosaccharide are bonded to the Lewis acid Sn center. The same bidentate structure was obtained here on Zr-Beta catalyst (see structure GLU in Figure 12), with the water molecule formed by reaction of the hydroxyl group with the proton of glucose remaining attached to the Zr center. Starting from this reactant structure labelled GLU, fructose (FRU) and mannose (MAN) are formed by intramolecular 1,2-H shift or 1,2-C shift through transition states TSH and TSC, respectively (see Figure 12 and Table S3). The activation energy calculated for the H-shift step leading to isomerization, 86.9 kJ/mol, is not too different from the values previously reported for Sn-Beta, and remarkably lower than the activation energy obtained for the epimerization via intramolecular C-shift, 138.1 kJ/mol (see Table 3), in agreement with the ^13C NMR results showing that mannose is not formed via epimerization in Zr-Beta (see Figure 9). Instead, it is formed from fructose by a second H-shift through TSH2 in Figure 12 with an activation energy of 90.7 kJ/mol.
The nodes of Zr-MOFs also possess hydroxyl groups able to promote the deprotonation of acyclic glucose (see Figure 1). But, in contrast to Sn- and Zr-Beta catalysts, in the bidentate complexes formed on UiO-66 and MOF-808, each of the two O1 and O2 atoms of deprotonated glucose bind to a different Zr atom (see Figures 13, 14, S2 and S3). In UiO-66(Zr) there are only two accessible Zr atoms able to make new bonds, and two different orientations for adsorbed glucose. In the most stable conformation (GLU in Figure 13) an extra hydrogen bond is formed between one of the four protons belonging to the \([\text{Zr}_6\text{O}_{4}\text{(OH)}_4]^{12+}\) node and the OH group attached to C3. This hydrogen bond cannot be formed in structure GLU-B, which is consequently 27.7 kJ/mol less stable than GLU. In addition, this H bond is partly broken in transition state TSH leading to fructose but not in TSC producing mannose, which is therefore 13 kJ/mol more stable (see Figure 13). A closer analysis of the optimized geometries of all structures in Zr-Beta and UiO-66(Zr) (see Tables S3 and S4 in the Supporting Information) shows that the C1-C2 bonds in both transition states are slightly longer in the MOF, while the C1-C3 and C2-C3 distances in TSC are shorter in UiO-66(Zr). The activation energies calculated for the H-shift and C-shift steps on UiO-66(Zr) model are 96.5 kJ/mol and 82.9 kJ/mol, respectively, (see Table 3) in good agreement with the apparent activation energies obtained experimentally \(E_{\text{a, isom}} = 101\) kJ/mol and \(E_{\text{a, epim}} = 83\) kJ/mol, see Figure 6).

To confirm the influence of the adsorption mode of glucose on the selectivity to mannose, and taking into account that the presence of co-adsorbed water in UiO-66(Zr) stabilizes a bidentate complex with the two O1 and O2 atoms of deprotonated glucose bonded to the same Zr atom (structure GLU-H2O in Figure S3), we calculated the H-shift and C-shift steps starting from GLU-H2O (see optimized structures in Figure S4). The activation energies calculated for isomerization and epimerization, 142.2 and 147.9 kJ/mol, respectively, are significantly higher than those obtained starting from GLU, suggesting a lower reactivity of this mode of adsorption.
coordinated to the \([\text{Zr}_6\text{O}_4(\text{OH})_4]^{12+}\) node. This conformation is 20 kJ/mol more stable than GLU-A (see Figure 14) the OH group is larger than in UiO-66(Zr). However, in structure GLU-B, which is also found on Zr-MOF-808, and similar pathways are followed starting from this structure (see Figure 15a). The calculated activation energies are 99.9 and 78.1 kJ/mol for the isomerization and epimerization reactions, respectively (see Table 3), in relative good agreement with the experimental values (see Figure 15b). The large number of possibilities for formation of hydrogen bonds between the hydroxyl groups of glucose and the water molecules and hydroxyl groups coordinated to the \([\text{Zr}_6\text{O}_4(\text{OH})_4]^{12+}\) node in MOF-808 (some of them are shown in Figures 14 and S2) makes extremely challenging to establish just one preferred pathway from DFT calculations that accurately matches the apparent activation energies determined experimentally. This would require the use of much more computationally demanding ab initio molecular dynamics simulations. However, it is possible to conclude from the present theoretical study that the bidentate mode of adsorption of deprotonated glucose on Zr-MOFs, involving two Zr atoms, decreases the activation energy necessary for the C-shift step leading to mannose, which is reflected in a higher mannose/fructose molar ratio as compared to Zr-Beta zeolite.

3. CONCLUSIONS
Zr-containing MOFs with MOF-808 and UiO-66 structures are active catalysts for the glucose isomerization and epimerization reactions. Detailed kinetic studies reveal different glucose transformation rates within Zr-MOF catalysts. UiO-66(Zr) provides a higher mannose/fructose ratio than Zr-MOF-808, which is explained by a lower apparent activation energy for glucose epimerization reaction on UiO-66(Zr) as compared to Zr-MOF-808. A 13C NMR mechanistic study using 13C-C1 labelled glucose confirms that the mannose produced when using both UiO-66(Zr) and Zr-MOF-808 is formed by glucose epimerization via 1,2-intramolecular carbon shift, while the remarkably lower amount of mannose generated when using Zr-Beta is produced preferentially through a consecutive isomerization of fructose. A computational study of the key steps of the isomerization and epimerization reactions on Zr-MOF-808, UiO-66(Zr) and Zr-Beta catalyst models reveals a different mode of adsorption of deprotonated glucose on Zr-MOF materials, which considerably decreases the activation barrier for the 1,2-intramolecular carbon shift. Finally, NMR and IR spectroscopic techniques using probe molecules combined with DFT calculations allow identifying the Lewis acid sites present in Zr-MOFs and Zr-Beta zeolite, and the particular environments favoring the epimerization of glucose. The structure-activity relationship reported here for glucose transformation reactions using MOFs opens attractive catalyst design routes for attempting to control the active site environment in order to guide the transformation of platform molecules to the desired chemicals through the proper reaction mechanism.

4. EXPERIMENTAL SECTION
4.1. Synthesis
4.1.1. Synthesis of Zr-containing MOF-808 [Zr-MOF-808]. A mixture of ZrCl$_4$ (0.5 mmol) and 1,3,5-benzenetricarboxylic acid (110 mg, 0.5 mmol, dimethylformamide (DMF)/formic acid (20 mL:20 mL) was sonicated for 30 min. Afterwards, the mixture was added to an autoclave vessel and heated at 100°C for 72 h. The resulting white solid was filtered and washed with an excess of DMF and acetone. The as-synthesized material was activated at 120°C under vacuum for 12 h.

4.1.2. Synthesis of Zr-containing UiO-66 [UiO-66(Zr)]. A mixture of ZrCl$_4$ (0.46 mmol), terephthalic acid (53.4 mg, 0.46 mmol) and formic acid (1.5 mL) in DMF (6 mL), was added to an autoclave vessel and heated at 120°C for 48 h. The resulting white solid was filtered and washed with an excess of DMF and then acetone. The as-synthesized material was activated at 120°C in vacuum for 12 h.

4.1.3. Synthesis of Zr-Beta. Zr-Beta with Si/Zr~135 was prepared according to the literature. The synthesis procedure was as follows: first, tetraethylammonium hydroxide solution (35 wt% in water) was mixed with tetraethyl orthosilicate (TEOS), and the mixture was stirred until a thick gel was formed. The final gel composition was

![Figure 15. DFT optimized structures of minima and transition
states involved in two possible pathways for glucose
isomerization and epimerization in Zr-MOF-808, starting from a) GLU-A and
b) GLU-B. Relative energies in kJ/mol are given in parenthesis. Zr, O, C,
and H atoms are depicted in cyan, red, blue and white, respectively.](image)
1 SiO2 : 0.01 ZrO2 : 0.56 TEAOH : 0.56 HF : 7.5 H2O. The gel was added to an autoclave and placed in an oven at 140°C for 20 days under static conditions. The resulting solid obtained was washed and filtered with water. The resulting Zr-Beta was dried at 100°C, and then calcined at 580°C for 4 h.

4.2. Characterization
4.2.1. Characterization techniques. Powder X-ray diffraction (PXRD) measurements were performed using a Panalytical CubiX diffractometer operating at 40 kV and 35 mA, and using Cu Kα radiation (λ = 0.1542 nm).

Chemical analyses were carried out in a Varian 715-ES ICP-Optical Emission spectrometer, after solid dissolution in HNO3/HCl/HF aqueous solution. Elemental analyses were performed by combustion analysis using a Eurovector EA 3000 CHNS analyzer using sulfanilamide as reference.

The morphology of the samples was studied by field emission scanning electron microscopy (FESEM) using a ZEISS Ultra-55 microscope. The sample was mounted on carbon tape stuck on aluminium stubs. Image conditions were 1 kV acceleration voltage and working distance between (3.1 mm) using the secondary electron detector.

The adsorption and desorption curve of N2 was measured at 77 K in an ASAP2420 MICROMERITICS device. The specific surface areas were calculated by the Brunauer-Emmet-Teller (BET) with a missing linker can display catalytic activity. In MOF-808 each node is connected with six organic linkers, and the excess positive charge is compensated by hydroxyl groups and coordinated water molecules (see Figure 1). The organic linkers of the two MOFs were simulated either by benzoate or by formiate anions. In the first case, the carboxylic groups of the linkers not bonded to the [Zr6O4(OH)4]12+ node were replaced by hydrogen atoms, and in a first step, all C-H distances were optimized while keeping the positions of all other atoms in the model fixed. Then, in the subsequent geometry optimizations, the five hydrogen atoms of each benzoate group were kept fixed at this optimized positions in order to maintain the structure of the MOF, and all other atoms in the system were allowed to move without restrictions. Smaller models for each MOF were also created in which all organic linkers were simulated by formiate anions, and in this case all atoms in the system were always fully optimized without restrictions.

The active sites in Zr-Beta were simulated by cluster models cut out from the periodic crystalline structure of BEA zeolite and containing one framework Zr atom at T4, T5 and T9 positions bonded to four O-Si units (closed site) or with one hydrolyzed Zr-OH bond (open site), as depicted in Figure S1.

Infrared (FTIR) spectra were recorded on a Bruker Vertex 70 spectrometer in the transmission mode, which also provided the zero-point vibrational corrections to the stationary points were characterized by frequency calculations which also provided the zero-point vibrational corrections to the energy (ZPE). For the simulation of NMR parameters, the isotropic absolute chemical shielding constants (σ) were obtained using the gauge including atomic orbitals (GIAO) approach and the 31P chemical shifts were calculated as δref(31P) = σref − σ, using phosphoric acid as reference. To improve accuracy, all values were corrected with an equation obtained by fitting δref(31P) values at 6-31G(d,p) level against δiso(31P) values at 6-311++G(d,p) level for a series of acid-base TMPO adducts (see Table S8 and Figure S5 in the Supporting Information).

4.4. Catalytic tests
4.4.1. Glucose transformation reactions. Reactions with D-glucose were performed in a 3 mL glass-vessel reactors equipped with a magnetic bar, pressure control and a valve for sample extraction. 1 g of 10 wt% D-glucose aqueous solution was added to each reactor containing the corresponding amount of catalyst (25:1 glucose:molar ratio for MOFs and 50:1 for Zr-Beta). The mixtures were pressurized with N2 (5 bar), heated up at the corresponding temperature and left to stir. Approximately 30 mg aliquots were taken at different times, diluted with water and filtered with PTFE syringe filter.

The liquid samples obtained from batch reactions were analyzed using HPLC (Varian) equipped with a refractive index detector (RI) Varian Star with an internal temperature of 50°C to determine the amount of products and reactants. A Bio-Rad Aminex HPX-87C column was employed for glucose/mannose/fructose separation. The column was maintained at 70°C and the mobile phase was 100% Milli-Q water at a flow rate of 0.5 ml/min. Glucose conversions and product yields were determined using external calibration curves with standard solutions of known concentration.

4.3. Computational details
The active sites present in the MOFs were simulated by cluster models containing one [Zr6O4(OH)4]12+ node and the first shell of organic linkers surrounding them, extracted from the experimental structures of UiO-66 and MOF-808. In perfect UiO-66 each node is surrounded by twelve linkers, but only defective sites with...
4.4.2. Calculations of kinetic rate constants and activation energies.

Glucose to fructose and glucose to mannose are equilibrium reactions (G ↔ F and G ↔ M). However, since only the points at low conversions have been considered, it can be assumed that they are two parallel pseudo-first-order reactions (G → F and G → M):

\[
\begin{align*}
\frac{d[G]}{dt} &= -\left(k_{\text{isom,F}} + k_{\text{epim,M}}\right)[G] \quad (\text{Eq. 1}) \\
\frac{d[F]}{dt} &= k_{\text{isom,F}}[G] \quad (\text{Eq. 2}) \\
\frac{d[M]}{dt} &= k_{\text{epim,M}}[G] \quad (\text{Eq. 3})
\end{align*}
\]

The integration of Eq. 1 results in the following equation:

\[
\ln\left(\frac{[G]}{[G]_0}\right) = -(k_{\text{isom,F}} + k_{\text{epim,M}})t \quad (\text{Eq. 4})
\]

The slope of the representation of \(\ln([G]/[G]_0)\) versus \(t\) allows the calculation of the \((k_{\text{isom,F}} + k_{\text{epim,M}})\).

The integration of Eq. 2 and 3 results in the following equations:

\[
\begin{align*}
\frac{[F]}{[G]_0} &= \frac{k_{\text{isom,F}}}{k_{\text{isom,F}} + k_{\text{epim,M}}} \left(1 - e^{-(k_{\text{isom,F}} + k_{\text{epim,M}})t}\right) \quad (\text{Eq. 5}) \\
\frac{[M]}{[G]_0} &= \frac{k_{\text{epim,M}}}{k_{\text{isom,F}} + k_{\text{epim,M}}} \left(1 - e^{-(k_{\text{isom,F}} + k_{\text{epim,M}})t}\right) \quad (\text{Eq. 6})
\end{align*}
\]

From Eq. 5 and Eq. 6:

\[
\frac{[F]}{[M]} = \frac{k_{\text{isom,F}}}{k_{\text{epim,M}}} \quad (\text{Eq. 7})
\]

The combination of Eq. 4 and Eq. 7 allows the calculation of the kinetic rate constants \(k_{\text{isom,F}}\) and \(k_{\text{epim,M}}\).

The activation energy, \(E_a\), can be calculated from the Arrhenius equation:

\[
k = Ae^{-E_a/RT} \quad (\text{Eq. 8})
\]

where: \(k\) is the observed rate constant; \(A\) is the pre-exponential factor; \(E_a\) is the activation energy (J/mol); \(R\) is the Universal gas constant (8.3144621 J/mol·K); and \(T\) is the temperature (K).

The Eq. 8 can be linearized by the logarithmic transformation of the dependent variable:

\[
\ln(k) = \ln(A) - \frac{E_a}{R} \left(\frac{1}{T}\right) \quad (\text{Eq. 9})
\]

The representation of \(1/T\) versus \(\ln(k)\) allows the calculation of the activation energy (\(E_a\)).

4.4.3. Mechanistic experiments.

Reactions with \(^{13}\text{C}\)-C1-glucose were performed in a 3 mL glass-vessel reactors equipped with a magnetic bar, pressure control and a valve for sample intake. 1 g of 1 wt% \(^{13}\text{C}\)-C1-glucose in water was added to the reactor containing the corresponding amount of catalyst (1:2:1 glucose:metal molar ratio for MOFs and 50:1 for Zr-Beta) to assure similar glucose conversion values. The mixtures were pressurized with \(N_2\) (5 bar), heated up at 90°C and left to stir during 2 h. The reaction mixtures were quenched with ice, filtered with PTFE syringe filter and diluted with D2O. The measured glucose conversions for Zr-MOF-808, UiO-66(Zr) and Zr-Beta under these conditions were 11.4, 8.4 and 9.6%, respectively.

\(^{13}\text{C}\) NMR were recorded on a Bruker 300 spectrometer at spinning rate of 15 kHz with a 90° pulse length of 5 μs using high-power proton decoupling (spinal64) μs with 20 s repetition time and the chemical shifts are reported in ppm relative to residual proton solvents signals.

ASSOCIATED CONTENT

Supporting Information

DFT optimized structures of TMPO interacting with Zr-Beta, UiO-66(Zr) and Zr-MOF-808 and calculated \(^{31}\text{P}\) isotropic chemical shifts, and DFT optimized structures and calculated bond lengths of monosaccharides and transition states for isomerization (TSH) and epimerization (TSC) on the different catalysts.

AUTHOR INFORMATION

Corresponding Author

Manuel Moliner, mmoliner@itq.upv.es
Mercedes Boronat, boronat@itq.upv.es

ORCID

Sergio Rojas-Buzu: 0000-0002-7257-1027
Avelino Corma: 0000-0002-2232-3527
Mercedes Boronat: 0000-0002-6211-5888
Manuel Moliner: 0000-0002-5440-716X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), by Spanish Government through “Severo Ochoa” (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE) and by Generalitat Valenciana through AICO/2019/060. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization.

REFERENCES

Ventura, M.; Cecilia, J. A.; Rodriguez-Castellon, E.; Domíne, M. E. Tuning Ca–Al-Based Catalysts’ Composition to Isomerize or Epimerize Glucose and Other Sugars. Green Chem. 2020, 22 (4), 1393–1405.

Unraveling reaction mechanism and active sites of metal-organic frameworks for glucose transformations in water: experimental and theoretical studies

Sergio Rojas-Buzo, Avelino Corma, Mercedes Boronat* and Manuel Moliner*

Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain