Supporting Material: Permeation of chemisorbed hydrogen through graphene: a flipping mechanism elucidated

Massimiliano Bartolomei *, Marta I. Hernández, and José Campos-Martínez Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain

> Ramón Hernández Lamoneda Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Mor. México

> > Giacomo Giorgi

Dipartimento di Ingegneria Civile ed Ambientale (DICA), The University of Perugia, Via G. Duranti 93, I-06125 Perugia, Italy (Dated: January 14, 2021)

PACS numbers:

^{*} Corresponding author, e-mail:maxbart@iff.csic.es

TABLE S1: Formation enthalpy (ΔH_f) for the addition of n hydrogen atoms on a graphenic ring (see Eq. 1 in the main manuscript) as well as activation (ΔH_a) and reaction (ΔH_r) enthalpies for the flipping process as estimated by using the PBE, B3LYP and M062X functionals together with the cc-pVTZ basis sets. The n=4,5 arrangements (see Fig. 1 in the main manuscript) of chemisorbed hydrogen atoms have been considered. All values are in eV.

	H atoms addition			
		PBE	B3LYP	M062X
ΔH_f	n=4	-5.671	-5.639	-5.965
	n=5	-6.298	-6.302	-6.579
		fl	ipping	
		PBE	B3LYP	M062X
ΔH_a	n=4	2.670	2.903	3.366
	n=5	1.580	1.662	1.897
ΔH_r	n=4	-0.500	-0.541	-0.588
	n=5	-0.730	-0.747	-0.811

TABLE S2: CM5 charges (in a.u.) of the four hydrogen atoms chemisorbed along the central ring of the n = 4 arrangement (see Fig. 1) of hydrogenated circumcoronene, together with those of the carbon atoms linked to them, for the reactant and flipping transition states and for different charge dopings, q = -2, 0 and 2 a.u., corresponding to electron doping, no doping and hole doping, respectively. Σ_H and Σ_C are the sums of the charges of these four H and C atoms, respectively, and $\Sigma_{H,C}$ is the total sum. Labeling of the considered atoms corresponds to that in the image shown above, where the geometry of the transition state of the neutral prototype is depicted.

	Reactants			Transition State		
	q = -2	q = 0	q = +2	q = -2	q = 0	q = +2
H1	0.097	0.115	0.136	0.099	0.111	0.120
H2	0.096	0.109	0.122	0.091	0.116	0.145
H3	0.096	0.109	0.122	0.090	0.113	0.139
H4	0.097	0.115	0.136	0.084	0.115	0.132
Σ_H	0.386	0.448	0.516	0.364	0.455	0.536
C1	-0.070	-0.065	-0.057	-0.111	-0.102	-0.062
C2	-0.070	-0.066	-0.061	-0.116	-0.088	-0.025
C3	-0.070	-0.066	-0.061	-0.075	-0.066	-0.055
C4	-0.070	-0.065	-0.057	-0.068	-0.056	-0.042
Σ_C	-0.280	-0.262	-0.236	-0.370	-0.312	-0.184
$\Sigma_{H,C}$	0.106	0.186	0.280	-0.006	0.143	0.352

TABLE S3: Doping dependence of the activation (ΔE_a) and reaction (ΔE_r) energy for the hydrogen flipping, diffusion, desorption and recombination processes which can occur starting from the n=4 arrangement (see also Fig. 1). Notice that for the desorption process the same value as for ΔE_r is assumed for ΔE_a since no transition state has been found for this process. All values are in eV.

n=4	doping	flipping	diff.	desorpt.	recomb.
ΔE_a	neutral	2.79	1.94	2.27	2.10
	hole	1.79	0.89	1.54	2.28
	electron	1.71	1.68	1.44	1.92
ΔE_r	neutral	-0.51	1.90	2.27	-0.82
	hole	-0.46	0.37	1.54	-1.19
	electron	-0.59	0.58	1.44	-1.12

TABLE S4: Isotopic dependence of the activation (ΔH_a) and reaction (ΔH_r) enthalpies for the flipping and recombination processes. For the flipping the n=4,5 initial arrangements of chemisorbed atoms (hydrogen or deuterium) have been considered while recombination refers to the n=2 case and occurring for both para and orho mechanisms (see also Table 3 in the main manuscript). All values are in eV.

		flipping	
		hydrogen	deuterium
ΔH_a	n=4	2.670	2.681
	n=5	1.580	1.592
ΔH_r	n=4	-0.500	-0.495
	n=5	-0.730	-0.724
	r	ecombination	
		hydrogen	deuterium
ΔH_a	n=2 (para)	hydrogen 1.024	deuterium 1.088
ΔH_a ΔH_a	n=2 (para) n=2 (ortho)		
		1.024	1.088
		1.024	1.088

FIG. S1: Possible hydrogenation paths for the n=4 and n=2+2 arrangements on a graphenic ring Upper panel: electronic energy variation (ΔE) corresponding to the addition of n hydrogen atoms, with respect to the unsaturated graphene molecular prototype (n=0) and n isolated hydrogen atoms. Lower panel: electronic energy variation (ΔE) at each hydrogenation step $((n-1)\rightarrow(n), n=1-4)$.

FIG. S2: Activation enthalpy ΔH_a for the flipping of one hydrogen atom as a function of the lenght, in the initial chemisorbed state, of the C-C bond that breaks in the transition state (see also Fig. 2). The considered bond lenghts correspond to the n=2-6 and 2+2 initial states and the reported data refer to the circumcoronene prototype.