Supporting Material: Permeation of chemisorbed hydrogen through graphene: a flipping mechanism elucidated

Massimiliano Bartolomei *, Marta I. Hernández, and José Campos-Martínez
Instituto de Física Fundamental, Consejo Superior de Investigaciones
Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain

Ramón Hernández Lamoneda
Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Mor. México

Giacomo Giorgi
Dipartimento di Ingegneria Civile ed Ambientale (DICA), The University of Perugia, Via G. Duranti 93, I-06125 Perugia, Italy
(Dated: January 14, 2021)

PACS numbers:

[^0]TABLE S1: Formation enthalpy $\left(\Delta H_{f}\right)$ for the addition of n hydrogen atoms on a graphenic ring (see Eq. 1 in the main manuscript) as well as activation $\left(\Delta H_{a}\right)$ and reaction $\left(\Delta H_{r}\right)$ enthalpies for the flipping process as estimated by using the PBE, B3LYP and M062X functionals together with the cc-pVTZ basis sets. The $n=4,5$ arrangements (see Fig. 1 in the main manuscript) of chemisorbed hydrogen atoms have been considered. All values are in eV .

	H atoms addition					
	PBE					
ΔH_{f}	$\mathrm{n}=4$	-5.671	-5.639	-5.965		
	$\mathrm{n}=5$	-6.298	-6.302	-6.579		
		flipping				M062X
	PBE					
	B3LYP	M062X				
ΔH_{a}	$\mathrm{n}=4$	2.670	2.903	3.366		
	$\mathrm{n}=5$	1.580	1.662	1.897		
ΔH_{r}	$\mathrm{n}=4$	-0.500	-0.541	-0.588		
	$\mathrm{n}=5$	-0.730	-0.747	-0.811		

TABLE S2: CM5 charges (in a.u.) of the four hydrogen atoms chemisorbed along the central ring of the $n=4$ arrangement (see Fig. 1) of hydrogenated circumcoronene, together with those of the carbon atoms linked to them, for the reactant and flipping transition states and for different charge dopings, $q=-2,0$ and 2 a.u., corresponding to electron doping, no doping and hole doping, respectively. Σ_{H} and Σ_{C} are the sums of the charges of these four H and C atoms, respectively, and $\Sigma_{H, C}$ is the total sum. Labeling of the considered atoms corresponds to that in the image shown above, where the geometry of the transition state of the neutral prototype is depicted.

	Reactants			Transition State		
	$q=-2$	$q=0$	$q=+2$	$q=-2$	$q=0$	$q=+2$
H1	0.097	0.115	0.136	0.099	0.111	0.120
H 2	0.096	0.109	0.122	0.091	0.116	0.145
H 3	0.096	0.109	0.122	0.090	0.113	0.139
H 4	0.097	0.115	0.136	0.084	0.115	0.132
Σ_{H}	0.386	0.448	0.516	0.364	0.455	0.536
C 1	-0.070	-0.065	-0.057	-0.111	-0.102	-0.062
C 2	-0.070	-0.066	-0.061	-0.116	-0.088	-0.025
C 3	-0.070	-0.066	-0.061	-0.075	-0.066	-0.055
C 4	-0.070	-0.065	-0.057	-0.068	-0.056	-0.042
Σ_{C}	-0.280	-0.262	-0.236	-0.370	-0.312	-0.184
$\Sigma_{H, C}$	0.106	0.186	0.280	-0.006	0.143	0.352

TABLE S3: Doping dependence of the activation $\left(\Delta E_{a}\right)$ and reaction $\left(\Delta E_{r}\right)$ energy for the hydrogen flipping, diffusion, desorption and recombination processes which can occur starting from the $n=4$ arrangement (see also Fig. 1). Notice that for the desorption process the same value as for ΔE_{r} is assumed for ΔE_{a} since no transition state has been found for this process. All values are in eV .

$\mathrm{n}=4$	doping	flipping	diff.	desorpt.	recomb.
ΔE_{a}	neutral	2.79	1.94	2.27	2.10
	hole	1.79	0.89	1.54	2.28
	electron	1.71	1.68	1.44	1.92
ΔE_{r}	neutral	-0.51	1.90	2.27	-0.82
	hole	-0.46	0.37	1.54	-1.19
	electron	-0.59	0.58	1.44	-1.12

TABLE S4: Isotopic dependence of the activation $\left(\Delta H_{a}\right)$ and reaction $\left(\Delta H_{r}\right)$ enthalpies for the flipping and recombination processes. For the flipping the $n=4,5$ initial arrangements of chemisorbed atoms (hydrogen or deuterium) have been considered while recombination refers to the $n=2$ case and occurring for both para and orho mechanisms (see also Table 3 in the main manuscript). All values are in eV .

	flipping		
		hydrogen	deuterium
ΔH_{a}	$\mathrm{n}=4$	2.670	2.681
	$\mathrm{n}=5$	1.580	1.592
ΔH_{r}	$\mathrm{n}=4$	-0.500	-0.495
	$\mathrm{n}=5$	-0.730	-0.724
		recombination	
ΔH_{a}	$\mathrm{n}=2$ (para)	1.024	1.088
ΔH_{a}	$\mathrm{n}=2$ (ortho)	2.415	2.515
ΔH_{r}	$\mathrm{n}=2$ (para)	-1.855	-1.765
ΔH_{r}	$\mathrm{n}=2$ (ortho)	-1.904	-1.804

FIG. S1: Possible hydrogenation paths for the $n=4$ and $n=2+2$ arrangements on a graphenic ring Upper panel: electronic energy variation (ΔE) corresponding to the addition of n hydrogen atoms, with respect to the unsaturated graphene molecular prototype ($n=0$) and n isolated hydrogen atoms. Lower panel: electronic energy variation (ΔE) at each hydrogenation step $((n-1) \rightarrow(n)$, $\mathrm{n}=1-4$).

FIG. S2: Activation enthalpy $\Delta \mathrm{H}_{a}$ for the flipping of one hydrogen atom as a function of the lenght, in the initial chemisorbed state, of the C-C bond that breaks in the transition state (see also Fig. 2). The considered bond lenghts correspond to the $n=2-6$ and $2+2$ initial states and the reported data refer to the circumcoronene prototype.

[^0]: * Corresponding author, e-mail:maxbart@iff.csic.es

