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1. OBSs Array Clock Correction

Clock synchronization is the major step in the preprocessing procedure because it is critical to

correct  the drift  of the OBSs clock (Sens-Schönfelder,  2008),  to apply any array method.

Typically, a linear drift correction calculated from the recovery skew is applied to the data set.

However, it has already been shown that there is a significant nonlinear component, especially

relevant at the beginning of the deployment (Gardner and Collins, 2012). Thus, to calculate

the  correct  slowness  vector  it  is  crucial  for  the  instrument  clocks  to  be  synchronized,

otherwise  it  may  have  phase  misalignments  during  the  beamforming.  To  fulfill  the

synchronization premise, we apply Time Symmetry Analysis (TSA) (Gouedard et al., 2014).

This method is based on the travel-time delay measurements of Rayleigh waves reconstructed

from seismic ambient noise (Fig. S1). In practice, the Rayleigh waves are found from the

partial reconstruction of the Green’s Function (GF) of the medium between two stations. The

GF are formed through noise cross correlation among receivers giving rise to the noise cross-

correlation green functions (NCCFs). 

FIGURE S1

We have followed Bensen et al. (2007), in order to obtain the daily NCCFs and the reference.

In this procedure, we compute the stack of all daily NCCFs between a land station and the
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OBS we want to synchronize, to form the reference. Then, we can achieve the daily lag time,

from the cross correlation of the reference and a daily NCCF. 

Indeed, the daily cross correlation is the result of a stack of 30 days, which is a necessary time

span to reduce the effects uncorrelated noise.

It is also important to emphasize that it is essential to denoise the surface wave before the

cross correlation. In this sense, the daily NCCF and the reference has been bandpass filtered

from 5-10 s, which are frequencies enclosing the microseismic peaks (Stehly et al., 2007). 

The linear stack procedure followed to retrieve the reference and the daily NCCFs has been

replaced by the time-scale phase-weighted stack (ts-PWS) to enhance the quality and the SNR

of the GF reconstruction (Ventosa et al., 2017). The time-scale phase-weighted stack (ts-PWS)

uses complex frames of wavelets to improve the computational efficiency compared with the

conventional PWS and considers the instantaneous phase coherence (Fig. S2). 

FIGURE S2

To optimize the fit, we invert by the least mean square procedure up to four curves for each

OBS, each curve corresponding to a selected land station. The land stations were selected in a

distance  range  of  [180  to  250]  km,  located in  southern  Portugal.  In  this  paper,  we have

inverted four curves for every OBS, whose final skew was bigger than 0.04 s (Table S1). 

TABLE S1

The fit of all daily cross correlations (reference-daily NCCGFs) with the OBS02 is shown in

Fig. S3. 

FIGURE S3
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2. Horizontal OBS Components Orientation

In this paper, the horizontal components orientation is carried out following (Stachnik et al.,

2012).  This  method estimates  the  seismometer  orientation  based  on the  elliptical  particle

motion of Rayleigh waves. With this concept in mind, the polarization analysis is effectively

measured  by  the  normalized  zero-lag  cross  correlation  between  the  Hilbert  transformed

vertical component and the radial component for different rotated test angles by

                                              

In which, denotes  the zero-lag cross-correlation (ZLCC) of the Hilbert transformed vertical

component  and   the  radial  component  respectively and  are the  autocorrelations.  ,  is  the

normalized ZLCC. 

Rotating the radial component for each test angle to find the maximum correlation, will give

us the possible backazimuth (angle of the horizontal component measure from the North).

The earthquakes chosen to orientate the OBSs had magnitudes Mw > 6.0 and depth < 100 km

(Table  S2)  to  assure  the  high  SNR of  the  Rayleigh  wave   fundamental  mode (Fig.  S4).

Moreover, we found the best ZLCC results applying a band-pass filtered between [0.01-0.06]

Hz  corner  frequencies.  The  final  sensor  orientation  is  estimated  from  the  mean  of  the

orientations with  and .

TABLE S2
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FIGURE S4

3. Beamforming 

Once the CFs are built, the slowness vector must be calculated from the beamforming of all

traces. Beamforming is just a delay-stack process of each trace according to a test slowness

vector.  For  this  purpose,  we  implement  a  Broad  Band  Frequency-Wavenumber  (BB-FK)

beamforming   algorithm (Kværna  and  Doornbos,  1986;  Kvaerna  and  Ringdahl,  1986)  in

which the beam power is assessed by using

where,  is the Fourier Transform of the trace,  is the number of sensors in the array,  the vector

position of the sensor from the coordinate origin,  the wavenumber vector and  are the lower

and upper limits of the frequency band, respectively.

The semblance  function  S(f,  k) (Neidell  and  Taner,  1971)  is  defined  following the  same

notation as BB-FK

where,   is  computed to analyze  the coherence of  the wave propagating through the array

giving the normalized power of the trace stack for a test slowness vector. Thus, to find the

right slowness vector for the P- and S-waves, the maximum power and semblance among the

test slowness vectors are estimated for a short sliding time window. Then, this time window

moves throughout the entire period of interest (Fig. S5).

Fig.  S5 shows the beamforming of the CFs’  sliding time windows of 24 s,  with the CFs

derived from the application of CWT methodology to the transverse component of Earthquake
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T13 (Table 1) in the frequency range [0.05 – 0.1] Hz. Fig S5a shows the maximum semblance

(Eq. 14) computed for the sliding time windows. Fig S5b shows the maximum time-varying

absolute power (Eq. 13). The temporal evolution of the back azimuth that corresponds to the

maximum semblance is shown in Fig. S5c and the temporal evolution of the slowness that

corresponds to the maximum semblance is shown in Fig. S5d. On the bottom of Fig. S5, we

show the slowness maps that correspond to the maximum semblance for the P-wave and the

S-wave.

As a reminder,  our methodology is designed to find the slowness vector based on a plane

wavefront model. For this reason, it  is limited to epicenter distances larger than twice the

array aperture (Almendros et al., 1999).

FIGURE S5

4. Parameter settings

The parameters selected for the slowness vector estimation are critical. In this section, we

summarize the most  decisive ones.  The main parameters are the number of  cycles  of  the

CWT, the  time windows of  the  STA/LTA algorithm,  the  corner  frequencies  of  the  filter

applied previously to the envelope computation and the array beamforming parameters. The

following parameters are found empirically for our array and they must be considered merely

as guidelines, due to each array configuration needing a different parameter optimization.

Wavelet analysis  is  based on one-octave band decomposition, so the width of the wavelet

contracts as the frequency increases in the time-frequency plane. This decomposition allows

for overall frequency resolution smoothing, ideally designed for common signal conditions in

which low-frequency energy is persistent, while high-frequency components exist for a short

duration and rapidly change the instantaneous frequency within the signal.  That is a valid

approach for the majority of seismic signals and, conventionally, the scalogram is computed
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by contracting  the  wavelet  toward  higher  frequencies  while  setting  a  constant  number of

cycles. 

Eight  was  the  value  we  established  for  the  number  of  cycles  over  the  vast  majority  of

earthquakes analyzed in this paper. The selection was made empirically but also to fulfill the

minimum requirements regarding time-frequency resolution. The time-frequency resolution of

the wavelet can be estimated from the width of the Fourier transform of the Morlet wavelet at

-3 dB, namely Full Width at Half-Maximum (FWHM): 

where  is the width of the Morlet wavelet in the frequency domain. Eq. S5 gives a quantitative

value for the frequency resolution estimation, which conversely can be obtained in the time

domain from the envelope of the real and complex part of the Morlet wavelet.

However, the evident multiresolution time-frequency technique drawback is that the seismic

signals may contain a wide range of time-varying frequency content at higher frequencies and

long-term frequency energy content at lower frequencies. For these situations, it is preferable

to use a low number of cycles to detect and separate the components of the low frequencies

and a high number of cycles to avoid vanishing signal energy at higher frequencies. Then, it

would be reasonable to adapt the frequency smoothing to the specific signal requirements by

increasing the number of cycles with the frequency of the wavelet (Cohen, 2014).  Fig. S6

shows the wavelet analysis for the vertical component of Earthquake T2 ( Table1) recorded at

OBS02. An important feature of this signal is its low signal-to-noise ratio and that the P-wave

is an emergent signal (Fig. S6a). We conducted several tests with different numbers of cycles

and with a gradual variation of the number of cycles with frequency. In Fig. S6b the number

of cycles is relatively low (w = 5), to highlight the temporal dynamics. In Fig. S6c the number
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of cycles is high (w = 16) to highlight frequency dynamics. But, since this is a signal with

persistent energy content over the higher frequency range, it would be more convenient in this

specific case to slightly increase the number of cycles with the frequency of the wavelet (Fig.

S6d). Despite this feature, the wavelet analysis method with w = 5 can better detect the onset

of the P-wave and S-wave (Fig. S6b), but the spectral information vanishes.  On the contrary,

the onset of the P and S-wave is slightly diffuse if the analysis is made with w = 16, but we

have a better estimation of the frequency content. Fig. S6d shows a time-frequency resolution

trade-off  designed  to  allow  high  temporal  resolution  for  higher  frequencies  but  also  to

separate  the  frequency  oscillations.  An example  of  bank of  atoms generated  to  build  the

scalogram with a constant number of cycles and varying the number of cycles is shown in

Figure S7a and S7b.

FIGURE S7

FIGURE S7

Concerning the STA/LTA algorithm, we set the ratio of the STA and LTA window length to

1/40 to find the CFs.  For this dataset, we have found that 1 s was the best choice for the STA

time window. Choosing 1 s the sensibility is high enough to detect the seismic signal onset

and at the same time avoids false triggers around spikes. In terms of LTA, we have selected

40 s to encapsulate a few periods of typical ocean noise. Moreover the 40 s LTA duration

allows us to detect weak P-waves compared to S-waves as well as a high improvement of the

S-wave detection when there is P-wave coda contamination. 

The waveform of the envelope  relies strongly on the frequency content of the signal. For this

reason it is necessary to filter the raw signal previous to estimating the envelope. However, a

priori selection of the corner frequencies is complicated due to the large variety of frequencies

with significant energy content. In this paper, we apply a high pass filter of order 3 to the raw
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seismograms with corner frequencies at 0.5 Hz, because both the STA/LTA and the envelope

method in general need pre-filtering to suppress long-period noise. 

With  respect  to  the  frequency  domain  array  beamforming,  the  time  window  and  the

bandwidth are the main parameters. From our experience, the time window must range from

24 – 26 s to encompass cycles of the CFs and the period that it takes for the seismic wave to

cross the aperture of the array.  The optimum frequency bandwidth for  the analyzed array

ranges from [0.05 – 0.15] Hz. 

5. Algorithm for Slowness Vector Estimation

We outline in the pseudo-code the workflow of the main program in “Main Program”, the

algorithm of the wavelet processing to compute the scalogram and the CFs in Algorithm 1 and

the function to compute the Continuous Wavelet Transform in Algorithm 2. ObsPy functions
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are written in blue. The entire code was written in Python 3 and uses parallelization process to

boost the performance of the algorithm.

Main Program
begin
   raw <- Read(day)
   rawH <- Read(day)

onset <- scan(raw)

# Vertical Component Analysis
  rtiempo(in:raw,out:removedtime)
 deconv(in:removedtime,in:dataless,out:Velocity_path,in:onset)
 wavelet(in:Velocity_path,out:CF)
 SlownessP,BAZ_P,ErrorSlownessS,ErrorAngleP <- 
FK(in:CF_path,in:path,in:coordinates,in:parameters)  

# Horizontal Component Analysis
 rotate(in:rawH,out:rotated,out:AZMAX)
 rtiempo(in:rotated,out:removedtimeH)          
 deconv(in:removedtimeH,in:dataless,out:VelocityH_path,onset)
 wavelet(in:VelocityH,out:CFH)
 SlownessS,BAZ_S,ErrorSlownessS,ErrorAngleS <- FK(in:CFH_path,in:path, 
in:coordinates,in:parameters) 
end

Algorithm 1:  wavelet(in:velocity_path, out:CF)

begin
   
    for  files in listdir[velocity_path)] do
            tr <- read file
     dt <- tr.stats.starttime
    tr.detrend()
    tr.taper()
    tr.filter('highpass',freq=1,corners=3,zerophase=True)
    npts <- tr.stats.npts
    delta <- tr.stats.delta 
    ## Parameters Morlet Wavelet
    tmin <- 2
    fmin <- 2
    fmax <- 8
    wmin <- 6
    wmax <- 10
    nf <- 40
    scalogram<-ccwt(in:tr.data,in:1/delta,in:fmin,in:fmax,in:wmin,

in: wmax,in: nf,in : tmin)
    scalogram <- np.abs(scalogram)**2
    CF <- np.log10(scalogram)
    CF <- np.diff(CF) 
    for j <- 1 to npts do
          row <- np.mean(pdif[:,j])
          Mat.append(row)
    end for
    st <- Stream([Trace(data=Mat, header=stats)])
    st <- st.filter('lowpass', freq=0.1, corners=3, zerophase=True)
    st.taper(max_percentage=0.1)
    st.plot()
    st.write(ficheros_procesados_path,format='MSEED')

  end for
end

 Algorithm 2: ccwt(data,srate,fmin,fmax,wmin,wmax,nf,tmin)

begin

    #Continuous Wavelet Transform (Morlet Wavelet)

    #Wavelet parameters
    dt <- 1/srate
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    npts <- len(data)

    #Logarithmically space central frequencies
    frex <- np.logspace(np.log10(fmin), np.log10(fmax), nf) 

    #Kernel of the Mother Morlet Wavelet
    wtime <- np.arange(-tmin, tmin+dt, dt) 
    half_wave <- (len(wtime)-1)/2
    nCycles <- np.linpace(wmin,wmax,nf)

    ###FFT parameters
    nKern <- len(wtime)
    nConv <- nKern+npts-1
    tf <- np.zeros((len(frex), npts-1), dtype<-np.complex)
    ##FFT data
    dataX<-np.fft.fft(data,nConv)

    ##loop over frequencies
    for each fi in [0, len(frex)-1] do
       s <- nCycles[fi]/(2*np.pi*frex[fi])
       A <- 1/(np.pi*s**2)**0.25 
       cmw <- np.multiply(np.exp(np.multiply(1j*2*(np.pi)*frex

[fi],wtime)),np.exp(-1*np.divide(np.power(wtime,2),2*s**2)))
       cmw <-cmw.conjugate()
       cmw <- A*cmw
       cmwX <- np.fft.fft(cmw,nConv)

#Convolution        
       cwt <- np.fft.ifft(np.multiply(cmwX,dataX))
       end <- len(cwt)
       cwt <- cwt[int(half_wave+1):int(end-half_wave)]
       tf[:,fi] <- cwt
    end for  
end

Figure Captions
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Figu

re S1. The red line is the reference build from the stack of all daily NCCFs, while the blue

line is an example of NCCF reconstructed between the OBS01 and the station PVAQ. , initial

correction is applied to the reference point in order to achieve an absolute clock correction.

The blue boxes are the time window on the Rayleigh wave. It was estimated 4.0 km/s to start

the windowing over the surface wave.
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Figu

re S2. Comparison between the reference (OBS01-0BS02) build from a linear stack (upper

panel, red line) and the ts-PWS (Ventosa et al. 2017) (lower panel, blue line). The blue line

enhances the predominant periods of the signal.
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Figure S3. Curve fitting of the daily time difference OBS02. The upper panel black dots are 

the results of the cross correlation between the reference of the OBS02 and land stations 

(South Portugal, Fig. 7) NCCFs, the blue line is the curve fit and the red dashed line is the 

confidence bound 95%.  The lower panel displays the residual fit plot between the curve 

fitting and the results of the cross correlations.
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Figure S4. Horizontal component orientation from the Chile earthquake in 2015-09-16 (Mw

8.3). a), b) and c) are the vertical and horizontal components respectively of the OBS05. d)

shows  band-pass  filtered  [0.01-0.06]  Hz  of  the  earthquake,  blue  represents  the  radial

component and the red line the Hilbert transform of the vertical component (Correlation 0.92).

e)  is  an example of  polar plot  orientation OBS05,  in  which radius and color  are  directly

related to normalized correlation. The red line is  the azimuth horizontal  orientation mean

value after the culling of the orientations results and the dashed red line plots is the standard

deviation .
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Figure  S5. Earthquake  T13,  BB-FK  analysis.  CWT method  upper  panels,  a)  Semblance

S(f,k). b)  P(f,k). c)  and  d),  temporal  representation of  the  back  azimuth and slowness  in

accordance with the maximum S(f,k). Lower panels: left, Po wave slowness map, right, So

wave slowness map. 
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Figure S6. a) Seismogram of Earthquake T1 recorded on the vertical component of OBS06,

b)  Scalogram computed  with  number  of  cycles  equal  to  5.  c)  scalogram computed  with

number of cycles equal to 16. d) scalogram computed with number of cycles varying from 5 –

16 in the frequency band 2 – 12 Hz.
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Table S1. Fit Results, first column is the skew of the OBSs at the recovery

Skew (s) RMS (s) R-Square

OBS01 0.219 0.041 0.730

OBS02 1.235 0.026 0.985

OBS05 1.108 0.072 0.868

Table S2. Horizontal Orientation results. Statistics applied after discarding correlation        

values < 0.4 and mean values from orientations inside 

Mean (º) Variance
Standard
deviation

Number of
Orientations

OBS01 14.5 26.3 5.1 14

OBS02 211.5 37.4 6.1 12

OBS03 8.7 18.7 4.3 11

OBS05 325.8 27.8 5.3 14
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OBS06 188.7 105.3 10.2 12
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