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We investigate self-organized synchronization in a blue-detuned optomechanical cavity that is mechanically
coupled to an undriven mechanical resonator. By controlling the strength of the driving field, we engineer
a mechanical gain that balances the losses of the undriven resonator. This gain-loss balance corresponds to
the threshold where both coupled mechanical resonators enter simultaneously into self-sustained limit cycle
oscillations regime. This leads to rich sets of collective dynamics such as in-phase and out-of-phase synchro-
nizations, depending on the mechanical coupling rate, the frequency mismatch between the resonators, and the
external driving strength through the mechanical gain and the optical spring effect. Moreover, we show that the
introduction of a quadratic coupling, which results from a quadratically coupling of the optical cavity mode to
the mechanical displacement, enhances the in-phase synchronization. This work shows how phonon transfer can
optomechanically induce synchronization in a coupled mechanical resonator array and opens up new avenues
for phonon processing and novel memories concepts.
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I. INTRODUCTION

Recent progress in nanoengineering has led to exotic op-
tomechanical crystals [1–3], which are able to confine several
optical and mechanical modes on a single chip. A lot of
attention has been paid to these optomechanical arrays owing
to their capabilities to promote new phenomena and appli-
cations. These include collective nonlinear dynamics [4,5],
quantum many-body dynamics of photons and phonons [6],
long-range coupling of phonon modes [7,8], photons and
phonons transport [9,10], Anderson localization [11], as well
as topological phases of sound and light [12,13].

Owing to their practical applications in rf communica-
tion [14], signal-processing [15], and clock synchronization
[16], collective phenomena such as synchronization [17–21]
and frequency locking [22,23] were recently realized in op-
tomechanical systems. These schemes are different one from
another, and each of them having its own specificity. Synchro-
nization of two oscillators in contact and sharing a common
optical mode was investigated in Ref. [17], while the same
configuration was later on extended to multiple resonators in
Ref. [18]. Another synchronized system, consisting of two
spatially separated oscillators integrated in a common optical
racetrack cavity was reported in Ref. [19]. Synchronization of
the mechanical dynamics of a pair of optomechanical crys-
tal cavities, which are intercoupled with a mechanical link
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and support independent optical modes, has been reported in
Ref. [20]. The observation of antiphase synchronous oscil-
lations has been observed in this system, which is the first
reported work on mechanically coupled resonators in optome-
chanics. More recently, self-organized synchronization of two
optically coupled membranes placed inside an optomechan-
ical cavity has been demonstrated in Ref. [21]. It has been
shown that the system enters into the synchronization regime
via a torus birth bifurcation line. Also, the phase-locking phe-
nomenon and the transition between in-phase and antiphase
regimes were directly observed. Besides these optomechani-
cal synchronization investigations, frequency locking of two
and multiple optomechanical systems were reported, respec-
tively, in Refs. [22] and [23]. In all these works, light is
the key element used to couple the optomechanical systems
involved except in Ref. [20]. It follows that there is a lack
of work on optomechanical synchronization where phonons
are mediating the coupling between the oscillators. Theoret-
ical investigation of quantum many-body dynamics has been
investigated along this line in Ref. [6], where both photons
and phonons can hop to nearest neighbor sites, and each
optomechanical cell in the array is driven.

In the present work, we propose a blue-detuned optome-
chanical system that is mechanically coupled to an undriven
mechanical resonator. By driving the optomechanical system,
we engineer a mechanical gain that balances the losses of the
undriven oscillator. This gain-loss balance threshold induces
rich sets of collective nonlinear dynamics in the system. Our
proposal is different from those listed above in at least three
points. Indeed, (i) the collective dynamics are induced through
mechanical gain-loss balance, (ii) only phonons are mediating
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the energy transfer between the driven and the undriven res-
onator, and (iii) only one optomechanical cell is excited and
the energy is transferred to the rest of the system. The figure
of merit of our proposal is to use only one driving laser to
drive a set of mechanically coupled mechanical resonators,
and our system can also be used to perform phonon transfer
in an array of mechanical resonators. Moreover, by adopting
the general case of nondegenerated mechanical resonators, we
have identified different sets of synchronized states emerging
in our proposal. These synchronized states depend on the
mechanical coupling, the frequency mismatch of the two res-
onators, and the external driving that controls the mechanical
gain and the optical spring effect. Both in-phase and out-of-
phase synchronization are present, and the phase transition
between these two phenomena happens at a phase flip which
has been shown to be related to a high enough value of
the mechanical gain. Moreover, we have used the quadratic
coupling to enhance the in-phase synchronization process. As
these rich collective phenomena can be controlled by only
tuning the driving field, our proposal appears as an efficient
platform to perform applications such as phonons transfer
and phonons processing. Our proposal can be implemented
in the experimental setup used in Ref. [20] providing that
one driving laser is switched off during the experiment. A
similar idea to our proposal has been recently implemented
to demonstrate an optomechanical transducer based on two
elastically coupled cantilevers [24]. In this experiment, one
of the cantilevers is trapped by a harmonically oscillating
optical field inside a fiber-based cavity, while the other one
has been left undriven. The elastic coupling between the two
cantilevers results from their connection to the same over-
hang. By switching on the optical driving, the two cantilevers
strongly hybridize enabling exchange and coherent transfer of
the phononic information between the two cantilevers. There-
fore, the features investigated in our proposal can be figured
out in Ref. [24] as well. The rest of the work is organized
as follows. In Sec. II, the model and its dynamical equations
are described. The emerged collective dynamics are presented
in Sec. III, without the quadratic coupling. The frequency
mismatch effect together with qualitative explanations of the
transitional phases are figured out in Sec. IV. Section V is de-
voted to the effect of quadratic coupling on the enhancement
of synchronization, and Sec. VI concludes the work.

II. MODELLING AND DYNAMICAL EQUATIONS

Our benchmark system is the one sketched in Fig. 1(a),
which consists of an optomechanical cavity whose vibrating
element is mechanically coupled to an undriven auxiliary me-
chanical resonator. In the rotating frame of the driving fields
(ωp), the Hamiltonian (h̄ = 1) describing this system is

H = HOM + Hint + Hdrive, (1)

with

HOM = −�a†a − ga†a(b†
1 + b1) +

∑
j=1,2

ω jb
†
jb j,

Hint = −J (b1b†
2 + b†

1b2),

Hdrive = E (a† + a). (2)

In this Hamiltonian, a and b j are the annihilation bosonic field
operators describing the optical and mechanical resonators,
respectively. The mechanical displacements x j are connected
to b j as x j = xZPF (b j + b†

j ), where xZPF is the zero-point fluctu-
ation amplitude of the mechanical resonator. The mechanical
frequency of the jth resonator is ω j and � = ωp − ωcav is the
detuning between the optical drive (ωp) and the cavity (ωcav)
frequencies. The mechanical coupling strength between the
two mechanical resonators is J , and the optomechanical cou-
pling is g. The amplitude of the driving pump is E . For a large
photon number in the system, the quantum operators in Eq. (2)
can be treated as complex scalar fields, which are defined as
the mean values of the operators: 〈a〉 = α and 〈bj〉 = β j . This
leads to the following set of classical nonlinear equations of
motion for our system,

α̇ =
[

i(� + g(β∗
1 + β1)) − κ

2

]
α − i

√
καin,

β̇1 = −
(

iω1 + γ1

2

)
β1 + iJβ2 + igα∗α, (3)

β̇2 = −
(

iω2 + γ2

2

)
β2 + iJβ1,

where optical (κ) and mechanical (γ j) dissipations have been
added, and the amplitude of the driving pump has been sub-
stituted as E = √

καin in order to account for losses. In this

form, the input laser power Pin acts through αin =
√

Pin
h̄ωp

.

Throughout the work, we assume the hierarchy of parame-
ters γ j, g � κ � ω j , similar to those encountered in resolved
sideband experiment [25]. Moreover, our simulated results are
based on numerical integration of Eq. (3) by using fourth-
order Runge Kutta method on Matlab software. As we are
interested in the steady state solutions of the mechanical res-
onators, only the temporal traces in which all the transient
behaviors have died out are kept in our analysis.

Starting from two nondegenerated mechanical resonators,
ω1 �= ω2 and γ1 �= γ2, we aim to synchronize their motions.
Our strategy is based on engineering and control of the me-
chanical gain, by driving the optomechanical cavity with a
blue detuned electromagnetic field. This strategy is sketched
on Fig. 1(b) where the effective damping (γeff = γ1 + γopt) is
plotted versus the driving field. As we increase the driving
strength, this generates optical damping or gain (γopt) that
balances the intrinsic damping (γ1) of the driven mechanical
resonator [see green dot in Fig. 1(b)] which starts emitting
phonons that are mechanically transferred to the second me-
chanical resonator. This phonon transfer process is revealed
in Fig. 1(c) (see the inset), which depicts the normalized
mechanical amplitudes of both resonators (see Appendix A)
versus the driving field. The blue (red) curve is the amplitude
of the driven (undriven) mechanical resonator. It can be seen
that the driven resonator (blue curve) is transferring phonons
to the undriven one (red), and this transfer process is more
pronounced when the optical damping balances the intrinsic
damping [compare green dots in Fig. 1(b) and Fig. 1(c)].
By further increasing the strength of the driving field, the
engineered gain increases too and balances the losses of the
second mechanical resonator [see magenta dot in Fig. 1(b)].
From this point, the whole system reaches the phonon lasing
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FIG. 1. (a) Benchmark system consisting of a blue-detuned driven optomechanical cavity, which is mechanically coupled to an undriven
mechanical resonator. (b) Effective damping γeff versus the driving field αin, showing both phonon amplification thresholds for the driven
resonator at γ1 = |γopt| (green dot) and the one for the whole system at γ2 = |γeff | (pink dot). (c) Normalized mechanical amplitudes of the
driven (blue) and the undriven (red) mechanical resonator versus the driving field. The green dashed box is zoomed out in the inset to show
phonon lasing of the driven resonator. The vertical double arrow is reminiscent of a phase-flip transition that will be explained in Secs. III and
IV. (d) Diagram displaying collective dynamics in the (αin, J) parameter’s space. Once the losses are balanced by the gain, both mechanical
resonators carry out different types of dynamics depending on the values of αin and J . The coupling has been fixed at J = 2.2 × 10−2ωm for
(b) and (c). The other used parameters are, ω1 = ωm, ω2 = 1.002ωm, γ1 = 10−3ωm, γ2 = γ1

5 , κ = 10−1ωm, g = 2.5 × 10−4ωm, � = ωm.

threshold and both mechanical resonators simultaneously start
emitting phonons [see magenta dot in Fig. 1(c)]. After this
amplification phase, the system settles into a self-sustained
mechanical oscillations regime, above which complex nonlin-
ear behaviors such as period doubling and chaos could emerge
for strong enough driving strength [26]. As we are looking for
collective dynamics such as synchronization and frequency
locking phenomena, we limit ourselves in this work to the
self-sustained oscillations regime. In order to optimize the
input power needed to balance gain and losses in the whole
system, we require that the second resonator has a higher
quality factor than the first one (γ1 > γ2). This requirement
ensures that our system can reach low-power phonon lasing,
which is a useful prerequisite for experimental test of our
proposal. Indeed, the sooner γ1 = |γopt| the faster the overall
losses are balanced in the whole system by supplying less
driven power [compare the green and pink dots in Fig. 1(b)
and Fig. 1(c)].

III. COLLECTIVE DYNAMICAL STATES

Beyond the phonon lasing threshold, both mechanical res-
onators exhibit limit cycle oscillations, which are correlated

through their phases and/or their vibrational amplitudes.
These correlations lead to different sets of collective nonlinear
behaviors, ranging from in-phase to out-of-phase synchro-
nizations with equal or mismatched amplitudes. We have
characterized these behaviors from steady state solutions of
the mechanical resonators, where all the transient behavior
has died out. The overall dynamics is shown in Fig. 1(d).
The blue area is the linear regime, which is characterized by
fixed points and where there is an energy flow from the driven
resonator (β1) into the undriven one (β2) as depicted in the
inset of Fig. 1(c). At the gain and loss balance, the paramet-
ric instability threshold is reached, and phonon amplification
process happens (gray area) until the mechanical amplitudes
settle into the self-sustained oscillations regime due to the
intrinsic nonlinearity in the system. Within the self-sustained
oscillations regime, and depending on the strength of both
mechanical coupling J and driving field αin, the resonators
display several sets of collective dynamical state as shown
by different colors beyond the gray area in Fig. 1(d). Two
quantities have been defined to characterize these dynamical
states, the phase difference between the resonators and their
mismatched amplitudes that is termed error synchronization
later on. The instantaneous phase φi of a given resonator is
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FIG. 2. (a), (b) 0, π -synchronization states. (c), (d) Phase, an-
tiphase synchronizations. We highlight that (a)–(d) are related to the
yellow dots A, B, C, and D indicated in Fig. 1(d). In (a) and (b),
J = 2.2 × 10−2ωm [see upper horizontal dashed line in Fig. 1(d)]
and αin = (1.2 × 102, 2.2 × 102)

√
ωm, respectively. In (c) and (d),

J = 5 × 10−3ωm [see lower horizontal dashed line in Fig. 1(d)] and
αin = (102, 3 × 102)

√
ωm, respectively.

defined as φi = atan( Im(βi )
Re(βi )

), where β is a mechanical state
variable. The averaged phase difference (�φ) between both
resonator is

�φ = 〈|φi − φ j |〉 i, j = 1, 2, (4)

where 〈.〉 denotes an average over time. Similarly, the steady
state amplitude of a given resonator is captured by ε ≡
rms(βi ), where “rms” is the root-mean-square value. We de-
fine the synchronization error here as a difference between the
amplitudes of the resonators,

Err = |εi − εj| i, j = 1, 2. (5)

Depending on these two quantities, the system exhibits
four different dynamical states as depicted beyond the gray
area in Fig. 1(d). In the green area, one has both �φ ∼ 0 and
Err ∼ 0, resulting in a 0-synchronized state of the mechanical
resonators as dynamically depicted in Fig. 2(a). It can be
clearly seen that both resonators exhibit a similar behavior
in this regime. In the red area however, the resonators are
out of phase (�φ ∼ π ), where they oscillate with identical
amplitudes (Err ∼ 0) with a phase difference of π . Such a
dynamic is depicted in Fig. 2(b), which reveals π synchro-
nization of both mechanical resonators over time. In the areas
corresponding to a weaker mechanical coupling J , the res-
onators carry out only phase synchronizations. Indeed, phase
synchronization is observed in the light-green area where both
resonators are in phase (�φ ∼ 0), but they have different
amplitudes Err �= 0. Such a synchronized state is dynami-
cally shown in Fig. 2(c). Moreover, the resonators exhibit an
antiphase synchronization in the magenta area, where they
evolve out of phase from each other with dissimilar vibrational
amplitudes (Err �= 0) as it can be seen in Fig. 2(d). These
sets of dynamical states enabled by our proposal reveal its

FIG. 3. Phase difference �φ (dash-dotted curve) and error syn-
chronization Err (full curve) between the mechanical resonators for
J = 2.2 × 10−2ωm. The other parameters are the same as in Fig. 1.

performance in carrying out rich collective dynamics com-
pared to those known in the state of the art optomechanical
systems. The key point of this performance here is the pres-
ence of gain and loss, which induces the different phase
transitions observed in Fig. 1(d) as we will explain later on.
From these displayed collective dynamics, one can deduce
two features depending on either the mechanical coupling J
or the driven strength αin is adjusted. For weak mechanical
coupling for instance, the two mechanical resonators start
exhibiting phase synchronization, which ends up to complete
synchronization as J is increasing. This is the case for the
transition from the light green to the green areas in Fig. 1(d).
Similar transition happens when the resonators are out of
phase as well, where the increase of J adjusts their vibra-
tional amplitudes [see switching from magenta to red areas
in Fig. 1(d)]. One can point out also the fact that the driving
strength mostly induces switching related to the phase of the
resonators. Indeed, as αin is increasing, the resonators switch
from being in phase (�φ ∼ 0) to completely be out of phase
(�φ ∼ π ). This feature can be seen for instance from the tran-
sitions between the green and the red areas in Fig. 1(d). This
switching that is termed later on as phase flip is a well-known
nonlinear phenomenon characterized by a sudden jump of the
phase difference roughly from 0 to π [27,28]. We have figured
out this phenomenon in Fig. 3, where the phase difference
given in Eq. (4) (dash-dotted curve) and the synchronization
error defined in Eq. (5) (full curve) are represented for a
given J = 2.2 × 10−2ωm. It can be clearly seen that after the
amplification regime, both mechanical resonators adjust their
amplitude and phase, and synchronize for a while within the
range (100 � αin � 135)

√
ωm. Beyond the upper limit of this

interval, the phase difference suddenly jumps from roughly
0 to π while the synchronization error remains almost zero
(Err ∼ 0). This phase-flip phenomenon marks the threshold
of the out of phase synchronization, which is induced both
by gain-loss competition and optical spring effect through
an adjustment of the driving strength. We have found that
the phase-flip transition is likewise revealed through the am-
plitude jump phenomenon, pointed out by the green double
arrow indicated in Fig. 1(c). This can be qualitatively ex-
plained by an analytical approach based on the mechanical
eigenmodes of our system.
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IV. ANALYTICAL APPROXIMATIONS AND FREQUENCY
MISMATCH EFFECT

Based on well-known analytical approximations (see
Appendix A), the mechanical eigenmodes of our system can
be obtained by integrating the optical intracavity field α(t ) out
of the set of Eq. (3). The resulting eigenmodes yield

λ± = ωeff + ω2

2
− i

4
(γeff + γ2) ± σ

4
, (6)

where ωeff = ω1 + δωopt and γeff = γ1 + γopt are the effective
frequency and damping of the driven mechanical resonator,
respectively. The quantities δωopt and γopt are, respectively,
the optical spring effect and damping induced by the driving
field, and they are given by

δωopt = −2κ (gαin)2

ωlockε1
Re

(∑
n

Jn+1(−ε1)Jn(−ε1)

h∗
n+1hn

)
, (7)

and

γopt = 2(gκαin )2

ε1

∑
n

Jn+1(−ε1)Jn(−ε1)

|h∗
n+1hn|2

, (8)

where ε1 = 2gRe(A1 )
ωlock

is a normalized amplitude, with A1 and
ωlock the mechanical amplitude of the first resonator and its
locked frequency, respectively. Jn is the Bessel function of
the first kind of order n, hn = i(nωlock − �̃) + κ

2 , and �̃ =
�1 + 2g(β̄1) the effective detuning. In Eq. (6), σ is a complex
quantity defined as

σ =
√

16J2 + [2(ωeff − ω2) + i(γeff − γ2)]2, (9)

whose real and imaginary part read

Re(σ ) =
√√

χ2 + (4�ωeff�γeff )2 + χ

2
, (10)

and

Im(σ ) =
√√

χ2 + (4�ωeff�γeff )2 − χ

2
, (11)

where χ = 16J2 + 4�ω2
eff − �γ 2

eff with �ωeff = ωeff − ω2

and �γeff = γ2 − γeff . From Eqs. (6)–(11), it appears that the
mechanical supermodes can be characterized by their frequen-
cies [Re(λ±) = ω±] and dampings [Im(λ±) = γ±] given by

ω± = ωeff + ω2

2
± Re(σ )

4
, (12)

and

γ± = − (γeff + γ2)

4
± Im(σ )

4
. (13)

In order to reveal the mechanical supermodes involved in
our study, we fast Fourier transform (FFT) the steady state
solutions of the temporal traces of each mechanical resonator
for different αin, where all the transient behavior has died out.
From this FFT data, we collect the dominant peaks together
with their corresponding frequencies, which represent the am-
plitudes and the frequencies of the supermodes, respectively.
Applying this procedure to the data of Fig. 1(c) for instance,
has led to the supermodes depicted in Fig. 4.

FIG. 4. Mechanical supermodes obtained by fast Fourier trans-
forming the steady state solutions of the temporal traces of Fig. 1(c).
(a) Normalized mechanical amplitudes (ε1,2) of the resonators.
These amplitudes can be viewed as two upper (ε+) and two
lower supermode amplitudes with the corresponding frequencies ω±.
(b) Supermode frequencies (ω±). The black color corresponds to the
supermode oscillating with the highest amplitude, and the gray color
is related to the supermode oscillating with the lower amplitude (see
further details in Fig. 5). The vertical lines correspond to: (i) the
phonon lasing of the driven resonator (green line), (ii) the phonon
lasing in the whole system (magenta line), and (iii) the phase-flip
transition (cyan line). These curves are plotted versus αin for a fixed
J = 2.2 × 10−2ωm, and the other parameters are as in Fig. 1.

In Fig. 4(a), it can be clearly seen that each mechanical
resonator is characterized by two supermodes (ε±) which are
well captured through their supermode frequencies (ω±) in
Fig. 4(b). More importantly, the lower supermode amplitudes
(ε−) died out exactly where the phase-flip and amplitude jump
phenomena happen [see green rectangle in Fig. 4(a)]. Further-
more, the supermode frequencies merge to a single frequency
(ωlock) at the same transitional point [Fig. 4(b)], which clearly
reveals a frequency locking effect and can be explained by the
mode competition phenomenon as well [21].

From Eqs. (10)–(13) together with the frequency dynam-
ics figured out in Fig. 4(b), one can analytically predict the
transitional phases involved in our system. These transitions
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are indicated by the vertical lines in Fig. 4(b) and they refer
to the phonon lasing threshold phenomena (green and ma-
genta lines) and the phase-flip effect (cyan line). Since the
first transition (green line) is not directly related to the syn-
chronization feature, the specific cases of the global phonon
lasing (magenta line) and phase flip are detailed in the fol-
lowing. For degenerated mechanical resonators for instance
(ω1 = ω2), one gets �ωeff ∼ 0 for a weak driving field. At
the balanced gain and loss, it results that Im(σ ) = 0 and

Re(σ ) =
√

16J2 − �γ 2
eff . This leads to a well-known excep-

tional point (EP) at J = �γeff

4 , which can be used for mass
sensing [29] and it also marks the threshold of phonon lasing
where the mechanical resonators exhibit self-sustained limit
cycle oscillations [26].

In our proposal however, there is a frequency mismatch
δω = ω2 − ω1, which acts as a perturbation on the EP. At
the balanced gain-loss, the requirement of EP (Re(σ ) =
Im(σ ) = 0) is fulfilled in our system providing that χ = 0
and �ωeff�γeff = 0. The former condition is satisfied for
4J2 + �ω2

eff = γ 2
2 , while the latter condition cannot be sat-

isfied at this weak driving field regime, since �γeff 
 2γ2 and
�ωeff = δωopt − δω. Therefore, one obtains

ω± = ωeff + ω2

2
±

√
�ωeff�γeff

8


 1

2
(ωeff + ω2 ±

√
γ2�ωeff ), (14)

and

γ± = − (γeff + γ2)

4
±

√
�ωeff�γeff

8


 1

2

(
− (γeff + γ2)

2
±

√
γ2�ωeff

)
(15)

which clearly reveals the effect of the frequency mismatch
(δω) on getting Re(σ ) = Im(σ ) = 0. From Eq. (14) and
Eq. (15), it results that two supermodes are still possible
although the losses are balanced by the gain in the whole
system as shown in Fig. 4. In order to reach the transition point
where the phase flip happens, one needs to further increase
the driving strength αin (see Fig. 4). However, increasing αin

leads to the increase of both δωopt and γopt as it appears in
Eq. (7) and Eq. (8). For enough driving strength, one reaches
δωopt = δω leading to �ωeff = 0. Therefore, the previous un-
fulfilled condition (�ωeff�γeff = 0) is now satisfied and both
Eq. (12) and Eq. (13) yield

ω± = ωeff + ω2

2
, (16)

and

γ± = − (γeff + γ2)

4
± √

χ0, (17)

since J <
�γeff

4 at this strong driving regime and we have
defined χ0 = �γ 2

eff − 16J2. These equations reveal that one
supermode has vanished [Re(σ ) = 0] and this means that
each mechanical resonator is now oscillating with a single
frequency given by Eq. (16). From this phase-flip transition,

FIG. 5. Different spectra corresponding to the states within the
areas delimited by vertical lines in Fig. 4. (a) Spectrum correspond-
ing to αin = 54

√
ωm which is an example of the situation found

before the green vertical line. (b) Spectrum at αin = 65
√

ωm which
corresponds to a case encountered between the green and magenta
vertical lines. (c) Spectrum for αin = 90

√
ωm which reveals a situa-

tion found between the magenta and cyan vertical lines. (d) Spectrum
which corresponds to αin = 150

√
ωm and this shows the cases be-

yond the cyan vertical line. Despite the dynamical switching of the
peaks between the frequencies ω±, attention should be also paid on
the growing intensity from (a) to (d), which reveals the action of αin.

each resonator carries out oscillations that decay according to
one of the dissipations given in Eq. (17).

From the above discussion, it follows that both mechanical
gain and optical spring are the key points for the collec-
tive phenomena arising in our proposal. Owing to the fact
that these quantities are tuned through the driving field, our
proposal appears as a nice platform to generate collective
phenomena, where the system is wholly controlled externally.
To bear in mind the dynamics of the supermodes, we have
provided the spectra given in Fig. 5, which result from a
strong hybridization of the mechanical resonators once the op-
tical driving is switched on. These spectra capture the energy
transfer between the supermodes for the different situations
presented in Fig. 4(b). The spectrum in Fig. 5(a) depicts the
dynamics before the green line, Fig. 5(b) shows the situa-
tion between the green and magenta lines, the case within
the area bounded by the magenta and cyan line is given in
Fig. 5(c), while the case beyond the cyan line is shown by
the spectrum in Fig. 5(d). It can be seen that the energy is
first transferred from the higher frequency supermode (ω+)
to the lower one (ω−), and from the phase-flip transition,
the whole energy is swapped back to the supermode ω+.
This feature can be further exploited to perform phonon in-
formation processing between the mechanical resonators and
to improve novel memory concepts. The rough idea is that
the more synchronized the resonators are, the more informa-
tion they can exchange. Thus, the study of synchronization
and desynchronization of mechanical wave may be helpful
to understand further the phonon information processing in
mechanical structures. Furthermore, the classical idea of syn-
chronization states that one can understand two synchronized
oscillators by studying only one of them, since they present
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FIG. 6. Numerical diagram displaying collective dynamics in the
(αin, δω) parameter’s space for J = 2.2 × 10−2ωm. The other param-
eters are as in Fig. 1.

the same dynamical behavior. Therefore, synchronization en-
ables us to store and to replicate a synchronized state in
several samples for later usage, which is the idea behind the
memory concepts.

Based on the fact that the frequency mismatch has been
needed to explain the frequency locking effect through
Re(σ ) = 0 or δωopt = δω, a particular attention must be paid
on it. Therefore, the effect of δω on the organization of the
collective dynamics is shown in Fig. 6, for a fixed coupling
strength J = 2.2 × 10−2ωm. It can be seen that the frequency
mismatch very weakly shifts the lasing threshold (transition
between blue and gray areas), compared to the coupling
strength J [as in Fig. 1(d)]. This feature simply reveals the ro-
bustness of the amplification process at the vicinity of the EP,
against moderate frequency mismatches as aforementioned.
From Fig. 6, this robustness is roughly preserved up to 1% of
frequency mismatch. However, just above the lasing thresh-
old, the mismatch induces new reorganization of collective
dynamics. For a weak mismatch (δω < 2 × 10−3ωm), π syn-
chronization is the dominant dynamics. This is expected and
is explained by the fact that weak driving strength is required
for the mechanical gain and optical spring effect to reverse the
sign of χ and to compensate the mismatch, respectively. For
large mismatch however, strong driving strength is required
to generate large gain and optical spring effect. Therefore,
it is hard to reach π synchronization in such a configura-
tion as it can be seen for δω � 5 × 10−3ωm, where only
phase synchronization emerges. For intermediate values of
the mismatch (2 × 10−3ωm � δω � 4 × 10−3ωm), both res-
onators can synchronize for a while before switching to out of
phase synchronization. Owing to the difficulties of engineer-
ing identical mechanical resonators in micro/nanofabrication
technologies, it could be interesting to seek an enhancement
strategy of the observed collective phenomena as presented in
the next section.

V. QUADRATIC COUPLING ENHANCES
IN-PHASE DYNAMICS

In order to assist the role played by the optical spring
effect and to enhance the effect of the mechanical gain, we

FIG. 7. Enhancement effect of the quadratic coupling on in-
phase synchronization. (a) Phase difference �φ (dash-dotted curve)
and error synchronization Err (full curve) between the mechanical
resonators for J = 2.2 × 10−2ωm. (b) Numerical diagram displaying
collective dynamics in the (αin, J) parameter’s space. Quadratic
coupling of gck/g = −10−3 has been accounted, and the other pa-
rameters are the same as in Fig. 1.

have introduced the quadratic coupling (gck) in the system.
This well-known nonlinearity can be generated by inserting
the driven mechanical resonator inside the optical cavity for
instance [30]. The resulted system can be thought of as a
membrane-in-the-middle setup where the moving element is
mechanically coupled to the undriven mechanical resonator.
In such a system, the frequency of the driven mechanical
system yields ω̃1 = ω1 − gckα

∗α, which can be tuned through
the driving field (see Appendix B). This frequency control
is useful to bring closer the frequencies of the nondegener-
ated mechanical resonators involved in our system, even at
the vicinity of an EP [29]. This can be seen by comparing
Fig. 7(a) to Fig. 3. Indeed, 0 synchronization is established
before αin = 102√ωm in Fig. 7(a) (see dash-dotted curve)
where the quadratic term is gck/g = −10−3, whereas this
happens above such a value in Fig. 3 where gck/g = 0. It
can also be seen that 0 synchronization is wider in Fig. 7(a)
than in Fig. 3, revealing the effect of the quadratic coupling
in enhancing in-phase synchronization. This enhancement ef-
fect of the quadratic term is depicted in Fig. 7(b), where
in-phase synchronization (green area) is clearly improved.
Moreover, by comparing the diagrams depicted in Fig. 7(b)
and Fig. 1(d), it results that quadratic coupling also reorga-
nizes localization of the different dynamical states. We have
checked the dynamics for the labeled points in Fig. 7(b),
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FIG. 8. Dynamical states. (a) to (h) correspond to the points labeled A to H in Fig. 7(b).

and the corresponding dynamical states satisfy the expected
behaviors (see Fig. 8). Furthermore, the dynamical state of the
gray area intertwined in the magenta zone has been figured
out, and it corresponds to a strong coupling regime where
both resonators exchange energy through Rabi oscillations
(Appendix B).

VI. CONCLUSION

We have investigated collective dynamics in a blue-detuned
optomechanical cavity that is mechanically coupled to an
undriven mechanical resonator. When the optomechanically
engineered mechanical gain balances the losses of the un-
driven resonator, phonon lasing threshold happens and both
resonators simultaneously exhibit self-sustained limit cycles,
leading to interesting sets of collective dynamics. Depending
on the mechanical coupling and the external driving field,
we have observed in-phase and out-of-phase synchronizations
that mainly result from the process of driving that induces
both mechanical gain and optical spring. Qualitative expla-
nations of the main phase transitions arising in our proposal
have been provided, based on mechanical eigenvalues evalu-
ated through analytical approximations. Furthermore, we have
used quadratic optomechanical coupling to enhance in-phase
synchronization between the nondegenerated mechanical res-
onators involved in the system. Our work opens new avenues
towards collective dynamics in an array of mechanically cou-
pled resonators by only driving one of them. This scheme can
be extended to related systems including electromechanical
and superconducting microwave setups.
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APPENDIX A: MECHANICAL SUPERMODES

Our aim here is to give few details about the steps lead-
ing to the mechanical supermodes mentioned in Sec. IV.
To avoid reproducing some expressions that are already ex-
plained above, we start from Eq. (3) in the main text which
is the classical nonlinear set of equations describing our
proposal. Only one mechanical resonator (β1) is driven by
a blue-detuned electromagnetic field while the second (β2)
is just mechanically coupled to it. Therefore, the following
optomechanical transformation will be only applied to β1.
However, we underline that both resonators can oscillate for
enough driving strength, owing to the mechanical coupling J
as explained in the main text. Once the limit cycles regime is
reached, this driven resonator carries out oscillations whose
amplitudes change only slowly over time. Thus, we solve the
equation for α assuming a fixed amplitude for the mechanical
oscillations and then use the result to solve the equation for
β1. Under this assumption, the mechanical oscillation can be
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described by the ansatz [26],

β j (t ) = β̄ j + Aj exp(−iωlockt ), (A1)

where β̄ j is a constant shift in the origin of the resonator and
the amplitude Aj is taken to be a slowly varying function of
time. In such a regime of single frequency ansatz [see Fig. 4(b)
for instance], we have denoted the locked frequency by ωlock.
We substitute this ansatz into the equation for α and use the
assumption of a slowly evolving amplitude to solve it, first
neglecting the time dependence of Aj . We then obtain the
intracavity field in the form,

α(t ) = e−iθ (t )
∑

n

αneinωlockt . (A2)

The phase is θ (t ) = −ε1 sin ωlockt and the amplitudes of the
different harmonics of the optical field are

αn = −i
√

καin Jn(−ε1)

hn
, (A3)

where ε1 = 2gRe(A1 )
ωlock

, �̃ = � + 2gRe(β̄1), hn = i(nωlock − �̃)
+ κ

2 , and Jn is the Bessel function of the first kind of order n.
As we are interested in the regime of limit cycles of the

resonators, a rotating wave approximation can be made in
which we drop all the terms (in the mechanical dynamics) ex-
cept the constant one and the term oscillating at ωlock. Hence,
we substitute Eq. (A2) in the equation for β1 [see Eq. (3)]
which, by equating constant terms, leads to the zero-frequency
components,

β̄1 = 1

ω1 − i γm

2

(
gκ

∑
n

(αinJn(−ε))
2

|hn|2
+ Jβ̄2

)
, (A4)

that induce a shifts of the cavity frequencies,

δ = 2gRe(β̄1). (A5)

The equations of motion for the oscillating part of β j are de-
duced from β

j
r (t ) = β j (t ) − β̄ j ≡ Aj exp(−iωlockt ) and read

β̇1
r (t ) = −i(ω1 + δωopt )β

1
r − γ1 + γopt

2
β1

r + iJβ2
r

β̇2
r (t ) = −iω2β

2
r − γ2

2
β2

r + iJβ1
r . (A6)

Here the optical spring effect δωopt and the optical damping
γopt coming both from the average dynamics of the cavity are
given by Eq. (7) and Eq. (8) in the main text, respectively.
From Eq. (A6), it is possible to define an tive Hamiltonian
in order to figure out supermodes involved in the system.
Such supermodes will be deduced from the eigenmodes of the
effective model, describing the mechanical resonators. Indeed,
the real parts of the eigenmodes give the eigenfrequencies of
the coupled system while their imaginary parts stand for the
dissipations rate of the system. In the limit cycles regime, the
constant shift β̄ j is weak compared to the amplitude of the me-
chanical resonator (β̄ j � Aj). This means that β j (t ) ∼= β

j
r (t ),

and Eq. (A6) can be assumed as a set of equations describing
the effective system that reads

β̇1 = −
(

iωeff + γeff

2

)
β1 + iJβ2,

(A7)
β̇2 = −

(
iω2 + γ2

2

)
β2 + iJβ1,

where ωeff = ω1 + δωopt and γeff = γ1 + γopt define the effec-
tive frequencies and the effective damping, respectively.

Furthermore, Eq. (A7) can be rewritten in the compact
form,

∂t� = −iHeff� (A8)

with the effective Hamiltonian,

Heff =
[
ωeff − i γeff

2 −J
−J ω2 − i γ2

2

]
(A9)

and the state vector � = (β1, β2)T . The eigenvalues of the
Hamiltonian given in Eq. (A9) are obtained by solving the
equation,

det (Heff − λI ) = 0, (A10)

and that yields to the following eigenvalues λ− and λ+,

λ± 
 ωeff + ω2

2
− i

4
(γeff + γ2) ± σ

2
, (A11)

as given by Eq. (6) in the main text with the complex quantity
σ defined by Eq. (9) as well. The frequencies and the dissipa-
tions of the supermodes discussed in the main text are given
by the real and imaginary parts of λ±, respectively,

ω± = Re(λ±) and γ± = Im(λ±).

APPENDIX B: QUADRATIC COUPLING
AND DYNAMICAL STATES

By taking into account the quadratic coupling (or cross-
Kerr) in the model, the Hamiltonian becomes

H = HOM,ck + Hint + Hdrive, (B1)

with

HOM,ck = −�a†a +
∑
j=1,2

ω jb
†
jb j

− ga†a(b†
1 + b1) − gcka†ab†b,

Hint = −J (b1b†
2 + b†

1b2),

Hdrive = E (a† + a), (B2)

where ck stands for “cross-Kerr” and accounts for the
quadratic coupling. This leads to the following classical set
of nonlinear equations,

α̇ =
[

i(� + g(β∗
1 + β1) + gckβ

∗
1 β1) − κ

2

]
α − i

√
καin,

β̇1 = −
(

iω̃1 + γ1

2

)
β1 + iJβ2 + igα∗α, (B3)

β̇2 = −
(

iω2 + γ2

2

)
β2 + iJβ1,

where ω̃1 = ω1 − gckα
∗α is the optically tunable mechanical

frequency mentioned in the main text.
The cross-Kerr effect has been pointed out in the main text

through Fig. 7, and it has been shown that it enhances in-phase
synchronization. This enhancement is related to the control of
the frequency mismatch through ω̃1 = ω1 − gckα

∗α. As we
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have the frequency hierarchy of ω1 < ω2, we have conve-
niently used a negative quadratic term (gck < 0) in order to
minimize the effect of δω. The dynamical states of the points
labeled in Fig. 7(b) are shown in Fig. 8. It can be clearly seen
that these dynamics agree well with the collective behaviors

displayed in Fig. 7(b). Furthermore, the dynamical state car-
ried out in the gray area intertwined in the magenta zone in
Fig. 7(b) is revealed. It results that the mechanical resonators
exhibit Rabi oscillations within this regime, which means that
they are strongly coupled and can exchange energy.
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