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Abstract 18 

This review aims to critically analyze the current state of knowledge in the emerging field of 19 

chemical reactivity at aqueous interfaces. The area has evolved rapidly since the discovery of the 20 

so-called “on-water catalysis” effect, alluding to the fact that many chemical reactions 21 

experience a dramatic acceleration at the surface of water or different aqueous interfaces with 22 

hydrophobic media. The immense importance of this phenomenon is discussed first by reviewing 23 

some critical experimental studies in the fields of atmospheric and synthetic organic chemistry, 24 

as well as related research exploring the origins of life. The physicochemical aspects of the topic 25 

are analyzed afterwards. First, with a concise analysis of issues such as the structure, the 26 

dynamics, and the thermodynamics of adsorption/solvation processes at aqueous interfaces. 27 

Then, presenting the basic theories intended to explain interface catalysis, followed by the results 28 

of advanced ab initio molecular dynamics simulations. Though some topics addressed here have 29 

already been the focus of previous reviews, their interconnection across diverse disciplines has 30 

not been sufficiently highlighted in the literature. For this reason, this manuscript seeks to 31 

provide a common perspective by trying to identify the most fundamental issues still 32 

incompletely understood in this fast-moving domain. 33 

 34 

  35 
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Introduction 36 

Chemistry at aqueous interfaces is a vast subject that encompasses processes from quite 37 

different domains. Specifically, we deal here with processes occurring at liquid water-vapor 38 

interfaces (or air-water interfaces) and the interfaces of liquid water with hydrophobic 39 

environments. Figure 1 illustrates a few examples of systems that are covered by this review. 40 

Many chemical and photochemical reactions are dramatically accelerated when they occur at 41 

these interfaces, in comparison with gas-phase or bulk water, and this phenomenon is now 42 

designated as “on-water” catalysis.1 The term chemistry “on-water” must be understood here in a 43 

broad sense, i. e. the chemistry that occurs at, or near aqueous interfaces in oil-water emulsions 44 

and other dispersed systems, aerosols, sprays, nano and micro water droplets, as well as extended 45 

air-water interfaces. It goes without saying that such a variety of systems may involve 46 

phenomena implying quite different mechanisms, which makes the implementation and 47 

interpretation of experimental measurements often a complex task. The potential implications of 48 

interfacial reactions are widespread because they are omnipresent in atmospheric, environmental, 49 

biological, prebiotic, or synthetic organic chemistry, to cite the most relevant domains. Interfaces 50 

of liquid water with either solids or biomolecules, as well as the surface of ice, share many 51 

similarities with the former but are not directly concerned by the subject of the present review. 52 

The reasons underlying rate acceleration at aqueous interfaces remain unclear however. In 53 

contrast to bulk solvation, the theory of interfacial solvation is still in its early stages. The 54 

formation of hydrogen-bonds with dangling protons at the interface was first proposed to explain 55 

the catalytic role of the interface,2 but many other causes can be invoked: confinement of 56 

reagents, partial solvation, preferential orientations, curvature in nanodroplets, water surface pH, 57 

etc. It is worth pointing out that physicochemical concepts from the bulk are not always 58 

applicable at interfaces, as the latter are disordered systems of nanometric thickness displaying 59 

sharp configurational fluctuations. Experimental studies based on macroscopic properties such as 60 

surface tension3,4 have provided invaluable data on interfacial thermodynamics and structural 61 
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properties. However, only with the progress of non-linear second-harmonic generation (SHG) 62 

and sum-frequency generation (SFG) spectroscopies,5 and other interface-sensitive molecular 63 

techniques, the microscopic details of interfacial phenomena are being elucidated. In parallel, ab 64 

initio Molecular Dynamics (MD) simulations and related approaches have provided priceless 65 

information on these issues.6-8  66 

Nevertheless, the literature remains scattered across various fields. In fact, despite the 67 

similarities between all these chemistries and the existence of some reviews on restricted aspects 68 

of the topic, a general discussion on the available experimental and theoretical studies, placing 69 

them in a shared perspective, is still lacking. In this review, we will provide such a perspective 70 

through a comprehensive and critical survey of the recent literature aiming to highlight the main 71 

challenges that need to be addressed in order to advance the state-of-the-art in the field. 72 

 73 

 74 

 75 

Figure 1. Aqueous interfaces contemplated in this review: a) the air-water interface at the surface of a water droplet 76 
with indications of the different processes that can take place, b) detail of the liquid water-vapor interface, c) 77 
interface of liquid water with a non-miscible organic solvent (CCl4 here), d) inverted micelle in aqueous organic 78 
aerosols, e) vesicles, f) macro- or supra-molecular systems with a hydrophobic cavity that can host hydrophobic 79 
guest molecules. 80 
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Chemical reactions at aqueous interfaces    86 

Many contributions in this field come from the atmospheric chemistry community because 87 

reactions at the air-water interface of cloud water droplets and aqueous aerosols may proceed at 88 

higher rates than gas-phase reactions, influencing the atmospheric budget of trace gases.9-12 89 

Further interest comes from the field of synthetic green chemistry. The need to develop green 90 

processes for the synthesis of organic compounds that decrease the negative environmental 91 

impact of current industrial practices pleads for the use of non-organic solvents such as water. 92 

Experiments have shown that reactions in water microdroplets generated by electrospray 93 

ionization undergo remarkable acceleration with respect to bulk-phase processes, and due to 94 

large surface to volume ratio, the air-water interface is thought to play a key role.13-16 Moreover, 95 

dispersed systems such as polyelectrolyte solutions, micellar solutions, oil-in-water 96 

microemulsions or vesicle dispersions, have been proposed to overcome water solubility 97 

limitations and develop biomimetic reactors within which reactions can proceed.17,18 Aqueous 98 

interfaces have also been evoked as possible environments in which prebiotic processes could 99 

have taken place and led to the origin of life. For instance, orientation, alignment and proximity 100 

of functional groups is essential to the synthesis of peptides by the ribosome, and air-water 101 

interfaces in inverted micelle atmospheric aerosols or in the surface of oceans and lakes could 102 

have been a rudimentary prebiotic system mimicking this functioning.19,20  103 

We have selected some illustrative experimental works, and organized them in four specific 104 

(and to some extent, arbitrary) areas that are not disjointed, but rather overlap in many ways.  105 

 106 

Atmospheric and environmental chemistry. The role of condensed matter in the Earth’s 107 

atmosphere is widespread. Aerosols scatter sunlight and serve as seeds for the formation of 108 
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clouds, which has significant consequences in climate regulation.21 Condensed matter in its 109 

different forms also supplies a medium for chemical transformations. Well-known examples are 110 

the oxidation of SO2 to sulfate in water droplets, which leads to acid-rain formation in the 111 

troposphere,22 or the heterogeneous reactions that lead to ozone depletion in the stratosphere.23 112 

Indeed, despite a small volume fraction of atmospheric condensed matter (about 7% of the total 113 

volume of the troposphere contains clouds, and a moderately dense cloud contains about 5x10-7 114 

cm3 of water per cm3 of air),9 its relevance is now recognized.9,24,25 It influences the atmospheric 115 

budget of trace gases through the modification of the cycles of nitrogen, sulfur, and various 116 

atmospheric oxidants such as ozone.26,27 In addition, some reaction pathways that are unfeasible in 117 

the gas-phase (e.g. ionic dissociations) may be quite favorable in the condensed phase, producing 118 

new species.28 In line with the subject of this review, we put the focus on liquid water interfaces 119 

(water droplets, aqueous aerosols) even though the heterogeneous reactions at the surface of 120 

solid matter such as carbonaceous particles or mineral dust have comparable importance. 121 

When atmospheric trace gases interact with a water droplet, several phenomena can take place 122 

(Figure 1) including uptake, diffusion and reaction at the surface, desorption, mass-123 

accommodation, diffusion and reaction in the bulk.29 Bulk reactions are relatively well-124 

understood30 but not those occurring at the air-water interface. Several studies have confirmed 125 

that the efficiency of interfacial processes in the atmosphere may be quite significant, compared 126 

to bulk processes.7,11,31-33 This is due in part to the high surface to volume ratio characterizing 127 

atmospheric droplets and aerosols. However, there is evidence of specific effects that accelerate 128 

chemical and photochemical reactions at aqueous interfaces; some particular examples using 129 

different experimental platforms are outlined below.  130 

Adsorption of trace organic molecules on water film surfaces enhance their reaction with 131 

atmospheric oxidants.33 Electrospray-mass-spectrometry studies34 showed that when benzoate is 132 

allowed to react with OH radicals at the air-water interface, H-abstraction from the aromatic ring 133 

is mainly observed. At the same time, this reaction is negligible both in the gas-phase and bulk 134 
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water. The rationalization of this results goes in terms of the higher polarity of the transition state 135 

for the OH-radical addition compared to H-abstraction.34 A similar experimental technique was 136 

used by Enami et al35 to study the reactivity of isoprene at mildly acidic water surfaces showing 137 

that it can undergo cationic oligomerization. The authors suggested a superacidity behavior of 138 

the air-water interface with pH < 4 water, a result that has raised some debate (see below). Fatty 139 

acids, which are generally not sensitive to actinic radiation, produce aldehydes and other 140 

oxygenated species when a monolayer at the water surface is irradiated in the 280-330 nm 141 

region.12 The process seems to involve UV-absorption to a triplet state followed by the homolytic 142 

OH dissociation or by reaction with an adjacent fatty acid molecule at the air-water interface. 143 

The conclusions of these experiments, however, have been challenged by subsequent studies by 144 

Shrestha et al36 and Rapf et al,38 who have emphasized the need of photoinitiators for reactions of 145 

this type to take place, as fatty acids are not themselves photoactive.  Upon irradiation of 146 

nebulized pyruvic acid,  zymonic acid has been observed among the products formed,39 as 147 

opposed to other conditions, suggesting that it could be generated by  reactions at the droplet 148 

surface. Other interesting interface-assisted photochemical processes can be found in the review 149 

by George et al.11 Colussi and coworkers40-46 have devoted considerable effort to the study of the 150 

ozonolysis reaction and the chemistry of the Criegee intermediate at the air-water interface, 151 

which are chemical processes with broad implications in the atmosphere, as they represent a 152 

major sink for unsaturated volatile organic compounds produced by plants, particularly isoprene 153 

and monoterpenes. The oxidation reaction of anthracene by ozone on aqueous surfaces was 154 

studied by Mmereki et al,47 who showed that it may be of comparable importance to gas-phase 155 

oxidation by OH in the atmosphere. Chemistry at the surface of sea-salt aerosols and its 156 

atmospheric implications have been extensively studied by Finlayson-Pitts and coworkers, who 157 

have emphasized the role played by the air-water interface. For instance, the main sources of Cl2 158 

and Br2 gases from sea-salt aerosols under dark conditions are the interfacial reactions of the 159 

corresponding halide anion with OH and O3, respectively.48 When concentrated NaCl aerosols are 160 
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irradiated at 254 nm in the presence of O3 to generate OH radicals, the observed amount of Cl2 161 

gas produced is in good agreement with estimates based on field measurements in the marine 162 

boundary layer.10 At the surface of aqueous aerosols, halide ions (and also some cations) 163 

influence other interfacial reactions such as the production of NO2 from photolysis of nitrate.49-51 164 

Some fundamental knowledge about the water effects on reactions at the air-water interface of 165 

water droplets and aqueous aerosols comes from the study of small water clusters and further 166 

details on this topic can be found in the review by Vaida.52 167 

 168 

Microdroplets as synthetic chemical reactors. Reactivity in microdroplets is emerging as an up-169 

and-coming tool in synthetic organic chemistry. Acceleration of many organic reactions in 170 

aqueous media has been known for decades,53-56 especially after the seminal work by Breslow and 171 

coworkers on the Diels-Alder reaction.57,58 This is rather good news because one could consider 172 

water as the ideal green solvent. Studies by Sharpless and coworkers1 pointed out that some 173 

reactions proceed optimally in pure water when insoluble reactants are stirred in the aqueous 174 

medium, and denoted such processes “reactions on-water”. Such processes occur in aqueous 175 

suspension and thus, hydrophobic effects might be claimed to provide the driving-force for rate 176 

acceleration. Yet, experimental results showed that observed rates are not the sole consequence 177 

of an effective concentration increase,1 and since the pioneer work of Sharpless and coworkers,1 178 

“on-water” chemistry has been steadily expanding (see for instance the reviews by Butler and 179 

Coyne59 and by Butler et al60). 180 

In recent years, synthesis in small volume microreactors has been the subject of intense 181 

research.14 This includes studies in microdroplets generated by a variety of electrospray and other 182 

spray mass-spectrometry methods,13,15,20,61-66 levitated droplets,67 thin films on surfaces68,69 or 183 

microfluidic systems.70-73 In many cases, the reaction rates are higher with respect to the reference 184 

bulk reaction (see a counterexample here74) but the effects responsible for such rate accelerations 185 

are still unclear. Confinement of reagents and increased concentration (due to solvent 186 
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evaporation) are probably important factors,14 but the large surface to volume ratio characterizing 187 

these systems also points at specific interface effects.13-16 Experimental data supporting this 188 

statement were reported by Cooks and coworkers75  in the study of competitive substituent effects 189 

in Claisen–Schmidt reactions. Other experiments by Mellouli et al72  using a biphasic 190 

microfluidic approach, which allows getting better control of the generated interfaces and water 191 

surface area, concluded that stabilizing hydrogen-bonds play a role in decreasing the activation 192 

energy, as previously suggested by Jung and Marcus2 (see below). The observed rate increase is 193 

sometimes very large. For instance, the Pomeranz–Fritsch synthesis of isoquinoline in charged 194 

microdroplets generated by electrospray has been reported to be at least 106 times faster than in 195 

bulk.76 Likewise, Enami et al77  showed that Fenton (Fe2+ + H2O2) and Fenton-like (Fe2+ + O3) 196 

reactions proceed 103-104 faster at aqueous interfaces than in bulk aqueous media due to a 197 

modified geometry of the hydration shell of Fe2+, which may have implications not only for 198 

advanced oxidation processes but also in atmospheric and biological chemistries. Other exciting 199 

results have been obtained by Lee et al,78 who have observed spontaneous formation of hydrogen 200 

peroxide in sprayed water microdroplets. The authors have considered and analyzed several 201 

possible mechanisms and concluded that the process occurs at or near the interface, where the 202 

strong intrinsic electric field is enough to ionize hydroxyl anions, generating hydroxyl radicals 203 

that then recombine to form H2O2. Although the mechanism is not fully understood, the result is 204 

quite significant because H2O2 has great importance in biomedical and industrial applications, and 205 

it is also a key compound in the atmosphere due to its oxidative capacity.79 The results of Lee et 206 

al78 have been supported by the work of Gao et al80 showing that Dakin and Baeyer-Villiger 207 

oxidation reactions proceed in water microdroplets without the addition of any peroxides and 208 

acid or base catalysts, as usually required.80 209 

It is worth reminding that reactions in microdroplets and electrospray-mass spectrometry 210 

techniques are not only interesting from the point of view of analysis and synthesis, as 211 

mentioned above, but also to study a wide variety of problems in atmospheric,35,43,45 biomedical81-83 212 
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or other domains in which aqueous interfaces play a central role. Moreover, possible scale-up of 213 

microdroplet chemical synthesis by heated ultrasonic nebulization opens interesting industrial 214 

perspectives.84 Finally, it must be noted here that experiments with electrospray techniques and 215 

their interpretation as purely interfacial reactions have raised certain controversy in the literature 216 

because of the possible influence of ions85 and gas phase chemistry.86 Two illustrative examples of 217 

the controversy will be commented on below. 218 

 219 

Prebiotic chemistry. The role played by aqueous interfaces on the chemical mechanisms that led 220 

to the origin of life on Earth has received considerable interest in recent years. It is explained by 221 

the fact that compartmentalization, as well as the emergence of genetic materials, is considered 222 

to be a key prerequisite in the long journey towards protocells capable of growth, division and 223 

Darwinian evolution.87 Colloidal systems, resulting from self-organization of amphiphilic 224 

molecules in aqueous environments, provide such suitable compartments in which complex 225 

chemical reactions could have taken place in the prebiotic era. In particular, vesicles formed in 226 

bulk waters (lakes, rivers) have attracted considerable attention because the amphiphilic bilayer 227 

that separates the aqueous interior from the exterior media in these structures bears a 228 

resemblance to cell membranes.17,18,88-90 In such confined volumes, molecular crowding increases the 229 

probability of reactive encounters between chemical species, and at the same time, limits the 230 

diffusion of products. Hence, the synthesis of complex biomolecules required for the 231 

development of primitive living organisms is strongly favored compared to similar reactions in 232 

bulk.73  Though molecular crowding is not the only important feature controlling the chemical 233 

reactivity inside the vesicle, and several works have emphasized the importance of the interface 234 

in terms of molecular alignment, electric charge, pH, etc. For instance, experiments have shown 235 

that the polycondensation of aminoacids and peptides is assisted by the lipidic bilayer, not only 236 

as a favorable environment for the reaction to take place,91,92 but also as an active acid-base 237 

catalyst.93  238 
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Other possible prebiotic chemical reactors are the inverted micelles structures of atmospheric 239 

organic aerosols.94-96 In these systems, the organic content may be quite high (up to 50%), and 240 

there is direct evidence that palmitic and other fatty acids form the organic film on the exterior of 241 

marine aerosols.97,98 Interestingly, it has been shown that the size of bacteria and viruses can be 242 

predicted from atmospheric aerosols by combining atmospheric aerodynamics and gravity 243 

equations.95,96 Here too, the role of the interface has been emphasized and supported by different 244 

studies. Using infrared reflection absorption spectroscopy (IRRAS) and Langmuir trough 245 

methods, Griffith and Vaida99 have observed peptide-bond formation in the Leucine ethyl ester 246 

condensation process in presence of Cu2+ ions at the air-water interface. Such condensation 247 

reactions are thermodynamically and kinetically unfavorable in aqueous environments, but at the 248 

air–water interface, there's evidence suggesting the spontaneous peptide bond formation. The 249 

interaction of Cu2+ ions with the amine group of the Leucine ester might play a role by inducing 250 

an orientational change. Note that the probe depth of the IRRAS technique can be as large as 1–2 251 

μm, i. e. much larger than other interface sensitive techniques such as SFG, for instance, but 252 

this probe depth was considered suitable for the reactive region of interest.99 253 

Experiments in microdroplets have been reported as well. Lee et al100 have observed 254 

spontaneous reduction of several organic molecules without assistance of reducing agents, 255 

catalysts of external charges, which could represent an essential reduction route in prebiotic 256 

conditions. The mechanism is unclear but might involve the oxidation of OH- at the droplet 257 

surface, likewise in the spontaneous formation of H2O2 described above.78 Nam et al101   have 258 

studied aqueous microdroplets containing a mixture of sugars and phosphoric acid, and observed 259 

that phosphorylation proceeds spontaneously in such conditions. The effect has been ascribed to 260 

a cancellation of the entropic barrier when the process occurs at the surface of the microdroplet, 261 

whereas such barrier prevents the uncatalyzed reaction to proceed in bulk solution. Nam et al 262 

have also reported the synthesis of uridine101 and other ribonucleosides20 in an aqueous 263 

microdroplet containing D-ribose, phosphoric acid, and a nucleobase. As an example of the 264 
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controversy surrounding some results obtained with electrospray techniques, Jacobs et al86 have 265 

reported different conclusions for the reaction between sugars and phosphoric acid. The authors 266 

have used an experimental setup in which droplet generation is separated from ionization, so that 267 

they have been able to analyze different possible sources of rate acceleration. They have 268 

concluded that part of the products could originate from gas-phase chemistry, which in some 269 

cases may complicate the interpretation of rate acceleration in droplets generated by 270 

electrosprays or its variants. 271 

The preceding results exemplify the role aerosols and microdroplets could have played for the 272 

generation of chemical complexity in prebiotic chemistry,19 which could have also involved 273 

sunlight-driven processes.102 274 

 275 

Reactions at organized molecular interfaces. Quite a diverse variety of processes can be placed 276 

in this category that includes systems possessing an organized amphiphilic interface with ability 277 

for molecular recognition, possibly including a binding site, and compartments that can host 278 

chemical reactions. Of course, some systems described above belong to this category, such as the 279 

vesicles hosting prebiotic chemical reactions or the atmospheric organic aerosols structured as 280 

inverted-micelles. Chemical reactions in biological membranes could be included in this class of 281 

interfacial processes too.103 Nevertheless, the focus here is on synthetic reactions in water that 282 

mimic the functioning of enzymatic catalysis in biology, which have particular interest in the 283 

field of Green Chemistry. The term “artificial enzymes” was coined by Breslow,104,105 who 284 

introduced the use of functionalized macromolecules, mainly cyclodextrins, as water-soluble 285 

catalysts that can host a non-polar reactant guest in a hydrophobic cavity. The design of enzyme 286 

mimics or “chemzymes” is a field of intense research,106-109 which has turned into the more general 287 

one of “molecular reaction vessels”. Antibody catalysts or “abzymes”,110 functionalized 288 

nanomaterials or “nanozymes”,111,112 dendrimers,113,114 micellar115 and other disperse interface-rich 289 

structures (polyelectrolyte solutions, microemulsions, vesicles, ..),18 as well as enzymes confined 290 
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in small-volume environments17 have been considered in detail previously. Therefore they will 291 

not be further described here.  292 

 293 

Solvation at the water surface  294 

The hydrogen-bond network formed by water molecules in the liquid state, and its 295 

cooperative character, confer this environment its unique properties. At the surface of water, the 296 

network is inevitably disrupted and the physical and chemical properties of molecules lying there 297 

(hydrogen-bonds, dipole moment, acidity, etc) differ from those in the bulk. To address how 298 

these changes affect chemical reactivity is a complex issue that requires a close examination of 299 

the structure and properties of the water surface. This section reviews some theoretical and 300 

experimental aspects on structural (hydrogen-bonding), chemical (acid/base) and solvation 301 

(dynamics, thermodynamics) properties of the liquid water-vapor interface. 302 

 303 

Chemical properties of the water surface. The structure of the water surface has been a subject 304 

of intense debate for many years.116 Most of the current knowledge comes from SFG vibrational 305 

spectroscopy and from calculations. Du et al117 reported the first SFG spectrum of the liquid 306 

water-vapor interface and the authors concluded that about 20% of water molecules display a 307 

dangling bond, the free OH bond that is projected into the vapor phase. This result predicted by 308 

pioneer MD simulations118,119 was subsequently confirmed and rationalized by classical SFG and ab 309 

initio simulations.120-122 Further theoretical studies support a 2D H-bond network of interfacial 310 

waters (the water “skin”) with oscillating OH bonds around a plane parallel to the instantaneous 311 

surface.123 A schematic view of the water surface is displayed in Figure 2, which also shows a 312 

typical density profile from classical MD simulations. The thickness 𝛿 of the air-water interface 313 

is usually deduced from the density profile 𝜌(𝑧) by fitting a function: 314 

𝜌(𝑧) = '(
)
(1 + tanh 01213

4
5)         (1) 315 
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where 𝜌6 is the bulk density, ZG is the position of the Gibbs-dividing-surface (Z at which 𝜌(𝑧) =316 

'(
)

). Values of 𝛿 can change significantly with the theoretical model124-127 but common values are 317 

10-15 Å at 300K.  318 

 319 

 320 

Figure 2. Schematic structure of the water surface showing free OH groups pointing towards the air layer, and 321 
typical density profile of water at the air-water interface from MD simulations. The vertical dashed-line indicates the 322 
Gibbs-dividing-surface (GDS) where the density is half of the bulk density. The width of the interface layer depends 323 
on simulation models but is typically in the range 10-15 Å. 324 

 325 

The dynamics of water reorientation has been a broadly studied subject, both in bulk water 326 

(see for instance Laage and Hynes128) and at interfaces.127,129-136 Simulations130 and experiments using 327 

femtosecond pump/probe vibrational sum-frequency spectroscopy129 have shown that 328 

reorientation of free OH groups in the liquid-vapor interface takes place on a subpicosecond time 329 

scale, i. e. several times faster than in bulk. In contrast, simulations by Verde et al127 have shown 330 

that reorientation of bonded OH groups happens at a rate similar to that of bulk  water.  331 

Particularly relevant to chemical reactivity is the acid/base character of the water surface, i.e. 332 

its ability to donate or accept protons, an issue that remains incompletely elucidated and has 333 
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raised intense controversies in the literature. This issue is connected, on the other hand, to the 334 

properties of water in nanoconfined environments such as inversed micelles, a topic that we will 335 

not develop here but which has attracted a lot of attention, while it remains incompletely 336 

understood (see for instance the works by Levinger and coworkers137,138). Interestingly, 337 

experiments and calculations reveal unforeseen acid/base behavior of aqueous interfaces. For 338 

instance, HCl is fully dissociated at the interface but HNO3 is essentially in its molecular form,139-141 339 

unless ions are present,142 and HCOOH dissociates faster at the interface than in the bulk.143 340 

Vibrational spectroscopic studies of the ionization state of the L-phenylalanine aminoacid 341 

indicated a decrease of the pKa of its polar groups at the ait-water interface.144 Depending on 342 

experiments and calculations (see for instance145-157), apparent opposite conclusions have been 343 

deduced for the interface affinity of hydronium and hydroxide ions and their spatial distribution, 344 

though most recent SFG experiments on D2O-air interface indicate that the hydrated proton is 345 

much more surface-active than the hydroxide anions.158 Discordant results are probably explained 346 

by inherent difficulties in interpreting experiments, and by the limited accuracy of numerical 347 

simulations, besides the fact that results from different methods may correspond to different 348 

probing depths. Electrospray mass spectrometry experiments by Colussi and coworkers35,148,149,159 led 349 

them to conclude that (in their own words):160 “(1) water is more extensively self-ionized at the 350 

surface than in the bulk, and (2) interfacial H3O+ is a stronger acid (a “superacid”) and 351 

interfacial OH a stronger base than their bulk counterparts likely due to limited hydration”. 352 

According to these authors, the acidic or basic behavior of the surface of water would rather be 353 

interpreted in terms of the availability of proton or hydroxide ions at a given pH, with pH~3 354 

being neutral (instead of 7 as in bulk).148,149,161 An enhanced autolysis of water at hydrophobic 355 

interfaces due to the strong local electric-field gradient was already reported by Beattie162 (with an 356 

isoelectric point around pH 4) trying to explain the contrasting observed electro-osmotic 357 

properties of microfluidic channels. On the theoretical side, water self-ionization has been found 358 

to be more favorable in water clusters of 20163 or 21164 water molecules, compared to bulk solution. 359 
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This unexpected result is probably a consequence of the topology of the hydrogen-bond network, 360 

and could serve as a clue for elucidating the acid/base properties of water in extended aqueous 361 

interfaces. A complete survey and a comparative analysis of experimental and theoretical data 362 

before 2016 can be found in the review of Agmon et al165 and in the paper by Saykally.166 As an 363 

example of the ongoing discussion, one can refer to the experiments on isoprene oligomerization 364 

in aqueous electrosprays and mildly acidic water by Enami et al35 that we have mentioned above. 365 

Gallo et al85 have carried out another study of this system by comparing the reactivity in 366 

electrosprays and isoprene–water emulsions with adjusted pH, in an attempt to differentiate 367 

between pure interfacial effects and effects due to the conditions characterizing the electrosprays 368 

experiments (charge separation, concentration of reactants). According to these authors, the 369 

absence of chemical reactions in emulsions suggests that the high-voltages in the electrosprays 370 

play a key role, leading to charge-separation that facilitates the formation of partially hydrated, 371 

highly-reactive hydronium ions, that then catalyze the process. The author’s conclusion was 372 

supported by theoretical calculations comparing the reactivity of (H3O+)(H2O)n clusters of 373 

different size. Further works by Colussi and Enami161 and Gallo et al167 have discussed the effects 374 

that the partial solubility (milimolar level) of isoprene in water might have on the fate of 375 

reactions in the case of isoprene-water emulsions. It is worth mentioning in this respect the work 376 

by Butler et al,60 who used the endo/exo preference in Huisgen cycloadditions to classify 377 

reactions (in-water vs on-water) as a function of the hydrophobicity of one of the reactants, i.e. 378 

its water solubility: on-water reactions do not display increased endo-effects relative to organic 379 

solvents, in contrast to in-water reactions. To sum up, the case of isoprene oligomerization 380 

emphasizes the difficulties to derive definite conclusions about interface effects on reactivity and 381 

the presence of on-water catalysis. The combined use of multiple analytical platforms and of 382 

elaborated numerical simulations will be most useful to test different hypotheses and get more 383 

insights in this field.  384 
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Finally, one should note that ab initio MD simulations of the water liquid-vapor interface have 385 

highlighted the augmented reactivity with respect to excess protons and electrons by an analysis 386 

of the HOMO and LUMO energies at interfacial layers.122 387 

 388 

The “polarity” of the water surface. Solvent polarity has been a widely used concept in 389 

Chemistry to rationalize solvation phenomena.28 Following the « like dissolves like » 390 

principle, polar solvents are likely to dissolve polar compounds and favor their most polar 391 

conformations. Non-polar solvents, on their side, are likely to dissolve non-polar compounds. 392 

Though a precise definition of  “solvent polarity” is not straightforward, the use of empirical 393 

parameters derived from linear Gibbs energy relationships has been very popular in Organic 394 

Chemistry.28 In Computational Chemistry, polarizable continuum models based (essentially) on 395 

the static dielectric constant of the solvent have been very successful to study processes in bulk 396 

solution,168 and more recently at interfaces as well.169-171  397 

However, with regard to the solvation power of aqueous interfaces, the use of the concept of 398 

“solvent polarity” entails some difficulties. In fact, experimental attempts to characterize the 399 

polarity of aqueous interfaces using second-harmonic spectroscopy have led to conflicting 400 

results. On one hand, Eisenthal and coworkers172 tried to derive an interface polarity scale (ET(30)) 401 

for a betaine dye at several water interfaces. They deduced a simple relationship according to 402 

which the polarity of a liquid interface is the arithmetic average of the polarity of the two bulk 403 

phases, pointing at a dominant effect of long-range solute-solvent interactions. For the air-water 404 

interface, the polarity would be close to that of a low polar solvent. On the other hand, further 405 

measurements with coumarin derivatives173 and other dyes174,175 have demonstrated the limitations of 406 

the “arithmetic average” rule, claiming that the polarity of aqueous interfaces is not a well-407 

defined concept. The apparent “polarity” of the interface strongly depends on solute’s structure 408 

since subtle modifications of the later (stereochemistry, hydrophobic groups) can produce 409 
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significant changes on the former. This is because the solute’s position and orientation relative to 410 

the interfacial boundary rely on its structure, and so does the water response. 411 

Theoretical studies can clarify the issues in the definition of interface polarity. Classical and 412 

first-principles MD simulations of glyoxal (O=CH-HC=O) have shown that water interfaces 413 

selectively stabilize the polar cis-conformer (the two polar C=O bonds pointing in the same 414 

direction) over the apolar trans-conformer (C=O bonds pointing in opposite directions).176,177 This 415 

result can be explained by the fact that both, stereochemistry and polarity favor the interaction of 416 

the cis-isomer with the interface. Stereochemistry and polarity, however, do not always go in the 417 

same direction, as in the case of meta- and para-cyanophenol isomers. Ab initio calculations 418 

using a dielectric model171 show that despite its lower polarity, the meta-isomer has a higher 419 

interface affinity because, in this case, but not in the case of the para-isomer, the -CN and -OH 420 

groups can simultaneously interact with the aqueous layer (Figure 3).  421 

Finally, in Figure 4, we illustrate the differences between the bulk-water and air-water 422 

interface reaction-field potentials, i. e. the electrostatic potentials created by the polarized water 423 

medium, in the case of methanol obtained by MD simulations.178 Methanol is an important 424 

atmospheric compound and its air-water interface affinity and structure have been thoroughly 425 

described by SFG spectroscopy measurements and theoretical simulations.5,178 As shown in Figure 426 

4, , there are topological differences between the two potentials that do not correspond to those 427 

that would be expected for two media differing simply by their “polarity” gradation. The 428 

potentials around the OH groups are indeed quite similar, while a large difference appears 429 

around the CH3-group, which is of course the consequence of a preferred orientation of methanol 430 

at the interface. Roughly, the CH3-group points towards the air layer (and is basically not 431 

solvated), and the OH-group points towards the water layer (and has an almost complete 432 

hydration shell), although the details of the solvation dynamics discussed below draw a slightly 433 

more complicated picture.  434 

   435 
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          436 

Figure 3. Schematic view of the meta- and para-isomers of cyanophenol adsorbed at the air-water interface 437 
showing the expected hydrogen-bonds with water molecules. The plotted values for the gas-phase dipole moment 438 
(µ) and for the electrostatic interaction energy with the interface (DE) have been obtained using quantum chemistry 439 
calculations and a simple dielectric model of the air-water interface.171 The values reveal that despite a lower dipole 440 
moment of the meta-isomer with respect to the para-isomer, its electrostatic interaction energy is higher (in absolute 441 
value) owing to the possible simultaneous contact of both polar groups with the water surface. 442 
 443 

 444 

 445 

Figure 4. Calculated electrostatic potential (atomic units) created by the solvent water molecules surrounding 446 
methanol. The graphs correspond to time averages of the potential obtained from QM/MM Molecular Dynamics 447 

simulations.178 The surfaces are displayed in an arbitrary methanol-fixed coordinate system but in the simulation 448 
there are no constraints imposed to the methanol or water molecules, which are flexible to vibrate, rotate and 449 
translate. Graph (a) corresponds to the calculation at the air-water interface: the left green part reveals that at the 450 
interface, the average potential around the methyl group is close to zero, as corresponds to the fact that this group is 451 
most of the time pointing towards the air layer. Graph (b) corresponds to the calculation in bulk water: as shown, the 452 
potential in the right part (around the OH group) is very similar to the potential obtained at the interface, but the 453 
potential around the methyl group (left part, blue-green surface) is significantly different. In the bulk, water 454 
molecules around the methyl group undergo orientational polarization, and may form weak hydrogen-bonds with the 455 
methyl H atoms. Graph (c) displays the difference between the two potentials (interface – bulk): it confirms that the 456 
most relevant disparity holds for the region around the CH3 hydrophobic group. 457 

 458 

Thermodynamics and dynamics of solvation. The energetics of solvation at aqueous interfaces 459 

is a vast subject with extensive literature and a multitude of facets. The specific topics dealt with 460 

here are those that could be considered most relevant for understanding chemical reactivity of 461 

organic compounds at air-water interfaces. In the field of atmospheric chemistry, several reviews 462 

have already been published describing the uptake and accommodation processes, the energetics 463 

of interface adsorption, and the experimental techniques.4,29,33 MD simulations have allowed, on the 464 
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other hand, to obtain the potential of mean force for the adsorption and accommodation 465 

processes of many chemical species. One of the most remarkable findings of these studies (see 466 

for instance32,33,124,125,179-186) has been the significant interface affinity, not only of hydrophobic or 467 

amphiphilic organic molecules, which is an expected result, but of small polar systems and even 468 

ions as well. An archetypal free energy profile for moving a neutral water-soluble compound 469 

from the gas-phase to bulk water across the air-water interface is shown in Figure 5 (the 470 

solvation of ions is considered in deeper detail below). The free energy decreases from air to 471 

bulk with a minimum at the interfacial layer. These profiles are useful to obtain Henry’s 472 

constants and surface excess properties.182 Theoretical analysis181 of the solvation of organic 473 

molecules in water droplets has revealed that the surface preference is principally due to 474 

enthalpic effects. Namely, the total water–water interaction energy is more negative when the 475 

solute is at the surface of the droplet because, when it is in the bulk, some water-water hydrogen-476 

bonds are disrupted. Entropic effects further enhance the surface preference when the system 477 

bears large apolar groups (e.g. 4-5 carbon atoms or longer hydrophobic chains).  478 

 479 

 480 

Figure 5. Schematic plot for the relative free-energy profile (DG, green) for a neutral (water soluble) solute crossing 481 
the air-liquid water interface. The density profile of water (d, red) is also shown. The free energy decreases from the 482 
air layer (right part of the figure) to the interface, where it displays a minimum (hatched area) close to the Gibbs-483 
dividing-surface (GDS, Z=0 here), then increases from the interface to the bulk. Note that the width of the interface 484 
layer (hatched area) is about 1nm. Depending on the solute’s structure and on its hydrophilicity/hydrophobicity 485 
character, the free-energy profile can display substantial differences, e.g. a free-energy maximum can occur between 486 
the interfacial layer and the bulk water, and the sign of the relative air-bulk water free-energy can be reversed. 487 

 488 
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The molecular dynamics of solutes adsorbed at the air-water interface displays two 489 

fundamental differences with respect to the bulk. First, axial oscillations of the solute’s position 490 

across the average interface plane may be quite large and this implies concomitant fluctuations 491 

of the instantaneous hydration shell. This is illustrated in Figure 6 for methanol at the air-water 492 

interface.178 Second, due to the asymmetry of the interface and the existence of preferred 493 

orientations of the solute, the interface orientational dynamics differs in general from the bulk. 494 

Reorientational relaxation at the interface can be characterized by time- and polarization-495 

resolved pump-probe SFG spectroscopy187 or by MD simulations. Calculation of the rotational 496 

autocorrelation functions of the methane derivatives MeCl, MeCN, and MeOH, which are 497 

important organic compounds in the troposphere,  shows that the reorientation decay times 498 

increase with their hydrogen-bonding capability, i. e. with the strength of their interface 499 

anchoring.178     500 

 501 

 502 

Figure 6. QM/MM MD simulation of methanol at the air-water interface.178 The lower panel shows the fluctuations 503 
of the solute’s axial position (Z-axis) with respect to the average interface plane (Z=12Å). The snapshots in the 504 
upper panel illustrate different situations in which the methanol molecule, depending on its relative position with 505 
respect to the interface (air or water layers) is more or less hydrated; the average number of methanol-water 506 
hydrogen-bonds (NHB) in different cases is indicated. 507 

 508 
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Interface affinity of ions. Ions in the outermost interface layers are more easily available to 509 

catalyze chemical reactions (e.g. on sea salt-aerosols) and it is therefore crucial to set-up a scale 510 

of interface affinity values. Beyond that, interface affinities are valuable to establish 511 

kosmotropic/chaotropic scales, predict the surface tension of electrolyte solutions or explain the 512 

Hofmeister series.188,189 In the classical view of electrolytes that considers the interface as an abrupt 513 

discontinuity between two dielectric continuum media,190 the air-water interface is devoid of ions. 514 

In such models, the point-charge q in a dielectric with dielectric constant 𝜖8 (water) interacts 515 

with its image charge 𝑞: = 𝑞(𝜖8 − 𝜖))/(𝜖8 + 𝜖)) in the dielectric with constant 𝜖) (air), and 516 

therefore is repelled from the interface (𝜖) < 𝜖8). The divergence found in this model for ions 517 

approaching the interface can be untangled for finite radii ions.191 Although a full understanding 518 

of the topic is still lacking, many endeavors have been made to get beyond the classical view. 519 

The macroscopic view from surface tension and electrostatic potential measurements has been 520 

supplemented by data from interface-sensitive spectroscopic techniques such as SFG, by 521 

elaborated dielectric continuum theories and MD simulations, providing new insights.179,188,189,192-200  522 

Hard non-polarizable ions (such as F- or the alkali cations), and multiply charged ions (such as 523 

sulfate) behave classically and are repelled from the interface, but large polarizable anions (such 524 

as I- or Br- and to a lower extent Cl-), display a propensity for the air-water interface. The case of 525 

hydronium discussed above is an exception, and its interface affinity results from specific 526 

hydrogen-bonding properties. Though it goes beyond the limits of the present review, the 527 

stability of the solvated electron at aqueous interfaces has also been studied201-203 because of 528 

potential implications in numerous chemical processes (radiation chemistry, electron-transfer, 529 

redox and electrochemical reactions, etc). 530 

The interface affinity of ions has been explained (at least qualitatively) by a favorable balance 531 

between electrostatic and cavitation energies.199,204,205 The later represents the energy cost required to 532 

disrupt water-water interactions in the medium in order to create a hole where the ion is placed. 533 

The cavitation energy drops when the ion moves from bulk to the interface, and for bulky soft 534 
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ions it can overcompensate the loss of favorable ion-water electrostatic interactions. In such a 535 

case, the ion stabilizes at the interface. The role of anion polarizability has been emphasized179,195 536 

and though correlation with interface affinity is not always apparent,206 this term must be taken 537 

into account for a quantitative description of the adsorption energetics, as recently reported for 538 

aqueous solutions of ClO4
- using SFG spectroscopy.205 Under the effect of the local electric field 539 

(the permanent field due to the asymmetry of the interface and the ion-induced reaction-field), 540 

the electronic cloud of large polarizable anions is distorted and the induced dipole moment 541 

contributes to enhancing the solvation of the ion at the interface.192 Solvation dispersion-forces 542 

may also influence interfacial adsorption,199,204 specially at oil-water interfaces.188 543 

Cations are dragged to the interface from the bulk through the electrostatic interactions with 544 

the anions and cumulate in nearby inner layers,192 although their distribution is quite sensitive to 545 

the type of counterions present.189 Anions and cations interact differently with water, and 546 

according to Levin and dos Santos,188 alkali cations are repelled from the interface because they 547 

are strongly hydrated, while anions may behave either as kosmotropes or chaotropes. The 548 

distribution of anions and cations near the air-water interface is also influenced by the 549 

electrostatic potential originated by the orientation of water molecules at the interface, although 550 

the role of this surface potential still remains unclear.207 Indeed, classical calculations using point-551 

charge force-fields predict the air layer to be more electropositive than water (in congruence with 552 

the image of dangling protons pointing towards the air layer), while explicit treatment of the 553 

electronic cloud in ab initio simulations predicts the opposite trend.179,188,208 Thus, the anionic 554 

adsorption predicted with polarizable force-fields is probably overestimated.188 The adsorption 555 

energy of ions has been decomposed in entalphic and entropic terms in some cases,179 and the 556 

simulations by Caleman et al209 and Otten et al198 concluded that adsorption of heavier halides is 557 

favored by enthalpy, and opposed by entropy, whereas F− is driven to bulk by entropy.209 558 

 559 

 560 
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Interfacial reaction kinetics  561 

Box 1. Transition-state theory of reaction rates 562 

Transition-state theory (TST) is the basis for the thermodynamical analysis of reaction rates. 563 

For a simple bimolecular reaction following a first-order rate law for reactants A and B and going 564 

through the transition complex (AB)@: 565 

A + B	 → (AB)@ 	→ 	C	          (2) 566 

the reaction rate v is written: 567 

𝑣 = −E[G]
EI

= 𝑘[𝐴][𝐵]          (3) 568 

where the rate constant k is: 569 

𝑘 = MNO
P

QRST
QRQS

𝑒2
VW
XY = MNO

P
𝑒
Z∆3‡

XY         (4)  570 

Qx represents the partition functions of solvated species x, and 𝐸^  and ∆𝐺‡ are the energy and 571 

free energy of activation, respectively. If one assumes interface-bulk equilibrium and compares 572 

the reaction rates in the two media, enhanced interface rates can arise from surface enriched 573 

concentrations, lower activation energies, or higher pre-exponential factors (entropy of 574 

activation). Absolute production rates will depend on the surface to volume ratio of the system, 575 

or more precisely on the ratio of the interfacial (Vi) and bulk (Vb) layer volumes. Let us figure out 576 

an order of magnitude. In a water droplet of 1µm diameter and for an interface thickness of 1.5 577 

nm, Vi/Vb ~ 10-10. Thus, equal production rates will occur if the reactants A+B are stabilized by –578 

RTln(Vi/Vb) (same kinetic constant assumed), which amounts ~14 kcal·mol-1 at 300K (~3 579 

hydrogen-bonds). Similar results will be obtained if the activation free energy decreases by the 580 

same amount at equal reactant concentrations. 581 

The term “on-water catalysis” is generally employed to describe the observed rate 582 

acceleration of many chemical reactions at aqueous interfaces. It should be noted here, however, 583 

that sometimes this term is used in a non-strict sense.  For instance, many reactants tend to 584 

accumulate at the interface, as discussed above, and this is undoubtedly an essential, often 585 
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claimed cause for rate acceleration not implying catalysis (Box 1). Enhanced reactivity at 586 

interfaces has also been interpreted in terms of compartmentalization at the mesoscale, using a 587 

non-catalytic reaction-adsorption model coupling interface and bulk reactions, provided the 588 

adsorption energy of the reactants at the interface is low (a few kBT).73 But interfacial effects of 589 

different sorts can also influence the kinetic constant, promoting the reaction. Some basic 590 

theories of interface catalysis supported by experiments and/or calculations will be presented 591 

first. Afterwards, we will look at the results of advanced simulations, which are more appropriate 592 

to deal with dynamics effects and estimate non-equilibrium solvation corrections to conventional 593 

TST in solution.210 We focus on the neat water surface, so that the role of ions, organic layers or 594 

other species will not be considered explicitly here.   595 

 596 

Basic theories of interface catalysis. Several enthalpic or entropic solvation terms may cause 597 

transition state stabilization and rate enhancement, and a possible classification of predominating 598 

hypotheses is as follows:  599 

a) Hydrogen-bonding. Jung and Marcus2,211 suggested that dangling OH groups at the water 600 

surface might be at the origin of “on-water” catalysis observed for some processes. These OH 601 

groups are available for hydrogen-bond formation with the reacting system and catalysis would 602 

occur when hydrogen-bonding is stronger for the transition state than for the reactants. The 603 

authors argued that in the homogeneous phase, the structure of water molecules around 604 

hydrophobic groups must first be disrupted before OH groups become available for catalysis, but 605 

not at the interface. Hence, the activation barrier decreases and faster processes are observed at 606 

the interface. Calculations for the cycloaddition reaction of quadricyclane with dimethyl 607 

azodicarboxylate, which displays a huge acceleration on water,211 supported this interpretation 608 

showing that the number of hydrogen-bonds with the dangling OH groups is higher for the TS 609 

than for the reactants.  610 
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b) Acid-base catalysis. The acid-base properties of interfacial water can also be a factor 611 

driving catalysis, notwithstanding the ongoing debate over the acidity or basicity of the water 612 

surface (see discussion above). We have quoted the electrospray mass spectrometry experiments 613 

of Enami et al35 on the oligomerization of isoprene, which meant the behavior of water surface is 614 

superacidic even for mildly acidic water solutions. In the same vein, but adopting a different 615 

perspective, Beattie et al212 suggested that acid-catalysis is enabled thanks to the strong interface 616 

affinity of the hydroxide ion. 617 

c) Electrostatic fields. Electric fields can drive chemical processes modifying their rates or 618 

selectivities, as in Diels-Alder reactions.213-215 Within the crude approximation of dielectric models, 619 

the reaction-field created by the dielectric response of the solvent to the charge distribution of the 620 

solute interacts with the later providing a stabilizing solvation contribution. As for hydrogen-621 

bonding, the reaction is favored when the transitions state is more stabilized than the reactants. In 622 

bulk water, qualitatively, processes displaying an increasing polarity (charge separation) along 623 

the reaction path reaction will be favored with respect to gas-phase. At the interface, things are 624 

far more complicated because the meaning of “polarity” and its contribution to solvation (see 625 

above) are less clearly defined. Besides, standard dielectric models neglect the electric field that 626 

results from the broken symmetry of the neat water surface, whose magnitude is 627 

controversial.179,188,208 It appears, therefore, difficult to establish general rules, even qualitative ones, 628 

for electrostatic field effects on interfacial reaction thermodynamics without undertaking a 629 

rigorous treatment of the microscopic structure of the system. 630 

d) Reactivity indices. The frontier orbitals HOMO and LUMO, as well as other reactivity 631 

indices in conceptual density functional theory216 ( chemical potential, hardness, electrophilicity) 632 

are widely used to interpret or predict the fate of chemical and photochemical reactions. It has 633 

been shown that these indices are particularly sensitive to the interface electrostatic potential, 634 

which can produce larger effects than the potential in bulk water.125,171,185 It is worth noting they are 635 

highly dependent on the relative orientation of the reactant molecules with respect to the 636 
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interface plane, which gives particular importance to the presence of proton donor or acceptor 637 

groups, as illustrated in Figure 7. A good example is the case of the reaction of H2CO (a proton 638 

acceptor) with HO2 (a proton donor), which involves a proton-coupled-electron transfer.125 The 639 

electron transfer is favored at the interface with respect to both gas-phase and bulk water because 640 

the HOMO(HO2)-LUMO(H2CO) energy gap decreases under the local interface electrostatic 641 

potential generated by the hydrogen-bonded water molecules.   642 

 643 

 644 

Figure 7. The scheme shows how the frontier molecular orbitals, HOMO and LUMO, of proton-donors and proton-645 
acceptors are perturbed at the air-water interface. Roughly, the solvent response in the vicinity of a proton-donor 646 
(acceptor) generates a negative (positive) electrostatic potential that destabilizes (stabilizes) the molecular orbitals of 647 
the solute. Thus, the HOMO-LUMO energy difference between the partners of a chemical reaction changes with 648 
respect to isolated molecules. This effect can be used to selectively modify the chemical reactivity. Reactions in 649 
which the proton-donor behaves as a nucleophile, and the proton-acceptor behaves as an electrophile, will be 650 

favored.  The HO2 + H2CO reaction is an example of this kind of interface-promoted processes.125 651 
 652 

e) Activation entropy. Preferred orientations, hindered rotations and limited translational 653 

freedom at interfaces do also influence reaction rates through the entropy of activation. A rough 654 

model217 for bimolecular reactions (2D-interface, same interface/bulk activation energy and 655 

concentration of reactants, 1018 molecules cm-3 or 1014 molecules cm-2) predicts a rate increase as 656 

significant as ~107. According to this model, each chemical species is “anchored” to the 2D-657 

interface and has only one translational and two rotational degrees of freedom. Hence, the loss of 658 

entropy in the activation process of a bimolecular reaction is smaller at the interface compared to 659 

bulk. The estimation made by Jung and Marcus211 for the interface/neat relative rate of the 660 
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cycloaddition reaction of quadricyclane with dimethyl acetylenedicarboxylate was 102, 661 

considering only the decrease of rotational degrees of freedom. This topic clearly deserves 662 

further study by MD simulations allowing to account for finite thickness of the interface and 663 

solvent entropy, like those carried out for other liquid interfaces.218  664 

 665 

Advanced Molecular Dynamics simulations. A growing number of numerical simulations of 666 

chemical reactions at aqueous interfaces have been undertaken in recent years with a variety of 667 

theoretical approaches. Some works have dealt with traditional organic reactions such as the 668 

Diels-Alder reaction,219,220 the Claissen rearrangement,221,222 electron-, proton- and charge-669 

transfer,124,223,224 or the SN2 reaction.224 Other works have considered atmospheric reactions to study 670 

the role of cloud water droplets on the photochemical production of OH radicals,7,37,186,225,226 acid 671 

dissociation,8,139-141,143,185,227 or other fundamental processes.6,10,228 Intramolecular proton transfer of 672 

aminoacids at water-hydrophobic interfaces has also been studied as a model for biological 673 

passive transport across cell-membranes.229 674 

Ab initio MD is the most appropriate technique in this domain because of the possibility to 675 

describe the formation and breaking of chemical bonds, which is not possible with classical 676 

force-fields. Unfortunately the computational cost required to obtain free energy surfaces is very 677 

high, even when only part of the system is described quantum mechanically, as in combined 678 

QM/MM178 or perturbative dual-level230 approaches. Moreover, in depth studies require exploring 679 

the full reaction pathways and the low probability regions of the activated complex, e.g. through 680 

parallel rare-event sampling methods,231 replica path or nudged elastic band methods.232 As a 681 

consequence, most of the studies have been limited to short simulation times and/or approximate 682 

theoretical models and methods, focusing mainly on the calculation of equilibrium free energies 683 

rather than on the study of dynamic reactive trajectories. In short, the simulation of chemical 684 

reactions at liquid water interfaces can be considered still in its infancy, notwithstanding a few 685 
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achievements of general interest and potential important relevance that we briefly comment 686 

hereafter. 687 

Thermal fluctuations of the solvent lay at the core of Marcus non-adiabatic theory of electron 688 

transfer processes, and of Kramers-Grote-Hynes theory of reaction rates in solution, which 689 

introduces dynamical solvent effects by a generalized Langevin equation with a time-dependent 690 

solvent friction coefficient.210 An important finding of ab initio simulations has been to show that 691 

the fluctuations spanned by solute-solvent dynamics at aqueous interfaces are at least 692 

comparable in magnitude to fluctuations in bulk, as illustrated in Figure 8 for the electronic 693 

properties (dipole moment) of methanol. 694 

 695 

Figure 8. Fluctuations of the HOMO-LUMO gap of the methanol molecule in gas-phase (gray), bulk water (light 696 
blue) and at the air-water interface (red) from QM/MM MD simulations.178 The average values (eV) and the standard 697 
deviations are given. The average value of the HOMO-LUMO gap at the interface is significantly larger than in gas-698 
phase (by as much as 0.8 eV), and is only slightly smaller than in bulk solution. The standard deviation at the 699 
interface is also much larger than in the gas-phase value, and is slightly larger than in the bulk.  The same trend is 700 
found for some structural parameters (bond lengths and angles), as well as for other electronic properties (dipole 701 
moment) and reactivity indices (chemical potential). The fluctuation of molecular properties can play an important 702 
role in chemical reactivity, and the results presented here show that the fluctuations at the interface are at least 703 
comparable in magnitude to those in the bulk.   704 

 705 

Large thermal fluctuations at the air-water interface lead to the broadening of spectral bands, 706 

as experimentally observed in heterodyne-detected electronic  SFG spectra of solvatochromic 707 

coumarins.233 Broadening of UV-Vis absorption bands may give rise to enhanced photochemistry 708 

in the troposphere. According to simulations, the production rate of OH radicals by the 709 

photolysis of ozone would be accelerated by four orders of magnitude when the process takes 710 
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place at the surface of water droplets,186 and significant rate increase has also been predicted for 711 

other OH sources.37,225,226 712 

To date, very few studies have looked at reactive trajectories at interfaces and most have 713 

considered spontaneous processes with low energy barriers.143,227 Fluctuations of the hydrogen-714 

bond network are known to drive proton transfers in liquid water,234 while tunneling may be 715 

important for proton mobility in other systems. Murdachaew et al143 have studied formic acid 716 

deprotonation and subsequent proton transfer in the water medium through Grotthuss mechanism 717 

using ab initio MD. The results have shown that proton transfer is controlled by fluctuations of 718 

water O···O distances, as in bulk water, and occur when these distances shrink to ~2.4 Å. Most 719 

sequential events are separated by rest periods, and the whole process takes place in a few 720 

picosecond timescale. A similar mechanism and O···O distance have been reported in QM/MM 721 

simulations for the deprotonation of the radical HOSO at the air-water interface.8 722 

Though tunneling appears to be important only at low temperatures or high pressures in water, 723 

other nuclear quantum effects may be important at standard temperature and pressure conditions 724 

in bulk and at interfaces.235,236 For exemple, Shrestha et al237 have recently shown that the  attractive 725 

hydrophobic forces between perfluorinated surfaces in nanoconfinement are  approxilately10% 726 

higher in H2O than in D2O, and have attributed this result to the contribution of zero-point 727 

energies. This finding encourages further experimental and theoretical studies that would allow 728 

assessing the possible influence of these terms on on-water catalytic effects. 729 

Martins-Costa et al238 have carried out QM/MM MD simulations for the ClCH3+OH at the air-730 

water interface generating random trajectories from the transition state with a rare-event 731 

sampling technique (Figure 9). The method allows to estimate the number of recrossings of the 732 

activation barrier (which occur at short-times <20 fs), and the ratio between reactive and non-733 

reactive trajectories (~30%), suggesting a significant dynamic solvation effect on the interfacial 734 

reaction mechanism. This dynamic effect is arguably a general trend in interfacial chemical 735 

reactions, where the time scales for solute’s translational and rotational relaxation make the 736 
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equilibrium hypothesis in TST questionable, though much work is still necessary to clarify this 737 

issue. 738 

 739 

Figure 9. QM/MM MD simulation of the CH3Cl+OH® CH2Cl+H2O reaction at the air-water interface using a rare-740 

event sampling method.238 The trajectories are started at the transition state, and are propagated for positive and 741 
negative times. The figure depicts an example of reactive trajectory in which CH3Cl in the gas-phase layer 742 
approaches the hydrated OH radical at the interface, and reacts with it to form the products on a short time-scale. 743 
Only 30% of the calculated trajectories are reactive, indicating the existence of non-negligible dynamic solvent 744 
effects.   745 

 746 

Concluding remarks 747 

In this review, we have presented a concise panorama of the present state of knowledge in the 748 

cross-cutting concept known as “on-water” catalysis. In the last fifteen years, from pioneer 749 

works carried out with stirred reactants in water suspensions to the most recent discoveries in 750 

sprayed microdroplets, this notion has taken a great leap forward. The fact that many reactions 751 

are accelerated at the surface of water and aqueous interfaces has significant implications in 752 

atmospheric, environmental, biological or prebiotic chemistries, for instance. At the same time, it 753 

opens up vast innovative avenues for the development of green processes in synthetic Chemistry. 754 

The water surface catalytic effect is still incompletely understood. However, considerable 755 
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progress has been gained in recent years, in large part, by the development of interface-sensitive 756 

spectroscopic techniques and by the detailed microscopic description achieved through advanced 757 

molecular dynamics simulations. Rate acceleration can stem from solvation effects, but also 758 

from intrinsic acid/base properties of the water surface, which differ from those in the bulk. The 759 

most evident solvation effect is the enhancement of the reactant concentrations at the interface, 760 

because neutral molecules and soft anions tend to stabilize there, favored by enthalpic or entropic 761 

effects, and sometimes both. For the same reason, transition states can be stabilized, and 762 

experiments and calculations suggest that the activation energy of some reactions can 763 

significantly be lowered at the interface, compared to bulk. In this regard, it is definitely essential 764 

to clarify and quantify the effect of dangling -OH groups and surface electrostatic potentials, as 765 

well as the contribution of entropy changes, e.g., in bimolecular reactions. To this aim, ab initio 766 

MD simulation is a priceless tool, although further improvements of current techniques are 767 

needed. Simulations at the ab initio level represent a high computational cost. Therefore their 768 

accuracy is generally limited by two main factors: too short simulation times, and use of 769 

approximate quantum methods.  With consequences such as limited statistics and accuracy, 770 

current simulations cannot always capture the subtle properties of interfacial water molecules, or 771 

the delicate balance of the energetics in a chemical reaction.  772 

Future studies should clarify which catalytic effects are purely due to environmental effects 773 

and which effects are caused by other factors, such as the charge separation or gas phase 774 

chemistry in electrospray experiments, or the diffuse interfaces of emulsions due to partial 775 

solubility in water (that is, what is the role of organic molecules in the aqueous phase, and 776 

viceversa). There are two main avenues in this respect. First, experiments using different 777 

platforms should be carried out for the same reactions and the rates compared together. Second, 778 

simulations with more and more realistic models should be implemented. Quantum effects have 779 

generally been neglected in the calculations, but experiments have shown that they can play a 780 

significant role. Among the pressing questions that require reliable answers are the electrostatic 781 
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potential of the water surface, the auto-ionization kinetics and thermodynamics of water, or the 782 

distribution of ions in the interfacial layers. Another issue of great interest is the study of 783 

reactions at aqueous interfaces with non-organic solvents, such as ionic liquids or compressed-784 

CO2, which are shaping up as possible candidates for developing new green synthetic methods. 785 

In parallel with progress in simulations and the emergence of new experimental setups, 786 

knowledge transfer between fields will be essential to meet all these challenges, which are of 787 

utmost relevance in various areas of science and technology.    788 
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