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Abstract: Prostate cancer (PCa) is one of the most common cancers worldwide. Even though 

prostate specific antigen (PSA) test is the non-invasive routine blood test for the detection of 

asymptomatic disease, it can result in problems of diagnostic accuracy and overdiagnosis. Thus, it 

is necessary to continue investigating new efficient biomarkers for the prevention, diagnosis and 

prognosis of PCa. Here, we analyse the transcriptome of seven individuals by the use of 

next-generation sequencing (NGS) technique to identify differentially expressed genes, which can 

help to better understand PCa aggressiveness. Present analysis show that there are two 

upregulated genes in PCa regarding to controls: HP (Haptoglobin) and HLA-G (Human Leukocyte 

Antigen-G). On the other hand, there are seven downregulated genes, where TP53TG3 and their 

transcripts should be highlighted. Also, we make a comparison between a more aggressive PCa 

phenotype and the rest of PCa samples to investigate about genes implicated in aggressiveness, 

obtaining a high number of upregulated genes including CENPF, DLGAP5 and RRM2, among 

others. These genes could serve as predictive, diagnostic and prognostic biomarkers, as well as 

molecular targets. Nevertheless, further studies would be needed to confirm the obtained results. 

Keywords: Prostate cancer; Biomarkers; Next-generation sequencing; RNA-Seq; Transcriptome; 

Differentially expressed genes.  

 

1. Introduction 

The prostate is a small gland located under the urinary bladder that is part of the reproductive 

and urinary systems in men. Changes in DNA prostate cells can lead to benign prostate hyperplasia, 

prostatic intraepithelial neoplasia or prostate cancer (PCa). PCa is the second most common cancer 

affecting men with 1.28 million incident cases worldwide in 2018, and the eighth leading cause of 

cancer-specific mortality in males [1]. Some of the main risk factors associated with PCa are 

advanced age, African-American race, geographic residence area, family history or genetic changes, 

among others [2].  

 

There are three types of PCa: familial, hereditary and sporadic. Although familial and 

hereditary are very similar, they are not synonymous. Both of them refer to the presence of affected 

members within the same family, but the criterion for hereditary PCa is a family with three 
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generations affected, three first-degree relatives affected or two close relatives affected before 55 

years old [3]. In the other hand, sporadic PCa is caused by DNA damage during the life of the 

individual. Familial and hereditary cancer have an incidence rate of around 15%, while in sporadic 

cancer the incidence rate is 80-90% [4].  

 

The increase of incidence, but also of the overall survival, are attributed to an earlier stage at 

diagnosis due to the introduction of prostate specific antigen (PSA) test as a non-invasive blood test 

for the detection of asymptomatic disease, and advances in treatments [5]. However, PSA has low 

specificity. Elevated levels of PSA are a sign of PCa, but can indicate other conditions, such as 

prostatic hyperplasia, prostatitis or urinary tract infection, resulting in a problem of false positives 

that can lead to a diagnostic error [6]. Otherwise, the U.S. Preventive Services Task Force 

recommended not to use PSA test in asymptomatic men of all ages because a considerable 

percentage of them have tumors that either will not progress or will progress so slowly that it would 

have not presented symptoms for the rest of their life, resulting in a problem of overdiagnosis [7].  

 

Prostate biopsy confirms the diagnosis of the tumor and its grade. For over 40 years, Gleason 

score has been the most accepted system for PCa grading. Gleason system scores the primary and 

secondary histopathologic patterns of cancer, and Gleason score is the sum of both patterns (up to 

10). Nevertheless, in recent years, there have been some changes in the grading system and new 

histologic grade groups (from 1 to 5) have been established for PCa [8]. 

 

The American Joint Committee on Cancer published in 1977 the first edition of a staging system 

based on T (tumor extent), N (lymph node invasion) and M (presence or absence of metastasis) 

classifications. The eighth edition of the cancer staging system is currently in force. Staging is 

important to classify the severity of the disease, estimate the prognosis and recommend treatment. 

TNM staging, used in combination with tumor grade and PSA test, is a tool to stratify risk of patients 

with PCa, classifying it into four large groups (I to IV) with its subgroups, and is used as a basis to 

guide treatment decisions [8]. Stratification by these extension and progression stages with its 

prognostic value allows relating diagnosis and aggressiveness of PCa with potential biomarkers and 

their relevance in clinical practice. Due to the above problems of false positives and overdiagnosis, it 

is necessary to continue investigating new biomarkers for prevention, diagnosis and prognosis of 

PCa in order to solve these problems [9]. 

 

A biomarker is “a defined characteristic that is measured as an indicator of normal biological 

processes, pathogenic processes or responses to an exposure or intervention” [10]. Identification of 

new sensitive and specific biomarkers will lead to development of the emerging method of clinical 

practice known as precision medicine. In recent years, new biomarkers related to PCa have emerged, 

including prostate health index (PHI), four-kallikrein panel (4Kscore), prostate cancer antigen 3 

(PCA3), transmembrane protease serine 2:ETS-related gene (TMPRSS2:ERG) fusion, circulating 

tumor cells (CTCs), microRNAs (miRNAs), phosphatase and tensin homolog (PTEN) or androgen 

receptor splice variant-7 (AR-V7) [11]. 

 

PHI combines the values of total PSA, free PSA and the precursor form of PSA [-2] proPSA in a 

specific formula for the detection of PCa. The Food and Drug Administration (FDA) approved this 

test in 2012 [12]. 

 

4Kscore consists of a panel that includes a combination of four kallikrein proteins (total PSA, 

free PSA, intact PSA and human kallikrein 2) for detection and prognosis of PCa. Opko Diagnostics 

commercialized this test, which also incorporates clinical information, such as age and history of 

prior biopsy, in an algorithm to predict the risk of aggressive PCa [13]. 
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PCA3 is a noncoding RNA that is overexpressed in PCa compared with normal prostate tissue. 

The FDA approved in 2012 a test to detect PCA3 RNA expression in urine samples for the diagnosis 

of PCa [14,15]. 

 

TMPRSS2:ERG fusion gene was identified in urine samples of patients with PCa. Genomic 

rearrangements are present in hematologic malignancies and solid tumors. Specifically, the two 

partners of this fusion gene are TMPRSS2, an androgen regulated gene, and ERG, a member of the 

ETS transcription factor family. Similar to PCA3, the rearrangement TMPRSS2:ERG could improve 

the diagnosis of PCa [15]. 

 

CTCs are a population of cancer cells able to detach primary or metastatic tumor and enter into 

bloodstream through vessel walls. The study of CTCs provides a new approach to monitor tumor 

evolution and study development of resistance to therapy. Nowadays, the FDA only has approved 

the CellSearch® platform for that purpose in PCa [16]. 

 

MiRNAs are small (22 bp), non-coding, single-stranded RNA molecules, which function as 

regulators of gene expression through RNA silencing and post-transcriptional regulation. They play 

an important role in different physiological processes, such as development, differentiation, 

proliferation or apoptosis, but also in carcinogenesis. Some examples of miRNAs involved in PCa 

are let-7a, miR-145, miR-296-5p or miR-218 [17]. 

 

PTEN is a tumor suppressor gene frequently mutated or deleted in several types of cancer, 

including PCa. The Cancer Genome Atlas Research Network presented an analysis where PTEN was 

mutated or deleted in 17% of PCa cases [18]. 

 

AR-V7 is a potential biomarker for treatment selection in metastatic PCa. Patients with AR-V7, a 

widely studied variant of the androgen receptor (AR), are associated with resistance to certain 

drugs. There is a commercialized test to detect this variant known as OncotypeDX AR-V7 Nucleus 

Detect [19]. 

 

Androgens (testosterone and/or dihydrotestosterone) are key in the normal physiology of 

prostate through binding and activation of AR, but they are also implicated in the pathogenesis and 

progression of PCa [20]. Thus, pharmacologic treatments for metastatic or high-risk localized disease 

consist of androgen deprivation therapy (ADT), either alone or in combination with other therapies 

[21]. Despite a high initial response rate to ADT, there is a number of patients that present either a 

continuous rise in serum PSA levels, progression of pre-existing disease, and/or appearance of new 

metastases. This is known as castration resistant prostate cancer (CRPC) [22]. Many new agents have 

been developed for CRPC over the last few years, such as small-molecule inhibitors, vaccines or 

other immunomodulating agents, but it is still incurable [23].  

 

Although the cause of PCa is still unknown, there are many genetic changes involved in its 

etiology. Defects in DNA damage repair play an important role in the development of malignant 

tumors; in fact, inherited mutations in DNA-repair genes are associated with increased risk of lethal 

PCa. Some of the DNA-repair implicated genes are BRCA2, ATM, CHEK2, BRCA1, RAD51D and 

PALB2 [24]. Moreover, several polymorphisms in the main genes involved in the synthesis and 

metabolism of sex hormones have been related with PCa progression and aggressiveness. 

Robles-Fernandez et al. found that polymorphisms in genes CYP17A1, LHCGR and ESR2 are 

associated with a more aggressive PCa according to clinical variables [25]. Also, Glutathione 

S-Transferases (GSTs) enzymes have been linked to PCa. GSTs are phase II enzymes whose function 

is the detoxification of potential carcinogens, steroid hormones and xenobiotics and there are 

evidences that GSTM1, a GST isoform, has a decreased expression in PCa patients exposed to 

environmental chemicals [26]. Other genes with a relevant role in cancer are oncogenes and tumor 



Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 21 

 

suppressor genes. Somatic mutations in this type of genes, such as KIT, KRAS and TP53, seem to 

have a high presence in patients with PCa. Specifically, mutations in KIT are associated with PCa 

aggressiveness [27]. Furthermore, germline polymorphisms located in RNASEL, ELAC2 and MSR1 

genes are implicated in PCa progression and aggressiveness [28]. One of the main problems in the 

search of specific biomarkers in PCa is the high heterogeneity this type of tumor presents, which 

makes difficult to establish a classification. A more extended review of genetic markers in PCa can 

be found in Cozar et al., 2017 [29]. 

 

Nowadays, one step further in the comprehension of PCa involves the use of high-throughput 

techniques to identify genetic markers. There have been exponential advances in genomic biology 

associated with new technologies, reduced costs and bioinformatics approaches to process the 

amount of resulting data. Thus, now it is possible to study different omics levels (genome, 

epigenome, transcriptome, proteome or metabolome) for research and clinical applications. Genetic 

markers could estimate the predisposition to cancer within affected families and the response to 

specific therapeutics. Mateo et al. demonstrated that patients with metastatic CRPC who have 

defects in DNA-repair genes present a better response to pharmacologic inhibitors of PARP1 and 

these type of tumors also appear to be responsive to platinum-based chemotherapy [30]. Another 

example that reflects the need to understand the genetics of PCa is that patients with the same tumor 

grade can present different outcomes [31]. Hence, one of the main challenges in the study of PCa is 

to find specific biomarkers.  

 

The aim of the present work is the integration of omics data for the study of biomarkers with 

relevance in PCa development and progression. Here, we analyse the transcriptome of seven 

individuals of the same family by the use of next-generation sequencing (NGS) in order to identify 

differentially expressed genes, which can help to better understand the aggressiveness of the 

disease. 

2. Results 

2.1. Filtering and normalization 

Firstly, data analysis requires initial filtering and normalization. Approximately around 38% of 

genes have zero counts throughout the seven samples; therefore, the aim of filtering is to remove 

these genes that are unexpressed or lowly expressed in all the samples. Instead of considering gene 

expression at the level of raw counts, we transform raw counts into counts per million (CPM). For a 

specific gene, a CPM value of 1 means having 16 counts in the sample with the lowest sequencing 

depth (sample 3, library size ≈16 million) or 18 counts in the sample with the greatest sequencing 

depth (sample 4, library size ≈18 million). The filtering criterion keeps genes whose CPM value is 

greater than 1 in at least one of the samples, because one is the lowest number of replicates 

corresponding to breast cancer (BCa) group (Table A1). Using this criterion, the number of genes is 

reduced from 59205 to 19833 (Figure 1). 

 

Gene counts across different samples cannot be compared directly, as there are some external 

factors during sample processing that can affect to their expression. Normalization is necessary to 

equalize the expression distributions between all the samples (Figure 2). Normalization process is 

performed by the trimmed mean of M-values (TMM) method [32], which calculates a normalization 

factor for each sample to scale the library size (Table A1). 
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Figure 1. Density plot of log-CPM values for (A) raw data and (B) filtered data. Filtering removes 

genes that are unexpressed or lowly expressed in all the samples. Samples are represented in 

different colors corresponding to their groups: group 1 – control (green), group 2 – BCa (pink), and 

group 3 – PCa (blue, intensity of blue color represents the aggressiveness of PCa). 

 

Figure 2. Boxplots of log-CPM values that reflect expression distributions of each sample for (A) 

unnormalized data and (B) normalized data. Normalization ensures that expression distributions of 

each sample are similar to make them comparable. Samples are represented in different colors 

corresponding to their groups: group 1 - control (green), group 2 – BCa (pink), and group 3 – PCa 

(blue, intensity of blue color represents the aggressiveness of PCa). 
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2.2. Identification of differentially expressed genes 

Once filtering and normalization are performed, our goal is to identify differentially expressed 

genes in PCa samples. For that purpose, we compare gene expression between control group and 

PCa group using the exact test, which calculates differences in the means between both groups with 

a negative binomial distribution. The result shows a total of seven downregulated genes and two 

upregulated genes (Figure 3). 

 

Figure 3. MA plot of the identified genes with differential expression between control group and PCa 

group. X axis represents the average log-CPM, while Y axis represents logFC. There are 7 

downregulated genes (blue) and 2 upregulated genes (red) that are statistically significant. 

Upregulated genes are HP and HLA-G, whereas downregulated genes are TP53TG3B, 

ZDHHC11B, TP53TG3, IGHV1-3, TP53TG3D, ZNF542P and LEPR (Table 1). A false discovery rate 

(FDR) value of 0.05 was established as threshold for the selection of differentially expressed genes, 

maintaining in the study those genes whose FDR value was lower. 

Table 1. Differentially expressed genes in PCa. Upregulated genes are those with a positive logFC 

value, while downregulated genes have a negative logFC value. LogFC represents logarithm to the 

base two of the difference between expression means of a specific gene in both comparison groups. 

On the other hand, FDR are adjusted P-values through Benjamini-Hochberg method to control the 

false discovery rate in multiple testing. 

Gene name logFC FDR 

HP 2.302753 0.001844 

HLA-G 2.716145 0.002491 

TP53TG3B -2.293182 0.026770 

ZDHHC11B -1.547803 0.026770 

TP53TG3 -2.111520 0.026770 

IGHV1-3 -2.111649 0.026770 

TP53TG3D -2.286385 0.035143 

ZNF542P -1.238904 0.035143 

LEPR -1.679310 0.047721 
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Later, we create a multidimensional scaling (MDS) plot to observe if samples are properly 

separated by their corresponding group (Figure 4). MDS plot is a method to visualize the level of 

similarity of the samples, so we would expect to be able to differentiate three groups: BCa, PCa and 

control group. Looking at the plot, control group can be differentiated clearly (samples 5 and 6), 

however, BCa group (sample 1) is among PCa group (samples 2, 3, 4 and 7) and cannot be separated 

as well as control group. 

 

Figure 4. MDS plot. Samples are represented in different colors corresponding to their groups: group 

1 - control (green), group 2 – BCa (pink), and group 3 – PCa (blue, intensity of blue color represents 

the aggressiveness of PCa). Control group can be differentiated clearly from the other two groups; 

nevertheless, sample corresponding to BCa group is among samples of PCa group and cannot be 

separated as well. 

We continue comparing gene expression between control group and BCa group using the exact 

test, as previously, to find out if there are some common differentially expressed genes between BCa 

and PCa groups regarding to controls. There are 25 differential expressed genes in BCa, including 16 

downregulated genes and 9 upregulated genes, and 2 of them are also significant in PCa (Figure 5). 

Common genes are HP and HLA-G, which are included in the list of differentially expressed genes 

in BCa (Table A2). These genes are upregulated, as it happened in PCa, so maybe they are the reason 

why samples of BCa and PCa groups are located so close in the previous MDS plot. 

 

Finally, one of the patients presents a more aggressive phenotype of PCa. Thus, it is interesting 

also to make a comparison between this aggressive phenotype of PCa (sample 7) and the rest of PCa 

samples to investigate about genes implicated in aggressiveness (Figure 6). 
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Figure 5. Venn diagram. Pink represents BCa, whereas blue represents PCa. The diagram shows that 

there are 25 differential expressed genes in breast cancer and 9 differential expressed genes in 

prostate cancer, 2 of which are common in both cases. Area of the circles is not proportional to the 

group size. 

 

Figure 6. MA plot of the identified genes with differential expression between aggressive PCa 

sample and the rest of PCa samples. X axis represents the average log-CPM, while Y axis represents 

logFC. There are 14 downregulated genes (blue) and 118 upregulated genes (red) that are statistically 

significant. 

The graphic shows a high number of upregulated genes in aggressive PCa. There is a total of 

118 upregulated genes, including CENPF, DLGAP5 or RRM2, among others (Table A3). An 

enrichment analysis of the upregulated genes indicates that they participate in biological processes, 

such as mitotic cell cycle, cell cycle phase transition, chromosome segregation or nuclear division. 

On the other hand, there are 14 downregulated genes (Table A3). A FDR value of 0.05 was 

established as threshold for the selection of differentially expressed genes, maintaining in the study 

those genes whose FDR value was lower. 
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Taking into account the differentially expressed genes in aggressive PCa with a FDR value 

lower than 0.05, we create a heat map (Figure 7). It represents the expression level of the selected 

genes in each individual sample and generates a dendrogram using the Euclidean distance as a 

similarity measure. Heat map makes it easier to visualize if there are some genes with different 

expression in any of the samples and dendrogram groups these genes into clusters. Otherwise, the 

result shows that samples are clustered by their corresponding groups as follows: PCa group 

(samples 2, 3 and 4), BCa group (sample 1), control group (samples 5 and 6) and aggressive PCa 

group (sample 7). 

 

 
 

Figure 7. Heat map for statistically significant differentially expressed genes in aggressive PCa. A 

FDR value of 0.05 was established as threshold. Rows represent each sample and columns represent 

different genes. The cells in the matrix represent the expression level of a gene in an individual 

sample (blue and yellow in cells reflect high and low expression levels, respectively). 

3. Discussion 

Hereditary breast and ovarian cancer (HBOC) syndrome is characterized by the presence of 

mutations in breast cancer type 1 (BRCA1) and breast cancer type 2 (BRCA2) genes with a higher 

risk of developing breast and ovarian cancer, as well as other solid tumors as PCa, pancreatic cancer 

and melanoma [33]. Specifically, PCa risk is increased in BRCA2 compared to BRCA1 mutation 

carriers [34]. These genes are a link between BCa and PCa, and could be the reason of several 

members affected by familial cancer within the same family. Nevertheless, a genetic test showed that 

the woman with BCa does not present mutations in BRCA1 or BRCA2. This suggests that it is not a 

case of HBOC syndrome. 

 

In this study, we find other genes, such as haptoglobin (HP) and human leukocyte antigen-G 

(HLA-G), which are differentially expressed in both PCa and BCa groups, where they are 

upregulated regarding to controls. 
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HP gene encodes a protein known as haptoglobin. The function of haptoglobin is to capture and 

bind free plasma hemoglobin, so that prevents kidney damage and loss of iron. It also acts as an 

antioxidant, has antibacterial activity, and plays a role in modulating many aspects of the acute 

phase response [35]. In addition, it is involved in the pathogenesis of tumors and infections. Some 

studies have demonstrated that haptoglobin levels in serum increase significantly when there are 

inflammation processes and cancer development [36,37]. 

 

On the other hand, HLA-G encodes a non-classical human leukocyte antigen (HLA) class I 

molecule. This molecule is expressed in physiological conditions, but it has also been detected in 

different types of tumors and its role in cancer has been broadly investigated in the recent years. 

There are seven isoforms of HLA-G as a result of alternative splicing, including four 

membrane-bound (HLA-G1, HLA-G2, HLA-G3 and HLA-G4) and three soluble (HLA-G5, HLA-G6 

and HLA-G7) isoforms. Heterogeneity of HLA-G in cancer implies a great variation in the levels of 

expression and the isoform profiles between tumor types and patients with the same type of tumor. 

However, HLA-G expression in cancer is related to immune suppressive microenvironments, 

advanced tumor stage, and poor therapeutic responses and prognosis [38].  

 

Tumors develop mechanisms for immune system evasion, such as the inhibition of tumor 

antigen presentation through aberrant expression of the antigen processing machinery [39]. HLA-G 

expression was first described in melanoma [40]. Through binding to its receptors ILT2, ILT4 and 

KIR2DL4, HLA-G could inhibit the function of immune effector cells and antigen presenting cells 

(APCs) [41]. It allows tumor cells to achieve a higher invasive, metastatic potential promoting 

immune surveillance escape and metastasis during the progression of disease. Thus, HLA-G could 

be an interesting molecular biomarker and a therapeutic target. Some strategies for cancer 

immunotherapy based on HLA-G are the use of a delivery system based on nanoparticles carrying 

anticancer drugs to the tumor, the downregulation of HLA-G by interfering RNA, the use of 

antibodies blocking HLA-G or its receptors and a HLA-G derived peptide that could induce 

cytotoxic activity against cells expressing HLA-G [42]. Anti-HLA-G blocking antibodies in animal 

models seem to restore antitumor immunity against tumor cells expressing HLA-G in vivo [43]. 

However, this constitutes a novel immune escape mechanism and therapeutic antibodies are 

currently in preclinical development [44]. 

 

About downregulated differentially expressed genes in PCa, we mainly find different 

transcripts of TP53 target gene 3 (TP53TG3). TP53TG3 is a TP53-inducible gene that plays a 

significant role in TP53-mediated signaling pathway, forming complexes with other proteins to be 

transferred into the nucleus, where it participates in functions such as cell cycle arrest, apoptosis, 

DNA repair, chromosomal stability, and/or inhibition of angiogenesis [45]. TP53 is known as the 

guardian of the genome and many studies have demonstrated its importance in several types of 

cancer [46,47]. Nevertheless, there is not so much investigation about TP53TG3. Mutations causing 

loss of function in TP53 tumor suppressor protein are frequent in cancer, what consequently affects 

the decreased expression of its targeted genes. It would explain that TP53TG3 and its transcripts 

appear as downregulated differentially expressed genes in PCa. 

 

Finally, we find a high number of genes with differential expression when we make a 

comparison between an aggressive phenotype of PCa and the rest of PCa samples. The major part of 

the differentially expressed genes are upregulated genes, indicating that upregulation and 

aggressiveness may be associated. This is reflected in the previous heat map, where higher levels of 

expression appear in the aggressive PCa sample and the dendrogram establishes a greater distance 

between this sample and the rest of them (Figure 7). Moreover, these genes could act as biomarkers 

of aggressiveness and progression of disease. From the resulting 132 differentially expressed genes, 

we look in previous published articles for those with a high logFC value and a low FDR value, 

obtaining names such as centromere protein F (CENPF), DLG associated protein 5 (DLGAP5) and 
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ribonucleotide reductase small subunit M2 (RRM2). However, there is a large list of genes that can 

be studied in the future to identify their role in PCa aggressiveness. 

 

CENPF encodes a protein associated with the centromere–kinetochore complex and 

chromosomal segregation during mitosis. There are studies that report the clinical significance of 

CENPF as a potential biomarker of PCa malignancy [48,49]. In fact, Shahid et al. reported that higher 

clinical grades of PCa showed increased expression of CENPF [49]. Branched-chain amino acid 

(BCAA) metabolism is one of the pathways regulated by CENPF that is related with cancer 

progression. 

 

DLGAP5 is a cell cycle related gene that has been reported to be overexpressed in a 

subpopulation of CRPC cells, suggesting that it is associated with an aggressive stage [50]. Also, the 

loss of DLGAP5 sensitizes androgen-dependent cells to docetaxel, a chemotherapeutic agent used in 

PCa treatment [51]. 

 

RRM2 is associated with poor outcomes in multiple tumors because it promotes 

epithelial-mesenchymal transition and angiogenesis [52]. RRM2 is responsible of dNTP production, 

leading to increased genomic instability, cancer progression and resistance to treatments. However, 

it can be silenced by using a small interfering RNA (siRRM2), a specific micro RNA (miR‐193b) [53] 

or a ribonucleotide reductase inhibitor (COH29) [54]. 

 

The translational relevance of this study relapse in the need of finding new biomarkers for PCa 

due to the current problems of diagnostic accuracy and overdiagnosis. Even though PCa is one of 

the most prevalent tumors in our society, tools for early disease diagnosis or monitoring of the 

treatment are still not effective enough. Here, we propose some genes that could serve as predictive, 

diagnostic and prognostic biomarkers, as well as molecular targets. Nevertheless, further studies 

would be needed to confirm the obtained results. The main limitations this study presents are 

sample size and available information at time of the study. We have samples from seven individuals 

within the same family, but we would need a higher number of samples to extrapolate results to the 

rest of population. In addition, we take as controls individuals that at time of the study did not have 

the disease. However, we do not know if they will develop cancer throughout their life. 

 

Future challenges for this study include the analysis of single-nucleotide polymorphisms 

(SNPs) on both RNA and DNA and expression quantitative trait loci (eQTLs). SNPs are substitutions 

of a single nucleotide that occurs in at least 1% of population. There is a great interest in their study 

because they are involved in differences in development, aggressiveness, and/or treatment response 

of certain diseases [55]. On the other hand, eQTLs are genetic variants that explain variation in gene 

expression levels [56].  

 

Data from this study are relevant because integration of omics data can help to better 

understand the aggressiveness of PCa; mainly due to its high incidence, relevance and the lack of 

current biomarkers. 

4. Materials and Methods 

4.1. Patients 

Seven individuals within the same family were analysed in the current study. In this family, 

there are five individuals affected of PCa, and there is a woman with BCa who does not present 

mutations in BRCA1 or BRCA2 genes. The available information suggests that it is a case of familial 

PCa (Figure 8).  
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Blood samples in EDTA tubes were taken from individuals 1 to 7. All subjects of the study 

provided a written informed consent to be enrolled in the project, which was previously approved 

by the Research Ethics Committee of Granada Center (CEI-Granada) code 0166-N-19 following 

Helsinki ethical declaration. 

 

 

 
 

Figure 8. Pedigree of the studied family. Circles indicate women whereas squares indicate men. Solid 

symbols represent affected people and open symbols represent unaffected people. Individual 7 died 

during the study. PCa denotes prostate cancer while BCa denotes breast cancer. 

4.2. Sample processing 

After collecting blood samples, RNA extraction was performed. The process began with the 

separation of plasma by centrifugation and later RNA was extracted according to QIAamp RNA 

miRNeasy Serum/Plasma (QIAGEN/QIACUBE) protocol [57]. 

 

Once RNA was obtained, next step was the preparation of libraries following the TruSeq® 

Stranded mRNA Sample Preparation Guide from Illumina (Figure 9). The workflow comprises 

seven processes: 

 

 Purify and fragment mRNA: it allows to purify the polyA containing mRNA molecules 

through oligo-dT attached magnetic beads. Then, the mRNA purified is fragmented and 

primed for cDNA synthesis. 

 

 Synthesize first strand cDNA: this process reverse transcribes the RNA fragments obtained 

previously primed with random hexamers into first strand cDNA. 

 

 Synthesize second strand cDNA: the second strand cDNA is synthesized using first strand 

cDNA as a template and incorporating dUTP instead of dTTP. Consequently, RNA is 

removed. 

 

 Adenylate 3’ ends: one adenine is added to the 3ʹ end of the blunt fragments to prevent them 

from ligating to one another during next step. Also, one thymine is added to the 3ʹ end of the 

adapter for a complementary ligation between the adapter and the fragment. This strategy 

prevent chimera formation. 

 

 Ligate adapters: this process ligates multiple indexing adapters to the ends of the double 

strand cDNA fragments, preparing them for hybridization onto a flow cell. 

 

 Enrich DNA fragments: there is a selectively enrichment of those DNA fragments that have 

adapter molecules on both ends by PCR and an amplification of the amount of DNA in the 

library. 
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 Normalize and pool libraries: this process prepares DNA templates for cluster generation. 

Afterwards, the sequencing is performed on a NextSeq 500 System (Illumina). 

 

For further details, see the Preparation Guide from Illumina [58]. 

 

 

Figure 9. Workflow of the library preparation following TruSeq® Stranded mRNA Sample 

Preparation Guide from Illumina. 

4.3. Data analysis 

The bioinformatics analysis starts with a study of the sequencing quality. This is important to 

avoid possible mistakes, such as adapters accumulation or poor quality, among others. For that 

purpose, FastQC software was used [59]. In order to have a complete coverage of the sequence, it is 

necessary to add one nucleotide more in the sequencing process. So that, this nucleotide needs to be 

removed later using the SeqTk toolkit [60]. Hisat2 [61] allows the alignment of the sequences to 

human genome (GRCh38/hg38). The output format of the files after alignment is SAM, therefore, we 

convert them to BAM format using Samtools [62]. Also, with Samtools it is possible to obtain the 

percentage of properly paired reads for each one of the samples (Table 2). 

 

Once the sequences are aligned to the reference genome, quantification is performed using 

featureCounts [63]. This function has different parameters we can specify to optimize the percentage 

of successfully assigned fragments of each sample (Table 3). Some of the parameters we take into 

account are those for avoiding the count of chimeric fragments, counting multi-mapping reads and 

assigning a read to the feature that has the largest number of overlapping bases. 
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Table 2. Percentage of properly paired reads of the seven samples. 

Number of sample Properly paired reads 

1 88.41% 

2 93.13% 

3 93.91% 

4 94.05% 

5 94.41% 

6 94.86% 

7 94.59% 

 

Table 3. Percentage of successfully assigned fragments of the seven samples. 

Number of sample Properly paired reads 

1 83.30% 

2 81.90% 

3 81.00% 

4 81.20% 

5 83.20% 

6 83.10% 

7 82.00% 

 

Finally, statistical analysis was performed using the edgeR package from Bioconductor [64]. 

EdgeR enables to examine differential expression of replicated count data using exact tests based on 

the negative binomial distribution. The result consists of a list with differentially expressed genes 

and their corresponding logFC (logarithm to the base two of the difference between expression 

means of a specific gene in both comparison groups) and FDR (adjusted P-values through 

Benjamini-Hochberg method to control the false discovery rate in multiple testing) values. Level of 

significance was established at 0.05. Additionally, this report includes density plots of the raw and 

filtered data, boxplots of the normalized and unnormalized data, MA plots, a MDS plot, a Venn 

diagram, a dendrogram and a heat map. Workflow of the entire data analysis is shown in Figure 10. 

 

 

Figure 10. Diagram representing the workflow of the data analysis. Blue represents programs used 

for the analysis and orange represents output files. 
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Abbreviations 

4Kscore Four-Kallikrein Panel 

ADT Androgen Deprivation Therapy 

APCs Antigen Presenting Cells 

AR Androgen Receptor 

AR-V7 Androgen Receptor Splice Variant-7 

BCa Breast Cancer 

BCAA Branched-Chain Amino Acid  

BRCA1 Breast Cancer Type 1 

BRCA2 Breast Cancer Type 2 

cDNA Complementary DNA 

CENPF Centromere Protein F 

CPM Counts Per Million 

CRPC Castration Resistant Prostate Cancer 

CTCs Circulating Tumor Cells 

DLGAP5 DLG Associated Protein 5 

dTTP Deoxythymidine Triphosphate 

dUTP Deoxyuridine Triphosphate 

EDTA Ethylenediaminetetraacetic Acid 

eQTLs Expression Quantitative Trait Loci 

FDA Food and Drug Administration 

FDR False Discovery Rate 

GSTs Glutathione S-Transferases 

HBOC Hereditary Breast and Ovarian Cancer 

HLA Human Leukocyte Antigen 

HLA-G Human Leukocyte Antigen-G 

HP Haptoglobin 

logFC Log Fold Change 

MDS Multidimensional Scaling 

miRNAs MicroRNAs 

mRNA Messenger RNA 

NGS Next-Generation Sequencing 

PCa Prostate Cancer 

PCA3 Prostate Cancer Antigen 3 

PCR Polymerase Chain Reaction 

PHI Prostate Health Index 

PSA Prostate Specific Antigen 

PTEN Phosphatase and Tensin Homolog 

RNA-Seq RNA Sequencing 

RRM2 Ribonucleotide Reductase Small Subunit M2 

SNPs Single-Nucleotide Polymorphisms 

TMM Trimmed Mean of M-values 

TMPRSS2:ERG Transmembrane Protease Serine 2:ETS-Related Gene 

TP53TG3 TP53 Target Gene 3 
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Appendix A 

Table A1. Information about the seven samples included in the study. This table contains their name, 

as well as their group, library size and normalization factor. Group 1 correspond to controls, group 2 

correspond to BCa and group 3 correspond to PCa. 

Sample File Group Library size Normalization factor 

Sample 1 sample1.rcounts 2 16238583 1.0334897 

Sample 2 sample2.rcounts 3 17659773 0.9736855 

Sample 3 sample3.rcounts 3 15669713 0.9506980 

Sample 4 sample4.rcounts 3 17665865 1.1730208 

Sample 5 sample5.rcounts 1 17232820 1.0233840 

Sample 6 sample6.rcounts 1 16771680 0.8024918 

Sample 7 sample7.rcounts 3 17260036 1.0850446 

 

 

Table A2. Differentially expressed genes in BCa. Upregulated genes are those with a positive logFC 

value, while downregulated genes have a negative logFC value. FDR is also shown in the table. A 

FDR value of 0.05 was established as threshold for the selection of genes with differential expression. 

Gene name logFC FDR 

KDM5D -14.134162 5.23E-43 

TXLNGY -13.924992 5.38E-39 

USP9Y -13.274073 1.82E-32 

UTY -12.135202 4.02E-27 

DDX3Y -11.124095 4.13E-26 

RPS4Y1 -11.637882 1.51E-25 

PRKY -6.389185 1.39E-23 

EIF1AY -11.658487 1.37E-22 

ZFY -10.798070 8.47E-20 

Xist_exon4 10.798606 3.18E-12 

XIST_intron 10.635697 2.32E-11 

BCORP1 -11.530795 8.53E-11 

RP11-424G14.1 -9.577773 1.82E-06 

TMSB4Y -11.759517 5.73E-06 

HP 2.987812 9.08E-06 

TTTY15 -7.148742 4.72E-05 

RP11-88G17.6 8.907718 0.000338 

ALDH1A1 2.245514 0.007066 

RNU6-941P -5.084648 0.009597 

IGHV3-30 2.113688 0.012709 

AC126755.2 -4.458948 0.012709 

AC244250.4 5.245980 0.017916 

AC005578.3 2.937979 0.044212 

KALP -7.528456 0.044212 

HLA-G 2.486229 0.044212 
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Table A3. Differentially expressed genes in aggressive PCa. There are 118 upregulated genes and 14 

downregulated genes, obtaining 132 genes with differential expression. A FDR value of 0.05 was 

established as threshold for the selection of those genes. 

Upregulated genes 

FAM118A RPS26P15 ANAPC1P1 CDCA5 AC068522.4 

CENPF RP11-116P24.2 HLA-DQB1-AS1 ARHGAP11A CCNB1 

GS1-184P14.2 RP11-403B2.6 ASPM VANGL1 FCRL6 

DLGAP5 RPS26 RPS26P6 TOX2 HJURP 

DTL CDCA7 CD38 TRIM15 CD8BP 

RP11-551L14.1 CDC45 TYMSOS KIF19 TRAJ36 

AC004057.1 GBP5 TK1 GINS2 ORC1 

RRM2 CDC20 RP11-275E15.2 MELK CD8A 

TRIM10 RPS26P31 TRBV12-3 IDH2 ERICH3 

TYMS CA1 RP11-330L19.1 KIF4A CXCL9 

MKI67 RPS26P11 UHRF1 HEATR9 PLK4 

TPX2 CCNB2 PCNA AFAP1L2 FRMPD3 

MCM4 PITX1 CLIC3 RP11-222K16.2 SKA3 

KIF11 CDC6 MCM10 ETV7 RP11-22B23.1 

BIRC5 KIF18B KIF15 E2F8 CDCA2 

POLQ MCM2 RPS26P8 CH507-513H4.1 FAM225A 

RPS26P3 TOP2A NUSAP1 TICRR SBK1 

CENPE MYBL2 GZMA RP11-277P12.20 WDR63 

RP4-620F22.2 DEPDC1B SKA1 SH2D1A CENPM 

CLSPN ZWINT CDT1 GTSE1 OSBP2 

LAG3 KIAA0101 HMMR CD8B TRBV12-4 

RPS26P47 SPATA3-AS1 MCM6 SMC4 GFI1 

CEP55 STMN1 KIFC1 GBP1P1  

TRAV21 EZH2 CDK1 SYNM  

Downregulated genes 

HLA-U HIST1H1E AKR1C1 MEG3 IL1R1 

AKR1C3 C2orf27A GPR183 CA4 CNTNAP3 

LYPD2 RHD COL18A1 CMTM2  
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