KAUST VIRTUAL RESEARCH CONFERENCE 2021

Enabling CO₂ Geological Storage within a Low-Carbon Economy

Supercritical CO₂ intrusion into caprocks: insights from numerical simulation of lab-scale CO₂ injection

Iman Rahimzadeh Kivi^{1,2}, Victor Vilarrasa^{1,2,3}, Roman Makhnenko⁴

¹ Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain

² Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain

³ Mediterranean Institute for Advanced Studies (IMEDEA), Spanish National Research Council (CSIC), Esporles, Spain

⁴ Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

ABSTRACT

Carbon capture and storage in deep geological formations suggests a promising large-scale CO₂ mitigation option. Currently available pathways to meet the Paris climate goal of limiting global warming to well below 2 °C involve significant contributions of geologic carbon storage. Nonetheless, this mitigation technology is not exempt from challenges. In particular, the potential CO_2 leakage through the caprock is a major concern. CO_2 is less dense than the in-situ brine in deep saline formations and tends to float. The upward migration of the buoyant CO₂, if causing leakage through the caprock, can put at stake the large-scale implementation of geologic carbon storage. Therefore, the assessment of the caprock sealing capacity is of paramount importance. This study provides an improved understanding of CO₂ flow mechanisms across the caprock based on insights gained from numerical simulations of core-scale CO₂ injections. We inject supercritical CO₂ into a caprock sample under representative subsurface conditions. We parameterize a twophase flow model using laboratory data and reproduce the CO₂ injection experiments. Overall, we conclude that advective CO₂ flow is unlikely to take place through a caprock with sufficiently high capillary entry pressure and low intrinsic permeability. The ubiquitous molecular diffusion principally dominates CO₂ leakage. These findings favor long-term storage of CO₂ underground. Nevertheless, diffusive leakage over geological time scales has yet to be assessed through fieldscale numerical simulations.