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We study the temperature dependence of the nuclear symmetry energy (NSE), of its volume and surface components 
and their ratio using two approaches. In the first one the results of these quantities for finite nuclei are obtained with-
in the coherent density fluctuation model (CDFM) that includes effects of nucleon-nucleon correlations. The CDFM 
weight function is calculated using the temperature-dependent proton and neutron densities obtained by the HF-
BTHO code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical transformed 
deformed harmonic-oscillator basis. In the second approach, based on the local density approximation (LDA), alter-
native ways to calculate the symmetry energy coefficient within the LDA are proposed. The Skyrme energy-density 
functional for nuclear matter is used. We present and discuss the values of the T-dependent volume and surface con-
tributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains around the double-magic 78Ni, 132Sn, and 
208Pb nuclei. The results are compared with estimations made previously for the behavior of the NSE components and 
their ratio at zero temperature and also with our previous results for the T-dependent NSE. We confirm the existence 
of “kinks” at T = 0 MeV for the double closed-shell nuclei 78Ni and 132Sn and the lack of “kinks” for the Pb isotopes. 
Some of our results for T-dependent proton and neutron rms radii as well as for the sizes of neutron skins in hot nu-
clei are also presented.
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INTRODUCTION

The nuclear symmetry energy (NSE) essentially char-
acterizes the isospin-dependent part of the equation of 
state (EOS) of asymmetric nuclear matter (ANM). The 
study of its density (ρ) and temperature (T) dependence 
is an important task in nuclear physics (see, e.g. [1–3]). 
The transition from ANM to finite nuclei is a natural 
and important way to learn more about the NSE, which 
is poorly constrained by experimental data on ground-
state nuclear properties. Using approaches like the local-
density approximation (LDA) [4–7] and the coherent 
density fluctuation model (CDFM) [8, 9], knowledge of 
EOS can give information about the properties of finite 
systems. The CDFM is a natural extension of the Fermi 
gas model and is based on the delta-function limit of 
the generator coordinate method [9, 10]. The model in-
cludes nucleon-nucleon correlations of a collective type. 
It allowed us to make the transition from nuclear matter 

to finite nuclei in the studies of the NSE for spherical [11] 
and deformed [12] nuclei, as well as for Mg isotopes [13] 
using the Brueckner energy-density functional (EDF) for 
asymmetric nuclear matter [14].

In our work [15] we used a similar method to investi-
gate the T-dependence of the NSE for isotopic chains of 
even-even Ni, Sn, and Pb nuclei following the LDA [4–7] 
and using instead of the Brueckner EDF, the Skyrme 
EDF with SkM* and SLy4 forces. The T-dependent local 
densities ρ(r, T) and kinetic energy densities τ(r, T) were 
calculated using a self-consistent Skyrme HFB method 
that used the cylindrical transformed deformed harmon-
ic-oscillator basis (HFBTHO) [16, 17] with the above-
mentioned forces.

In our work [18] the volume and surface contributions to 
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the NSE and their ratio were calculated within the CDFM 
using two EDF’s, namely the Brueckner [14] and Skyrme 
(see Ref. [19]) ones. The CDFM weight function was 
obtained by means of the proton and neutron densities 
calculated using the self-consistent deformed HF+BCS 
method with density-dependent Skyrme interactions. 
The results in the cases of Ni, Sn, and Pb isotopic chains 
were compared with those of other theoretical methods 
and from other approaches that used experimental data 
on binding energies, excitation energies to isobaric ana-
log states (IAS), and neutron-skin thicknesses. We note 
that in [18] the values obtained for the volume and sur-
face components of the NSE and their ratio for the case 
of T = 0 MeV.

The first aim of the present work (see also [20]) is to 
evaluate the above-mentioned quantities for tempera-
tures different from zero. The T-dependent local den-
sity distributions ρp(r, T) and ρn(r, T) computed by the 
HFBTHO code are used to calculate the T-dependent 
CDFM weight function. Such an investigation of the 
thermal evolution of the NSE components and their 
ratio for isotopes belonging to the Ni, Sn, and Pb chains 
around the double-magic nuclei, will extend our previ-
ous analysis of these nuclei that treated them as cold 
systems [18]. At the same time, the results obtained us-
ing the CDFM provide additional information on the 
thermal mapping of the volume and surface symmetry 
energies that has been poorly investigated till now (e.g., 
Ref. [21]).

The second aim of our work (see also [15]) is to calculate 
the T-dependent NSE for the nuclei from the mentioned 
isotopic chains, their proton and neutron rms radii as 
well as the sizes of neutron skins using an alternative 
method based on the LDA, the Skyrme EDF and the HF-
BTHO code.

THE FORMALISM AND RESULTS WITHIN THE 
CDFM

The expression for the nuclear energy given in the drop-
let model can be written as [22, 23]:

  (1)

In Eq. (1) B ≃ 16 MeV is the binding energy per particle 
of bulk symmetric matter at saturation. ES, EC, Edif, and 
Eex are coefficients that correspond to the surface energy 
of symmetric matter, the Coulomb energy of a uniformly 
charged sphere, the diffuseness correction and the ex-
change correction to the Coulomb energy, while the last 
term gives the pairing corrections (∆ is a constant and 
a = +1 for odd-odd nuclei, 0 for odd-even and -1 for 
even-even nuclei). SV is the volume symmetry energy pa-
rameter and SS is the modified surface symmetry energy 
in the liquid model (see Ref. [22], where it is defined by 
SS*).

In our previous work [15] we studied the temperature 
dependence of the NSE, S(T). For the aims of the pres-
ent study we will rewrite the symmetry energy [the third 
term in the right-hand side of Eq. (1)] in the form

  (2)

where

  (3)

with

  (4)

In the case of infinite nuclear matter, where A → ∞ and 
SS / SV → 0, we have S(T) = SV(T). Also at large A Eq. (3) 
can be written in the known form (see Ref. [24]):

  (5)

Where c3 = SV and c4 = SS. From Eq. (3) the relations of 
SV(T) and SS(T) with S(T) can be found:

  (6)

  (7)

In what follows we use essentially the CDFM scheme 
to calculate the NSE and its components (see Refs. [8, 
9, 18]) in which the one-body density matrix ρ(r,r′) is 
a coherent superposition of the one-body density ma-
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trices ρx(r,r′) for spherical “pieces” of nuclear matter  
(“fluctons”) with densities ρx(r) = ρ0(x)Θ(x– |r|) and  
ρ0(x) = 3A/4πx3. The density distribution in the CDFM 
has the form:

  (8)

It follows from (8) that in the case of monotonically de-
creasing local density (dρ/dr ≤ 0) the weight function 
|F(x)|2 can be obtained from a known density (theoreti-
cally or experimentally obtained): 

  (9)

We have shown in our previous work [11, 12, 18] that the 
NSE in the CDFM for temperature T = 0 MeV can be 
obtained in the form:

  (10)

where the symmetry energy for the ANM that depends 
on the density S [ρ(x)] has to be determined using a 
chosen EDF (in [18] Brueckner and Skyrme EDF’s have 
been used).

Correspondingly, we calculated the pressure (p0) and the 
curvature (∆K) within the CDFM at T = 0 MeV from the 
expression:

  (11)

  (12)

where

  (13)

  (14)

In the present work the T-dependent NSE S(T), the pres-
sure p0 and the curvature ∆K are calculated by expres-

sions similar to Eqs. (10) - (12), correspondingly, but con-
taining T-dependent quantities. The NSE has the form

  (15)

In Eq. (15) the weight function |F(x, T)|2 depends on 
the temperature through the temperature-dependent 
total density distribution ρtotal(r, T):

  (16)

where

  (17)

In Eq.(17) ρp(r, T) and ρn(r, T) are the proton and neu-
tron T-dependent densities that in our work [15] were 
calculated using the HFB method with transformed 
harmonic-oscillator basis and the HFBTHO code [16]. 

Following Refs. [18, 25–28] an approximate expression 
for the ratio κ(T) can be written in terms of the CDFM:

 (18)

Where |F(x, T)|2 is determined by Eq. (16), R = r0A1/3 
[28] and S(ρ0) is the NSE at equilibrium nuclear matter 
density ρ0 and T = 0 MeV. For instance, the values of 
S(ρ0) for different Skyrme forces in the Skyrme EDF are 
given in Table II of Ref. [18]. In what follows, we use as 
an example the commonly employed power parametri-
zation for the density dependence of the symmetry en-
ergy (e.g., [27, 28])

  (19)

There exist various estimates for the value of the param-
eter γ. For instance, in Ref. [28] γ = 0.5 ± 0.1 and in Ref. 
[27] 0.54 ≤ γ ≤ 0.77. The estimates in Ref. [29] (Table 
2) of the NSE based on different cases within the chiral 
effective field theory and from other predictions lead 
to values of γ = 0.60 ± 0.05 (N2LO), γ = 0.55 ± 0.03 
(N3LO), γ = 0.55 (DBHF) and 0.79 (APR [30]). Another 
estimate of γ = 0.72 ± 0.19 is also given in Ref. [31].
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In Fig. 1 we give the results in the case of T = 0 MeV for 
the neutron-skin thickness ∆R of the Ni isotopic chain 
and its correlations with S, p0, and ∆K obtained in our 
work [11] using the CDFM and the deformed self-con-
sistent mean-field Skyrme HF+BCS method using SLy4, 
SG2, Sk3, and LNS forces. It is seen from Fig. 1(a) that 
there exists an approximate linear correlation between  
∆R and S for the even-even Ni isotopes with A = 74-84. 
A smooth growth of the NSE until the double-magic 78Ni 
(N = 50) and then a linear decrease of S while the skin 
thickness increases can be seen. A similar approximate 
linear correlation between ∆R and p0 for the Ni isotopes 
(Fig. 1(b)) and a less strong correlation between ∆R and  
∆K (Fig. 1(c)) is observed.

In Fig. 2 (left) the NSE S is given as a function of A for 
the whole Kr isotopic chain (A = 82-120). One can ob-
serve peaks of S at the semi-magic 86Kr (N = 50) and 
118Kr (N = 82) nuclei. A flat area is found surrounded by 

the transitional regions with A = 88-96 and A = 110-116. 
These results are closely related to the estimate of the 
quadrupole parameter  (Q being 
the mass quadrupole moment and <r2>1/2 the nucleus rms 
radius) as a function of the mass number A (see Fig. 2 
(right)). One can see that the semi-magic 86KR and 118Kr 
isotopes are spherical, while the open-shell Kr isotopes 
within this chain possess two equilibrium shapes, oblate 
and prolate. The transitional regions from spherical to 
well deformed shapes correspond to transitions from the 
peaks to the valley in the symmetry energy.

In Fig. 3 are given, as an example, the results for the  
T-dependent NSE S(T ), its volume SV(T ) and surface 
SS(T) components, as well as their ratio κ(T) = SV(T)/
SS(T) for the Ni chain obtained in the calculations using 
relationships (15)-(19) with the weight function |F(x, T)|2 
from Eqs. (16)-(17). The T-dependent proton ρp(r, T), 

fig. 1: HF+BCS neutron skin thicknesses ∆R for ni isotopes as a function of the symmetry energy s (a), pressure p0 (b), and asymmetric 
compressibility ∆K (c) calculated with Sly4, SG2, Sk3, and lnS forces.

fig. 2: left: the symmetry energies s for Kr isotopes (A = 82-120) calculated with Sly4, SGii, Sk3, and lnS forces. Right: the quadrupole 
parameter β  as a function of the mass number A for the even-even Kr isotopes (A = 82-120) in the case of Sly4 force.
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neutron ρn(r, T) and the total ρtotal(r, T) [Eq. (17)] density 
distributions were calculated using the HFBTHO code 
from [16] with the Skyrme EDF for the SkM* and SLy4 
forces. The results are presented for two values of the 
parameter γ = 0.3 and 0.4. As can be seen, the calcula-
tions in the case of γ= 0.4 for κ(T) are compatible with 
the published values of κ extracted from nuclear proper-
ties presented in [28] (2.0 ≤ κ ≤ 2.8), such as the isobaric 
analog states and skins [25] and masses and skins [26]. 
With increasing T, the quantities S, SV, and SS decrease, 
while κ slightly increases for all the isotopes in the three 
chains and for both Skyrme forces. Within each isotopic 
chain the quantities S, SV, and SS decrease with increasing 
mass number, whereas κ increases for both Skyrme forces 
and for any T ranging from 0 MeV to 3 MeV. The studied 
quantities are sensitive to the values of the parameter γ 
used to parameterize S[ρ(r, T)] in Eq/ (19). In the case of 
γ = 0.3 our results are in agreement with those from Ref. 
[28] (1.6 ≤ κ ≤ 2.0). We note also that there are “kinks” 
in the curves of S(T), SV(T), and SS(T), and κ(T) for T = 0 
MeV in the case of the double closed-shell nucleus 78Ni. A 
“kink” is also observed for T = 0 MeV in the case of 132Sn 
in the Sn chain, while no “kinks” are seen in the Pb chain.

In our work [20] a comparison with results using alterna-
tive parametrizations of the density dependence of the 
symmetry energy (e.g., from Refs. [32, 33]) has been pre-
sented.

THE FORMALISM AND RESULTS USING THE 
LDA

In this Section we present results of our studies (see also 
Ref. [15]) using the LDA of the T-dependence of NSE 
[here noted by esym(A, T)] and other nuclear structure 
properties for even-even Ni, Sn, and Pb nuclei. The 
Skyrme EDF with SkM* and Sly4 forces is used. The 
main ingredients of our calculations are the T-dependent 
proton and neutron density distributions, as well as the 
kinetic energy densities. Our results for the densities and 
the related quantities obtained through the HFBTHO 
code are given in Ref. [15]. 

 

fig. 4: left: Proton Rp (solid line) and neutron Rn (dashed line) radius of 124Sn, 
132Sn, and 152Sn isotopes with respect to the temperature t calculated with Sly4 
interaction. Right: neutron skin thickness ∆R for the same Sn isotopes as a 
function of t.

Here we present in Fig. 4, as an example, the T-depen-
dent proton and neutron rms radii and the correspond-
ing neutron skin thickness in the case of 124, 132, 152Sn 
nuclei. It can be seen that the effect of temperature leads 
mainly to a substantial increase of the neutron radii and 
skins.

Concerning the NSE, here we give one of our approach-
es that is based on the following expression for esym(A, T):

fig. 3: Mass dependence of the nSe S(t), its volume Sv(t) and surface SS(t) 
components and their ratio κ(t) for nuclei from the ni isotopic chain at 
temperatures t = 0 Mev (solid line), t = 1 Mev (dashed line), t = 2 Mev (dotted 
line), and t = 3 Mev (dash-dotted line) calculated with SkM* Skyrme interaction 
for values of the parameter γ  = 0.3 (left panel) and γ  = 0.4 (right panel).
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  (20)

where I = (N–Z)/A, δ(r) = [ρn(r)–ρp(r)]/ρ(r) and ε(r, T) is 
the total energy density of the system obtained in our 
case from the Skyrme EDF for infinite homogeneous nu-
clear matter. The second term in the right-hand side of 
Eq. (20) is analogous for the isotope with A1 = 2Z (N1 =  
Z = A1/2). For example, for the Ni isotopic chain the 
nucleus A1 is the doubly-closed shell nucleus 56Ni (Z = N1 
= 28), while for the Sn isotopic chain the nucleus with 
mass number A1 is the doubly-closed shell nucleus 100Sn 
(Z = N1 = 50). Thus, both 56Ni and 100Sn isotopes play a 
role of reference nuclei. For the case of the Pb chain we 
use again 100Sn as a reference nucleus because there do 
not exist appropriate bound nuclei for the purpose.

The results for the NSE esym(A, T ) obtained by using 
Eq.(20) for several nuclei from Ni (A = 70-82), Sn (A = 
124-140) and Pb (A = 206-214) isotopic chains with the 
SkM* force are presented in Fig.5. The NSE exhibits 
almost flat behavior for the double-magic 78Ni and 132Sn 
nuclei. In general, for all isotopic chains considered and 
for both Skyrme forces used in the calculations, the sym-
metry energy coefficient decreases smoothly with increase 
of the mass number in the same temperature interval. 
Concluding, the results for esym(A, T) calculated in our 
work (see also Ref. [15]) for various isotopes are in good 
agreement with theoretical predictions for some specific 
nuclei reported by other authors. At the same time, how-
ever, in our paper [15] we pointed out the dependence 
of the results for esym(A, T) on various definitions of this 
quantity.

CONCLUSIONS

In Section II of the present work we presented the re-
sults of calculations of the temperature dependence of 
the NSE S(T), its volume SV(T) and surface SS(T) com-
ponents, as well as their ratio κ(T) = SV(T)/SS(T). Our 
method was based on the local density approximation. 
It used the coherent density fluctuation model [8, 9] 
with T-dependent proton ρp(r, T), neutron ρn(r, T), and 
total ρtotal(r, T ) = ρp(r, T ) + ρn(r, T ) density distribu-
tions. The latter were calculated using the self-consistent 
Skyrme HFB method using the cylindrical transformed 
harmonic-oscillator basis (HFBTHO) [16, 17] and the 
corresponding code with SkM* and SLy4 Skyrme forces. 

The quantities of interest were calculated for the isotopic 
chains of Ni, Sn, and Pb nuclei.

The main results of Section II (see also [20]) can be sum-
marized as follows:

(i) With increasing T, the quantities S, SV, and SS de-
crease, while κ slightly increases for all the isotopes in the 
three chains and for both Skyrme forces.

(ii) Within each isotopic chain, as a function of the mass 
number, the quantities S, SV, and SS decrease with in-
creasing A, whereas κ increases for both Skyrme forces 
and for any T ranging from 0 MeV to 3 MeV.

fig. 5: temperature dependence of the symmetry energy coefficient esym 
obtained by using eq. (20) for several nuclei from ni (A = 70–82) (a),  
Sn (A = 124–140) (b), and Pb (A = 206–214) (c) isotopic chains with SkM* force. 
the nucleon densities and kinetic energy densities used to calculate esym are 
consistently derived from the HFBtHO code.
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(iii) The quantities S(T), SV(T), SS(T), and κ(T) are sensi-
tive to the values of the parameter γ used to parametrize 
S[ρ(x, T)] in Eq. (19). The results obtained with values of 
γ between 0.3 and 0.4 agree with our previous results in 
the case of T = 0 MeV obtained for the components of 
NSE and their ratio (Ref. [18]), for the T-dependent NSE 
[15] and are compatible with the available experimental 
data.

(iv) In the cases of double-magic 78Ni and 132Sn nuclei 
we observed “kinks” for T = 0 MeV in the curves of S(T), 
SV(T), SS(T), and κ(T), but not in the case of Pb isotopes. 
This effect was also found in our previous works.

We note that the kinks disappear as T increases, demon-
strating its close relationship with the shell structure.

The results presented in Section III (see also [15]), and 
obtained in an approach using the LDA, the Skyrme 
EDF and HFBTHO code, can be summarized as follows:

(i) The increase of the temperature leads mainly to a sub-
stantial growth of the neutron radius and skin thickness.

(ii) For the Ni, Sn, and Pb isotopic chains and for both 
Skyrme forces (SkM* and SLy4) used in the calculations, 
the symmetry energy coefficient decreases smoothly with 
the increase of the mass number in the considered tem-
perature interval.
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