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ABSTRACT. 

Imidazoline I2 receptors (I2-IR), widely distributed in the CNS and altered in patients that 

suffered from neurodegenerative disorders, are orphan from the structural point of view and new 

I2-IR ligands are urgently required for improving their pharmacological characterization. We 

report the synthesis and 3D-QSAR studies of a new family of bicyclic -iminophosphonates 

endowed with relevant affinities for human brain I2-IR. Acute treatment in mice with a selected 

compound significantly decreased the FADD protein in the hippocampus, a key marker in 

neuroprotective actions. Additionally, in vivo studies in the familial Alzheimer’s disease 5xFAD 

murine model revealed beneficial effects in behavior and cognition. These results are supported 

by changes in molecular pathways related to cognitive decline and Alzheimer’s disease. 

Therefore bicyclic -iminophosphonates are tools that may open new therapeutic avenues for I2-

IR, particularly for unmet neurodegenerative conditions.  
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INTRODUCTION 

The imidazoline receptors (IR) (non-adrenergic receptors for imidazolines)1 have attracted the 

attention of the scientific community during decades building a body of knowledge that place 

them as relevant biological targets.2,3 IR are classified in I1, I2 and I3-types depending on the 

specific radio-labelled ligands that recognize their binding sites. These receptors are situated in 

different locations and are involved in different physiological functions.4 I1, I2 and I3-IR have 

been unequally studied. Pharmacologically, I1-IR are well characterized and understood, leading 

to the clinically approved antihypertensive drugs moxonodine5 and rilmenidine.6 The most-

unknown are I3-IR, identified in pancreatic -cells and involved in insulin secretion.7 Regarding 

I2-IR, although structurally undescribed, a considerable understanding has been achieved on 

these heterogeneous receptors by using well-characterized I2-IR ligands.8 I2-IR are widely 

distributed in the brain and, at the molecular level, are located in the outer membrane of 

mitochondria. Selective I2-IR ligands have proven that I2-IR are involved in analgesia,9 

inflammation,10 and a plethora of human brain disorders.11 Dysregulations in the levels of I2-IR 

are a hallmark in illnesses such as glial tumors,12,13 Huntington’s disease,14 Parkinson’s disease,15 

and depression16,17 amongst others. In particular, I2-IR are reported to be increased in the brain of 

patients that suffered from Alzheimer’s Disease (AD).18,19 Recently, two I2-IR ligands, CR4056 1 

and [13C]BU99008 2, have been progressed to clinical trials. CR4056 1,20,21 described as the 

first-in-class I2-IR ligand embodying analgesic properties, is in clinical phase II studies for 

osteoarthritis and postoperative dental pain, and [13C]BU99008 222,23 is in early clinical phase I 

for PET diagnosis for patients that suffer from AD.  

The implication of I2-IR in many physiological and pathological processes emphasizes their 

pharmacological relevance and deserves in-depth studies. Since the structural data for I2-IR 
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remains unknown, the discovery of better and more selective I2-IR ligands is crucial to build a 

comprehensive understanding of the pharmacological implications of I2-IR. 

Although there are a few exceptions, LSL60101 3 and most notably the clinical candidate 

CR4056 1, the vast majority of known I2-IR ligands (idazoxan, 4; tracizoline 5, and 2-BFI, 6) are 

2-substituted-2-imidazolines without further decoration in the 1-, 4- and 5-positions (Figure 1).24 
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Figure 1. Representative I2-IR ligands. 

In order to explore new imidazoline-based I2-IR ligands moving out of the comfort zone offered 

by the rather structurally homogeneous I2-IR ligands reported so far (Figure 1), we have recently 

disclosed a family of (2-imidazolin-4-yl)phosphonates.25,26 The putative therapeutic relevance of 

a member of this new family of I2-IR ligands, MCR5 7, was validated in a murine model of 

neurodegeneration, the senescence accelerated mouse-prone 8 (SAMP8).27 An improvement in 

the cognitive decline and related biomarkers was found when MCR5 7 was orally administered 

to the animals. This study was the first in vivo evidence that reinforced I2-IR as a promising 



 6

target for the treatment of cognitive impairment, associated to multiple neurodegenerative 

diseases.27  

Separately, we had reported that the diastereoselective [3+2] cycloaddition of diethyl 

isocyanomethylphosphonate with ten diversely substituted maleimides in acetonitrile under 

AgOAc catalysis furnished a series of bicycles of general structure Ia (Scheme 1a).28 The 

presence, within this series of compounds of an -iminophosphonate unit, also featured in the 

abovementioned (2-imidazolin-4-yl)phosphonates, prompted us to evaluate whether these 

bicycloderivatives would also behave as I2-IR ligands. We indeed found that two of these ten 

already reported compounds, 8a and 8c (Scheme 1b), displayed an affinity for the I2-IR similar 

to that of idazoxan 4 (see below). These promising results encouraged us to resume our research 

with this family of bicyclic -iminophosphonates with the two-fold aim of further exploring the 

scope of the aforementioned [3+2] cycloaddition reaction and of establishing their structure-

activity relationships (SAR) as I2-IR ligands. 

Scheme 1. a) General structure of bicyclic -iminophosphonates Ia (previously reported) 

and Ib (reported herein) and reaction conditions;a b) Chemical structures of 8a and 8c; and 

c) Chemical structure of MCR5 7. 
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aReagents and conditions, (a) N-substituted maleimide derivative (1.5 mmol), PhosMic (1 

mmol), AgOAc (0.06 mmol), acetonitrile, room temperature, overnight. 

Herein, we explore the synthetic scope of the [3+2] cycloaddition reaction of -substituted 

PhosMic derivatives and diversely substituted maleimides. Particular attention was given to 

derivatives including a phenyl substituent in the -position of the phosphonate leading to general 

structures 9 depicted as Ib in the Scheme 1a, in order to resemble the structure of MCR5 7 

(Scheme 1c). We also assessed the pharmacological profile and selectivity of a wide range of 

bicyclic -iminophosphonates through competition binding studies against the selective I2-IR 

radioligand [3H]-2-[(2-benzofuranyl)-2-imidazoline] (2-BFI).29 Selectivity versus two related 

targets, the I1-IR and the 2-adrenergic receptor (2-AR) was evaluated through competition 

studies using the selective radioligands [3H]clonidine and [3H]RX821002 (2-methoxyidazoxan), 

respectively. Complementary, we performed 3D-QSAR studies. Compound 9d, endowed with 

outstanding I2-IR affinity and excellent selectivity index regarding I1-IR and 2-AR, was selected 

for further studies. We first compared the affinity for the human I2-IR of 9d with those of the 
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standards shown in Figure 1. Additionally, the affinity for I2-IR from different species was 

considered for idazoxan 4 and 9d. Next, we performed preliminary DMPK studies for 9d, 

including chemical stability, PAMPA-BBB permeability assay, solubility, cytotoxicity, 

microsomal stability, cytochromes inhibition, and safety. Finally, we characterized its in vivo 

neuroprotective effects in the 5xFAD murine model of AD. 

RESULTS AND DISCUSSION  

Chemistry 

Synthesis and structural characterization 

Considering the previously described compounds 8a and 8c as promising starting points for 

designing potent I2-IR ligands, we resolved to prepare bicyclic compounds functionally close to 

MCR5 7 by including a -phenyliminophosphonate moiety in their structure. To this end, we 

decided to increase the scope of the original [3+2] cycloaddition by using diversely -substituted 

PhosMic derivatives (Figure 2). 

 

Figure 2. -Substituted PhosMic derivatives used in this work. 

The preparation of the -substituted PhosMic derivatives was performed adapting previously 

described procedures (for references and experimental procedures, see Supporting Information). 

Briefly, the four phenylisocyanomethylphosphonates 10a, 10b, 10c and 11 were prepared by 

conversion of the required (-aminophenyl)phosphonate derivative to the corresponding 
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formamide followed by dehydration with phosphorus oxychloride. While diethyl (-

aminophenyl)phosphonate is a commercially available compound, the other three precursors 

were synthesized according to published procedures. A different approach was followed for the 

-benzylisocyano derivatives 10d and 10e. Alkylation of commercially available PhosMic with 

either benzylbromide or 4-fluorobenzylbromide, using potassium tert-butoxide furnished diethyl 

benzylisocyanomethylphosphonate 10d and diethyl 4-fluorobenzylisocyanomethylphosphonate 

10e, respectively.  

The maleimides used in the cycloaddition reaction were commercially available or were prepared 

following previously described procedures. 

Gratifyingly, although the targeted compounds feature increased steric hindrance in the -

phosphonate position, our previously optimized set of conditions for the [3+2] cycloaddition 

reaction of maleimides with PhosMic also worked for the current set of -substituted PhosMic 

derivatives.28 In this way, 36 new bicycloderivatives (Schemes 2 and 3) having a quaternary 

stereocenter, were synthesized in medium to high yields (experimental section). The products 

were purified by column chromatography and, when solids, analytical samples were obtained by 

recrystallization. For the sake of clarity in the section I2-IR binding activity and structure-activity 

relationships the new -substituted bicycles, depicted in Schemes 2 and 3, were ordered and 

numbered attending to the SAR discussion.  

Analogously to our previous work,28 all the [3+2] cycloaddition reactions occurred in a 

diastereoselective manner and only one of the two possible diastereoisomers was formed.  The 

relative configuration of the three stereocenters in the new compounds was unambiguously 

confirmed by X-ray crystallographic analysis for five examples and the stereochemistry of the 
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other compounds was assigned by comparison of their 1H and 13C-NMR spectra (Tables S12 and 

S13). 

Scheme 2. General procedure for the synthesis of bicyclic -iminophosphonates.a 

Compounds prepared in previous work (R = H)28 and compounds prepared in this work (R 

= Ph, 4FPh, 4-MeOPh, PhCH2, 4FPhCH2).  
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aReagents and conditions, (a) N-substituted maleimide derivative (1.5 mmol), -substituted 

PhosMic (10a, 10b, 10c, 10d, 10e, 1 mmol), AgOAc (0.06 mmol), acetonitrile, room 

temperature, overnight. 

Scheme 3. Second-round of compounds synthesized, featuring modified N-maleimide 

substituents inspired by compounds 9a and 9b, R’ = alkyl and 9c and 9d, R’ =aryl.a 

 



 11

 

aReagents and conditions, (a) N-alkyl or aryl substituted maleimide derivative (1.5 mmol), -

PhenylPhosMic (10a, 1 mmol), AgOAc (0.06 mmol), acetonitrile, room temperature, overnight. 

As previously noted the [3+2] cycloaddition reaction between -substituted PhosMic derivatives 

and diversely substituted maleimides was completely diastereoselective, only one of the two 

possible diastereoisomers was observed. Iminophosphonates 9b, 9c, 9d, 9v and 9ab were 

recrystallized as monocrystals from ethyl acetate. Their relative configuration was 

unambiguously confirmed by X-ray crystallographic analysis, indicating a trans relationship 

between the hydrogen atoms on the bridged positions and the substituent at the α phosphonate 

carbon atom (Figure 3). 
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                  9b                9c                     9d                              9v                      9ab 

Figure 3. X-Ray structures of 9b, 9c, 9d, 9v and 9ab . 

Finally, the origin of the diastereoselective [3+2] cycloaddition was investigated by quantum 

mechanical (QM) calculations that were performed for the addition of N-methylmaleimide to -

phenylPhosMic (in this latter case the ethyl groups were replaced by methyl in order to reduce the 

cost of QM computations). In addition, a silver cation bound to acetonitrile was introduced to 

account for the catalytic effect on the chemical reaction. Reactants, transition states and products 

for the cis and trans [3+2] cycloadditions were determined from geometry optimizations at the 

B3LYP/6-31+G(d) (LANL2DZ for silver) level, and the nature of the stationary points was 

verified from the analysis of the vibrational frequencies. The geometries of the transition states 

point out that the cycloaddition occurs via an asynchronous concerted process as the length of the 

bond that is formed by carbon atom 3a is shorter than the bond formed by carbon atom 6a by 0.51 

and 0.23 Å in the cis and trans addition, respectively (Figure 4). Moreover, a significant deviation 

from linearity is observed in the isocyano group, as the C-N-C angle is close to 144 degrees in the 

two transition states. The results also point out that the transition state leading to the trans addition 

was more stable by 2.3 kcal mol−1 relative to the cis cycloaddition (Table S1), presumably due to 

the destabilizing electrostatic interactions between the oxygen atoms of the phosphonate and 

maleimide moieties. The preferred stability of the trans transition state was further checked by 

geometry optimizations performed the cis and trans cycloadditions with the MN15L density 

functional, leading to a free energy difference of 1.2 kcal mol−1 favoring the trans cycloaddition. 
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The contribution due to the solvation effects in acetonitrile was determined by means of 

continuum solvation calculations (see Methods). The results (Table S1) reveal that solvation leads 

to a slight destabilization of the transition state relative to the reactants. Nevertheless, this effect 

cancels out for the cis and trans addition, which can be understood from the similar structural 

features of the two transition states. Overall, these results justify the preferential formation of the 

diastereoselective compound originated from the trans cycloaddition (Figure 4). 
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Figure 4. Representation of the transition states for the cis and trans [3+2] cycloaddition 

between N-methylmaleimide and -phenylPhosMic (ethyl groups substituted by methyl) located 

from B3LYP calculations (C...C distances in a; C-N-C angle in degrees). 

 

I2-IR binding activity and Structure-Activity Relationships 

The pharmacological activity of the compounds depicted in Schemes 2 and 3 was evaluated 

through competition binding studies against the selective I2-IR radioligand [3H]-2-BFI and the 

selective 2-AR radioligand [3H]RX821002. The studies were performed in membranes from 

post-mortem human frontal cortex, a brain area that shows an important density of I2-IR and 2-

AR.30 Idazoxan 4, a compound with well-established affinity for I2-IR (pKi = 7.27 ± 0.07) and 

2-AR (pKi = 7.51 ± 0.07) was used as reference. The inhibition constant (Ki) for each 

compound was obtained and is expressed as the corresponding pKi (Table 1). The selectivity for 

these two receptors was expressed by the I2/2 index, calculated as the antilogarithm of the ratio 

between pKi values for I2-IR and pKi values for 2-AR (Table 1). Competition experiments 

against [3H]2-BFI were monophasic for most of the compounds (for a few exceptions, see 

below). 

Among the set of ten bicycles of general structure Ia (Scheme 1a) already reported28 five 

representative compounds, 8a, 8b, 8c, 8d and 8e, were selected for evaluation as potential I2-IR 

ligands considering the substitution in the N-maleimide by an alkyl (8a), cycloalkyl (8b), 

unsubstituted phenyl (8c), electron withdrawing-disubstituted phenyl (8d) and electron donating-

substituted phenyl (8e) groups. 
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Pleasantly, 8a and 8c displayed pKi I2 affinity of 6.79 and 7.73, respectively, in the range of that 

of idazoxan 4 (7.41). However, no promising results were found for 8b, 8d and 8e (Table 1). As 

a first structural approximation, we turned our attention to compounds bearing a quaternary 

center in the -position by including a phenyl group. In this manner, the new compounds would 

resemble the -phenyliminophosphonate moiety of MCR5 7 (in pink color in Scheme 1a and 

1c). In order to maintain the homology with the first series of evaluated compounds (Scheme 2, 

R = H), analogous maleimide derivatives were considered to give access to compounds 9a, 9b, 

9c, 9d, and 9e (Scheme 2, R = phenyl). Indeed, this change was highly positive for the whole 

series, increasing the pKi I2 affinity for all the phenyl-substituted derivatives compared to their 

unsubstituted congeners, with the added benefit, in three cases (9a, 9d and 9e), of an enhanced 

I2/2 selective ratio up to 195. A remarkably benefit in the I2-IR affinity, pKi I2 9.74 (Ki = 18 

nM) was observed in N-cyclohexyl derived 9b, 4-fold compared with analogous 8b with an I2/2 

selectivity of 5. The rise in the affinity was also conserved in compounds bearing an N-arylimide 

substitution. In particular, the presence of an N-phenyl group led to 9c, with an outstanding 

activity binding pKi I2 10.28 (Ki = 63.0 pM), but not I2/2 selectivity. Gratifyingly, introduction 

of halogen atoms (3-chloro-4-fluoro) in the N-phenyl ring of 9c led to congener 9d that kept a 

nice affinity, with a pKi I2 8.56. Of note, 9d fitted significantly better to a two-sites binding 

model, with a high pKi I2 8.61 (KiH= 2.45 nM) and a low pKi I2 4.29 (KiL= 51.2 µM), with the 

high-affinity site representing a calculated 37% of the specific binding of [3H]2-BFI at 2 nM 

concentration. 

The enhancement, both in terms of affinity and of selectivity, observed when moving from the -

unsubstituted to the -substituted phosphonates prompted us to briefly consider additional 

variations. The introduction in the -phosphonate position of p-fluorophenyl (12c) or p-
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methoxyphenyl (13c), benzyl (14c), and p-fluorobenzyl (15c) groups was highly deleterious for 

the affinity (pKi I2 = 6.59 for 14c and pKi I2 < 3 up to 5.35 for 12c, 13c and 15c, respectively). 

However, for the p-substituted phenyl derivatives, the further introduction of halogen atoms (3-

chloro-4-fluoro) in the N-phenyl ring (compounds 12d and 13d), nicely restored the affinity (pKi 

I2 7.55 for 12d and pKi I2 7.87 for 13d). Additionally, due to the lack of binding of 12d and 13d 

to 2-AR, their I2/2 selectivity was outstanding, 14791 and 74131, respectively. 

Taking into account the aforementioned results, for a second round of compounds the general 

structure depicted in Scheme 3 was conserved, featuring the unsubstituted phenyl group in the -

position of the phosphonate, and modifying the substituents in the maleimide. New compounds 

were classified in two groups taking into consideration whether an alkyl or an aryl substituent 

was introduced in the N-maleimide. 

Inspired by 9a and 9b, compounds bearing an alkyl substituents with different length, 9f and 9g, 

ramified alkyl, 9h, and polycycloalkane, 9i, were prepared. From 9a, the elongation of the N-

alkyl chain, from methyl to ethyl, led to 9f, with an increase in the affinity to pKi I2 = 8.37 (Ki = 

4.3 nM) and I2/2 selectivity to 331, while the n-propyl derivative, 9g, was much less affine pKi 

I2 = 4.02. For 9f, the best fit was a two-site model of binding with a high pKi I2 = 8.95 and a low 

pKi I2 = 5.86, high affinity site occupancy is 62%. Further increase of the size of the N-alkyl 

substituent to a tert-butyl, 9h, or an adamantylmethyl, 9i, did not improve the affinity. Taking 

together the affinity values for 9a, 9b, 9f, 9g, 9h and 9i, it seems that small and large substituents 

are compatible with good affinity values, but that conformational freedom, as in 9g, is 

deleterious.  
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Compounds 9j, 9k, 9l and 9m, with N-benzyl, N-phenethyl, N-4-fluorophenethyl, and N-

phenylpropyl substituents, respectively, were accessed to increase the examples in the SAR 

study. However, their affinities revealed a remarkable decrease in the biological properties, 

leading to pKi I2 = 5.26, 6.35 <3 and 3.84 values, respectively. 

Taking into account that 9c displayed an outstanding affinity for I2-IR, but lacked selectivity 

over 2-AR, further R’= aryl derivatives were explored. As we knew that 9d (pKi I2 = 8.56, I2/2 

= 195) was endowed with excellent affinity and remarkable selectivity, we mainly focused on 

electron withdrawing groups (9n, 9o, 9p, 9q, 9r, 9s, 9t, 9u, 9v, 9w, 9x and 9y), although a few 

electron donating substituents were briefly examined (9z, 9aa, and 9ab). Overall, neither these 

new phenyl derivatives nor the N-naphthyl derivative 9ac, outperformed the excellent affinity of 

9c (Table 1), although 9z (pKi I2 = 7.90) had an improved I2/2 ratio of 602. Finally, 9ad with an 

N-(2-chloro-3-pyridyl) substituent gave a pKi I2 = 7.96, in the range of standard idazoxan 4, but 

it offered as an outstanding advantage a null affinity upon 2-AR, leading to an I2/2 selectivity 

of 91201. 

Table 1. I2-IR and 2-AR Binding Affinities (pKi) of five previously reported compounds 

828 and new compounds. 

                                                   
pKi 

  

Compound 

General 
structure 

R- R’- [3H]-2-BFI, 
I2 one site 

a[3H]-2-
BFI, I2 two 

sites  

H/L; High 
affinity site 

[3H]-
RX821002, 

2 

 

aSelectivity 
I2/2 
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% 

Idazoxan   7.41  0.63 8.35  0.16 - 

8a H Me 6.79  0.51 9.49  0.18 5 

8b H cyclohexyl 5.74  0.51 5.02  0.58 - 

8c H Ph 7.73  0.19 8.49  0.36 - 

8d H 3-Cl,4-FPh <3 10.27  0.32 - 

8e H 4-MeOPh 5.11  0.13 6.14  0.85  

9a Ph Me 7.97  0.55 5.93  0.41 110 

9b Ph cyclohexyl 9.74  0.29 9.01  0.51 5 

9c Ph Ph 10.28  
0.37 

10.38  0.22 1 

9d Ph 3-Cl,4-FPh 8.56  0.32 

8.61  0.28/ 
4.29  0.20; 

37  4 

6.27  0.56 195 

219 

9e Ph 4-MeOPh 6.65  1.27 4.59  0.22 115 

12c 4-FPh Ph <3 6.77  0.64 - 

12d 4-FPh 3-Cl,4-FPh 7.55  0.32 3.38  0.33 14791 

13c 4-
MeOPh 

Ph 3.39  0.62 3.85  0.31 - 

13d 4-
MeOPh 

3-Cl,4-FPh 7.87  0.40 <3 74131 

14c CH2Ph Ph 6.59  0.77 3.94  0.16 447 

15c 4-
FCH2Ph 

Ph 5.35  0.35 7.20  1.02 - 

9f Ph Et 8.37  0.27 

8.95  0.36/ 

5.85  0.53 331 
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5.86  0.66; 
62  11 

1259 

9g Ph propyl 4.02  0.41   - 

9h Ph t-butyl 7.35  0.43 6.77  0.66 3 

9i Ph (1-
adamantyl)methyl 

7.01  0.76 4.31  0.29 501 

9j Ph PhCH2 5.26  0.22 8.11  0.28 - 

9k Ph PhCH2CH2 6.350.38 3.77  0.09 380 

9l Ph 4-FPhCH2CH2 <3 5.65  0.39 - 

9m Ph Ph(CH2)2CH2 3.84  0.31 

6.87  0.81/ 
3.20  0.99; 

22  2 

3.44  0.28 2 

2691 

9n Ph 4-CF3Ph <3  4.73  0.60 - 

9o Ph 3-CF3Ph <3   - 

9p Ph 4-FPh <3 5.34  0.35 - 

9q Ph 4-ClPh <3   - 

9r Ph 2-ClPh 5.09  0.16 

7.53  0.66/ 
4.74  0.23; 

25  7 

6.15  0.44 - 

24 

9s Ph 3-ClPh <3   - 

9t Ph 4-BrPh <3   - 

9u Ph 3,5-diClPh 5.81  0.37 6.22  0.26 - 

9v Ph 3,4-diClPh <3   - 

9w Ph 2,4,6-triClPh <3 5.16  0.19 - 

9x Ph 3-NO2Ph 6.81  0.27 10.18  0.41 - 

9y Ph 3-NO2,6-CH3Ph <3  - 
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9z Ph 4-PhPh 7.90  0.46 5.12  0.14 602 

9aa Ph 4-CH3Ph 5.44  0.16  - 

9ab Ph 4-PhOPh 6.96  0.30 5.43  0.21 34 

9ac Ph 1-naphthyl 3.11  0.7 <3 - 

9ad Ph 2-Cl,3-pyridyl 7.96  0.41 <3 91201 

a Selectivity I2-IR/2-AR expressed as the antilog (pKi I2-IR-pKi 2-AR). b The best fit of the 

data for 9d, 9f, 9m and 9r was to a two-site binding model of binding with high pKi (pKiH) and 

low pKi (pKiL) affinities for both binding sites respectively. 

Selectivity I2-IR versus I1-IR 

After evaluating the affinity of the indicated compounds for 2-AR, we assessed the affinity of 

some representative compounds for I1-IR. To this end, I1-IR binding site assays were conducted 

in membranes obtained from the rat kidney using moxonidine, a known I1-IR selective 

compound, as reference. The results are summarized in Table 2 and only 8e deserves a mention 

with a pKi I1 8.09. Gratifyingly, the values for the rest of the assessed compounds led to the 

conclusion that there was not a significant interaction with I1-IR highlighting the I2-IR selective 

behavior of this family of ligands. 

 Table 2. I1-IR potencies (pIC50) of representative compounds 

 pIC50 

Compound [3H]-Clonidine 

Moxonidine 8.45 ± 0.85  

8a 5.13  0.44 

8b 5.14  0.54 
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8c 5.47  0.31 

8d <3 

8e 8.09  0.34 

9a 6.19  0.27 

9b 7.54  0.79 

9c 6.74  0.74 

9d 3.04  0.45 

9e 3.22  0.67 

14c 5.12  0.85 

9j 5.87  0.19 

9k 7.98  0.31 

9x 5.26  0.43 

9z 7.19  0.33 

 

Overall, considering their excellent I2-IR affinity (Ki = 2.8 nM) and the remarkable selectivity 

versus 2-AR (Ki = 53 µM) and I1-IR (Ki = 91 mM), we identified 9d as the most promising 

compound for performing further studies. 

Comparison of I2-IR human receptor binding affinities (pKi) of 9d and other ligands, and 

across species 

A problem typically encountered when working with I2-IR ligands is that the binding 

experiments reported in the bibliography have been performed in a variety of non-human species 

and using tissues from different anatomical parts (e.g., kidney, whole brain, cortex). Another 

factor of potential discrepancies is that different radioligands have been used. Overall, this makes 

difficult the comparison amongst studies. For this reason, and in order to better place 9d as a new 
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I2-IR ligand, unprecedented experiments of displacement of [3H]2-BFI31 in samples from post-

mortem human brains were performed with clinical candidates BU99008 232 and CR4056 133 

and the widely used I2-IR ligands tracizoline, LSL60101 3 and 2-BFI 6 (Table 3). 

As previously observed with 9d, the affinity data found for BU99008 2 and CR4056 1 fitted best 

to a two-site model of binding. In particular, BU99008 2 showed a pKiH I2 = 6.89 (KiH = 128 nM) 

and pKiL I2 = 3.82 (KiH = 15.1 mM), and a good I2/2 selectivity ratio of 331. CR4056 1 showed 

a pKiH I2 = 7.72 (KiH = 19.0 nM) and pKiL I2 = 5.45 (KiH = 3.5 µM) with an excellent I2/2 

selectivity of 117490. The percentage of occupancy for the high affinity site was different for 

BU99008 2 (51%) compared with CR4056 1 (29%). Other well-stablished I2-IR ligands, 

tracizoline 5, LSL60101 3 and 2-BFI 6 also resulted in clearly biphasic curves. Tracizoline 5 

displayed a pKiH I2 = 8.48 (KiH = 3.3 nM) and pKiL I2 = 6.48 with an excellent I2/2 selectivity of 

14125. 2-BFI 6 had a pKiH I2 = 9.87 (KiH = 0.13 nM) and pKiL I2 = 7.94, with a good I2/2 

selectivity of 1698 and LSL60101 3 a pKiH I2 = 9.03 (KiH = 0.9 nM) and pKiL I2 = 5.25 (KiL = 5.6 

µM), with a good I2/2 selectivity of 7244. The high-affinity site represented 38, 21 and 49% 

occupancy for tracizoline 5, 2-BFI 6 and LSL60101 3, respectively (Table 3). Previous studies 

have reported [3H]2-BFI identifying two binding sites in rabbit,34 rat35,36 and human brain.31 It 

remains unclear whether these two sites observed represent distinct receptors or interconvertible 

conformational states of the I2-IR. For tracizoline 5 a single binding site of pKi I2 = 8.72, similar 

to the affinity described for human tissues, was described in the rabbit kidney membranes.37 In 

the rat cerebral cortex, LSL60101 3 is less affine than in human tissues, with a KiH = 350 nM and 

KiL = 116 µM.38 
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Therefore, compounds BU99008 2, tracizoline 5 and 2-BFI 6, that have a non-substituted 2-

(imidazolin-2-yl) group, CR4056 1 and LSL60101 3, that feature an imidazole ring, and the 

structurally dissimilar 9d, have similar affinity profiles upon I2-IR in human brain. 

Table 3. I2-IR and 2-AR binding affinities (pKi) of BU99008 2, CR4056 1, tracizoline 5 

and LSL60101 3 and 9d in postmortem human brain cortical membranes.  

 

Of note, the ability of BU99008 2 to displace [3H]2-BFI from I2-IR in rat brain was described to 

fit to a two-site model of binding, with a KiH = 1.4 ± 0.6 nM and KiL = 238.6 ± 63.3 nM, and 

with a percentage % fraction of high occupancy of 58 ± 7. That is, an enhanced affinity by 100 

times in rat brain, compared with human brain, being the % of occupancy similar in the high site. 

Regarding selectivity, a good I2/2 ratio of 909 was reported in rat, 4.5 times higher than that 

found in human. Of note, the opposite trend was found for CR4056 1, the inhibition recorded in 

rat whole-brain for [3H]2-BFI binding was IC50 of 596 ± 76 nM, with an improved affinity to 19 

nM showed in human brain.39 Therefore, significant differences between species occur within the 

two I2-IR ligands in clinical trials, BU99008 2 and CR4056 1. 

In an attempt to incorporate additional data regarding the differences in I2-IR binding affinities 

between species, idazoxan 4 and 9d were investigated (Table 4). In our hands, idazoxan 4 gave 

Compound [3H]-2-BFI 
I2 

pKi two sites 

High-
affinity site 

% 
 

[3H]-RX821002 
2 

pKi 

Selectivity I2/2 

for [3H]-2-BFI 
(high-affinity 

site) 
BU99008, 2 6.89 ± 0.21 3.82 ± 0.30 51 ± 6 4.37 ± 0.17 331 
CR4056, 1 7.72 ± 0.31 5.45 ± 0.15 29 ± 6 2.65 ± 1.24 117490 
Tracizoline, 5 8.48 ± 0.51 6.48 ± 0.32 38 ± 13 4.33 ± 0.22 14125 
2-BFI, 6 9.87 ± 0.33 7.94 ± 0.11 21 ± 5 6.64 ± 0.38 1698 
LSL60101, 3 9.03 ± 0.21 5.25 ± 0.24 49 ± 4 5.17 ± 1.32 7244 
9d 8.61 ± 0.28 4.29 ± 0.20 37 ± 4 6.27 ± 0.56 219 
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similar results in human frontal cortex, pKi 7.74, as compared to rat brain cortex, pKi 7.17, and 

was considerably less affine in mouse brain cortical membranes, pKi 5.68. Importantly, 

differences for 9d were not only found among species but also in its binding characteristics. As 

previously mentioned, the binding to I2-IR in human frontal cortex displayed a biphasic curve, 

whereas a monophasic one was observed in rat and mouse brain cortex with affinity values of 

pKi 6.92 and 6.41, respectively.  

Table 4. I2-IR binding affinities (pKi) of idazoxan 4 and 9d in the brain cortex of different 

species. 

 Human Rat Mice 

Idazoxan, 4 7.74 ± 0.10 7.17 ± 0.11 5.68 ± 0.31 

9d 8.61 ± 0.28 4.29 ± 0.20 6.92 ± 0.35 6.41 ± 0.39 

 

Finally, in order to verify if the high affinity site observed for 9d in competition experiments 

against [3H]2-BFI corresponded to the I2-IR, we performed additional experiments in the 

presence of MCR5 7, a high-affinity I2-IR selective compound previously reported by our 

group.25 Interestingly, in the presence of MCR5 7 (10-5 M) the 9d competition curve against 

[3H]2-BFI became monophasic (pKi = 6.96 ± 0.46), and the high-affinity site recognized by 9d 

was completely blocked. These results confirm that the high affinity site bound by 9d is the I2-

IR.  

3D-QSAR study 

3D-QSAR studies were performed to rationalize the differences in activity and gain insights for 

improved bicyclic -iminophosphonates-based I2-IR ligands. 3D-QSAR models were created 
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using Pentacle program,40 which calculates GRIND independent descriptors (GRIND and 

GRIND2) from molecular interaction fields, and were evaluated by internal and external 

validation parameters (Tables S2 and S3). The data set included structurally diverse bicyclic α-

iminophosphonates (Schemes 2 and 3) with a wide range of binding activity on I2-IR (pKi I2 = 

3.11-10.28) and α2-AR (pKi α2 = 3.38-10.27) ensuring the good quality and applicability of the 

3D-QSAR models. Additionally, we added four I2-IR standard ligands (tracizoline 5, idazoxan 4, 

BU99008 2 and LSL60101 3), in both data sets to compare and validate our results. Created 3D-

QSAR models were used to analyse statistically significant variables which describe distance 

between chemical groups in the examined compounds. These variables are presented as 

interactions between two same (e.g. DRY-DRY) or different (e.g. DRY-TIP) MIF probes in PLS 

coefficients plots (Figures S1 and S2). 

Describing most significant GRIND variables with positive and negative influence on I2-IR and 

α2-AR binding activity gave us the deeper insight into crucial interactions for enhancing activity 

and selectivity on I2-IR against α2-AR. Based on comprehensive 3D-QSAR analysis presented in 

Supporting Information we can conclude that presence of two steric hot spots (var183: TIP-TIP), 

such as halogen atoms (3-chloro-4-fluoro) in the N-phenyl ring at the distance range 6.00-6.40 Å 

may be crucial for enhancing I2-IR binding activity and selectivity. The highest values are 

calculated for compounds 13d and 12d which possess high selectivity towards I2-IR (Figure 5B). 

Likewise, var19 (DRY-DRY: 7.60-8.00 Å) implies that introduction of hydrophobic regions such 

as phenyl ring in the N-maleimide group may be crucial for establishing favourable Van der 

Waals interactions with aromatic amino acids of the active pocket of I2-IR (Figure 5A and 5B). 

Comparing to compounds which possess N-alkyl substituents instead of N-phenyl, such as 8a or 

9a, we can conclude that introduction of this aromatic ring positively correlates with I2-IR 
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binding activity. Contrary, α2-AR model pointed out negative DRY-DRY variable (var25: 10.00-

10.40 Å) which suggests that introduction of phenyl substituent in the α-phosphonate position 

negatively correlates with α2-AR activity. This is in agreement with experimental findings which 

show that α-substituted ligands possess higher affinity and selectivity towards I2-IR (8a, 8c, 8d 

and 8e). Additionally, analysis of negative variables var200 (TIP-TIP: 12.80-13.20 Å), var314 

(DRY-N1: 13.60-14.00 Å) and var377 (DRY-TIP: 16.40-16.80 Å) emphasizes that introduction 

of bulkier substituents in the N-maleimide group unfavourably fit in the binding site of I2-IR and 

may decrease the potency of I2 ligands (Figure 6A and 6B). The highest values of these variables 

are pronounced in compounds 9z, 9m, 9k, 9j, 9ab and 9ac. 

Figure 5. Representation of positive (in red) interactions of 9c (A) and 13d (B) in I2-IR 3D-

QSAR model. The steric hot spots (TIP) are presented in green and hydrophobic regions (DRY) 

in yellow. 
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Figure 6. Representation of negative (in blue) interactions of 9m (A) and 9ac (B) in I2-IR 3D-

QSAR model. The steric hot spots (TIP) are presented in green, hydrophobic regions (DRY) in 

yellow and H-bond acceptor regions (N1) in blue. 

In silico analysis of physico-chemical and pharmacokinetic parameters 

In silico analysis of key parameters is one of the most important steps in drug discovery 

processes.41 Thus, ADMET Predictor software 9.5,42 and SwissADME web tool43 were used to 

foresee ADMET and physico-chemical properties on most potent bicyclic α-iminophosphonate 

I2-IR ligands (pKi>7) and four standards. The obtained results are presented in the Supporting 

information (Table S4 and S5) including solubility and lipophilicity, BBB-penetration, 

elimination rate, as well as interactions with targets. Note, that introduction of aromatic rings 

increases log P values and affinity for albumin, while it decreases the water solubility (9d, 9z, 

12d, 13d). Based on results obtained from different computational methods we can conclude that 
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all examined compounds possess good water solubility and lipophilicity. Furthermore, calculated 

values of topological polar surface area (TPSA) descriptor revealed acceptable polarity of all 

molecules. The Lipinski’s Rule of 5 was used to describe drug-likeness properties of compounds 

based on physico-chemical analysis (Mlog P ≤ 4.15; MW ≤ 500; N or O ≤ 10 OH or NH ≤ 5). 

Because of the slightly higher molecular weight, 9z and 13d violated only one rule. Analysis of 

pharmacokinetic parameters shows that all compounds possess high BBB permeation. Compared 

to standards, bicyclic α-iminophosphonates have lower percentage of unbound drug in plasma. 

Also, it is estimated lower metabolic CYP risk comparing to idazoxan. Only three compounds, 

9z, 12d and 13d were identified as P-gp inhibitors. Performed calculations also show that 

bicyclic α-iminophosphonates possess lower toxicity risk, while compound 13d have no 

predicted toxicity.  

The theoretical effort paved the way to continue with in vitro crucial experiments (drug-like) due 

to the lack of warnings that had stopped the progress of this family of -iminophosphonates as 

I2-IR ligands. 

BBB permeation assay 

Considering the localization of I2-IR in the CNS, a good ability to cross the BBB is an essential 

requirement for developing effective I2-IR ligands with potential therapeutic applications in the 

neuroprotective field. For this reason, the in vitro permeability (Pe) of all the novel compounds 

was determined by using the PAMPA-BBB permeability assay (Table S6). In particular, our 

representative compound 9d had a Pe value of 9.7 ± 0.7 x 10-6 cm s-1, well above the threshold 

established for high BBB permeation (Pe > 5.198 x 10-6 cm s-1). Thus, compounds were 
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considered suitable to envisage further in vitro and in vivo studies oriented to in-depth the 

pharmacological profile of the new family of I2-IR ligands. 

Cytotoxicity 

All the synthesized compounds were devoid of cytotoxicity in human embryonic lung fibroblast 

cell cultures (highest concentration tested: 100 µM). Further evaluation of eight selected 

compounds, including the outstanding I2-IR ligands 9d, 9b and 9c, and representative 

compounds 8d, 9e, 8b, 9x and 9j was performed in different mammalian cell lines, such as HeLa 

(human cervix carcinoma), Vero (African green monkey kidney), MDCK (Mandin-Darby canine 

kidney) and MT4 (human T-lymphocyte). Serial compound dilutions were added to semi-

confluent cell cultures and after three to five days incubation at 37 ºC, cytotoxicity was estimated 

by microscopic inspection of cell morphology and by colorimetric cell viability assay cells. 

Neither of the compounds produced any cytotoxicity at 100 µM, the highest concentration tested. 

Additionally, the cytotoxicity of 9d was tested in MRC-5 (human embryonic lung fibroblast) 

cells (CC50 > 100 M).  

ADME-DMPK profiling of 9d 

In order to further progress 9d to in vivo assays and with the confidence that offered the in silico 

studies (see above), we evaluated its physico-chemical properties, such as solubility and 

chemical stability, microsomal stability, cytochromes inhibition, hERG inhibition and plasma 

protein binding. 

The solubility of 9d was determined in several media. An excellent solubility of 92 µM was 

found in 1% DMSO and 99% PBS buffer. Additional solvents, methanol, acetonitrile and water 

were also evaluated with good solubility.44 To evaluate the stability of 9d, forced degradation 
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studies were performed under various stress conditions for a period of nine weeks, with HPLC 

and 1H-NMR monitoring every week.45 Particularly, 9d was subjected to the effect of daylight 

with temperatures between 0-23 ºC and a relative humidity of 25-85 %, to the effect of high 

temperature (thermal stability at 75 ºC), and to the continuous light of a 100W (230V) bulb. 

Analysis by HPLC showed that the compound was completely stable under all the 

aforementioned conditions. Overall, these studies confirmed that 9d is sufficiently stable to 

undertake further experiments.  

Selected compound 9d was further studied in vitro for ascertaining their microsomal stability, 

CYP inhibition, and protein plasma binding. The microsomal stability was assessed in three 

species (human, mouse, rat), considering that the affinity and selectivity studies were performed 

in human samples, the cognition studies were envisaged in mice and the hypothermia in mice 

and rats (see below). 9d showed good microsomal stability (Table S7) and neither inhibited 

cytochromes [CYP1A2, CYP2C9, CYP2C19, CYP3A4 (BFC and DBF) and CYP2D6] nor 

hERG. Plasma protein binding was measured in mice and human species (Table S8) with a slight 

difference that should be taken into consideration if 9d progress through additional preclinical 

studies. 

Receptor characterization panel 
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In a Lead Profiling Screen (Eurofins)46 of 44 potential off targets, 9d showed a clean ancillary 

pharmacology (Table S9). Only one target, the cholecystokinin type A receptor (CCKA), was 

inhibited more than 50% at the tested concentration of 10 M. CCK receptors belong to the G-

protein-coupled receptors superfamily and are involved in a range of biological actions mediated 

by two distinct receptor types, CCKA (present in gastrointestinal tract and discrete regions of the 

brain) and CCKB (present in the CNS). Compound 9d exhibited an IC50 of 5.94 µM upon CCKA 

and an IC50 > 10 µM for CCKB. Taking into account the relative high IC50 of 9d for CCKA and 

the lack of significant interaction with the other off targets evaluated, we conclude that 9d shows 

a very selective profile. 

Hypothermic effects of 9d 

It is known that I2-IR ligands as idazoxan 4 or 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) 

induce hypothermia in rats.48,49 We have also found hypothermic effects with compound MCR5 

7 in mice.25, 27  

In the same line, acute 9d (20 mg/kg) induced hypothermia in adult CD1 mice as observed by 

reductions of core body temperature (ranging from ˗1.8 to ˗ 3.0 ºC) measured 1 h post-injection 

(Figures 7A and 7C, day 1). To test for differences between species, a pilot study was performed 

in adult rats, which showed that acute 9d (20 and 35 mg/kg) induced moderate drops in 

temperature (˗0.4 to ˗1.0 ºC) as measured 1 and 2 h post-injection (Figure 7B). Repeated 

administration of 9d (20 mg/kg, 5 days) in mice revealed the induction of tolerance to the acute 
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hypothermic effect of this drug from day 2 of treatment (Figure 7C), effects previously observed 

for other I2-IR compounds.25, 27 

 

Figure 7. Hypothermic effects of 9d in rodents. (A) Acute effect of 9d (20 mg/kg, i.p.) in mice. 

Columns are means ± SEM of the difference (Δ, 1 h minus basal value) in body temperature (°C) 

for each treatment group. ***p < 0.001 vs. control group (Student’s t-test). (B) Acute effect of 

9d (20 or 35 mg/kg, i.p.) in rats. Columns are means ± SEM of the difference (Δ, 1, 2 or 3 h 

minus basal value) in body temperature (°C) for each treatment group. #p < 0.05 for dose of 20 

mg/kg and **p < 0.01 and ***p < 0.001 for dose of 35 mg/kg vs. control group (repeated 

measures ANOVA followed by Sidak’s comparison test). (C) Repeated (5 days) effect of 9d (20 

mg/kg, i.p.) in mice. Circles are means ± SEM of the daily difference (Δ, 1 h minus basal value) 

in body temperature (ºC) for each treatment group. *p < 0.05 vs. control group (repeated 

measures ANOVA followed by Sidak’s comparison test).  

Of note, hypothermia is well established as having a neuroprotective effect in cerebral ischemia 

and even mild temperature drops cause significant neuroprotection.50 Also, hypothermia has 

been clinically used to improve the neurological outcome under various pathological conditions, 

including stroke and traumatic brain injury.51,52 Thus, the hypothermic effects showed by 9d 

might be a relevant feature that could mediate neuroprotection. 

Effects of acute and repeated treatments with 9d on hippocampal FADD protein content in 

mice 

FADD multifunctional protein is an adaptor of cell death receptors that can also mediate 

antiapoptotic and/or neuroprotective actions in rodents.25,53.54 Acute treatment with 9d 
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significantly decreased (- 30 %) the content of FADD protein in the hippocampus when 

compared to vehicle-treated mice (Figure 8, left panel). Following repeated (5 days) 

administration, no effects were observed on FADD modulation (Figure 8, right panel). The 

significant decrease in hippocampal FADD following acute 9d treatment suggests that this 

compound might be mediating some of its neuroplastic and/or neuroprotective actions through 

the regulation of this key brain marker, similarly with other I2-IR compounds.25 

 

Figure 8. Effects of acute (20 mg/kg, i.p.) and repeated (20 mg/kg, i.p., 5 days) treatments with 

9d on the contents of FADD protein in the hippocampus of mice. Columns are means ± SEM of 

FADD in 9d- and vehicle-treated groups. *p < 0.05 vs. control group (Student’s t-test). 

 

5xFAD In Vivo Behavioral Studies on Selected Compound 9d 

Recently, we reported the first in vivo study that validates I2-IR as a target for cognitive 

impairment using a mice model of age-related cognitive decline and late-onset AD, the SAMP8, 

a murine model that displays a phenotype of accelerated aging.27 To further support the effect of 

I2-IR ligands as a putative treatment for neurodegenerative diseases, herein we evaluate 9d in the 

5xFAD, a well-stablished murine model of early on-set AD.55 
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Because one of the signs of AD is memory loss (cognitive decline), the effect of orally 

administered 9d (5 mg/kg/day, for 28 days) on cognitive performance was evaluated in the novel 

object recognition test (NORT). The NORT is a widely used behavioral task to assess visual 

recognition memory.56 This brain activity relies on the hippocampus and involves cortex to 

remember and recognize new and old objects. Then NORT is based on an animal’s innate 

preference for novelty. The task consists of three parts: a habituation phase; a training phase, 

where mice are presented with two identical objects; and, a trial phase, following an interval time 

(2 or 24 h) memory was assessed by presenting the mice with a trained object and a novel. Mice 

with cognitive ability preserved preferentially explore the novel object in the different time 

exposition studied. After a 2 h acquisition trial, one of the familiar objects was replaced with a 

novel object, and the time spent investigating each of the objects was recorded, and the 

discrimination index (DI) was calculated as the percentage of novel object interaction time 

relative to total interaction time during the retention trial. As expected, untreated 5xFAD did not 

exhibit differences between exploration times for the familiar and novel objects (DI close to 0), 

indicating deterioration or loss of memory for the familiar object. As shown in Figure 9A, the 

oral administration of 9d to 5xFAD enhanced recognition memory at short term, reaching DI 

values of WT mice (Figure 9A). Of note, 24 h after the retention trial, 9d treated 5xFAD mice, 

explored the novel object for a longer time, obtaining a higher DI, indicative of preserved 

memory for the familiar object presented during the acquisition trial (Figure 9B). These results 

suggest that compound 9d enhanced recognition memory during the NORT in 5xFAD mice. 
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Figure 9. DI of NORT in 6-month-old (WT C, n=12), 5xFAD (C, n=14) control mice and 

5xFAD mice after treatment with 9d at 5mg/Kg for 4 weeks (n=25). Summary from (A) Short-

Term Memory (B) Long-Term Memory Values represented are mean ± Standard error of the 

mean (SEM). One-way ANOVA followed by (Tukey post-hoc test); P-value: *p<0.05 vs WT-

Control, $ p<0.05; $$ p<0.01 vs 5xFAD-Control. 

 

Effects of Selected Compound 9d in 5xFAD hippocampus: neuroinflammation and 

oxidative stress parameters  

Inflammation is an omnipresent sign in neurodegeneration and can act as a propagation way to 

the deleterious effects for the characteristic event in AD.57 Oxidative stress (OS) is another key 

risk factor that can promote ignition for degenerative processes.58 The reduction in the memory 

impairment of the 9d treated animals prompted us to determine indicators of brain 

neuroinflammation and OS by comparison of WT and 5xFAD mice (vehicle and 9d treated). 

5xFAD had higher gene expression of Cxcl10 (C-X-C motif chemokine 10) and Tnf-α (Tumor 

necrosis factor α) compared to WT mice (Figure 10A) that reduced after treatment of 5xFAD 

mice with 9d (5 mg/kg/day). Of note, it is described that TNF- contributes to amyloidogenesis 

via β-secretase regulation, apart from to be involved in AD-related brain neuroinflammation.59 In 

fact, when amyloid precursor protein (APP) processing was studied in treated 5xFAD mice, an 

increase in sAPPα, correlating with a significant decrease in sAPPβ protein levels were 

determined compared with untreated mice (Figure 10B). 

In reference to OS, 5xFAD showed no changes in gene expression for iNOS (inducible Nitric 

Oxide Synthase, a pro-oxidant key driver)60 and Hmox1 (an enzyme implicated in antioxidant 

defense) (Figure 10A).61 Those results correlated with published results in 5xFAD, and in 
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agreement, 9d treatment did not modify neither iNOS nor Hmox1 (Figure 10A). Nonetheless, 

total levels of hydrogen peroxide (H2O2), although not significant, were higher in 5xFAD than in 

the WT, and were reduced after 9d treatment (Figure 10C). The increase of OS, without 

increases in iNOS expression, was also described in 5xFAD, concretely the increase in 4-HNE 

(4-hydroxy-2-nonenal), a protein derivative obtained when reactive species of oxygen ROS (as 

H2O2) increase is significant in 6-month-old 5xFAD compared to WT mice.62 All the evaluated 

parameters are consistent with a mild reduction in the oxidative environment in 5xFAD treated 

mice. 

Figure 10. (A) Gene expression of inflammatory markers Cxcl10, Tnf-α, and OS markers iNOS, 

Hmox1(n=4 for each group) (B) H2O2 concentration (n=3 for each group) and (C) Representative 
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Western blot and bar chart sAPPα and sAPPα, (n=4-6 for each group) in the hippocampus of 6-

month-old female WT, 5xFAD Control mice and 5xFAD mice after treatment with 9d at 

5mg/Kg for 4 weeks. Bars represent mean ± Standard error of the mean (SEM);  

 

CONCLUSIONS 

To sum up, we have explored the scope of diastereoselective [3+2] cycloaddition reaction of -

substituted-PhosMic derivatives with diversely substituted maleimides leading to a family of 

bicyclic -iminophosphonates. A combination of X-ray crystallographic analyses and NMR 

studies allowed a full stereochemical characterization, and theoretical calculations provided a 

basis to justify the excellent diastereoselectivity observed. The pharmacological profiling of the 

new compounds led to the identification of high affine and selective I2-IR ligands devoid to 2-

AR and I1-IR affinities. 3D-QSAR study revealed key structural parameters for the designing of 

future promising structures and theoretical DMPK and physico-chemical parameters were 

calculated in order to rule out warnings to continue the medicinal chemistry program. DMPK 

and cytotoxicity assays and a safety panel were carried out for the selected compound 9d. Taking 

in account the improvement in the cognitive impairment in a 5xFAD model treated with 9d, 

modulation of I2-IR can be proposed as a new therapeutic strategy for AD treatment.  

 

EXPERIMENTAL SECTION 

Chemistry 
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General Information. Reagents, solvents and starting products were acquired from commercial 

sources. The term "concentration" refers to the vacuum evaporation using a Büchi rotavapor. 

When indicated, the reaction products were purified by "flash" chromatography on silica gel (35-

70 μm) with the indicated solvent system. The melting points were measured in a MFB 59510M 

Gallenkamp instruments. IR spectra were performed in a spectrophotometer Nicolet Avantar 320 

FTR-IR or in a Spectrum Two FT-IR Spectrometer, and only noteworthy IR absorptions (cm-1) 

are listed. NMR spectra were recorded in CDCl3 at 400 MHz (1H) and 100.6 MHz (13C), and 162 

MHz (31P). Chemical shifts are reported in δ values downfield from TMS or relative to residual 

chloroform (7.26 ppm, 77.0 ppm) as an internal standard. Data are reported in the following 

manner: chemical shift, multiplicity, coupling constant (J) in hertz (Hz), integrated intensity and 

assignment (when possible). Multiplicities are reported using the following abbreviations: s, 

singlet; d, doublet; dd, doublet of doublets; ddd, double double of doublets; dq, doble quadrupet; 

t, triplet; qu, quintet; m, multiplet; br s, broad signal, app, apparent. Assignments and 

stereochemical determinations are given only when they are derived from definitive two-

dimensional NMR experiments (g-HSQC-COSY). The accurate mass analyses were carried out 

using a LC/MSD-TOF spectrophotometer. The elemental analyses were carried out in a Flash 

1112 series Thermofinnigan elemental microanalyzator (A5) to determine C, H, and N. HPLC-

MS (Agilent 1260 Infinity II) analysis was conducted on a Poroshell 120 EC-C15 (4.6 mm x50 

mm, 2.7 μm) at 40 oC. Mobile phase (A: H20 + 0.05% formic acid and B: ACN + 0.05% formic 

acid) using a gradient elution. Flow rate 0.6 mL/min. The DAD detector was set at 254 nm and 

the injection volume was 5 µL and oven temperature 40 ºC. All tested compounds possess a 

purity of at least 95%. 
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General Procedure for the [3 + 2] cycloaddition reaction. To a solution of silver acetate (0.06 

or 0.1 mmol) and maleimide (1.0 or 1.5 mmol) in acetonitrile was added diethyl -

methylisocyanomethylphosphonate, diethyl α-phenylisocyanomethylphosphonate, diphenyl α-

phenylisocyanomethylphosphonate, diethyl α-(4-fluorophenyl)isocyanomethylphosphonate, 

diethyl α-(4-methoxyphenyl)isocyanomethylphosphonate, or diethyl α-

benzylisocyanomethylphosphonate (1.0 mmol). The reaction mixture was stirred at room 

temperature overnight, concentrated and the resulting residue was purified by column 

chromatography to afford pure products. 

Diethyl (1RS,3aSR,6aSR)-5-methyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (9a). Following the general procedure, AgOAc (13 mg, 0.08 mmol), 

N-methylmaleimide (133 mg, 1.2 mmol), acetonitrile (6 mL) and diethyl -

phenylisocyanomethylphosphonate (202 mg, 0.8 mmol) gave 9a (184 mg, 64%) as a yellowish 

oil, after column chromatography (EtOAc/hexane 95:5). IR (NaCl) 3472, 2981, 1709, 1432, 

1281, 1248, 1051, 967 cm-1.1H NMR (400 MHz, CDCl3, HETCOR) δ 1.15 (t, J = 7.0 Hz, 3H, 

CH2CH3), 1.27 (t, J = 7.0 Hz, 3H, CH2CH3), 2.70 (s, 3H, NCH3), 3.83 (m, 1H, CH2CH3), 4.01-

4.18 (m, 4H, H-6a and CH2CH3), 4.34 (ddd, J = 8.5, 4.0, 1.0 Hz, 1H, H-3a), 7.29-7.37 (m, 3H, 

ArH), 7.68-7.70 (m, 2H, ArH), 7.95 (dd, J = 5.5, 1.0 Hz, 1H, H-3).13C NMR (100.6 MHz) δ 16.1 

(d, J = 5.0 Hz, CH2CH3), 16.2 (d, J = 5.0 Hz, CH2CH3), 25.0 (NCH3), 47.7 (d, J = 2.0 Hz, C-6a), 

60.5 (C-3a), 63.4 (d, J = 7.0 Hz, CH2CH3), 64.6 (d, J = 7.0 Hz, CH2CH3), 85.6 (d, J = 154.0 Hz, 

C-1), 127.6 (d, J = 2.0 Hz, 2CHAr), 128.4 (d, J = 2.5 Hz, CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 

133.2 (d, J = 4.5 Hz, C-ipso), 162.5 (d, J = 11.5 Hz, C-3), 172.1 (d, J = 5.5 Hz, CO), 172.5 (d, J 

= 14.0 Hz, CO). MS-EI m/z 364 M+ (36), 255 (31), 227 (73), 199 (23), 170 (41), 143 (21), 142 

(100), 115 (58). HRMS C17H22N2O5P [M+H]+ 365.1262; found, 365.1261. Purity 97.0 % (tR= 
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3.89 min). 

Diethyl (1RS,3aSR,6aSR)-5-cyclohexyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9b). Following the general procedure, 

AgOAc (15 mg, 0.09 mmol), N-cyclohexylmaleimide (403 mg, 2.3 mmol), acetonitrile (12 mL) 

and diethyl -phenylisocyanomethylphosphonate (380 mg, 1.5 mmol) gave 9b (494 mg, 76%) as 

a white solid, after column chromatography (EtOAc). M.p. 128-132 oC (EtOAc). IR (NaCl) 

3467, 2934, 2858, 1705, 1370, 1249, 1191, 1025, 971, 755 cm-1.1H NMR (400 MHz, CDCl3, 

HETCOR) δ 1.06-1.13 (m, 3H, CH2cycl), 1.16 (t, J = 7.0 Hz, 3H, CH2CH3), 1.21 (m, 1H, 

CH2cycl), 1.25 (t, J = 7.0 Hz, 3H, CH2CH3), 1.51-1.54 (m, 2H, CH2cycl), 1.57-1.69 (m, 3H, 

CH2cycl), 1.85 (m, 1H, CH2cycl), 3.60 (m, 1H, CHcycl), 3.90 (m, 1H, CH2CH3), 4.03 (dd, J = 

18.5, 8.5 Hz, 1H, H-6a), 4.06-4.18 (m, 3H, CH2CH3), 4.25 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 

7.29-7.35 (m, 3H, ArH), 7.61-7.63 (m, 2H, ArH), 8.00 (dd, J = 5.0, 1.5 Hz, 1H, H-3); 13C NMR 

(100.6 MHz) δ 16.1 (d, J = 5.5 Hz, CH2CH3), 16.2 (d, J = 5.5 Hz, CH2CH3), 24.7 (CH2cycl), 

25.6 (2CH2cycl), 27.8 (CH2cycl), 28.6 (CH2cycl), 47.5 (d, J = 2.5 Hz, C-6a), 51.9 (CHcycl), 59.9 

(C-3a), 63.3 (d, J = 7.5 Hz, CH2CH3), 64.6 (d, J = 7.5 Hz, CH2CH3), 85.7 (d, J = 156.0 Hz, C-1), 

127.7 (d, J = 1.6 Hz, 2CHAr), 128.2 (CHAr), 128.3 (CHAr), 128.4 (CHAr), 133.6 (d, J = 4.0 Hz, 

C-ipso), 162.8 (d, J = 12.0 Hz, C-3), 172.1 (d, J = 5.5 Hz, CO), 172.5 (d, J = 12.0 Hz, CO). MS-

EI m/z 432 M+ (60), 323 (30), 295 (95), 223 (12), 170 (78), 142 (100), 115 (35), 81 (15). HRMS 

C22H30N2O5P [M+H]+ 433.1892; found, 433.1887. Anal. Cald. for C22H30N2O5P: C, 61.10%; H, 

6.76%; N, 6.48%; found: C, 61.42%; H, 6.81%; N, 6.47%. 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1,5-diphenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (9c). Following the general procedure, AgOAc (4 mg, 0.02 mmol), N-

phenylmaleimide (104 mg, 0.6 mmol), acetonitrile (3 mL) and diethyl -
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phenylisocyanomethylphosphonate (101 mg, 0.4 mmol) gave 9c (108 mg, 64%) as a white solid, 

after column chromatography (EtOAc).  M.p. 158-160 oC (EtOAc). IR (NaCl) 3479, 2969, 1713, 

1496, 1390, 1239, 1021, 969 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.10 (t, J = 7.0 Hz, 

3H, CH2CH3), 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 3.85 (m, 1H, CH2CH3), 3.99-4.14 (m, 3H, 

CH2CH3), 4.17 (dd, J = 18.5, 9.0 Hz, 1H, H-6a), 4.40 (ddd, J = 8.5, 3.0, 1.6 Hz, 1H, H-3a), 6.62-

6.65 (m, 2H, ArH), 7.15-7.30 (m, 6H, ArH), 7.61-7.63 (m, 2H, ArH), 7.97 (dd, J = 4.5, 1.6 Hz, 

1H, H-3).13C NMR (100.6 MHz) δ 16.2 (d, J = 4.0 Hz, CH2CH3), 16.3 (d, J = 4.0 Hz, CH2CH3), 

48.2 (d, J = 2.0 Hz, C-6a), 60.2 (C-3a), 63.4 (d, J = 7.0 Hz, CH2CH3), 64.6 (d, J = 7.0 Hz, 

CH2CH3), 86.2 (d, J = 157.0 Hz, C-1), 126.0 (2CHAr), 127.9 (CHAr), 128.0 (CHAr), 128.4 (d, J 

= 6.0 Hz, CHAr), 128.5 (CHAr), 128.6 (CHAr), 128.7 (CHAr), 129.0 (2CHAr), 131.1 (C-ipso), 

133.5 (d, J = 4.0 Hz, C-ipso), 162.5 (d, J = 12.0 Hz, C-3), 170.9 (d, J = 5.5 Hz, CO), 171.6 (d, J 

= 11.5 Hz, CO). MS-EI m/z 426 M+ (43), 317 (20), 289 (47), 244 (11), 170 (43), 142 (100), 115 

(43), 81 (11). HRMS C22H24N2O5P [M+H]+ 427.1418; found, 427.1417. Anal. Cald. for 

C22H23N2O5P: C, 61.97%; H, 5.44%; N, 6.57%; found: C, 62.18%; H, 5.36%; N, 6.43%. 

Diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9d). Following the general procedure, 

AgOAc (8 mg, 0.05 mmol), N-(3-chloro-4-fluorophenyl)maleimide (250 mg, 1.1 mmol), 

acetonitrile (6 mL) and diethyl -phenylisocyanomethylphosphonate (187 mg, 0.7 mmol) gave 

9d (189 mg, 54%) as a white needles, after column chromatography (EtOAc). M.p. 185-186 ºC 

(EtOAc). IR (NaCl) 3437, 2956, 1718, 1499, 1256, 1050, 980 cm-1.1H NMR (400 MHz, CDCl3, 

HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 3.95 (m, 1H, 

CH2CH3), 4.09-4.20 (m, 3H, CH2CH3), 4.25 (dd, J = 18.0, 8.0 Hz, 1H, H-6a), 4.47 (m, 1H, H-

3a), 6.63 (ddd, J = 9.0, 4.0, 3.0 Hz, 1H, ArH), 6.72 (dd, J = 6.5, 2.5 Hz, 1H, ArH), 7.05 (t, J = 
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8.5 Hz, 1H, ArH), 7.35-7.39 (m, 3H, ArH), 7.67 (m, J = 5.0 Hz, 2H, ArH), 8.05 (d, J = 4.5 Hz, 

1H, H-3).13C NMR (100.6 MHz) δ 16.3 (t, J = 5.5 Hz, 2CH2CH3), 48.5 (C-6a), 60.1 (C-3a), 63.7 

(d, J = 7.0 Hz, CH2CH3), 64.8 (d, J = 7.0 Hz, CH2CH3), 86.2 (d, J = 156.0 Hz, C-1), 116.8 (d, J 

= 22.5 Hz, CHAr), 121.5 (d, J = 19.5 Hz, C-ipso), 126.1 (d, J = 8.0 Hz, CHAr), 127.4 (d, J = 4.0 

Hz, C-ipso), 128.1 (2CHAr), 128.3 (d, J = 5.5 Hz, 2CHAr), 128.6 (CHAr), 128.8 (CHAr), 133.5 

(d, J = 3.0 Hz, C-ipso), 157.7 (d, J = 251.0 Hz, C-ipso), 162.0 (d, J = 12.5 Hz, C-3), 170.6 (d, J = 

5.5 Hz, CO), 171.3 (d, J = 11.0 Hz, CO).  31P NMR (162 MHz) δ 19.71. MS-EI m/z 478 M+ (2), 

341 (12), 281 (41), 207 (100), 191 (11), 147 (14), 73 (31). HRMS C22H22ClFN2O5P [M+H]+ 

479.0935; found, 479.0933. Anal. Cald. for C22H21ClFN2O5P: C, 55.18%; H, 4.42%; N, 5.85%; 

found: C, 55.28%; H, 4.49%; N, 5.56%. 

Diethyl (1RS,3aSR,6aSR)-5-(4-methoxyphenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9e). Following the general procedure, 

AgOAc (4 mg, 0.02 mmol), N-(4-methoxyphenyl)maleimide (122 mg, 0.6 mmol), acetonitrile (3 

mL) and diethyl -phenylisocyanomethylphosphonate (102 mg, 0.4 mmol) gave 9e (119 mg, 

65%) as a white solid, after column chromatography (EtOAc). M.p. 167 oC (EtOAc). IR (NaCl) 

3477, 2981, 2930, 1715, 1513, 1384, 1251, 1024, 970, 755 cm-1.1H NMR (400 MHz, CDCl3, 

HETCOR) δ 1.18 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 3.73 (s, 3H, 

OCH3), 3.92 (m, 1H, CH2CH3), 4.09-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 18.0, 8.5 Hz, 1H, H-

6a), 4.45 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.60-6.64 (m, 2H, ArH), 6.77-6.81 (m, 2H, ArH), 

7.30-7.39 (m, 3H, ArH), 7.68-7.70 (m, 2H, ArH), 8.04 (dd, J = 5.0, 1.5 Hz, 1H, H-3).13C NMR 

(100.6 MHz) δ 16.2 (d, J = 3.5 Hz, CH2CH3), 16.3 (d, J = 3.5 Hz, CH2CH3), 48.1 (d, J = 2.0 Hz, 

C-6a), 55.4 (OCH3), 60.1 (C-3a), 63.5 (d, J = 7.5 Hz, CH2CH3), 64.6 (d, J = 7.5 Hz, CH2CH3), 

86.2 (d, J = 157.5 Hz, C-1), 114.3 (2CHAr), 123.6 (C-ipso), 127.2 (2CHAr), 127.9 (2CHAr), 
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128.3 (CHAr), 128.4 (CHAr), 128.5 (CHAr), 133.5 (d, J = 4.0 Hz, C-ipso), 159.5 (C-ipso), 162.4 

(d, J = 12.0 Hz, C-3), 171.1 (d, J = 5.0 Hz, CO), 171.8 (d, J = 11.5 Hz, CO). HRMS 

C23H26N2O6P [M+H]+ 457.1519; found, 457.1523. Anal. Cald. for C23H25N2O6P: C, 60.52%; H, 

5.52%; N, 6.14%; found: C, 60.71%; H, 5.75%; N, 5.98%. 

Diethyl (1RS,3aSR,6aSR)-1-(4-fluorophenyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (12c). Following the general procedure, 

AgOAc (10 mg, 0.06 mmol), N-phenylmaleimide (156 mg, 0.9 mmol), acetonitrile (4 mL) and 

diethyl -(4-fluorophenyl)isocyanomethylphosphonate (164 mg, 0.6 mmol) gave 12c (159 mg, 

60%) as a white solid, after column chromatography (EtOAc/hexane 4:1). M.p. 191-193 ºC 

(EtOAc). IR (ATR) 3491, 2991, 2909, 1775, 1718, 1598, 1506, 1377, 1242, 1189, 1016, 982, 

742, 598 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.29 

(t, J = 7.0 Hz, 3H, CH2CH3), 3.93 (m, 1H, CH2CH3), 4.08-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 

18.0, 8.5 Hz, 1H, H-6a), 4.49 (dq, J = 8.5, 1.5 Hz, 1H, H-3a), 6.79-6.81 (m, 2H, ArH), 7.03-7.08 

(m, 2H, ArH), 7.29-7.35 (m, 3H, ArH), 7.70-7.73 (m, 2H, ArH), 8.04 (dd, J = 5.0, 1.5 Hz, 1H, 

H-3). 13C NMR (100.6 MHz) δ 16.4 (d, J = 5.5 Hz, CH2CH3), 16.5 (d, J = 5.0 Hz, CH2CH3), 

48.1 (d, J = 3.0 Hz, C-6a), 60.5 (C-3a), 63.8 (d, J = 8.0 Hz, CH2CH3), 64.9 (d, J = 8.0 Hz, 

CH2CH3), 85.9 (d, J = 156.0 Hz, C-1), 114.9 (d, J = 2.0 Hz, CHAr), 115.1 (d, J = 2.0 Hz, CHAr), 

126.2 (2CHAr), 129.0 (CHAr), 129.3 (2CHAr), 129.4 (dd, J = 4.0, 3.5 Hz, C-ipso), 130.6 (d, J = 

6.0 Hz, CHAr), 130.7 (d, J = 6.0 Hz, CHAr), 131.1 (C-ipso), 162.8 (d, J = 12.0 H, C-3), 162.9 

(dd, J = 246.0, 2.5 Hz, C-ipso), 171.0 (d, J = 6.0 Hz, CO), 171.8 (d, J =12.0 Hz, CO). HRMS 

C22H23FN2O5P [M+H]+ 445.1323; found, 445.1324. Anal. Cald. for C22H22FN2O5P: C, 59.46%; 

H, 4.99%; N, 6.30%; found: C, 59.90%; H, 5.13%; N, 6.20%. 

Diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-1-(4-fluorophenyl)-4,6-dioxo-
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1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (12d). Following the general 

procedure, AgOAc (7 mg, 0.04 mmol), N-(3-chloro-4-fluorophenyl)maleimide (135 mg, 0.6 

mmol), acetonitrile (3 mL) and diethyl -(4-fluorophenyl)isocyanomethylphosphonate (108 mg,  

0.4 mmol) 12d (124 mg, 62%) as a white solid, after column chromatography (EtOAc). M.p. 

179-181 ºC (EtOAc). IR (ATR) 3483, 2962, 2903, 1719, 1504, 1236, 1051, 1012, 978, 739, 593 

cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 

Hz, 3H, CH2CH3), 3.94 (m, 1H, CH2CH3), 4.08-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 18.0, 8.5 

Hz, 1H, H-6a), 4.49 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.71 (m, 1H, ArH), 6.87 (dd, J = 6.5, 

2.5 Hz, 1H, ArH), 7.04-7.09 (m, 3H, ArH), 7.68-7.71 (m, 2H, ArH), 8.02 (dd, J = 5.0, 1.5 Hz, 

1H, H-3). 13C NMR (100.6 MHz) δ 16.4 (d, J = 5.5 Hz, CH2CH3), 16.5 (d, J =  5.5 Hz, CH2CH3), 

48.2 (d, J = 3.0 Hz, C-6a), 60.3 (C-3a), 63.9 (d, J = 7.0 Hz, CH2CH3), 64.9 (d, J = 8.0 Hz, 

CH2CH3), 86.0 (d, J = 156.0 Hz, C-1), 115.1 (dd, J = 21.0, 2.0 Hz, 2CHAr), 117.1 (d, J = 22.0 

Hz, CHAr), 121.8 (d, J = 19.0 Hz, C-ipso), 126.1 (CHAr), 127.4 (d, J = 3.0 Hz, C-ipso), 128.7 

(CHAr), 129.2 (dd, J = 4.0, 3.0 Hz, C-ipso), 130.6 (dd, J = 7.0, 2.0 Hz, 2CHAr), 157.9 (d, J = 

251.0 Hz, C-ipso), 162.4 (d, J = 12.0 Hz, C-3), 163.0 (d, J = 249.5, 3.0 Hz, C-ipso), 170.5 (d, J = 

5.0 Hz, CO), 171.5 (d, J =13.0 Hz, CO). HRMS C22H21ClF2N2O5P [M+H]+ 497.0839; found, 

497.0840. Anal. Cald. for C22H20ClF2N2O5P: C, 53.19%; H, 4.06%; N, 5.64%; found: C, 

53.45%; H, 4.24%; N, 5.46%.  

Diethyl (1RS,3aSR,6aSR)-1-(4-methoxyphenyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (13c). Following the general procedure, 

AgOAc (8 mg, 0.05 mmol), N-phenylmaleimide (138 mg, 0.8 mmol), acetonitrile (4 mL) and 

diethyl -(4-methoxyphenyl)isocyanomethylphosphonate (142 mg, 0.5 mmol) gave 13c (155 

mg, 69%) as a white solid, after column chromatography (EtOAc/hexane 4:1). M.p. 184-186 ºC 
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(EtOAc). IR (ATR) 3481, 2986, 2914, 1785, 1713, 1607, 1511, 1386, 1247, 1189, 1021, 737, 

694, 598 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 

(t, J = 7.0 Hz, 3H, CH2CH3), 3.79 (s, 3H, OCH3), 3.92 (m, 1H, CH2CH3), 4.08-4.18 (m, 3H, 

CH2CH3), 4.23 (dd, J = 18.0, 8.5 Hz, 1H, H-6a), 4.46 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.76-

6.78 (m, 2H, ArH), 6.88 (d, J = 9.0 Hz, 2H, ArH), 7.27-7.32 (m, 3H, ArH), 7.60-7.63 (m, 2H, 

ArH), 8.02 (dd, J = 5.5, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.4 (d, J = 5.0 Hz, 

2CH2CH3), 48.3 (d, J = 3.0 Hz, C-6a), 55.3 (OCH3), 60.3 (C-3a), 63.5 (d, J = 8.0 Hz, CH2CH3), 

64.8 (d, J = 8.0 Hz, CH2CH3), 86.0 (d, J = 157.0 Hz, C-1), 113.4 (d, J = 2.0 Hz, 2CHAr), 125.5 

(d, J  = 4.0 Hz, C-ipso), 126.3 (2CHAr), 128.8 (CHAr), 129.2 (2CHAr), 129.9 (d, J = 6.0 Hz, 

2CHAr), 131.2 (C-ipso), 159.7 (d, J = 2.0 Hz, C-ipso), 162.3 (d, J = 12.0 Hz, C-3), 171.2 (d, J = 

6.0 Hz, CO), 171.9 (d, J =12.0 Hz, CO). HRMS C23H26N2O6P [M+H]+ 457.1523; found, 

457.1520. Anal. Cald. For C23H25N2O6P: C, 60.52%; H, 5.52%; N, 6.14%; found: C, 60.85%; H, 

5.51%; N, 5.94%.  

Diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-1-(4-methoxyphenyl)-4,6-dioxo-

1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (13d). Following the general 

procedure, AgOAc (8 mg, 0.05 mmol), N-(3-chloro-4-fluorophenyl)maleimide (181 mg, 0.8 

mmol), acetonitrile (4 mL) and diethyl -(4-methoxyphenyl)isocyanomethylphosphonate (142 

mg,  0.5 mmol) gave 13d (170 mg, 67%) as a white solid, after column chromatography 

(EtOAc). M.p. 227-228 ºC (EtOAc). IR (ATR) 3481, 2986, 2905, 1771, 1718, 1612, 1497, 1386, 

1237, 1184, 1026, 968, 752, 656 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.21 (t, J = 7.0 

Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 3.81 (s, 3H, OCH3), 3.94 (m, 1H, 

CH2CH3), 4.09-4.18 (m, 3H, CH2CH3), 4.22 (dd, J = 18.0, 8.5 Hz, 1H, H-6a), 4.46 (ddd, J = 8.5, 

3.0, 1.5 Hz, 1H, H-3a), 6.69-6.73 (m, 2H, ArH), 6.89 (d, J = 9.0 Hz, 2H, ArH), 7.07 (m, 1H, 
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ArH), 7.59 (d, J = 7.5 Hz, 2H, ArH), 8.02 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) 

δ 16.4 (d, J = 5.0 Hz, CH2CH3), 16.5 (d, J = 5.0 Hz, CH2CH3), 48.6 (d, J = 3.0 Hz, C-6a), 55.3 

(OCH3), 60.1 (C-3a), 63.7 (d, J = 8.0 Hz, CH2CH3), 64.8 (d, J = 7.0 Hz, CH2CH3), 86.0 (d, J = 

158.0 Hz, C-1), 113.5 (d, J = 1.0 Hz, 2CHAr), 117.0 (d, J = 22.0 Hz, CHAr), 121.7 (d, J = 19.0 

Hz, C-ipso), 125.3 (d, J  = 4.0 Hz, C-ipso), 126.2 (d, J = 8.0 Hz, CHAr), 127.5 (d, J = 4.0 Hz, C-

ipso), 128.7 (CHAr), 129.8 (d, J = 6.0 Hz, 2CHAr), 157.9 (d, J = 250.0 Hz, C-ipso), 159.9 (d, J = 

2.0 Hz, C-ipso), 161.8 (d, J = 13.0 Hz, C-3), 170.7 (d, J = 5.0 Hz, CO), 171.6 (d, J =11.0 Hz, 

CO). HRMS C23H24ClFN2O6P [M+H]+ 509.1039; found, 509.1037. Anal. Cald. for 

C23H23ClFN2O6P: C, 54.29%; H, 4.56%; N, 5.51%; found: C, 54.66%; H, 4.63%; N, 5.36%. 

Diethyl (1RS,3aSR,6aSR)-1-benzyl-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (14c). Following the general procedure, AgOAc (8 mg, 0.05 mmol), 

N-phenylmaleimide (139 mg, 0.8 mmol), acetonitrile (6 mL) and diethyl -

benzylisocyanomethylphosphonate (213 mg, 0.8 mmol) gave 14c (32 mg, 9%) as a yellowish oil, 

after column chromatography (EtOAc/hexane 1:1). IR (ATR) 3738, 2926, 2843, 1730, 1492, 

1385, 1220, 1181, 1059, 1020, 782, 700 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.29 (t, 

J = 7.0 Hz, 3H, CH2CH3), 1.40 (t, J = 7.0 Hz, 3H, CH2CH3), 3.29 (dd, J = 15.0, 12.5 Hz, 1H, 

CH2-Ar), 3.86 (dd, J = 15.0, 9.5 Hz, 1H, CH2-Ar), 3.97 (dd,  J = 19.0, 9.0 Hz, 1H, H-6a), 4.11-

4.26 (m, 4H, CH2CH3), 4.39 (dq, J = 9.0, 1.5 Hz, 1H, H-3a), 6.73-6.75 (m, 2H, ArH), 7.10-7.12 

(m, 3H, ArH), 7.21-7.23 (m, 2H, ArH), 7.33-7.36  (m, 3H, ArH), 7.82 (dd, J = 5.0, 1.5  Hz, 1H, 

H-3). 13C NMR (100.6 MHz) δ 16.3 (d, J = 6.0 Hz, CH2CH3), 16.5 (d, J = 6.0 Hz, CH2CH3), 

36.8 (d, J = 2.0 Hz, CH2-Ar), 45.9 (d, J = 3.0 Hz, C-6a), 59.9 (C-3a), 63.4 (d, J = 7.0 Hz, 

CH2CH3), 64.0 (d, J = 6.0 Hz, CH2CH3), 83.7 (d, J =158.0 Hz, C-1), 126.5 (2CHAr), 126.7 

(CHAr), 127.8 (2CHAr), 128.7 (CHAr), 128.8 (2CHAr), 131.0 (C-ipso), 131.8 (2CHAr), 134.9 
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(d, J = 12.0 Hz, C-ipso), 161.3 (d, J = 13.0 Hz, C-3), 171.1 (d, J = 6.0 Hz, CO), 173.1 (d, J = 8.0 

Hz, CO). HRMS C23H26N2O5P [M+H]+ 441.1574; found, 441.1580. Additional column 

chromatography led to sample for testing. Purity 95.7% (tR= 4.50 min). 

Diethyl (1RS,3aSR,6aSR)-1-(4-fluorobenzyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (15c). Following the general procedure, 

AgOAc (12 mg, 0.07 mmol), N-phenylmaleimide (121 mg, 0.7 mmol), acetonitrile (5 mL) and 

diethyl -(4-fluorobenzyl)isocyanomethylphosphonate (200 mg, 0.7 mmol) gave 15c (67 mg, 

21%) as an oil, after column chromatography (EtOAc). IR (ATR) 3471, 2924, 2853, 1780, 1711, 

1509, 1378, 1221, 1049, 1017, 968, 691 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.30 (td, 

J = 7.0, 0.5 Hz, 3H, CH2CH3), 1.40 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3), 3.25 (dd, J = 14.5, 12.5 

Hz, 1H, CH2-Ar), 3.81 (dd, J = 14.5, 9.0 Hz, 1H, CH2-Ar), 3.96 (dd,  J = 19.0, 9.5 Hz, 1H, H-6a), 

4.11-4.27 (m, 4H, CH2CH3), 4.39 (ddd, J = 9.5, 3.5, 1.5 Hz, 1H, H-3a), 6.76-6.82 (m, 3H, ArH), 

7.14-7.19 (m, 2H, ArH), 7.33-7.47 (m, 4H, ArH), 7.82 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR 

(100.6 MHz) δ 16.3 (d, J = 6.0 Hz, CH2CH3), 16.5 (d, J = 5.5 Hz, CH2CH3), 36.0 (CH2Ar), 45.9 

(d, J = 2.5 Hz, C-6a), 59.9 (C-3a), 63.4 (d, J = 7.5 Hz, CH2CH3), 64.4 (d, J = 7.0 Hz, CH2CH3), 

83.7 (d, J =159.5 Hz, C-1), 114.5 (d, J = 2.0 Hz, 2CHAr), 126.3 (2CHAr), 128.9 (CHAr), 129.0 

(2CHAr), 130.5 (d, J = 12.5. Hz, C-ipso), 130.9 (C-ipso), 133.4 (d, J = 8.0 Hz, 2CHAr), 161.5 

(d, J = 12.5 Hz, C-3), 161.8 (d, J = 245.5 Hz, C-ipso), 171.0 (d, J = 6.0 Hz, CO), 173.2 (d, J = 

12.5 Hz, CO). HRMS C23H25FN2O5P [M+H]+ 459.1480; found, 459.1483. Purity 96.4% (tR= 

4.56 min). 

Diethyl (1RS,3aSR,6aSR)-5-ethyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (9f). Following the general procedure, AgOAc (11 mg, 0.07 mmol), 

N-ethylmaleimide (213 mg, 1.7 mmol), acetonitrile (8 mL) and diethyl -
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phenylisocyanomethylphosphonate (279 mg, 1.1 mmol) gave 9f (130 mg, 31%) as a yellowish 

oil, after column chromatography (EtOAc). IR (ATR) 3476, 2981, 2929, 1780, 1698, 1626, 

1396, 1251, 1055, 1026, 968, 766 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 0.75 (t, J = 7.0 

Hz, 3H, NCH2CH3), 1.15 (t, J = 7.0 Hz, 3H, CH2CH3), 1.25 (t, J = 7.0 Hz, 3H, CH2CH3), 3.21-

3.27 (m, 2H, NCH2CH3), 3.88 (m, 1H, CH2CH3), 4.06-4.15 (m, 4H, CH2CH3 and H-6a), 4.29  

(ddd, J = 8.5, 3.5, 1.5 Hz, 1H, H-3a), 7.31-7.34 (m, 3H, ArH), 7.65 (dbr, J = 11.6 Hz, 2H, ArH), 

7.96 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 12.6 (NCH2CH3), 16.4 (d, J = 5.5 

Hz, CH2CH3), 16.4 (d, J = 5.5 Hz, CH2CH3), 34.0 (NCH2CH3), 47.9 (d, J = 2.0 Hz, C-6a), 60.5 

(C-3a), 63.6 (d, J = 8.0 Hz, CH2CH3), 64.8 (d, J = 8.0 Hz, CH2CH3), 85.8 (d, J =155.0 Hz, C-1), 

127.9 (d, J = 1.0 Hz, 2CHAr), 128.6 (d, J = 2.0 Hz, 2CHAr), 128.6 (CHAr), 133.6 (d, J = 4.0 Hz,  

C-ipso), 162.7 (d, J = 12.0 Hz, C-3), 171.0 (d, J = 6.0 Hz, CO), 172.5 (d, J =12.0 Hz, CO). 

HRMS C18H24N2O5P [M+H]+ 379.1417; found, 379.1418. Additional column chromatography 

led to sample for testing. Purity 95.5% (tR=4.06 min). 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1-phenyl-5-propyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (9g). Following the general procedure, AgOAc (8 mg, 0.05 mmol), N-

propylmaleimide (200 mg, 1.4 mmol), acetonitrile (7 mL) and diethyl -

phenylisocyanomethylphosphonate (228 mg,  0.9 mmol) gave 9g (314 mg, 89%) as a yellowish 

oil, after column chromatography (EtOAc/hexane 1:1 to 3:2). IR (ATR) 3464, 2976, 2928, 1719, 

1631, 1451, 1402, 1202, 1056, 1027, 963, 705, 583 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) 

δ 0.59 (t, J = 7.0 Hz, 3H, CH2CH2CH3), 1.13-1.19 (m, 2H, CH2CH2CH3), 1.14 (t, J = 7.0 Hz, 3H, 

CH2CH3), 1.25 (t, J = 7.0 Hz, 3H, CH2CH3), 3.16 (m, 2H, CH2CH2CH3), 3.85 (m, 1H, CH2CH3), 

4.02-4.14 (m, 4H, CH2CH3 and H-6a), 4.30  (ddd, J = 8.5, 3.5, 1.5 Hz, 1H, H-3a), 7.29-7.34 (m, 

3H, ArH), 7.65 (br d, J = 8.0 Hz, 2H, ArH), 7.95 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR 
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(100.6 MHz) δ 11.0 (CH2CH2CH3), 16.3 (d, J = 4.0 Hz, CH2CH3), 16.4 (d, J = 6.0 Hz, CH2CH3), 

20.7 (CH2CH2CH3), 40.6 (CH2CH2CH3), 47.8 (d, J = 3.0 Hz, C-6a), 60.5 (C-3a), 63.5 (d, J = 7.0 

Hz, CH2CH3), 64.7 (d, J = 7.0 Hz, CH2CH3), 85.9 (d, J =154.0 Hz, C-1), 127.8 (d, J = 2.0 Hz, 

2CHAr), 128.5 (d, J = 3.0 Hz, CHAr), 128.6 (d, J = 6.0 Hz, 2CHAr), 133.5 (d, J = 4.0 Hz, C-

ipso), 162.8 (d, J = 12.0 Hz, C-3), 172.2 (d, J = 6.0 Hz, CO), 172.7 (d, J =12.0 Hz, CO). HRMS 

C19H26N2O5P [M+H]+ 393.1574; found, 393.1572. Additional column chromatography led to 

sample for testing. Purity 95.6% (tR=4.24 min). 

Diethyl (1RS,3aSR,6aSR)-5-(tert-butyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9h). Following the general procedure, 

AgOAc (9 mg, 0.05 mmol), N-tert-butylmaleimide (215 mg, 1.4 mmol), acetonitrile (7 mL) and 

diethyl -phenylisocyanomethylphosphonate (229 mg, 0.9 mmol) gave 9h (202 mg, 55%) as a 

yellowish oil, after column chromatography (EtOAc). IR (ATR) 3454, 2981, 2923, 1777, 1709, 

1348, 1265, 1241, 1173, 1061, 973, 744, 710, 588 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) 

δ 1.13 [s, 9H, C(CH3)3], 1.17 (t, J = 7.0 Hz, 3H, CH2CH3), 1.24 (t, J = 7.0 Hz, 3H, CH2CH3), 

3.88-3.95 (m, 2H, CH2CH3 and H-6a), 4.07-4.15 (m, 4H, CH2CH3 and H-3a), 7.28-7.33 (m, 3H, 

ArH), 7.59 (dbr, J = 8.0 Hz, 2H, ArH), 7.93 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 

MHz) δ 16.4 (d, J = 6.0 Hz, CH2CH3), 16.4 (d, J = 6.0 Hz, CH2CH3), 27.7 (C(CH3)3), 48.1 (d, J 

= 2.0 Hz, C-6a), 58.6 [C(CH3)3], 60.2 (C-3a), 63.5 (d, J = 8.0 Hz, CH2CH3), 64.6 (d, J = 8.0 Hz, 

CH2CH3), 86.6 (d, J =158.0 Hz, C-1), 127.9 (d, J = 2.0 Hz, 2CHAr), 128.4 (d, J = 2.0 Hz, 

CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 134.1 (d, J = 4.0 Hz,  C-ipso), 163.3 (d, J = 12.0 Hz, C-3), 

172.6 (d, J = 5.0 Hz, CO), 173.6 (d, J =10.0 Hz, CO). HRMS C20H28N2O5P [M+H]+ 407.1730; 

found, 407.1733. Additional column chromatography led to sample for testing. Purity 98.3% (tR= 

4.46 min). 
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Diethyl (1RS,3aSR,6aSR)-5-(adamantan-1-yl)methyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9i). Following the general procedure, 

AgOAc (12 mg, 0.07 mmol), N-(adamantan-1-methylphenyl)maleimide (270 mg, 1.1 mmol), 

acetonitrile (5 mL) and diethyl -phenylisocyanomethylphosphonate (177 mg,  0.7 mmol) gave 

9i (220  mg, 63%) as a white solid, after column chromatography (EtOAc/hexane 7:3). M.p. 107-

108 ºC (EtOAc). IR (ATR) 3469, 2908, 2850, 1714, 1446, 1392, 1226, 1158, 1012, 978, 758, 

700, 573 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 0.95 (dd, J = 52.0, 12.0 Hz, 6H, 3CH2), 

1.12 (t, J = 7.0 Hz, 3H, CH2CH3), 1.25 (t, J = 7.0 Hz, 3H, CH2CH3), 1.47 (dd, J = 53.0, 12.0 Hz, 

6H, 3CH2), 1.72 (s, 3H, 3CH), 2.95 (s, 2H, NCH2), 3.81 (m, 1H, CH2CH3), 3.99-3.15 (m, 3H, 

CH2CH3), 4.11 (dd, J = 19.0, 8.5 Hz, 1H, H-6a), 4.29 (ddd, J = 8.5, 3.0, 1.0 Hz, 1H, H-3a), 7.25-

7.33 (m, 3H, ArH), 7.72 (d, J = 7.0 Hz, 2H, ArH), 7.95 (dd, J = 5.0, 1.0  Hz, 1H, H-3). 13C NMR 

(100.6 MHz) δ 16.3 (d, J = 5.5 Hz, CH2CH3), 16.4 (d, J = 6.0 Hz, CH2CH3), 28.1 (3CH), 34.9 

(C), 36.5 (3CH2), 40.0 (3CH2), 47.7 (d, J = 2.0 Hz, C-6a), 50.2 (NCH2), 60.6 (C-3a), 63.6 (d, J = 

7.5 Hz, CH2CH3), 64.7 (d, J = 7.5 Hz, CH2CH3), 86.0 (d, J = 155.0 Hz, C-1), 127.8 (d, J = 2.0 

Hz, 2CHAr), 128.5 (d, J = 3.0 Hz, CHAr), 129.0 (d, J = 4.5 Hz, 2CHAr), 133.5 (d, J = 5.0 Hz, 

C-ipso), 162.6 (d, J = 12.0 Hz, C-3), 172.7 (d, J = 5.0 Hz, CO), 173.2 (d,  J = 13.0 Hz, CO); 

HRMS C27H36N2O5P [M+H]+ 499.2356; found, 499.2359. Purity 97.8% (tR= 5.27 min). 

Diethyl (1RS,3aSR,6aSR)-5-benzyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (9j). Following the general procedure, AgOAc (4 mg, 0.02 mmol), N-

benzylmaleimide (112 mg, 0.6 mmol), acetonitrile (3 mL) and diethyl -

phenylisocyanomethylphosphonate (101 mg, 0.4 mmol) gave 9j (139 mg, 79%) as a yellowish 

oil, after column chromatography (EtOAc/hexane 9:1). IR (NaCl) 3472, 3068, 2984, 1778, 1698, 

1632, 1495, 1249, 1172, 1021, 750, 615 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR)δ 1.14 (t, J 
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= 7.0 Hz, 3H, CH2CH3), 1.25 (t, J = 7.0 Hz, 3H CH2CH3), 3.86 (m, 1H, CH2CH3), 4.00-4.18 (m, 

4H, CH2CH3 and H-6a), 4.33 (ddd, J = 8.5, 3.5, 1.5 Hz, 1H, H-3a), 4.36 (dd, J = 53.5, 14.5 Hz, 

2H, CH2Ar), 6.94-6.96 (m, 2H, ArH), 7.14-7.22 (m, 3H, ArH), 7.23-7.30 (m, 3H, ArH), 7.61- 

7.63 (m, 2H, ArH), 7.92 (dd, J = 5.0, 1.5 Hz, 1H, H-3).13C NMR (100.6 MHz) δ 16.1 (d, J = 5.0 

Hz, CH2CH3), 16.2 (d, J = 5.0 Hz, CH2CH3), 42.4 (CH2Ar), 47.8 (d, J = 2.0 Hz, C-6a), 60.4 (C-

3a), 63.4 (d, J = 7.5 Hz, CH2CH3), 64.6 (d, J = 7.5 Hz, CH2CH3), 85.7 (d, J = 155.0 Hz, C-1), 

127.7 (d, J = 1.0 Hz, 2CHAr), 127.8 (CHAr), 128.3 (br s, 4CHAr), 128.4 (CHAr), 128.5 

(2CHAr), 133.2 (d, J = 4.0 Hz, C-ipso), 135.0 (C-ipso), 162.3 (d, J = 11.5 Hz, C-3), 171.6 (d, J = 

5.5 Hz, CO), 172.2 (d, J = 13.5 Hz, CO). HRMS C23H25N2O5P [M+H]+ 441.1574; found, 

441.1579. Additional column chromatography led to sample for testing. Purity 95.4% (tR= 4.43 

min). 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-5-phenethyl-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9k). Following the general procedure, 

AgOAc (7 mg, 0.04 mmol), N-phenethylmaleimide (200 mg, 1.0 mmol) acetonitrile (5 mL) and 

diethyl -phenylisocyanomethylphosphonate (170 mg, 0.7 mmol) gave 9k (110 mg, 36%) as an 

oil, after column chromatography (EtOAc/hexane 1:1). IR (NaCl) 3468, 3027, 2981, 1709, 1627, 

1394, 1250, 1162, 1052, 1025, 968, 792, 750 cm-1.1H NMR (400 MHz, CDCl3, HETCOR) δ 1.14 

(t, J = 7.0 Hz, 3H, CH2CH3), 1.25 (t, J = 7.0 Hz, 3H, CH2CH3), 2.40-2.53 (m, 2H, CH2), 3.46 (t, 

J = 7.5 Hz, 2H, CH2), 3.83 (m, 1H, CH2CH3), 3.99-4.16 (m, 4H, CH2CH3 and H-6a), 4.24 (ddd, J 

= 8.5, 4.0, 1.0 Hz, 1H, H-3a), 6.97-6.99 (m, 2H, ArH), 7.16-7.25 (m, 3H, ArH), 7.30-7.38 (m, 

3H, ArH), 7.68-7.70 (m, 2H, ArH), 7.85 (dd, J = 5.0, 1.0  Hz, 1H, H-3).13C NMR (100.6 MHz) δ 

16.1 (d, J = 4.0 Hz, CH2CH3), 16.2 (d, J = 4.5 Hz, CH2CH3), 33.0 (CH2), 39.9 (CH2), 47.5 (d, J = 

2.5 Hz, C-6a), 60.2 (C-3a), 63.4 (d, J = 7.5 Hz, CH2CH3), 64.6 (d, J = 7.5 Hz, CH2CH3), 126.6 
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(CHAr), 127.6 (CHAr), 127.7 (CHAr), 128.4 (d, J = 2.5 Hz, CHAr), 128.5 (2CHAr), 128.6 

(CHAr), 128.7 (CHAr), 128.8 (2CHAr), 133.2 (d, J = 4.5 Hz, C-ipso), 137.1 (C-ipso), 162.6 (d, J 

= 11.5 Hz, C-3), 171.6 (d, J = 5.5 Hz, CO), 172.3 (d, J = 13.5 Hz, CO). HMRS C24H28N2O5P 

[M+H]+ 455.1730; found: 455.1731. Additional column chromatography led to sample for 

testing. Purity 98.0% (tR= 4.54 min). 

Diethyl (1RS,3aSR,6aSR)-5-(4-fluorophenethyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9l). Following the general procedure, 

AgOAc (8 mg, 0.05 mmol), N-(4-fluorophenethyl)maleimide (263 mg, 1.2 mmol), acetonitrile (6 

mL) and diethyl -phenylisocyanomethylphosphonate (202 mg, 0.8 mmol) gave 9l (201 mg, 

53%) as a white solid, after column chromatography (EtOAc). M.p. 94-95 ºC (EtOAc). IR 

(NaCl) 3466, 3050, 2976, 1779, 1702, 1632, 1507, 1257, 1153, 1013, 763, 583 cm-1. 1H NMR 

(400 MHz, CDCl3, HETCOR) δ 1.23 (t, J = 7.0 Hz, 3H, CH2CH3), 1.25 (t, J = 7.0 Hz, 3H, 

CH2CH3), 2.40-2.52 (m, 2H, CH2), 3.41-3.46 (m, 2H, CH2), 3.80 (m, 1H, CH2CH3), 3.97-4.15 

(m, 4H, CH2CH3 and H-6a), 4.24 (ddd, J = 8.0, 4.0, 1.5 Hz, 1H, H-3a), 6.86-6.92 (m, 4H, ArH), 

7.31-7.37 (m, 3H, ArH), 7.67 (m, 2H, ArH), 7.83 (dd, J = 5.5, 1.5  Hz, 1H, H-3). 13C NMR 

(100.6 MHz) δ 16.1 (d, J = 5.0 Hz, CH2CH3), 16.2 (d, J = 5.0 Hz, CH2CH3), 32.1 (CH2), 39.9 

(CH2), 47.5 (d, J = 2.0 Hz, C-6a), 60.3 (C-3a), 63.4 (d, J = 7.0 Hz, CH2CH3), 64.6 (d, J = 7.0 Hz, 

CH2CH3), 85.7 (d,  J = 153.0 Hz, C-1), 115.3 (d, J = 2.0 Hz, 2CHAr), 127.6 (d, J = 2.0 Hz, 

2CHAr), 128.4 (d, J = 3.0 Hz, CHAr), 128.6 (d, J = 6.0 Hz, 2CHAr), 130.1 (d, J = 8.0 Hz, 

2CHAr), 132.7 (d, J = 3.0 Hz, C-ipso), 133.1 (d, J = 5.0 Hz, C-ipso), 160.4 (d, J = 244.5 Hz, C-

ipso), 162.5 (d, J = 12.0 Hz, C-3), 171.6 (d, J = 6.0 Hz, CO), 172.3 (d, J = 14.0 Hz, CO). HRMS 

C24H27FN2O5P [M+H]+ 473.1636; found, 473.1640. Anal. Cald. for C24H26FN2O5P: C, 61.01%; 

H, 5.55%; N, 5.93%; found: C, 61.14%; H, 5.74%; N, 5.83%. 
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Diethyl (1RS,3aSR,6aSR)-5-(2,3-dihydro-1H-inden-2-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9m). Following the general procedure, 

AgOAc (7 mg, 0.04 mmol), N-(2,3-dihydro-1H-inden-2-yl)maleimide (126 mg, 0.6 mmol), 

acetonitrile (3 mL) and diethyl -phenylisocyanomethylphosphonate (100 mg, 0.4 mmol) gave 

9m (158 mg, 85%) as a beige solid, after column chromatography (EtOAc). M.p. 124-126 ºC 

(EtOAc). IR (ATR) 3457, 2986, 2943, 2866, 1766, 1698, 1623, 1377, 1252, 1170, 1055, 1021, 

790, 704, 574 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.18 (t, J = 7.0 Hz, 3H, CH2CH3), 

1.26 (t, J = 7.0 Hz, 3H, CH2CH3), 2.69 (dd, J = 15.0, 9.0 Hz, 1H, CH2), 2.75 (dd, J = 15.0, 9.0 

Hz, 1H, CH2), 2.77 (dd, J = 15.0, 9.0 Hz, 1H, CH2), 3.23 (dd, J = 15.0, 9.0 Hz, 1H, CH2), 3.92 

(m, 1H, CH2CH3), 4.08-4.17 (m, 4H, CH2CH3 and H-6a), 4.31 (ddd, J = 9.0, 3.0, 1.5 Hz, 1H, H-

3a), 4.62 (qu, J = 9,2 Hz, 1H, CH), 7.09 (m, 1 H, ArH), 7.07-7.11 (m, 3H, ArH), 7.32-7.37 (m, 

3H, ArH), 7.64 (br d, J = 7.5 Hz, 2H, ArH), 8.00 (dd, J = 5.0, 1.5 Hz, 1H, H-3). 13C NMR (100.6 

MHz) δ 16.4 (d, J = 2.0 Hz, CH2CH3), 16.5 (d, J = 3.0 Hz, CH2CH3), 34.6 (CH2), 35.1 (CH2), 

48.0 (d, J = 2.0 Hz, C-6a), 50.8 (CH), 60.2 (C-3a), 63.6 (d, J = 7.0 Hz, CH2CH3), 64.7 (d, J = 8.0 

Hz, CH2CH3), 86.1 (d, J = 157.0 Hz, C-1), 124.4 (d, J  = 2.0 Hz, 2CHAr), 126.8 (d, J  = 2.0 Hz, 

2CHAr), 128.0 (d, J  = 1.0 Hz, 2CHAr), 128.5 (d, J = 8.0 Hz, 2CHAr), 128.6 (CHAr), 133.7 (C-

ipso), 133.8 (C-ipso), 140.5 (d, J  = 9.0 Hz, C-ipso), 162.7 (d, J = 12.0 Hz, C-3), 172.1 (d, J = 

5.0 Hz, CO), 172.7 (d, J =12.0 Hz, CO). HRMS C25H28N2O5P [M+H]+ 467.1730; found, 

467.1728. Anal. Cald. for C25H27N2O5P: C, 64.37%; H, 5.83%; N, 6.01%; found: C,64.55%; 

H,6.11%; N,5.76%. 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1-phenyl-5-[4-(trifluoromethyl)phenyl]-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9n). Following the general procedure, 

AgOAc (4 mg, 0.03 mmol), N-(4-trifluoromethylphenyl)maleimide (144mg, 0.6 mmol), 
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acetonitrile (3 mL) and diethyl -phenylisocyanomethylphosphonate (101 mg, 0.4 mmol) gave 

9n (133 mg, 67%) as a white solid, after column chromatography (EtOAc). M.p. 184-185 ºC 

(EtOAc). IR (NaCl) 3492, 3050, 2984, 1723, 1616, 1378, 1326, 1249, 1170, 1067, 758, 580 cm-1. 

1H NMR (400 MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 

3H, CH2CH3), 3.95 (m, 1H, CH2CH3), 4.10-4.20 (m, 3H, CH2CH3), 4.28 (dd,  J = 18.0, 9.0, 1H, 

H-6a), 4.51 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.85-6.87 (m, 2H, ArH), 7.34-7.38 (m, 3H, 

ArH), 7.54-7.56 (m, 2H, ArH), 7.67-7.69 (m, 2H, ArH), 8.05 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C 

NMR (100.6 MHz) δ 16.2 (d, J = 5.0 Hz, CH2CH3), 16.3 (d, J = 5.0 Hz, CH2CH3), 48.3 (d, J = 

3.0 Hz, C-6a), 60.1 (C-3a), 63.6 (d, J = 7.0 Hz, CH2CH3), 64.7 (d, J = 7.0 Hz, CH2CH3), 86.3 (d,  

J =157.0 Hz, C-1), 123.5 (q, J = 272.5 Hz, CF3), 126.0 (q, J = 4.0 Hz, 2CHAr), 126.3 (2CHAr), 

128.0 (d, J = 1.0 Hz, 2CHAr), 128.4 (d, J = 6.0 Hz, 2CHAr), 128.7 (d, J = 2.0 Hz, CHAr), 137.5 

(q, J = 33.0 Hz, CCF3), 133.4 (d, J = 4.0 Hz, C-ipso), 134.1 (d, J = 1.5 Hz, C-ipso), 162.0 (d, J = 

13.0 Hz, C-3), 170.4 (d, J = 5.0 Hz, CO), 171.2 (d, J = 12.0 Hz, CO). HRMS C23H23F3N2O5P 

[M+H]+ 495.1291; found, 495.1288. Anal. Cald. for C23H22F3N2O5P: C, 55.88%; H, 4.49%; N, 

5.67%; found: C, 56.04%; H, 4.71%; N, 5.56%. 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1-phenyl-5-[3-(trifluoromethyl)phenyl]-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9o). Following the general procedure, 

AgOAc (10 mg, 0.06 mmol), N-(3-trifluoromethylphenyl)maleimide (362 mg, 1.5 mmol), 

acetonitrile (8 mL) and diethyl -phenylisocyanomethylphosphonate (253 mg, 1.0 mmol) gave 

9o (218 mg, 44%) as a white solid, after column chromatography (EtOAc). M.p. 179-180 ºC 

(EtOAc). IR (ATR) 3483, 3084, 2957, 2036, 1719, 1446, 1382, 1329, 1168, 1027, 978, 739, 573 

cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.21 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 

Hz, 3H, CH2CH3), 3.98 (m, 1H, CH2CH3), 4.11-4.20 (m, 3H, CH2CH3), 4.27 (dd, J = 18.0, 9.0 
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Hz, 1H, H-6a), 4.50  (ddd, J = 9.0, 2.5, 1.5 Hz, 1H, H-3a), 6.86 (s, 1H, ArH), 6.96 (d, J = 9.5 Hz, 

1H, ArH), 7.36-7.39 (m, 3H, ArH), 7.42 (t, 7.5 Hz, 1H, ArH), 7.53 (d, J = 8.0 Hz, 1H, ArH), 

7.67 (br d, J = 7.0 Hz, 2H, ArH), 8.06 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 

16.4 (d, J = 5.5 Hz, CH2CH3), 16.4 (d, J = 5.5 Hz, CH2CH3), 48.6 (d, J = 2.0 Hz, C-6a), 60.2 (C-

3a), 63.8 (d, J = 7.5 Hz, CH2CH3), 64.9 (d, J = 7.5 Hz, CH2CH3), 86.4 (d, J =158.0 Hz, C-1), 

123.3 (q, J = 4.0 Hz, CHAr), 123.4 (q, J = 272.5 Hz, CF3), 125.6 (q, J = 4.0 Hz, CHAr), 128.2 

(d, J = 2.0 Hz, 2CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 128.9 (d, J = 2.0 Hz, CHAr), 129.5 (d, J = 

1.0 Hz, CHAr), 129.7 (CHAr), 131.6 (q, J = 33.5 Hz, CCF3), 131.7 (C-ipso), 133.5 (d, J = 4.0 

Hz, C-ipso), 162.1 (d, J = 12.0 Hz, C-3), 170.6 (d, J = 5.0 Hz, CO), 171.5 (d, J =11.0 Hz, CO). 

HRMS C23H23F3N2O5P [M+H]+ 495.1291; found, 495.1287. Anal. Cald. for C23H22F3N2O5P: C, 

55.88%; H, 4.49%; N, 5.67%; found: C, 56.00%; H, 4.63%; N, 5.46%. 

Diethyl (1RS,3aSR,6aSR)-5-(4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9p). Following the general procedure, 

AgOAc (7 mg, 0.04 mmol), N-(4-fluorophenyl)maleimide (211mg, 1.1mmol), acetonitrile (5mL) 

and diethyl -phenylisocyanomethylphosphonate (177 mg, 0.7 mmol) gave 9p (198 mg, 64%) as 

a white solid, after column chromatography (EtOAc). M.p. 200-201 ºC (EtOAc). IR (NaCl) 

3481, 3061, 2980, 1787, 1717, 1511, 1385, 1245, 1017, 969, 700, 583 cm-1. 1H NMR (400 MHz, 

CDCl3, HETCOR) δ 1.19 (t, J = 7.5 Hz, 3H, CH2CH3), 1.28 (t, J = 7.5 Hz, 3H, CH2CH3), 3.93 

(m, 1H, CH2CH3), 4.10-4.20 (m, 3H, CH2CH3), 4.26 (dd,  J = 18.0, 9.0, 1H, H-6a), 4.48 (ddd, J = 

8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.67-6.72 (m, 2H, ArH), 6.96-7.00 (m, 2H, ArH), 7.33-7.39 (m, 3H, 

ArH), 7.68-7.70 (m, 2H, ArH), 8.05 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 

16.2 (d, J = 4.0 Hz, CH2CH3), 16.3 (d, J = 4.0 Hz, CH2CH3), 48.2 (d, J = 3.0 Hz, C-6a), 60.1 (C-

3a), 63.6 (d, J = 8.0 Hz, CH2CH3), 63.7 (d, J = 7.0 Hz, CH2CH3), 86.2 (d,  J =157.0 Hz, C-1), 
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116.1 (d, J = 23.0 Hz, 2CHAr), 126.9 (d, J = 3.0 Hz, C-ipso), 127.9 (2CHAr), 128.0 (2CHAr), 

128.4 (d, J = 6.0 Hz, 2CHAr), 128.6 (d, J = 2.0 Hz, CHAr), 133.4 (d, J = 4.0 Hz, C-ipso), 160.9 

(d, J = 248.5 Hz, C-ipso), 162.2 (d, J = 12.0 Hz, C-3), 170.9 (d, J = 5.0 Hz, CO), 171.6 (d, J = 

11.0 Hz, CO). HRMS C22H23FN2O5P [M+H]+445.1323; found, 445.1322. Anal. Cald. for 

C22H22FN2O5P: C, 59.46%; H, 4.99%; N, 6.30%; found: C,59.73%; H,5.13%; N,6.19%. 

Diethyl (1RS,3aSR,6aSR)-5-(4-chlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9q). Following the general procedure, 

AgOAc (5 mg, 0.03 mmol), N-(4-chlorophenyl)maleimide (150 mg, 0.7 mmol), acetonitrile (4 

mL) and diethyl -phenylisocyanomethylphosphonate (118 mg, 0.5 mmol) gave 9q (136 mg, 

59%) as a white solid, after column chromatography (EtOAc). M.p. 211-212 ºC (EtOAc). IR 

(ATR) 3078, 2981, 2923, 2855, 1713, 1499, 1377, 1187, 1022, 773, 583 cm-1. 1H NMR (400 

MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 

3.94 (m, 1H, CH2CH3), 4.11-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 18.0, 9.0 Hz, 1H, H-6a), 4.47  

(ddd, J = 8.5, 3.0, 1.0 Hz, 1H, H-3a), 6.65-6.67 (m, 2H, ArH), 7.24-7.27 (m, 2H, ArH), 7.33-7.37 

(m, 3H, ArH), 7.67  (br d, J = 7.5 Hz, 2H, ArH), 8.04 (dd, J = 5.5, 1.0  Hz, 1H, H-3). 13C NMR 

(100.6 MHz) δ 16.4 (d, J = 3.0 Hz, CH2CH3), 16.4 (d, J = 4.0 Hz, CH2CH3), 48.4 (d, J = 2.0 Hz, 

C-6a), 60.2 (C-3a), 63.7 (d, J = 7.0 Hz, CH2CH3), 64.8 (d, J = 7.0 Hz, CH2CH3), 86.4 (d, J 

=157.0 Hz, C-1), 127.4 (2CHAr), 128.1 (d, J = 1.0 Hz, 2CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 

128.7 (d, J = 2.0 Hz, CHAr), 129.4 (2CHAr), 129.6 (C-ipso), 133.6 (d, J = 4.0 Hz, C-ipso), 134.7 

(C-ipso), 162.2 (d, J = 12.0 Hz, C-3), 170.8 (d, J = 5.0 Hz, CO), 171.5 (d, J =12.0 Hz, CO). 

HRMS C22H23ClN2O5P [M+H]+ 461.1028; found, 461.1026. Anal. Cald. for C22H22ClN2O5P: C, 

57.34%; H, 4.81%; N, 6.08%; found: C, 57.71%; H, 4.92%; N, 5.96%.  

Diethyl (1RS,3aSR,6aSR)-5-(2-chlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-
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hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9r). Following the general procedure, 

AgOAc (6 mg, 0.04 mmol), N-(2-chlorophenyl)maleimide (180 mg, 0.9 mmol), acetonitrile (5 

mL) and diethyl -phenylisocyanomethylphosphonate (152 mg, 0.6 mmol) gave 9r (200 mg, 

72%) as a white solid, after column chromatography (EtOAc/hexane 7:3). M.p. 172-174 ºC 

(EtOAc). IR (ATR) 3496, 2981, 2866, 1790, 1718, 1482, 1386, 1237, 1194, 1045, 1021, 973, 

757, 579 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.14 (t, J = 7.0 Hz, 3H, CH2CH3-

rotamer A), 1.19 (t, J = 7.0 Hz, 3H, CH2CH3-rotamer B), 1.29 (t, J = 7.0 Hz, 3H, CH2CH3-

rotamer A), 1.30 (t, J = 7.0 Hz, 3H, CH2CH3-rotamer B), 3.82 (m, 1H, CH2CH3-rotamer A), 3.93 

(m, 1H, CH2CH3-rotamer B), 4.05-4.20 (m, 6H, CH2CH3-rotamer A and B), 4.35 (dd, J = 18.0, 

8.5 Hz, 1H, H-6a rotamer A), 4.36 (dd, J = 18.0, 8.5 Hz, 1H, H-6a rotamer B), 4.52 (ddd, J = 8.5, 

4.5, 1.5 Hz, 1H, H-3a rotamer A), 4.56 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a rotamer B), 6.30 (dd, 

J = 8.0, 1.5 Hz, 1H, ArH rotamer B), 7.10 (m, 1H, ArH rotamer B), 7.13 (ddd, J = 16.0, 8.0, 2.0 

Hz, 1H, ArH rotamer A), 7.25-7.43 (m, 10H, 6ArH rotamer A and 4ArH rotamer B), 7.42 (dd, J 

= 8.0, 1.5 Hz, 1H, ArH rotamer B), 7.71 (d, J = 8.0 Hz, 2H, ArH rotamer B), 7.78 (d, J = 8.0 Hz, 

2H, ArH rotamer A), 8.03 (dd, J = 5.5 Hz, 1.5 Hz, 1H, H-3 rotamer A), 8.08 (dd, J = 5.0, 1.5 Hz, 

1H, H-3 rotamer B). 13C NMR (100.6 MHz) δ 16.2 (d, J = 6.0 Hz, CH2CH3 rotamer A or B), 16.2 

(d, J = 6.0 Hz, CH2CH3 rotamer A or B), 16.3 (d, J = 6.0 Hz, CH2CH3 rotamer A or B), 16.3 (d, J 

= 5.5 Hz, CH2CH3 rotamer A or B), 48.0 (d, J = 2.5 Hz, C-6a rotamer A), 48.6 (d, J = 2.5 Hz, C-

6a rotamer B), 60.3 (C-3a rotamer B), 60.1 (C-3a rotamer A), 63.5 (d, J = 7.5 Hz, CH2CH3 

rotamer A), 63.6 (d, J = 7.5 Hz, CH2CH3 rotamer B), 64.7 (d, J = 7.5 Hz, CH2CH3 rotamer B), 

64.8 (d, J = 7.5 Hz, CH2CH3 rotamer A), 86.0 (d, J = 157.5, C-1 rotamer A), 86.6 (d, J = 153.5, 

C-1 rotamer B), 127.6 (CHAr rotamer A or B), 127.7 (d, J = 2.0 Hz, CHAr rotamer A or B), 

127.8 (CHAr rotamer A), 127.9 (CHAr rotamer A or B), 128.0 (CHAr rotamer A or B), 128.4 (d, 
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J = 5.0 Hz, 2CHAr rotamer B), 128.5 (2CHAr rotamer A or B), 128.6 (d, J = 2.0 Hz, CHAr 

rotamer A or B), 128.9 (d, J = 6.0 Hz, CHAr rotamer A), 129.1 (C-ipso rotamer A), 129.2 (C-

ipso rotamer B), 129.3 (CHAr rotamer B), 129.6 (CHAr rotamer A), 130.2 (CHAr rotamer B), 

130.3 (CHAr rotamer A or B), 130.7 (CHAr rotamer A or B), 130.9 (CHAr rotamer A or B), 

132.0 (C-ipso rotamer A), 132.2 (C-ipso rotamer B), 132.9 (d, J = 4.0 Hz, C-ipso rotamer A), 

133.5 (d, J = 4.0 Hz, C-ipso rotamer B), 162.0 (d, J = 11.5 Hz, C-3 rotamer A), 162.2 (d, J = 

12.5 Hz, C-3 rotamer B), 170.2 (d, J = 5.0 Hz, CO rotamer B), 170.3 (d, J = 5.5 Hz, CO rotamer 

A), 170.7 (d, J = 11.5 Hz, CO rotamer A or B), 170.8 (d, J = 15.0 Hz, CO rotamer B). HRMS 

C22H23ClN2O5P [M+H]+ 461.1028; found, 461.1025. Anal. Cald. for C22H22ClN2O5P: C, 57.34%; 

H, 4.81%; N, 6.08%; found: C,57.18%; H,4.86%; N,5.88%. 

Diethyl (1RS,3aSR,6aSR)-5-(3-chlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9s). Following the general procedure, 

AgOAc (8 mg, 0.05 mmol), N-(3-chlorophenyl)maleimide (250 mg, 1.2 mmol), acetonitrile (6 

mL) and diethyl -phenylisocyanomethylphosphonate (203 mg, 0.8 mmol) gave 9s (167 mg, 

45%) as a white solid, after column chromatography (EtOAc). M.p. 186-187 ºC (EtOAc). IR 

(ATR) 3488, 3084, 2962, 2928, 1709, 1587, 1475, 1382, 1241, 1183, 1051, 1022, 948, 705 cm-1. 

1H NMR (400 MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 

3H, CH2CH3), 3.94 (m, 1H, CH2CH3), 4.10-4.19 (m, 3H, CH2CH3), 4.26 (dd, J = 18.0, 9.0 Hz, 

1H, H-6a), 4.48  (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.63-6.68 (m, 2H, ArH), 7.22 (m, 1H, 

ArH), 7.26 (m, 1H, ArH), 7.35-7.39 (m, 3H, ArH), 7.68 (br d, J = 7.5 Hz, 2H, ArH), 8.05 (dd, J 

= 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.4 (d, J = 5.5 Hz, CH2CH3), 16.4 (d, J = 5.5 

Hz, CH2CH3), 48.5 (d, J = 3.0 Hz, C-6a), 60.2 (C-3a), 63.7 (d, J = 7.0 Hz, CH2CH3), 64.8 (d, J = 

7.0 Hz, CH2CH3), 86.4 (d, J =157.0 Hz, C-1), 124.4 (CHAr), 126.5 (CHAr), 128.2 (d, J = 2.0 
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Hz, 2CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 128.9 (d, J = 2.0 Hz, CHAr), 129.0 (CHAr), 130.1 

(CHAr), 132.2 (C-ipso), 133.5 (d, J = 4.0 Hz, C-ipso), 134.7 (C-ipso), 162.3 (d, J = 12.0 Hz, C-

3), 170.6 (d, J = 5.0 Hz, CO), 171.4 (d, J = 12.0 Hz, CO). HRMS C22H23ClN2O5P [M+H]+ 

461.1028; found, 461.1029. Anal. Cald. for C22H22ClN2O5P: C, 57.34%; H, 4.81%; N, 6.08%; 

found: C, 57.70%; H, 4.96%; N, 5.59%. 

Diethyl (1RS,3aSR,6aSR)-5-(4-bromophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9t). Following the general procedure, 

AgOAc (7 mg, 0.04 mmol), N-(4-bromophenyl)maleimide (275 mg, 1.1 mmol), acetonitrile (5 

mL) and diethyl -phenylisocyanomethylphosphonate (177 mg, 0.7 mmol) gave 9t (181 mg, 

51%) as a white solid, after column chromatography (EtOAc/hexane 1:1). M.p. 180-182 ºC 

(EtOAc). IR (ATR) 3478, 2918, 2845, 1797, 1714, 1480, 1387, 1236, 1187, 1158, 1022, 973, 

744, 578 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 

(t, J = 7.0 Hz, 3H, CH2CH3), 3.93 (m, 1H, CH2CH3), 4.10-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 

18.0, 9.0 Hz, 1H, H-6a), 4.47 (ddd, J = 9.0, 3.0, 1.5 Hz, 1H, H-3a), 6.59-6.61 (m, 2H, ArH), 

7.34-7.36 (m, 3H, ArH), 7.40-7.42 (m, 2H, ArH), 7.67  (br s, J = 7.5 Hz, 2H, ArH), 8.04 (dd, J = 

5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.4 (d, J = 3.0 Hz, CH2CH3), 16.4 (d, J = 4.0 

Hz, CH2CH3), 48.4 (d, J = 3.0 Hz, C-6a), 60.3 (C-3a), 63.7 (d, J = 8.0 Hz, CH2CH3), 64.8 (d, J = 

7.0 Hz, CH2CH3), 86.4 (d, J =157.0 Hz, C-1), 122.7 (C-ipso), 127.7 (2CHAr), 128.1 (d, J = 2.0 

Hz, 2CHAr), 128.5 (d, J = 6.0 Hz, 2CHAr), 128.8 (d, J = 2.0 Hz, CHAr), 130.2 (C-ipso), 132.4 

(2CHAr), 133.6 (d, J = 4.0 Hz, C-ipso), 162.2 (d, J = 12.0 Hz, C-3), 170.7 (d, J = 5.0 Hz, CO), 

171.4 (d, J =11.0 Hz, CO). HRMS C22H23BrN2O5P [M+H]+ 505.0522; found, 505.0522. Anal. 

Cald. for C22H22BrN2O5P: C, 52.99%; H, 4.90%; N, 5.24%; found: C, 53.30%; H, 4.61%; N, 

5.10%. 
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Diethyl (1RS,3aSR,6aSR)-5-(3,5-dichlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9u). Following the general procedure, 

AgOAc (12 mg, 0.07 mmol), N-(3,5-dichlorophenyl)maleimide (267 mg, 1.1 mmol), acetonitrile 

(5 mL) and diethyl -phenylisocyanomethylphosphonate (177 mg,  0.7 mmol) gave 9u (190 mg, 

55%) as a white solid, after column chromatography (EtOAc/hexane 8:2). M.p. 207-209 ºC 

(EtOAc). IR (ATR) 3483, 3079, 2952, 2928, 1719, 1573, 1441, 1373, 1226, 1183, 1027, 973, 

763, 734, 727, 588 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, 

CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, CH2CH3), 3.94 (m, 1H, CH2CH3), 4.10-4.19 (m, 3H, 

CH2CH3), 4.25 (dd, J = 18.0, 8.5 Hz, 1H, H-6a), 4.47 (ddd, J = 9.0, 2.5, 1.5 Hz, 1H, H-3a), 6.60 

(d, J = 2.0 Hz, 2H, ArH), 7.27 (m, 1H, ArH), 7.37-7.40 (m, 3H, ArH), 7.65 (br d, J = 5.0 Hz, 2H, 

ArH), 8.04 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.3 (d, J = 5.5 Hz, 

CH2CH3), 16.4 (d, J = 5.5 Hz, CH2CH3), 48.6 (d, J = 3.0 Hz, C-6a), 60.9 (C-3a), 63.8 (d, J = 7.0 

Hz, CH2CH3), 64.9 (d, J = 7.0 Hz, CH2CH3), 86.5 (d, J = 158.0 Hz, C-1), 124.8 (2CHAr), 128.3 

(d, J = 2.0 Hz, 2CHAr), 128.5 (d, J = 5.0 Hz, 2CHAr), 129.0 (d, J = 2.0 Hz, CHAr), 129.1 

(CHAr), 132.8 (C-ipso), 133.5 (d, J = 3.0 Hz, C-ipso), 135.3 (2C-ipso), 162.0 (d, J = 13.0 Hz, C-

3), 170.2 (d, J = 5.0 Hz, CO), 171.1 (d, J = 11.0 Hz, CO). HRMS C22H22Cl2N2O5P [M+H]+ 

495.0638; found, 495.0638. Anal. Cald. for C22H21Cl2N2O5P: C, 53.35%; H, 4.27%; N, 5.66%; 

found: C, 53.69%; H, 4.35%; N, 5.42%. 

Diethyl (1RS,3aSR,6aSR)-5-(3,4-dichlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9v). Following the general procedure, 

AgOAc (8 mg, 0.05 mmol), N-(3-chloro-4-chlorophenyl)maleimide (288 mg, 1.2 mmol), 

acetonitrile (6 mL) and diethyl -phenylisocyanomethylphosphonate (202 mg,  0.8 mmol) gave 

9v (210 mg, 53%) as a white solid, after column chromatography (EtOAc/hexane 1:1). M.p. 172-
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174 ºC (EtOAc). IR (ATR) 3480, 3075, 2957, 1790, 1716, 1464, 1251, 1187, 1058, 1024, 737, 

579 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J 

= 7.0 Hz, 3H, CH2CH3), 3.95 (m, 1H, CH2CH3), 4.10-4.20 (m, 3H, CH2CH3), 4.26 (dd,  J = 18.0, 

8.5 Hz, 1H, H-6a), 4.47 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.61 (dd, J = 9.0, 2.5 Hz, 1H, 

ArH), 6.78 (d, J = 2.5 Hz, 1H, ArH), 7.35-7.38 (m, 4H, ArH), 7.65-7.68 (m, 2H, ArH), 8.04 (dd, 

J = 4.5, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.2 (d, J = 6.0 Hz, CH2CH3), 16.3 (d, J = 

6.0 Hz, CH2CH3), 48.4 (d, J = 3.0 Hz, C-6a), 60.0 (C-3a), 63.6 (d, J = 7.0 Hz, CH2CH3), 64.7 (d, 

J = 8.0 Hz, CH2CH3), 86.2 (d,  J = 157.0 Hz, C-1), 125.2 (CHAr), 127.9 (CHAr), 128.0 (d, J = 

2.0 Hz, 2CHAr), 128,3 (d, J = 6.0 Hz, 2CHAr), 128.7 (d, J = 2.0 Hz, CHAr), 130.2 (C-ipso), 

130.6 (CHAr), 132.9 (C-ipso), 133.0 (C-ipso), 133.3 (d,  J = 4.0 Hz, C-ipso), 161.9 (d, J = 13.0 

Hz, C-3), 170.2 (d, J = 5.0 Hz, CO), 171.1 (d, J = 12.0 Hz, CO). HRMS C22H22Cl2N2O5P 

[M+H]+ 495.0638; found, 495.0637. Anal. Cald. for C22H21Cl2N2O5P: C, 53.35%; H, 4.27%; N, 

5.66%; found: C, 53.42%; H, 4.30%; N, 5.48%. 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1-phenyl-5-(2,4,6-trichlorophenyl)-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9w). Following the general procedure, 

AgOAc (8.3 mg, 0.05 mmol), N-(2,4,6-trichlorophenyl)maleimide (194 mg, 0.7 mmol), 

acetonitrile (4 mL) and diethyl -phenylisocyanomethylphosphonate (127 mg, 0.5 mmol) gave 

9w (215 mg, 81%) as a yellowish solid, after column chromatography (EtOAc). M.p. 146-148 ºC 

(EtOAc). IR (ATR) 3501, 2976, 2854, 1786, 1727, 1471, 1361, 1253, 1043, 1322, 961, 704 cm-1. 

1H NMR (400 MHz, CDCl3, HETCOR) δ 1.14 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 

3H, CH2CH3), 3.84 (m, 1H, CH2CH3), 4.03-4.17 (m, 3H, CH2CH3), 4.41 (dd, J = 18.0, 9.0 Hz, 

1H, H-6a), 4.57 (ddd, J = 8.5, 4.0, 1.0 Hz, 1H, H-3a), 7.26 (d, J =3.0 Hz, 1H, ArH), 7.28-7.34 

(m, 3H, ArH), 7.36 (d, J = 2.0 Hz, 1H, ArH), 7.75 (br d, J = 8.0 Hz, 2H, ArH), 8.02 (dd, J = 5.0, 
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1.0  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.3 (d, J = 6.0 Hz, CH2CH3), 16.4 (d, J = 6.0 Hz, 

CH2CH3), 48.3 (d, J = 3.0 Hz, C-6a), 61.0 (C-3a), 63.7 (d, J = 7.0 Hz, CH2CH3), 64.9 (d, J = 8.0 

Hz, CH2CH3), 86.7 (d, J = 152.0 Hz, C-1), 126.6 (C-ipso), 127.8 (d, J  = 2.0 Hz, 2CHAr), 128.6 

(CHAr), 128.7 (CHAr), 128.8 (CHAr), 129.0 (d, J = 5.0 Hz, 2CHAr), 133.0 (d, J = 5.0 Hz, C-

ipso), 135.1  (d, J = 10.0 Hz, C-ipso), 136.8 (2C-ipso), 161.8 (d, J = 11.0 Hz, C-3), 169.3 (d, J = 

5.0 Hz, CO), 169.8 (d, J =14.0 Hz, CO). HRMS C22H21Cl3N2O5P [M+H]+ 529.0248; found, 

529.0242. Purity 98% (tR= 5.06 min). 

Diethyl (1RS,3aSR,6aSR)-5-(3-nitrophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9x). Following the general procedure, 

AgOAc (4 mg, 0.02 mmol), N-(3-nitrophenyl)maleimide (131 mg, 0.6 mmol), acetonitrile (3 

mL) and diethyl -phenylisocyanomethylphosphonate (101 mg, 0.4 mmol) gave 9x (101 mg, 

54%) as a white solid, after column chromatography (EtOAc). M.p. 192-195 ºC (EtOAc). IR 

(NaCl) 2984, 1724, 1537, 1351, 1248, 1176, 1050, 971, 758, 674 cm-1.1H NMR (400 MHz, 

CDCl3, HETCOR) δ 1.21 (t, J = 7.0 Hz, 3H, CH2CH3), 1.29 (t, J = 7.0 Hz, 3H, CH2CH3), 3.98 

(m, 1H, CH2CH3), 4.10-4.24 (m, 3H, CH2CH3), 4.30 (dd, J = 18.0, 9.0 Hz, 1H, H-6a), 4.53 (ddd, 

J = 9.0, 3.0, 1.0 Hz, H-3a), 7.11 (dq, J = 8.0, 1.0 Hz, 1H, ArH), 7.38-7.41 (m, 3H, ArH), 7.49 (t, 

J = 8.0 Hz, 1H, ArH), 7.58 (t, J = 2.0 Hz, 1H, ArH), 7.67-7.69 (m, 2H, ArH), 8.07 (dd, J = 5.0, 

1.0 Hz, 1H, H-3), 8.14 (ddd, J = 8.5, 2.5, 1.0 Hz, 1H, ArH).13C NMR (100.6 MHz) δ 16.2 (d, J = 

3.0 Hz, CH2CH3), 16.3 (d, J = 3.5 Hz, CH2CH3), 48.5 (d, J = 2.0 Hz, C-6a), 60.0 (C-3a), 63.6 (d, 

J = 7.5 Hz, CH2CH3), 64.7 (d, J = 7.5 Hz, CH2CH3), 86.2 (d, J = 158.0 Hz, C-1), 121.4 (CHAr), 

123.3 (CHAr), 128.1 (2CHAr), 128.2 (CHAr), 128.3 (CHAr), 128.9 (d, J = 1.5 Hz, CHAr), 129.8 

(CHAr), 131.9 (CHAr), 132.0 (C-ipso), 133.2 (d, J = 4.0 Hz, C-ipso), 148.3 (C-ipso), 161.7 (d, J 

= 12.0 Hz, C-3), 170.2 (d, J = 5.5 Hz, CO), 171.1 (d, J = 11.0 Hz, CO). HRMS C22H23N3O7P 
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[M+H]+ 472.1268; found, 472.1276. Anal. Cald. for C22H22N3O7P: C, 56.05%; H, 4.70%; N, 

8.91%; found: C, 55.73%; H, 4.74%; N, 8.85%. 

Diethyl (1RS,3aSR,6aSR)-5-(2-methyl-5-nitrophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9y). Following the general procedure, 

AgOAc (5 mg, 0.03 mmol), N-(2-methyl-5-nitrophenyl)maleimide (138 mg, 0.6 mmol), 

acetonitrile (3 mL) and diethyl -phenylisocyanomethylphosphonate (101 mg, 0.4  mmol) gave 

9y (111 mg, 57%) as a white solid, after column chromatography (EtOAc). M.p. 196-198 ºC 

(EtOAc). IR (ATR) 3493, 3079, 2947, 2845, 1724, 1519, 1343, 1192, 1017, 739, 578 cm-1. 1H 

NMR (400 MHz, CDCl3, HETCOR) δ 1.16 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer A), 1.22 

(td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer B), 1.29 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer B), 

1.30 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer A), 1.51 (s, 3H, CH3 rotamer A), 2.15 (s, 3H, CH3 

rotamer B), 3.85 (m, 1H, CH2CH3 rotamer A), 3.99 (m, 1H, CH2CH3 rotamer B), 4.03-4.24 (m, 

6H, CH2CH3 rotamer A and B), 4.35 (dd, J = 18.0, 9.0 Hz, 1H, H-6a rotamer B), 4.39 (dd, J = 

18.5, 9.0 Hz, 1H, H-6a rotamer A), 4.55 (ddd,  J = 10.0, 2.5, 1.5 Hz, 1H, H-3a rotamer B), 4.59 

(ddd,  J = 9.0, 3.5, 1.5 Hz, 1H, H-3a rotamer A), 6.88 (d, J = 2.5 Hz, 1H, ArH rotamer B), 7.47-

7.19 (m, 8H, 4ArH rotamer A and 4ArH rotamer B), 7.69 (br s, 2H, ArH rotamer B), 7.77 (d, J = 

7.5 Hz, 2H, ArH rotamer A), 7.91 (d, J = 2.5 Hz, 1H, ArH rotamer A), 8.05 (dd, J = 5.0, 1.5 Hz, 

1H, C-3 rotamer A), 8.08 (dd, J = 5.5, 2.5 Hz, 1H, C-3 rotamer B), 8.08-8.11 (m, 2H, ArH 

rotamer A and rotamer B). 13C NMR (100.6 MHz) δ 16.3 (d, J = 5.5 Hz, CH2CH3 rotamer A), 

16.3 (d, J = 5.5 Hz, CH2CH3 rotamer B), 16.4 (d, J = 5.5 Hz, CH2CH3 rotamer A), 16.4 (d, J = 

5.5 Hz, CH2CH3 rotamer B), 17.5 (CH3 rotamer A), 18.2 (CH3 rotamer B), 48.3 (d, J = 2.5 Hz, 

C-6a rotamer A), 49.2 (d, J = 2.5 Hz, C-6a rotamer B), 60.1 (C-3a rotamer B), 61.0 (C-3a 

rotamer A), 63.7 (d, J = 7.5 Hz, CH2CH3 rotamer A), 63.8 (d, J = 7.5 Hz, CH2CH3 rotamer B), 
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64.9 (d, J = 7.5 Hz, CH2CH3 rotamer B), 65.0((d, J = 7.5 Hz, CH2CH3 rotamer A), 86.3 (d, J = 

159.0, C-1 rotamer B), 86.6 (d, J = 154.5, C-1 rotamer A), 123.5 (CHAr rotamer B), 123.7 

(CHAr rotamer A), 124.3 (CHAr rotamer A), 124.5 (CHAr rotamer B), 127.9 (CHAr rotamer A), 

128.0 (CHAr rotamer B), 128.3 (d, J = 5.5 Hz, 2CHAr rotamer B), 128.3 (CHAr rotamer A), 

128.4 (CHAr rotamer B), 128.8 (d, J = 2.5 Hz, CHAr rotamer A), 128.9 (d, J = 6.5 Hz, 2CHAr 

rotamer A), 129.4 (d, J = 2.0 Hz, CHAr rotamer B), 131.1 (C-ipso rotamer A), 131.2 (C-ipso 

rotamer B), 131.8 (CHAr rotamer B), 131.9 (CHAr rotamer A), 133.3 (d, J = 4.5 Hz, C-ipso 

rotamer A), 133.4 (d, J = 4.0 Hz, C-ipso rotamer B), 143.8 (C-ipso rotamer A), 143.9 (C-ipso 

rotamer B), 146.6 (C-ipso rotamer A), 146.7 (C-ipso rotamer B), 161.8 (d, J = 12.5 Hz, C-3 

rotamer B), 161.9 (d, J = 11.5 Hz, C-3 rotamer A), 170.4 (d, J = 5.0 Hz, CO rotamer B), 170.6 

(d, J = 5.5 Hz, CO rotamer A), 171.0 (d, J = 13.5 Hz, CO rotamer A), 171.3 (d, J = 10.0 Hz, CO 

rotamer B). HRMS C23H25N3O7P [M+H]+ 486.1425; found, 486.1424. Anal. Cald. for 

C23H24N3O7P: C, 56.91%; H, 4.98%; N, 8.66%; found: C, 57.33%; H, 5.11%; N, 8.59%.  

Diethyl (1RS,3aSR,6aSR)-5-(1,1’-biphenyl)-4-yl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9z). Following the general procedure, 

AgOAc (5 mg, 0.03 mmol), N-(p-phenylphenyl)maleimide (200 mg, 0.8 mmol), acetonitrile (4 

mL) and diethyl -phenylisocyanomethylphosphonate (134 mg, 0.5 mmol) gave 9z (129 mg, 

49%) as a yellowish oil, after column chromatography (EtOAc). IR (NaCl) 3483, 2982, 2928, 

1716, 1628, 1487, 1378, 1248, 1182, 1052, 1024, 969, 839, 792 cm-1.1H NMR (400 MHz, 

CDCl3, HETCOR) δ 1.20 (t, J = 7.0 Hz, 3H, CH2CH3), 1.29 (t, J = 7.0 Hz, 3H, CH2CH3), 3.97 

(m, 1H, CH2CH3), 4.09-4.23 (m, 3H, CH2CH3), 4.30 (dd, J = 18.5, 9.0 Hz, 1H, H-6a), 4.51 (ddd, 

J = 9.0, 3.0, 1.5 Hz, 1H, H-3a), 6.80 (m, 2H, ArH), 7.31-7.42 (m, 6H, ArH), 7.47-7.51 (m, 4H, 

ArH), 7.71 (br d, J = 7.5 Hz, 2H, ArH), 8.08 (dd, J = 5.0, 1.5  Hz, 1H, H-3).13C NMR (100.6 
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MHz) δ 16.2 (d, J = 5.5 Hz, CH2CH3), 16.3 (d, J = 5.5 Hz, CH2CH3), 48.2 (d, J = 2.5 Hz, C-6a), 

60.2 (C-3a), 63.5 (d, J = 7.0 Hz, CH2CH3), 64.6 (d, J = 7.5 Hz, CH2CH3), 86.5 (d, J = 157.0 Hz, 

C-1), 126.3 (2CHAr), 127.1 (2CHAr), 127.7 (CHAr), 127.8 (2CHAr), 127.9 (d, J = 1.5 Hz, 

2CHAr), 128.4 (d, J  = 6.0 Hz, 2CHAr), 128.6 (d, J = 2.0 Hz, CHAr), 128.8 (2CHAr), 130.0 (C-

ipso), 133.4 (d, J = 4.0 Hz, C-ipso), 140.0 (C-ipso), 141.7 (C-ipso), 162.3 (d, J = 12.0 Hz, C-3), 

170.9 (d, J = 5.5 Hz, CO), 171.7 (d, J = 11.5 Hz, CO). HRMS C28H28N2O5P [M+H]+503.1730; 

found, 503.1727. Purity 98.5% (tR= 4.71 min). 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-1-phenyl-5-(p-tolyl)-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9aa). Following the general procedure, 

AgOAc (6 mg, 0.04 mmol), N-(4-methylphenyl)maleimide (153 mg, 0.9 mmol), acetonitrile (4.5 

mL) and diethyl -phenylisocyanomethylphosphonate (168 mg, 0.6 mmol) gave 9aa (199 mg, 

75%) as a white solid, after column chromatography (EtOAc/hexane 3:2 to 9:1). M.p. 156-158 

ºC (EtOAc). IR (ATR) 3476, 2936, 2863, 1711, 1632, 1520, 1368, 1240, 1181, 1025, 971, 740, 

583 cm-1; 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.29 (t, J 

= 7.0 Hz, 3H, CH2CH3), 2.28 (s, 3H, CH3-Ar), 3.93 (m, 1H, CH2CH3), 4.11-4.19 (m, 3H, 

CH2CH3), 4.24 (dd,  J = 16.5, 9.0, 1H, H-6a), 4.46 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.60 (m, 

2H, ArH), 7.09 (m, 2H, ArH), 7.31-7.38 (m, 3H, ArH), 7.68-7.70 (m, 2H, ArH), 8.05 (dd, J = 

5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.2 (d, J = 5.5 Hz, CH2CH3), 16.3 (d, J = 5.5 

Hz, CH2CH3), 21.1 (CH3-Ar), 48.1 (d, J = 3.0 Hz, C-6a), 60.2 (C-3a), 63.5 (d, J = 7.0 Hz, 

CH2CH3), 64.6 (d, J = 8.0 Hz, CH2CH3), 86.2 (d, J =156.0 Hz, C-1), 125.8 (2CHAr), 127.9 (d, J 

= 2.0 Hz, 2CHAr), 128.3 (CHAr), 128.4 (CHAr), 128.5 (d, J = 2.0 Hz, CHAr), 128.5 (C-ipso), 

129.6 (2CHAr), 133.5 (d, J = 4.0 Hz, C-ipso), 138.8 (C-ipso), 162.4 (d, J = 12.0 Hz, C-3), 171.1 

(d, J = 5.0 Hz, CO), 171.7 (d, J = 11.0 Hz, CO). HRMS C23H26N2O5P [M+H]+ 441.1574; found, 
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441.1572. Anal. Cald. for C23H25N2O5P: C, 62.72%; H, 5.72%; N, 6.36%; found: C, 62.87%; H, 

5.82%; N, 6.18%. 

Diethyl (1RS,3aSR,6aSR)-4,6-dioxo-5-(4-phenoxyphenyl)-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9ab). Following the general procedure, 

AgOAc (9 mg, 0.05mmol), N-(4-phenoxyphenyl)maleimide (371mg, 1.4mmol), acetonitrile (7 

mL) and diethyl -phenylisocyanomethylphosphonate (228 mg, 0.9 mmol) gave 9ab (302 mg, 

65%) as a white solid, after column chromatography (EtOAc). M.p. 165-167ºC (EtOAc).IR 

(NaCl) 3488, 3057, 2984, 1783, 1715, 1628, 1488, 1242, 1187, 1024, 700, 578 cm-1. 1H NMR 

(400 MHz, CDCl3, HETCOR) δ 1.19 (t, J = 7.0 Hz, 3H, CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, 

CH2CH3), 3.95 (m, 1H, CH2CH3), 4.10-4.19 (m, 3H, CH2CH3), 4.25 (dd, J = 18.0, 8.5 Hz, 1H, 

H-6a), 4.46-4,49 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a), 6.64-6.67 (m, 2H, ArH), 6.87-6.89 (m, 

2H, ArH), 6.96-6.98 (m, 2H, ArH), 7.12 (m, 1H, ArH), 7.30-7.38 (m, 5H, ArH), 7.69 (d, J = 8.0 

Hz, 2H, ArH), 8.01 (dd, J = 5.0, 1.5  Hz, 1H, H-3). 13C NMR (100.6 MHz) δ 16.2 (d, J = 4.0 Hz, 

CH2CH3), 16.3 (d, J = 4.0 Hz, CH2CH3), 48.2 (d, J = 3.0 Hz, C-6a), 60.1 (C-3a), 63.5 (d, J = 7.0 

Hz, CH2CH3), 64.6 (d, J = 7.0 Hz, CH2CH3), 86.2 (d, J = 157.0 Hz, C-1), 118.5 (2CHAr), 119.6 

(2CHAr), 124.0 (2CHAr), 125.6 (C-ipso), 127.5 (2CHAr), 127.9 (d, J = 2.0 Hz, 2CHAr), 128.4 

(d, J = 6.0 Hz, CHAr), 128.6 (d, J = 2.0. Hz, CHAr), 129.8 (2CHAr), 133.5 (d, J = 4.0 Hz, C-

ipso), 156.2 (C-ipso), 157.6 (C-ipso), 162.2 (d, J = 12.0 Hz, C-3), 171.0 (d, J = 6.0 Hz, CO), 

171.7 (d, J = 11.0 Hz, CO). HRMS C28H28N2O6P [M+H]+ 519.1679; found, 519.1675. Anal. 

Cald. for C28H27N2O6P: C, 64.86%; H, 5.25%; N, 5.40%; found: C, 65.12%; H, 5.26%; N, 

5.41%. 

Diethyl (1RS,3aSR,6aSR)-5-(naphth-1-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9ac). Following the general procedure, 
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AgOAc (3 mg, 0.02 mmol), N-(naphth-1-yl)maleimide (100 mg, 0.5 mmol), acetonitrile (2 mL) 

and diethyl -phenylisocyanomethylphosphonate (76 mg,  0.3 mmol) gave 9ac (70 mg, 49%) as 

a white solid, after column chromatography (EtOAc/hexane 1:1 to 9:1). M.p. 197-198 ºC 

(EtOAc). IR (ATR) 3480, 2927, 2853, 1716, 1598, 1446, 1397, 1358, 1240, 1177, 1039, 1025, 

961, 775, 706, 583 cm-1. 1H NMR (400 MHz, CDCl3, HETCOR) δ 1.17 (td, J = 7.0, 0.5 Hz, 3H, 

CH2CH3 rotamer A), 1.20 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer B), 1.30 (t, J = 7.0 Hz, 3H, 

CH2CH3 rotamer A), 1.31 (t, J = 7.0 Hz, 3H, CH2CH3 rotamer B), 3.90 (m, 1H, CH2CH3 rotamer 

A), 3.98 (m, 1H, CH2CH3 rotamer B), 4.04-4.26 (m, 6H, CH2CH3 rotamer A and B), 4.43 (dd, J 

= 18.5, 9.0 Hz, 1H, H-6a rotamer A), 4.46 (dd, J = 18.0, 8.5 Hz, 1H, H-6a rotamer B), 4.63 (ddd, 

J = 9.0, 3.5, 1.5 Hz, 1H, H-3a rotamer A), 4.67 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a rotamer B), 

6.33 (dd, J = 8.5, 1.0 Hz, 1H, ArH rotamer A), 6.39 (dd, J = 7.5, 1.0 Hz, 1H, ArH rotamer B), 

7.12 (ddd, J = 8.5, 7.0, 1.5 Hz, 1H, ArH rotamer A), 7.21 (dd, J = 7.5, 1.0 Hz, 1H, ArH rotamer 

A), 7.28-7.49 (m, 12H, ArH rotamer A and B), 7.73-7.90 (m, 8H, ArH rotamer A and B), 8.12 

(dd, J = 5.0 Hz, 1.5 Hz, 1H, H-3 rotamer B), 8.13 (dd, J = 5.0, 1.5 Hz, 1H, H-3 rotamer A). 13C 

NMR (100.6 MHz) δ 16.2 (d, J = 5.0 Hz, CH2CH3 rotamer A or B), 16.3 (d, J = 5.0 Hz, CH2CH3 

rotamer A or B), 16.3 (d, J = 6.0 Hz, 2CH2CH3 rotamer A or B), 48.3 (d, J = 2.5 Hz, C-6a 

rotamer A), 48.6 (d, J = 2.5 Hz, C-6a rotamer B), 60.3 (C-3a rotamer B), 61.0 (C-3a rotamer A), 

63.6 (d, J = 7.5 Hz, 2CH2CH3 rotamer A and B), 64.7 (d, J = 7.0 Hz, CH2CH3 rotamer B), 64.7 

(d, J = 7.5 Hz, CH2CH3 rotamer A), 86.2 (d, J = 157.5 Hz, C-1 rotamer B), 86.5 (d, J = 155.0 Hz, 

C-1 rotamer A), 121.2 (CHAr rotamer A), 121.6 (CHAr rotamer B), 125.0 (CHAr rotamer A), 

125.1 (CHAr rotamer B), 125.7 (CHAr rotamer B), 126.0 (CHAr rotamer A), 126.3 (CHAr 

rotamer A), 126.5 (CHAr rotamer B), 127.0 (CHAr rotamer A), 127.2 (CHAr rotamer B), 127.6 

(C-ipso rotamer A), 127.8 (C-ipso rotamer B), 127.9 (d, J = 2.0 Hz, 2CHAr rotamer A), 128.0 (d, 
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J = 2.0 Hz, 2CHAr rotamer B), 128.3 (CHAr rotamer A), 128.4 (d, J = 6.0 Hz, CHAr rotamer B), 

128.6 (d, J = 2.0 Hz, 2CHAr rotamer A), 128.7 (d, J = 2.5 Hz, 2CHAr rotamer B), 128.9 (CHAr 

rotamer B), 129.0 (CHAr rotamer A), 130.0 (CHAr rotamer A), 130.1 (CHAr rotamer B), 133.4 

(d, J = 4.5 Hz, C-ipso rotamer A), 133.5 (d, J = 4.0 Hz, C-ipso rotamer B), 134.1 (C-ipso rotamer 

A), 134.2 (C-ipso rotamer B), 162.3 (d, J = 11.5 Hz, C-3 rotamer A), 162.4 (d, J = 12.0 Hz, C-3 

rotamer B), 171.3 (d, J = 5.5 Hz, CO rotamer B), 171.4 (d, J = 5.5 Hz, CO rotamer A), 171.7 (d, 

J = 12.5 Hz, CO rotamer A), 171.9 (d, J = 11.5 Hz, CO rotamer B). HRMS C26H26N2O5P 

[M+H]+ 477.1574; found, 477.1571. Anal. Cald. For C26H25N2O5P: C, 65.54%; H, 5.29%; N, 

5.88%; found: C, 65.34%; H, 5.12%; N, 5.65%. 

Diethyl (1RS,3aSR,6aSR)-5-(2-chloropyridin-3-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9ad). Following the general procedure, 

AgOAc (12 mg, 0.07 mmol), N-(2-chloropyridin-3-yl)maleimide (250 mg, 1.2 mmol), 

acetonitrile (6 mL) and diethyl -phenylisocyanomethylphosphonate (203 mg,  0.8 mmol) gave 

9ad (224 mg, 61%) as a white solid, after column chromatography (EtOAc). M.p. 176-178 ºC 

(EtOAc). IR (ATR) 3483, 2991, 2948, 1790, 1722, 1564, 1420, 1242, 1050, 752, 699, 574 cm-1. 

1H NMR (400 MHz, CDCl3, HETCOR) δ 1.14 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer A), 

1.19 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer B), 1.28 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer 

A), 1.29 (td, J = 7.0, 0.5 Hz, 3H, CH2CH3 rotamer B), 3.82 (m, 1H, CH2CH3 rotamer A), 3.95 

(m, 1H, CH2CH3 rotamer B), 4.05-4.20 (m, 6H, CH2CH3 rotamer A and B), 4.36 (dd, J = 18.0, 

8.5 Hz, 1H, H-6a rotamer A), 4.38 (dd, J = 18.0, 8.5 Hz, 1H, H-6a rotamer B), 4.53 (ddd, J = 8.5, 

4.0, 1.5 Hz, 1H, H-3a rotamer A), 4.58 (ddd, J = 8.5, 3.0, 1.5 Hz, 1H, H-3a rotamer B), 6.59 (dd, 

J = 8.0, 2.0 Hz, 1H, ArH rotamer B), 7.14 (dd, J = 8.0, 5.0 Hz, 1H, ArH rotamer B), 7.27 (dd, J = 

8.0, 5.0 Hz, 1H, ArH rotamer A), 7.31-7.37 (m, 6H, 3ArH rotamer A and 3ArH rotamer B), 7.46 
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(dd, J = 8.0, 2.0 Hz, 1H, ArH rotamer A), 7.69 (m, 2H, ArH rotamer A), 7.76 (m, 2H, ArH 

rotamer B), 8.02 (dd, J = 5.5 Hz, 1.5 Hz, 1H, H-3 rotamer A), 8.07 (dd, J = 5.0, 1.5 Hz, 1H, H-3 

rotamer B), 8.36 (dd, J = 5.0, 2.0 Hz, 2H, ArH rotamer A and rotamer B). 13C NMR (100.6 

MHz) δ 16.3 (d, J = 5.5 Hz, CH2CH3 rotamer A), 16.4 (d, J = 5.5 Hz, CH2CH3 rotamer B), 16.4 

(d, J = 6.0 Hz, CH2CH3 rotamer A), 16.5 (d, J = 5.5 Hz, CH2CH3 rotamer B), 48.4 (d, J = 2.5 Hz, 

C-6a rotamer A), 49.0 (d, J = 2.5 Hz, C-6a rotamer B), 60.4 (C-3a rotamer A), 61.0 (C-3a 

rotamer B), 63.7 (d, J = 7.5 Hz, CH2CH3 rotamer A), 63.8 (d, J = 7.5 Hz, CH2CH3 rotamer B), 

64.9 (d, J = 7.5 Hz, CH2CH3 rotamer B), 65.0 (d, J = 7.5 Hz, CH2CH3 rotamer A), 86.1 (d, J = 

158.0 Hz, C-1 rotamer A or B), 86.9 (d, J = 153.0 Hz, C-1 rotamer A or B), 123.0 (CHAr 

rotamer A), 123.2 (CHAr rotamer B), 126.4  (C-ipso rotamer A), 126.5 (C-ipso rotamer B), 

127.9 (d, J = 2.0 Hz, 2CHAr rotamer A), 128.1 (d, J = 1.5 Hz, 2CHAr rotamer B), 128.6 (d, J = 

5.5 Hz, 2CHAr rotamer B), 128.8 (d, J = 4.5 Hz, CHAr rotamer A or B), 128.8 (CHAr rotamer A 

or B), 128.9 (d, J = 5.5 Hz, 2CHAr rotamer A), 132.9 (d, J = 4.5 Hz, C-ipso rotamer A), 133.6 

(d, J = 4.0 Hz, C-ipso rotamer B), 138.4 (CHAr rotamer B), 138.6 (CHAr rotamer A), 149.2 (C-

ipso rotamer A), 149.5 (C-ipso rotamer B), 150.3 (CHAr rotamer A), 150.5 (CHAr rotamer B), 

161.6 (d, J = 11.5 Hz, C-3 rotamer A), 162.0 (d, J = 12.5 Hz, C-3 rotamer B), 169.7 (d, J = 5.0 

Hz, CO rotamer A), 169.8 (d, J = 5.5 Hz, CO rotamer B), 170.5 (d, J = 11.5 Hz, CO rotamer A), 

170.6 (d, J = 14.5 Hz, CO rotamer B). HRMS C21H22ClN3O5P [M+H]+ 462.0980; found, 

462.0980. Anal. Cald. For C21H21ClN3O5P: C, 54.61%; H, 4.58%; N, 9.10%; found: C, 55.01%; 

H, 4.67%; N, 8.86%. 

Theoretical calculations 

The study of the [3+2] cycloaddition reaction (Scheme 1) was performed for model systems that 

include the reactants (dimehtyl α-phenylisocyanomethylphosphonate and N-methylmaleimide) 
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and a silver cation bound to acetonitrile as the catalytic moiety. Geometry optimizations were 

carried out using the B3LYP functional63,64 and the 6-31+G(d) basis set65 for all atoms but silver, 

which was treated with the LANL2DZ basis66 in conjunction with the effective core potential for 

inner electrons. The nature of the stationary points (reactant, transition state, and products) was 

confirmed by inspection of the vibrational frequencies. Intrinsic reaction coordinate 

calculations67 were carried out to check the connection between the transition states and the 

minimum energy structures. To further check the relative stabilities of transition states, geometry 

optimizations were also performed using the MN15L functional.68 Finally, solvation calculations 

were performed with the SMD version69 of the IEFPCM model to take into account the 

contribution due to solvation in acetonitrile. All calculations were performed with Gaussian16.70 

Binding studies 

Preparation of cellular membranes. Male Swiss mice (final age 8-10 weeks) and Sprague-

Dawley rats weighting 250-300 g (Harlan Interfauna Iberica, Spain) were killed, and the brain 

cortex dissected and stored at -70ºC until assays were performed. Kidneys were also obtained 

from male Sprague–Dawley rats. All animal experimental protocols were performed in 

agreement with European Union regulations (O.J. of E.C. L 358/1 18/12/1986). 

Human brain samples were obtained at autopsy in the Basque Institute of Legal Medicine, 

Bilbao, Spain. Samples from the prefrontal cortex (Brodmann’s area 9) were dissected at the 

time of autopsy and immediately stored at -70 ºC until assay. The study was developed in 

compliance with policies of research and ethical review boards for postmortem brain studies.  

To obtain cellular membranes (P2 fraction) the different samples were homogenized using an 

ultraturrax in 30 volumes of homogenization buffer (0.25M sucrose, 1mM MgCl2, 5mM Tris–
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HCl, pH 7.4). The crude homogenate was centrifuged for 5 min at 1000 g (4 ºC) and the 

supernatant was centrifuged again for 10 min at 40,000g (4 ºC). The resultant pellet was washed 

twice in 20 volumes of homogenization buffer and recentrifuged in similar conditions. Protein 

content was measured according to the method of Bradford using BSA as standard. 

Competition Binding Assays. The pharmacological activity of the compounds was evaluated 

through competition binding studies against the I2-IR selective radioligand [3H]2-BFI (2-[(2-

benzofuranyl)-2-imidazoline), the α2-adrenergic receptor selective radioligand [3H]RX821002 

(2-methoxyidazoxan) or the I1-IR selective radioligand [3H]Clonidine. Specific binding was 

measured in 0.25 mL aliquots (50 mM Tris-HCl, pH 7.5) containing 100 µg of membranes, 

which were incubated in 96-well plates either with [3H]2-BFI (2 nM) for 45 min at 25 ºC, 

[3H]RX821002 (1 nM) for 30 min at 25 ºC or [3H]Clonidine (5 nM) for 45 min at 22ºC, in the 

absence or presence of the competing compounds (10–12–10–3 M, 10 concentrations). 

[3H]Clonidine binding was performed in the presence of 10μM adrenaline to preclude binding to 

α2-AR. 

Incubations were terminated by separating free ligand from bound ligand by rapid filtration 

under vacuum (1450 Filter Mate Harvester, PerkinElmer) through GF/C glass fiber filters. The 

filters were then rinsed three times with 300 μL of binding buffer, air-dried (120 min), and 

counted for radioactivity by liquid scintillation spectrometry using a MicroBeta TriLux counter 

(PerkinElmer). Specific binding was determined and plotted as a function of the compound 

concentration. Nonspecific binding was determined in the presence of idazoxan (10–5 M), a 

compound with well established affinity for I2-IR and α2-adrenergic receptors, in [3H]2-BFI and 

[3H]RX821002 assays, or rilmenidine (10–5 M) in [3H]Clonidine experiments. Analyses of 

competition experiments to obtain the inhibition constant (Ki) were performed by nonlinear 
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regression using the GraphPad Prism program. Ki values were normalized to pKi values. I2-IR/α2 

selectivity index was calculated as the antilogarithm of the difference between pKi values for I2-

IR and pKi values for α2-AR. For [3H]Clonidine experiments IC50 values were calculated (the 

concentration of tested ligand that displaces 50% of specifically bound [3H]clonidine). 

I1-Binding site assay 

Kidneys were obtained from male Sprague–Dawley rats (250–280 g) and cellular membranes 

(P2 fractions) prepared according to established methods. [3H]RX821002 (2-methoxyidazoxan) 

binds to α2 adrenoceptor subtypes and a non-adrenoceptor imidazoline binding site in rat 

kidney.70 

Competition binding assays were performed as previously reported with minor modifications.25 

[3H]Clonidine (5 nM, Perkin–Elmer) was bound in the presence of 10 μM adrenaline to preclude 

binding to α2-adrenoceptors. The specific component was defined by 1 mM rilmenidine. 

Membrane aliquots (220 μL, 0.1–0.12 mg protein) were incubated with 10 concentrations of the 

test compounds over the range 10-12–10-3 M. 

Incubations were carried out in 96 well plates (final volume 250 μL/well) in 50 mM Tris–HCl 

buffer (pH 7.4) supplemented with 1 mM MgCl2 at 22 ºC for 45 min with agitation (400 rpm). 

Bound radioligand and free radioactivity were separated by rapid filtration through pre-soaked 

(0.5% polyethyleneimine) glass-fibre filters (Whatman GFB). Trapped radioligand was 

determined by liquid scintillation counting and the data were analysed with GraphPad Prism 

version 5.0 for Windows (GraphPad Software, San Diego, CA, USA) to yield IC50 values (the 

concentration of tested ligand that displaces 50% of specifically bound [3H]clonidine). 

3D-QSAR study 
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Data set preparation. The data set composed of previously synthesized and in vitro tested 

bicyclic α-iminophosphonates with different affinities on I2-IR and α2-AR receptors was used for 

the creation of the 3D-QSAR models (Table 1). Additionally, to compare and validate our results 

we have added four standard in both data sets, Tracizoline, Idazoxan, BU99008 and LSL60101. 

Examined compounds cover wide range of experimental activity (pKi I2: 3.11-10.28; pKi α2: 

3.59-10.27) and structural diversity which ensure good quality and applicability of the created 

3D-QSAR models. Selection of dominant forms of studied ligands at physiological pH 7.4 was 

obtained by the Marvin Sketch 5.5.1.0 program.71 Subsequently, they were initially pre-

optimized with semiempirical/PM3 (Parameterized Model revision 3) method72,73 and then by ab 

initio Hartree-Fock/3-21G method74 using Gaussian 09 software75 included in Chem3D Ultra 

program.76 Obtained ligands’ conformations were used for calculation of specific molecular 

descriptors (Grid Independent Descriptors- GRIND) and 3D-QSAR model building. 

3D-QSAR study. 3D-QSAR models were created using Pentacle program77 which calculates 

GRID independent descriptors (GRIND and GRIND2) from molecular interaction fields (MIFs). 

Four different probes were used to calculate MIFs: O probe (hydrogen bond acceptor groups), 

N1 probe (hydrogen bond donor groups), DRY probe (hydrophobic interactions) and TIP probe 

(the shape of molecule). A grid spacing was set to 0.5. ALMOND algorithm was used for the 

extraction of the most relevant regions, which represent favourable interaction positions between 

ligand and probe. Consistently Large Auto and Cross Correlation (CLACC) algorithm was used 

to calculate GRIND descriptors using the correlation between same and different nodes. The 

smoothing window was set to 0.8Å. Partial Least Square (PLS) regression was applied for 3D-

QSAR model building. Initial number of descriptors was reduced using Fractional Factorial 
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Design (FFD) to obtain most significant GRIND variables. The results of node-node energies 

between the same or a different probe were then presented as correlograms.78,79 

In vivo studies in mice 

Studies and procedures involving mouse brain dissection and extractions followed the 

ARRIVE80 and standard ethical guidelines (European Communities Council Directive 

2010/63/EU and Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral 

Research, National Research Council 2003) and were approved by the respective Local 

Bioethical Committees (Universitat de les Illes Balears-CAIB and University of Barcelona-

GenCat). All efforts were made to minimize the number of animals used and their suffering.  

Hypothermia 

For this study a total of 35 adult CD-1 mice and 9 adult Sprague-Dawley rats bred and housed in 

standard cages under defined environmental conditions (22 ºC, 70% humidity, and 12 h 

light/dark cycle, lights on at 8:00 AM, with free access to a standard diet and tap water) in the 

animal facility at the University of the Balearic Islands were used. Animals were habituated to 

the experimenter by being handled and weighted for two days prior to any experimental 

procedures. For the acute treatment, mice or rats received a single dose of 9d (20 mg/kg, i.p., 

n=12 for mice, and 20 or 35 mg/kg, i.p., n=3-3 for rats) or vehicle (1mL/kg of DMSO, i.p., n=13 

for mice and n=3 for rats), while for the repeated treatment mice were daily treated with 9d (20 

mg/kg, i.p., n=5) or vehicle (i.p., n=5) for 5 consecutive days. The possible hypothermic effect 

exerted by 9d was evaluated by measuring changes in rectal temperature before any drug 

treatment (basal value) and 1 h (for mice) or 1, 2 and 3 h (for rats) after drug injection by a rectal 

probe connected to a digital thermometer (Compact LCD display thermometer, SA880-1M, RS, 
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Corby, UK). Animals were sacrificed right after the last rectal temperature measurement and the 

hippocampus was freshly dissected and kept at -80C for future biochemical analysis. 

Western blot analysis for FADD protein 

Hippocampal sample proteins (40 μg) were separated by sodium dodecyl sulphate 

polyacrylamide electrophoresis (SDS-PAGE) on 10 % polyacrylamide minigels (Bio-Rad) and 

transferred onto nitrocellulose membranes by standard Western blot procedures as described 

previously.25 The membranes were incubated overnight with anti-FADD (H- 181) Ab, #sc-5559 

(Santa Cruz Biotechnology, Santa Cruz, CA) and then stripped and reprobed for β-actin (clone 

AC-15) Ab, #A1978 (Sigma). Following secondary antibody (anti-rabbit or anti- mouse) 

incubation and ECL detection system (Amersham, Buckinghamshire, UK), proteins were 

visualized on autoradiographic films (Amersham ECL Hyperfilm). Upon densitometric scanning 

(GS-800 Imaging Densitometer, Bio-Rad) of immunoreactive bands (integrated optical density, 

IOD) the amount of FADD protein in brain samples of mice from different treatment groups was 

compared with that of vehicle-treated controls (100%) in the same gel. Quantification of β-actin 

contents served as a loading control (no differences between treatment groups, data not shown). 

Each brain sample (and target protein) was quantified in 2-4 gels and the mean value was used as 

a final estimate. 

5xFAD In vivo experimental design 

Female 5xFAD and WT mice 5-month-old (n = 51) were used to carry out cognitive and 

molecular analyses. The 5xFAD is a double transgenic APP/PS1 that co-expressed five 

mutations of AD, and that rapidly develops severe amyloid pathology with high levels of 

intraneuronal Aβ42 around 2 months of age. The model was generated by the introduction of 
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human APP with the Swedish mutations (K670N/M671L), Florida (I716V), London (Val717Ile) 

and the introduction of PS1 M146L and L286V. Moreover, 5xFAD presents neuronal loss and 

cognitive deficits in spatial learning (at approximately four to five months).81 

The animals were randomly allocated to three experimental groups: WT Control (n = 12) and 

5xFAD Control (n = 14), animals administered with vehicle (2-hydroxypropyl)-β-cyclodextrin 

1.8%, and 5xFAD treated with 9d 5 mg/Kg/day (n=25). Administered through drinking water, up 

to euthanasia, diluted in 1.8% (2-hydroxypropyl)-β-cyclodextrin. Weight and water consumption 

were controlled each week, and the 9d concentration was adjusted accordingly to reach the 

precise dose. Animals had free access to food and water and were kept under standard 

temperature conditions (22 ± 2 ºC) and 12 hours: 12 hours light-dark cycles (300 lux/0 lux).  

After 4 weeks of treatment period animals were under cognitive test to study the effect of 

treatment in learning and memory, including short- and long-term memory (NORT). Mice were 

euthanized 3 days after the behavioural test completion by cervical dislocation. Brains were 

immediately removed from the skull, and the hippocampus was then isolated and frozen on 

powdered dry ice. They were maintained at -80 ºC for biochemical experiments 

Behavioral testing: NORT 

 In brief, mice were placed in a black L-shape maze consists of 90º, two-arms, 25-cm-long, 20-

cm-high, 5-cm-wide. The mice were habituated to the apparatus 10 min on 3 subsequent days, 

habituation phase. Afterwards, on day 4, training session took place, and two identical objects 

(A) were placed in the maze, and the mice were allowed to explore freely for 10 min. 2 hours 

after training sessions one of the objects was replaced by a novel object (B) to assess short term-

memory. Again, the amount of time spends exploring each object was scored. During this second 
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trial, objects A and B were placed in the maze, and the times that the animal took to explore the 

new object (TN) and the old object (TO) were recorded. A Discrimination index (DI) was 

calculated, defined as (TN-TO)/(TN+TO). 24 hours after the acquisition trial, the mice were 

tested again to assess long-term memory, with a new object substituting object B, and a new DI 

calculated. Exploration of an object by a mouse was defined as pointing the nose towards the 

object at a distance ≤ 2 cm and/or touching it with the nose. Turning or sitting around the object 

was not considered exploration. To avoid object preference biases, objects A and B were 

counterbalanced so that one half of the animals in each experimental group were first exposed to 

object A and then to object B, whereas the other half first saw object B and then object A. All 

sessions were videotaped, and the time spend with each object were manually recorded. The 

maze, the surface, and the objects were cleaned with 70% ethanol between the animals’ trials to 

eliminate olfactory cues. 

Determination of oxidative stress 

Hydrogen peroxide from 40 brain samples of mice of each group was measured as an indicator 

of OS, and it was quantified using the Hydrogen Peroxide Assay Kit (Sigma-Aldrich, St. Louis, 

MI) according to the manufacturer’s instructions. 

RNA extraction and gene expression determination 

Total RNA isolation was carried out using TRIzol® reagent according to manufacturer’s 

instructions. The yield, purity, and quality of RNA were determined spectrophotometrically with 

a NanoDrop™ ND-1000 (Thermo Scientific) apparatus and an Agilent 2100B Bioanalyzer 

(Agilent Technologies). RNAs with 260/280 ratios and RIN higher than 1.9 and 7.5, 

respectively, were selected. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was 
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performed as follows: 2 μg of messenger RNA (mRNA) was reverse-transcribed using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time quantitative PCR 

(qPCR) from 48 mice of both strains (n = 4-6 per group) was used to quantify mRNA expression 

of OS and inflammatory genes. 

SYBR® Green real-time PCR was performed on a Step One Plus Detection System (Applied-

Biosystems) employing SYBR® Green PCR Master Mix (Applied-Biosystems). Each reaction 

mixture contained 6.75 μL of complementary DNA (cDNA) (which concentration was 2 μg), 

0.75 μL of each primer (which concentration was 100 nM), and 6.75 μL of SYBR® Green PCR 

Master Mix (2X).  

TaqMan-based real-time PCR (Applied Biosystems) was also performed in a Step One Plus 

Detection System (Applied-Biosystems). Each 20 μL of TaqMan reaction contained 9 μL of 

cDNA (25 ng), 1 μL 20X probe of TaqMan Gene Expression Assays and 10 μL of 2X TaqMan 

Universal PCR Master Mix.  

Data were analyzed utilizing the comparative Cycle threshold (Ct) method (ΔΔCt), where the 

housekeeping gene level was used to normalize differences in sample loading and preparation49. 

Normalization of expression levels was performed with β-actin for SYBR® Green-based real-

time PCR and TATA-binding protein (Tbp) for TaqMan-based real-time PCR. Primers 

sequences and TaqMan probes used in this study are presented in Table S10. Each sample was 

analyzed in duplicate, and the results represent the n-fold difference of the transcript levels 

among different groups. 
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ABBREVIATIONS 

2-AR 2 adrenegic receptor; 2-BFI, 2-[(2-benzofuranyl)-2-imidazoline]; B3LYP, 3-parameter 

hybrid Becke exchange/Lee-Yang-Parr correlation; BU224, 2-(4,5-dihydroimidazol-2-

yl)quinoline; CCKA, cholecystokinin type A receptor; CCKB, cholecystokinin type B receptor; 

Cxcl10, C-X-C motif chemokine 10; DI, discrimination index; 5xFAD mouse model of amyloid 

deposition expresses five familial AD (FAD) mutations; FADD Fas-associated protein with 

death domain; GRIND Grid-independent descriptors; HeLa, human cervix carcinoma; 4-HNE, 4-

hydroxy-2-nonenal; Hmox1, heme oxygenase (decycling) 1; H2O2, hydrogen peroxide; IR, 

imidazoline receptors; I1-IR, imidazoline I1 receptors; I2-IR, imidazoline I2 receptors; I3-IR, 

imidazoline I3 receptors; LANLD2DZ LANL2DZ stands for Los Alamos National Laboratory 2-

double-z (density functional theory); MDKC, Mandin-Dary canine kidney; MT4 human T-

lymphocite; MRC-5, human embryonic lung fibroblast; NORT, Novel object recognition test; 

iNOS, inducible nitric oxide synthase; OS, Oxidative stress; PhosMic, diethyl 

isocyanomethylphosphonate; Pe, permeability; pKi, antilog of Ki; pKiL, low pKi binding site; 

pKiH, high pKi binding site; 3D-QSAR 3 dimensions quantitative structure-activity relationships; 

QM, quantum mechanical; [3H]RX821002, 2-methoxyidazoxan; SAMP8, Senescence 

accelerated mouse-prone 8; SEM, standard error of the mean; Tnf-α, tumor necrosis factor α; 

TPSA; topological polar surface area; Vero, African green monkey kidney; WT, WT mice. 
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