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R-summed form of adiabatic expansions in curved spacetime
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The Feynman propagator in curved spacetime admits an asymptotic (Schwinger-DeWitt) series
expansion in derivatives of the metric. Remarkably, all terms in the series containing the Ricci scalar
R can be summed exactly. We show that this (nonperturbative) property of the Schwinger-DeWitt series
has a natural and equivalent counterpart in the adiabatic (Parker-Fulling) series expansion of the scalar
modes in an homogeneous cosmological spacetime. The equivalence between both R-summed adiabatic
expansions can be further extended when a background scalar field is also present.

DOI: 10.1103/PhysRevD.101.105011

I. INTRODUCTION

One of the most useful tools in the theory of quantized
fields in curved spacetime [1-3] and semiclassical gravity
[4] is the Schwinger-DeWitt (SDW) adiabatic (proper-time)
expansion of the Feynman propagator [5]. It consists in an
expansion in number of derivatives of the metric with a
fixed leading term. This expansion is of utmost importance
in the renormalization of expectation values of the stress-
energy tensor. It also plays a fundamental role in the
evaluation of the effective action. The SDW expansion
identifies the ultraviolet (UV) divergences of Green’s
functions in a generic spacetime, and it can be accompanied
with the point-splitting technique [6,7] to renormalize
expectation values of observables such as the stress-energy
tensor. The SDW representation of the Feynman two-point
function for a scalar field can be regarded as a special case
of the Hadamard expansion, corresponding to a particular
choice of the undetermined biscalar coefficient in the
Hadamard representation [8]. The SDW expansion can
also be rederived from the local momentum-space repre-
sentation introduced by Bunch and Parker [9]. In this
context, Bekenstein and Parker [10] obtained an approxi-
mated form for the propagator (the Gaussian approxima-
tion) involving, in the coincidence limit, an exponential of
the scalar curvature R. Remarkably, it has been conjectured
by Parker and Toms [11] and proved to all orders by Jack
and Parker [12] that this nonperturbative exponential factor
exp[—is(é — 1/6)R] is indeed the sum of all terms con-
taining R in the adiabatic proper-time series. This result has
major physical consequences to account for the effective
dynamics of the Universe and the observed cosmological
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acceleration. By integrating out the quantum fluctuations of
an ultra-low-mass scalar field, the effective gravitational
dynamics provides negative pressure to suddenly accelerate
the Universe, without the need of an underlaying cosmo-
logical constant [13—15] (see also Ref. [16]). This approach
can also alleviate [17] the increasing H| tension of the
standard cosmological model. Other physical applications
are reported in Refs. [18-20].

Within the cosmological context, and for Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetimes, it is con-
venient to regard the Feynman Green’s function as a sum in
modes. The modes themselves admit an adiabatic expansion,
also with a fixed leading term, in number of derivatives of the
expansion factor a(z). The modes of a scalar field have a
natural adiabatic expansion, which generalize the so-called
Wentzel-Kramers-Brillouin  (WKB) approximation. This
adiabatic expansion can be exploited to compute the
renormalized expectation values of the stress-energy tensor,
as first proposed and studied by Parker and Fulling (PF) [21]
(for a historical account, see Ref. [22]). This adiabatic
method identifies the UV subtracting terms directly in
momentum space. One advantage of the PF adiabatic
expansion relies on the systematics of the algorithm to
determine  arbitrary  higher-order adiabatic  terms.
Furthermore, it is also a very efficient method of renorm-
alization in homogeneous cosmological spacetimes [23-29],
especially in studies in which numerical computations are
finally required. The method has been extended to deal with
Dirac fields [30-35] and with scalar [36,37] and electro-
magnetic backgrounds [38—43]. In FLRW backgrounds,
both adiabatic schemes of renormalization (PF and SDW)
can be applied, and these methods can be shown to be
equivalent [44-46]. See Ref. [47] for a discussion on the
equivalence among different renormalization schemes.

The aim of this work is to show that the R-summed
form of the adiabatic Schwinger-DeWitt expansion of the

© 2020 American Physical Society


https://orcid.org/0000-0001-7448-9046
https://orcid.org/0000-0002-5390-6477
https://orcid.org/0000-0001-8286-8118
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.105011&domain=pdf&date_stamp=2020-05-14
https://doi.org/10.1103/PhysRevD.101.105011
https://doi.org/10.1103/PhysRevD.101.105011
https://doi.org/10.1103/PhysRevD.101.105011
https://doi.org/10.1103/PhysRevD.101.105011

FERREIRO, NAVARRO-SALAS, and PLA

PHYS. REV. D 101, 105011 (2020)

propagator has an equivalent counterpart in the adiabatic
Parker-Fulling expansion of the field modes. We will also
show that this result is naturally extended when a back-
ground scalar field is present, as happens in the single field
models of inflation [48,49].

The paper is organized as follows. In Sec. II, we briefly
introduce the (Schwinger-DeWitt) proper-time expansion
of the Feynman propagator and the Parker-Fulling adiabatic
expansion of the field modes on a FLRW spacetime. We
also describe the equivalence between both adiabatic
expansions. In Sec. III, we introduce the R-summed form
of the SDW expansion and propose a new R-summed form
of the traditional adiabatic WKB-type expansion of the
field modes in a FLRW spacetime. We provide strong
evidence for the equivalence between both (R-summed)
expansions. In Sec. IV, we generalize the previous result by
also including a classical background scalar field with a
Yukawa-type coupling to the quantized scalar field. As a
simple byproduct of our analysis, we also give the effective
Lagrangian induced by quantum fluctuations of the quan-
tized scalar field. Finally, in Sec. V, we summarize our main
conclusions.

II. SCHWINGER-DEWITT AND PARKER-
FULLING ADIABATIC EXPANSIONS

A. Schwinger-DeWitt adiabatic expansion

Let us consider a quantized scalar field ¢ on a gen-
eral smooth four-dimensional spacetime. The associate
Feynman propagator G(x, x") = —i(0|T¢(x)p(x')|0) satis-
fies the equation

(B +m? + ER)G(x.x') = —[g(x)|7?6(x = x), (1)

where £ parametrizes the coupling to the scalar curvature.
We follow the convention and notation given in Ref. [1]. To
implement the renormalization program, it is very useful to
construct an adiabatic expansion of G(x, x') in terms of the
number of derivatives of the background metric. This is
the basic idea of the SDW expansion [5]. To obtain the
desired expansion, one writes the propagator in terms of the
proper-time form

G(x,x') = —i/oo dse™™s (x, s|x', 0), (2)
0

where m? is understood to have an infinitesimal negative

imaginary part —ie. The kernel (x,s|x’,0) satisfies the
Schrodinger-type equation

0
ia—(x,sx’,0> = (O, + ER)(x, s|x', 0), (3)
s
with the boundary condition (x,s|x,0) ~ |g(x)|~"/?6(x — x')
as s — 0. Equation (3) implies that, by iteration, (x, s|x’, 0)
can be further expanded in powers of the proper-time

parameter.l This can be made explicit by introducing a
function F(x,x’;is) defined by the relation

.AI/Z(X’_X/) o(xx') .
= ), @

where A(x,x’) is the Van Vleck-Morette determinant and
o(x, x') is the proper distance along the geodesic from x’ to
x. The asymptotic expansion of the function F(x, x’; is) is

(x, s|x’, 0)

F(x,x'55) ~ag(x,x') 4+ ay (x,x)(is) + ay(x,x') (is)> + - -+,

(5)

where the first coefficients a,(x,x’) are given, in the
coincidence limit x — x’ (see Ref. [5]):

ap(x) =1, ay(x) = —£R, (6)
1 1 1/1
ClQ()C) = @RaﬂyéRaﬂ}’é - 1T:()RaﬂRaﬂ — 6 (g - 5) DR
1-
+ -~ &R?, (7)
2
and E=¢— %. Higher-order coefficients a, have been

calculated in Refs. [51-54]. Hence, the SDW expansion,
at a given adiabatic order 2n, takes the form

(xa")

(2") se" 2is

AV (x,x) [ ds .
G (56) == 557 e

X iaj(x, x')(is). (8)
J=0

We recall here that the coefficient a; is of adiabatic order 2.
In four spacetime dimensions, and for arbitrary & the first
two terms in (5) make (2) divergent in the UV limit,
namely, when s — 0 and o = 0. For instance, the first two
leading terms in the adiabatic expansion are, after perform-
ing the ds integral,

—1/4
oG N gl U I,
SDW(x’x) l 4”2 \/——26 l(m 6)
ay(x,x")

Kulmv/=29). o)

where K are the modified Bessel functions of second kind.
The factor |g(x)|~'/# in the above expression is evaluated in
Riemann normal coordinates with origin at x’ [44]. Higher-
order terms do not involve any UV divergences for the two-
point function. However, the fourth adiabatic order term,

'In spacetimes with boundaries and singularities, there are
additional terms (see for instance Ref. [50]).
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a,, is necessary to tame the logarithmic divergences of the
stress-energy tensor and the effective action [6,7] (see also
Refs. [1,3]).

There are two issues to note on this expansion. First, one
can extend the series to an arbitrary order, although only the
first few terms are analytically manageable. Second, any
higher-order term contains only polynomial terms of the
curvature, to such an extent that nonlocal effects are not
present at any given adiabatic order. The later was taken
into consideration in Refs. [11,12] by proposing a refined
expansion which we will describe in the next section.
Nevertheless, we will first briefly review to adiabatic
Parker-Fulling expansion and the equivalence between this
and the SDW expansion in FLRW spacetimes. This is
required in order to extend the Parker-Fulling expansion
and overcome the former issue.

B. Parker-Fulling adiabatic expansion

Let us assume for simplicity a spatially flat metric of the
form ds? = dt*> — a*(t)dx*. The scalar field satisfies the
equation

(O+m*+ER)p =0, (10)

where R = 6(a*/a® + i/a).
expanded in Fourier modes as

The quantized field is

$(x) = ) +ALfL (1)

d3k
V2 27m / kfk

where f;(x) = e“;fhk(t) and A’ and Ap are the usual
k

creation and annihilation operators. Substituting (11)

into (10), we find hy + [w® 4 o]hy =0, where o =

(66— %)(Z_i) + (66 =3)(4) and w = ,/’;—i + m?. The adia-

a
batic expansion for the scalar field modes is based on the
usual WKB ansatz [1-3]

1 I RAG
Wi (1)
Wi(t) = 09 + o) + 0@ 4 ..., (12)
where the adiabatic order is based on the number of

derivatives of the expansion factor a(z). The function
W,(r) obeys the differential equation

3IW2 AW
w2 = k_ "k 13
@’ +o TIwiTaw, (13)
If we now fix the leading term as ®® = @, one can

substitute the ansatz into Eq. (13), and solve order by order
to obtain recursively the different terms of the expansion:

{oa) +-w ——a)a)}

{266060 o*(@?)?

5 (2>_§( ()4_@())}. (14)

Note that, in this expansion, the coefficients of odd
adiabatic order, namely w(?"*1), are always zero. From
the mode expansion, we can expand any observable at any
fixed adiabatic order. For the two-point function at the
coincident limit G(x, x) ~ [ dkk?W!, we have

1 )
N G (x,x) = —5—— > / dkk*{w™" 4+ (W=1)@
4r*a’(1) Jo
+(whH® + (whemy, (15)
where the first terms are

m?a®>  mPa  Sm*a®>  ER

w-H2) = = (16
(W) 2820° ' 4aw® 80’ 20° (16)
@ (@)
® ®
(W_l)(4) :—F+ 0)3) . (17)

Just as the SDW expansion, only the first two terms
in (15) are divergent, in such a way that it serves to isolate
all the ultraviolet divergences of the propagator. More
precisely, we have

R 1 o |1 &R
2887 | ard A dkk Lo 2w3} - (18)
After subtracting the divergences, one gets a finite result.
This mechanism can also used to renormalize the expect-
ation values of the stress-energy tensor. The overall
procedure is traditionally known as the adiabatic regulari-
zation method [1,21]. Even though we have written (13) in
a compact form, we can further expand this expression and
obtain an analytic expression for ") in terms of the lower
adiabatic orders (see for instance Ref. [44]).

@ >GPF(X x) =

C. Comparison between the Schwinger-DeWitt
and Parker-Fulling adiabatic expansions

To compare both adiabatic expansions, we have to
restrict the Schwinger-DeWitt expansion of the Feynman
propagator to the (spatially flat) FLRW universe considered
above. Moreover, it is natural to compare the expansion of
the two-point function Gp(x,x’) at the coincident limit
x = x'. The comparison is highly nontrivial since in the
SDW formalism the coincidence limit is defined in terms of
the geodesic distance with 6 — 0. We follow the analysis
in Ref. [44].
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The zeroth-order contribution (¥)Ggpyw (x, x) can be reexpressed as [here, x = (,X) and ¥’ = (1, ¥')]

- Jg(0)| " m

m
lim ———=K -20) =——+ lim ———=K AX
o v =ae MY T20) = g M daga K (malAT)
. 1 o sin(k|AX]) 1
= lim —— dkk> ———=—>—, 19
28822 armodridd /) kAR (19)
where we have used
1 1 a?
= - O(AX?), 20
T30~ @ae e oY) (20
and
lg(x)|7/* =1- 251_2+§ ’+ 0(c%/?). (21)
a’> a|6
Similarly, the second-order adiabatic contribution to )Ggpw(x, x) is found to be
-1/4 / 1 _R
. alx ay(x,x . 13 -
ty 2 5 Km0 =l = 25 Kol
R Y sin(k|AX|) €R
=1 dkk?> ————>=>—. 22
ARS0 477,'2613A k|AX| 20 @)
Therefore, taking into account (18), one can write
) 1 [ 1 ¢R(x) R(x)
@) Gpp(x,x) = i?G , :/ dkk?* | — —~ . 23
pr(X, x) = i Gspw(x, x) 2 ), Et w7 2(’;—§+m2)3/2 + 2882 (23)

A detailed analysis can be found in Ref. [44]. It was explicitly checked (up to and including the sixth adiabatic order) that
the Parker-Fulling expansion of the two-point function Gpg(x,x) coincides with the corresponding Schwinger-DeWitt
expansion of the two-point function at coincidence Ggpw (¥, x), that is,

(24)

. 1 o
(6>GPF(X”“)_’<6)GSDW(X’X)_WA dkkz{(f 28827 ' 1622m> ' 16x°m*’

—2—|—m2)l/2 2(1;%_1_’”2)3/2

! i ) R, o), 6l

This provides enough evidence for the equivalence at any A2, X)) sty aern - .

adiabatic order, sl 0) = IWE e RS F(x, 2y is),  (26)
@) Gpp(x, x) = i Ggpw (x, %). (25)  where F (x,x';is) is the new proper-time series

In the next section, we will show that this equivalence can = ey - ,

also be extended to the R-summed form of the SDW Flx.xis) = Z(zs) a;(x.x'). (27)

expansion given in Refs. [11,12]. g

It has been proven that for general spacetimes in arbitrary

III. R-SUMMED FORM OF THE dimensions, this expansion depends on R only by the
ADIABATIC EXPANSIONS overall exponential factor (it can contain nevertheless
derivatives of the scalar curvature). In particular, for the

As stressed in the Introduction, a very important result ] ) 8
first terms, we have (see Appendix A for more details)

concerning the SDW adiabatic expansion is that the
expansion of the kernel (x, s|x’,0) of (2) can be rewritten B )
in the form [11,12] aop(x) =1, a,(x) =0, (28)
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i | . o 1 /1
82(%) = 15 RapoR ™" = 1o RV Rap = <5 N g) R
(29)

The R-summed form of the SDW expansion takes the form

2 AV2(x,x) o ds . oozp o)
(ZH)GSDw()C,x’) — (4”)2 /) (is)z l(m2+z§R)se b
<> i5¥an.0) "
Jj=0

Expansion (27) indicates that there is a subset of the
original series that can be exactly summed and factorized
out in the exponential term of (26). As we have already
mentioned, this nonperturbative effect was further applied
to study the observed cosmological acceleration [13-15].
The main feature of this expansion is that no R term appears
explicitly in the a, coefficients. We will inherit this
characteristic for the Parker-Fulling expansion. The natural
way of doing this is to include the same R-summed
contribution of (26) into the leading term of the adiabatic
expansion, namely in @~'. We note that the terms

1 ER
(’;—§+m2)1/2 2<Z_§+m2>3/2

(31)

in the momentum integral in (24) can be regarded as the
leading terms in the expansion of

1 1 ER
E+m> +ER)'2 (S +m?)? 25+ m?)?
+O(R?). (32)

This simple observation suggests the following ansatz for
the first term in the new adiabatic expansion

@ = 1/;(1) + m? + ER. (33)

Therefore, the proposed alternative form of the adiabatic
expansion reads [we shall assume M?(t) = m?> + &R > 0]

o0

L i wiyar
hk(t) = — e f ,
VW()
Wi(t) = @9 + o) + @@ ..., (34)

where the function W (1) obeys the differential equation

1W,
2W,

=2
] 3IW
W2 =@ +6+-—=—

W (39)

with 6 =06 — (£ — 1/6)R. Having fixed the leading term,
the higher-order adiabatic terms are univocally determined.
Furthermore, we can make use of expressions (14),
upgrading 6 - 6=0—¢R and @ — @. It is important
to point out that the choice of the leading term (33) does not
imply that we consider the function R of adiabatic order
zero. This function is still considered of adiabatic order 2.
Hence, if we use (14) to get the adiabatic terms, we must
truncate the expressions to fix properly their adiabatic
order. The corresponding expansion for the two-point
function up to the 2nth adiabatic order is

_ 1 © _
@n) G X)) = —— dkk2 {1 w-H@
PF(X X) 47T2(13(t)A {CO +( )
+...+(W—l)(2n>}, (36)
where now
(W‘l)(2> _ Sk*a* 3k2a? 3 ka B a2 n a .
8a@’  4da*@® 4dP@d° 8da*@®®  4ad’

(37)

We can systematically perform higher-order calculations
assisted, for instance, with the Mathematica software.
There is an algorithmic solution to generate recursively
all higher-order terms in the adiabatic expansion. In
Appendix B, we give more details of this expansion.

A. Equivalence of the R-summed form
of the adiabatic expansions

Our conjecture is that (36) generates the same expansion
as the propagator obtained from the kernel (27) when
we restrict to a FLRW spacetime and in the coincident
limit, i.e.,

(zn)GPF(x» x) = i(2">GSDW(x» x). (38)

In order to test this, we use the above-mentioned result (25)
from Ref. [44] and check whether

(zn)GPF(x7 x) — (2">GPF(X7 x)
= i((zn)GSDW(X’x) - <2")GSDW(J@ x)) (39)

holds for a given adiabatic order. Note that (39) is
equivalent to (38), but since both sides of (39) involve
only finite quantities, we can check more directly the
proposal.

The right-hand side in (39) can be written as a finite
integral in the proper-time parameter (recall that m’> =
m? — ie and this avoids any divergence as s — 00)
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_ 1 o ds <& . - .
@) Gspw (¥, x) = @) Gspw (x, x) = ( 2/ ; - [e_”<m +§R)‘_1/(x)(isy — e " a;(x)(is)]. (40)
0 -
On the other hand, the left-hand side of (39) can be written as the following integral:
n) n 1 © - A/— j — j
2 Goe(5.4) = O Gpp(.) = s [ a2 S ()0 = (w10 (41)

These two integrals are finite by construction, and can be evaluated analytically. First, we will give explicitly the outcome of
the integrals above for n = 1, 2 and then we will extend the result for an arbitrary n.

1. Cases n=1, 2
On one hand, the result of the SDW integral (40) for n =1 is

_ —i M? _
(2)GSDW(X’ x) = <2)GSDW(xvx) = (4ﬂ)2 [MZ log <W) - fR} (42)
where M? = m? + &R, and for n = 2, we find
_ —i M? a
<4)GSDW(X’X) - (4)GSDW(xv x) = W [Mz log <W) fR + <M2 m—22>] (43)

On the other hand, one can directly compute the PF integral given in Eq. (41) using the adiabatic expansions given in
Secs. II B and III. For n = 1, we find

_ 1 M? _
<2)GPF(X9 x) - (2)GPF(xvx) = (47[)2 |:M2 1Og <W> - éR):| s (44)
and for n = 2,
_ 1 M? - a a
)= in =g s () 20+ (=25 “

Comparing (43) with (45), it is clear that for the lowest adiabatic orders, relation (39) is satisfied.

2. General case

Now, let us generalize the preceding result for an arbitrary n. For n > 2, expression (40) can be also directly integrated,
and the general result is

12 Gy (6, %) — ) Gip () = (471[) [M210g< ) §R+Z -2 (Mz—, #)} (46)

To evaluate (41) for n > 2, one has to compute explicitly the PF adiabatic expansion up to and including the adiabatic order
2n and perform the mode integral. Based on all previous results, the conjectured result of 2 Gpp(x, x) — 2" Gpg(x, x) for
n > 2 is given by

@) Gpp(x, x) = P Gpr(x, x) = i(*) Gspyw (¥, x) = *VGspw(x, x))

:<4L)2{ ( ) ‘5R+Zl— (Mz, m?f_z>]~ (47)

We have tested this conjecture up to and including the eight adiabatic order. Since the computations are rather involved, we
refer the reader to Appendix C, where we give explicit expressions for a3 and a,. We think this provides enough evidence
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for the general validity of the conjecture. Furthermore, we can give analytic results for the following finite integrals in both
approaches (n > 1):

71 B V- n (l’l—2)' t_ln i © ds —is(m*+ER) 5 . \n
477:2613(1‘)4 dkkz(W ])(2 ) = (4”)2 M2n—2 = (4ﬂ)2A (l's)Ze ( +§R)aﬂ(x)(ls) . (48)

IV. GENERALIZATION: INCLUDING A SCALAR BACKGROUND FIELD

We can also extend the above discussion to include an external scalar field ® with a Yukawa-type coupling. The action of
our quantized scalar field ¢ is now

Su= [ @5/ T,V ~ 02 — R~ 10p?) (49)
where £ is the coupling constant between both scalar fields. The equation of motion reads
(O+m? + h® + ER)p = 0, (50)
and the expansion for the heat kernel turns out to be

AT T) et + B (x,x) (is) + By (x.X') (is)? + - - (51
,0) = W 2w (Eo(x,x') 1 (x, x") (is) 5 (x, ) (is) ). )

In the coincidence limit x — x/, the coefficients E, are

(x, s|x/

Ey(x) =1

Ei(x) = =(R + h®)

E)(x) = LR(,/, SRV — iRa/’Ra,,, ! <1 5) OR + = (§R + h®)? + 1thD. (52)
180 " 180 6 \5 6

The expression for F53(x) has 46 terms, and it is given, for instance, in Ref. [52]. Note that ® should be considered here as a
variable of adiabatic order 2. The expression of the second coefficient E; of (52) suggests that we can factorize in the same
way as before the entire term R + h®, also in the form of an exponential. Hence, we can also write

_ 1 o (s . z L=
GSDW(X,X) = WA (is)2 e—t(m2+§R(x)+h<I>)SZ(ls)jEj(x)_ (53)
J

The lower coefficients in the new expansion are E(x) = 1, E;(x) = 0 and

_ 1 1 1
Ey(x) = @RaﬁyﬁRaﬂﬁ - @Raﬂ Rayp—¢

1 1

——¢ |OR + - hUd. (54)

5 6
Note that E, contain no terms which vanish when R and ® (but not their covariant derivatives) are replaced by zero.
Therefore, all the dependence on R and @ is codified in the exponential in (53). In a similar way, we can redo the Parker-
Fulling—type adiabatic expansion (34) with a new choice for the leading term,

k2 .
o0 =@ — \/2—+m2+§R+h<I>. (55)
a*(1)

Hence, the results obtained in Sec. III, regarding the equivalence between both (Schwinger-DeWitt and Parker-Fulling)
adiabatic expansions, are now
_ 1 M E E;
2n 2n 2 J
) Ge(x,2) = B Gpe(x,2) = (3 {M log< ) ER—h® + Z j=2)! <sz W)]
= i(@”)GSDW(X, x) — (2n )GSDW(xa x)), (56)

where M? has been redefined as M? = m? + ER + h®.
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We finally remark that one can easily derive approx-
imations for the effective action by simply using the
summed forms of the adiabatic expansions considered
above. Since this is somewhat tangential to the main aim
of this paper, we refer the reader to Appendix D.

V. CONCLUSIONS

The SDW adiabatic expansion of the Feynman propa-
gator is a basic tool in quantum field theory in curved
spacetime. A parallel WKB-type adiabatic expansion for
the field modes in a FLRW spacetime was given by Parker
and Fulling in Ref. [21]. Both expansions have been used to
implement the renormalization program in curved space-
time and, in particular, in FLRW universes.

The nonperturbative factor exp(—is(& — $)R) in the heat
kernel of SDW expansion, first discovered in Refs. [11,12],
is of major importance in unraveling physical consequences
in cosmology [13—17]. In this expansion, the focus is not in
the renormalization subtractions, which are already well
defined in the standard adiabatic expansion. Here, the point
is that the nonperturbative factor partially captures non-
perturbative effects of the adiabatic vacuum. Within this
viewpoint, one could expect that a similar R-summed form
of the Parker-Fulling adiabatic expansion for the field
modes can also be constructed. We have provided here
such a construction. We have also tested the equivalence
between both Schwinger-DeWitt and Parker-Fulling R-
summed expansions in FLRW universes, until and includ-
ing the adiabatic order 8. We think this provides strong
evidence of the equivalence to an arbitrary adiabatic order,
as provided by the general formula (47). This can be useful
to improve the computations of physical observables, such
as the stress-energy tensor, in the adiabatic approach.

Furthermore, we have added a Yukawa-type interaction
between the quantized scalar field and a classical back-
ground scalar field @, extending the R-summed solution to
also include a ®-summed contribution. This is specially
relevant in cosmological scenarios where the classical
inflation is coupled to the quantized matter field, as in
the preheating epochs. We believe it could also be interest-
ing to explore additional nonperturbative factorizations for
quantized matter field in the presence of gauge field
backgrounds.

ACKNOWLEDGMENTS

We thank P. R. Anderson, P. Beltran-Palau, and A. del
Rio for very useful comments and suggestions. This work
has been supported by the Spanish MINECO research
Grants No. FIS2017-84440-C2-1-P and No. FIS2017-
91161-EXP and the European Cooperation in Science
and Technology (COST) action Grant No. CAI5117
(CANTATA). A.F is supported by the Severo Ochoa
Ph.D. fellowship SEV-2014-0398-16-1 and the European
Social Fund. S.P. is supported by the Formacién del

Personal Universitario Ph.D. fellowship FPU16/05287.
Some of the computations have been done with the help
of Mathematica™.

APPENDIX A: RELATION BETWEEN «,, AND a,

The relation between the functions F(x,x;is) and
F(x,x;is) is given by
F(x,x;is) exp(—iséR) = F(x, x;is), (A1)
where the functions F(x,x;is) and F(x,x;is) can be
expanded in powers of s as

F(x,x;is) = ap(x) + a; (x)(is) + a(x)(is)*> + - -+ (A2)

Flx.x:is) = ag(x) + ay (1) (is) + ax(x)(is)? + - (A3)
Expanding the exponential in powers of the scalar curva-
ture and combining the terms with equal powers of s, we
arrive to the following relation between a, and a,:

R (ER)*
a, = Zan—k Ko (A4)
k=0
In particular, for the first terms, we have
Elo =dag = 1, (AS)
a,=a; +&R=0, (A6)
] L 2o
ap = da; — B (éR)%, (A7)
] S
as = dj + asz bl § (gR) N (AS)
where we have used a, = 1 and a; = —£R. If we add an

external background field, relation (A4) also holds for the
coefficients E, by doing the change éR — R + h.

APPENDIX B: R-SUMMED PARKER-FULLING
ADIABATIC EXPANSION

In this section, we will briefly explain some details on the
R-summed Parker-Fulling adiabatic expansion introduced
in Sec. III. Starting from the mode equation for the scalar
field /1 (t) 4+ (0 + 6)h;(t) = 0, and proposing the usual
WKB ansatz

W(t) = @9 + o) + @@ 4 ...,

we arrive to the following equation for W, (z):
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IW: W,

V2=l ol ko ok B2
Wiz e totyw Taw, (B2)

If we fix the leading term of the expansion as

_ k2 _
w® +ER = \[—+m*+ER, (B3)
a

Eq. (B2) can be rewritten as

C()(O) =@ =

=2 Ei
_ 3W, 1W
W2 =@ +6+>—k -~ K, B4
ET OO T, (B4)
where 6 = o — ER, and we can obtain the terms of the

adiabatic expansion (B1) as usual: expanding the function
|

-

Similarly, for ®* and @®, we obtain

1105a*k®  663a*k®  221a*kSa

¥ =

_8 ., & | 5a’k!
20 8@ 4@?|y 20 8a°@ 4d'®  4dP@d

507a*k*

W, adiabatically and regrouping all terms with the same
adiabatic order.

Note that the choice of the leading term as in (B3) does
not imply that we consider the function R of adiabatic
order 0. This function is still considered of adiabatic order 2.
It means that the time derivative of the leading order

2k%a  ER

“= 2da | 2@

(BS)
will contain terms of adiabatic order 1 (~a), but also of
adiabatic order 3 (~R). As a consequence, if we use the
formulas given in (14) to compute the next-to-leading-order
terms of the adiabatic expansion, namely @?,®®..., we
have to truncate the resulting expressions to get only the
terms with the correct adiabatic order. For example, for @2,
we get

3a%k? K i

(B6)

183a%k*a  25a%k*s  19k*d?

128420

15a*k*  9a°k*a  9a°k*6

32490 324°@°  324%@
k22

16a’@’  16a%@’ 32a%@

5agk* 3k*sda  Sak’s

4a°@° B 28°@°
Taadk*  3aa® k>
h 8a°@’

a®i?

where g(t) = &R, and

B 41412542 745425a°k'°

)

8a*®®  16a*@®® 8a*@d’

4a*a®  1682® 8@°

248475a* ik

8P 8aP@d’

-2 7 (B7)

8@ 8@

513087a°k®  121556a*k®  34503a2d’k®

5124'%@"
105543a®) k8

T 10240807
1794696 ik’

512a¥@"
166089a°k°

256a2 '3
9513a%a*kS

256a2@"
63143k°

256a'4 '3
59675a* kS

16a"%@"
198954k

128a3 "3
184215a*akS

128424
110563 gk®

128" 324"

1105a36k°  9063a3a®k®  1391aéd a®k®

64a0a"!

64a’!!
61474%k*

128all@!!

815a2a® ko 3549504 k4

64a’!!
49543 k*

64a’ ' 64a'%!! 64a’!!
1756%a%k*  26199a%ak*

16a%%° 64at®°

69(a'®)2k*

128a°@"!
1335a%k*

© 64d’@°

2427a%ak*  1281Ga%ak*

64a°@° 128a8@°
663a3gk*  221aa gk

128a°@° 4a°@°

221425k 663a°6k*  221adc k*

64a°@°

324’@°
2214%6k*

T 324 32a°%°
189a3a®k* 495 4 a®k?

64a°@°  324°@° 32a%@°

64a°®°

2a8@° 16a°®°

2091ada®k*  28542aWk*  55aaWk* 27aa®Dk*  315a°k* 7564 k>

C 64d@  32d°@° 64a°@° = 64a°@°  8at®  8ab@’
4583 K> 458%a%k*  675a%dPk> 4564%k*  15(a®)k? 6754%ak>  4564%ak?
16°@”  32d*@"  16a°®"  32d*@’  324*® 8d’@’ 483
156%ak>  21a3gk>  256agk> 63adagk® 57a’ghk* 19agk*>  21a’6k> 256 a6 k>

302830 4D 6@  16d*@’ 324%@ ' 328%@ | 4dd 16a°@’
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63adck® 57a*6k> 19d6k> 758%a®k®  156aa®k*  45ada® i 15a® k>

C 16a*@’  324*@’ | RS 4@ 8dtd 4a>d 16a3@’
76a%k>  Tag®k? 7460k 4542aDk*  456aDk 56aWk* 9aa i
165" | T6a’d’ | 16a% | 16a5@ | 6dd'a’ | 32dw | 3240
a9k 57 562 365 56 366  ¢g® &% 5

. B8
+ 64a’@’ + 32&° + N2 160° 16&° 16&° 32&° + 32a° + 16&° (B8)

Note that odd adiabatic terms are zero, > *!) = 0. The function (W)~ is also expanded adiabatically,

Wt =at+ (W Ho + (wH® .. (B9)
and the first terms of the expansion are

(2) B o@® (@(2))2
R (W_])(4) == —_—2+

Sl

(W-H? = — (B10)

Sl
S
S

The results above are also valid when we add an scalar field background A® by upgrading @ — \/@> + ER + h®
and g(t) — ER + h®.

APPENDIX C: a3 AND a, COEFFICIENTS

In this Appendix, we give the R-summed coefficients of adiabatic orders 6 and 8, namely a3 and a4 for a FLRW metric:

12a°82 446 a©¢  a® 349 12a*Ea 2la*ca 11a*a  34a2Ea?

3T a® a®  10a  34° ' 140a a’ 10a°  4204° a*
47428 1094%32  6aPafa  67a%acia  18a® 67aPaa  5a°  2a%a¢
T TTi0sd' T & 103 5 60a° 1843 54
3a9a  12aPa3& 59483 9aWate 97aBa3 11aWa® aWéa
3542 a 104t 1043 140a*  60a>  24°
. 2 3)\2 2
41(1(4)261 3 3((1(3)2) & n 7(a(3)2 £ (a(3)l 1
420a a 10a 42a
_96&2d® 32ea®  8a®  43282aa°  3807&ha®  291aa®  108824%)a0 78384’
“TTSE TS 158 sd) 140a’ 1404’ 5¢° 140a°
394345 981&2a2a*  493&a2at 937da*  198aWat 79aWat 63&%da®a’
1404° 10a®  20a° 8404°  20a° 2045 54
209caa®a? Tlaa®a®  1282a9a  172aD83  31aDa  13882aa®  13&aa® 53aca?
3548 0 s 14l 208 sa . 3sd | asad
1582(a®)a?  361£(a¥)*a®  209(a¥)?a®  9&2aaWi®  69¢aaWa®  T3aaMa?  Eal®a?
24 04 2804 & 1084 704 104
36942 982:32a®a  90&itaPa  9502aPa 2782aPa®a 2378aPaWa 1994 aWa
208~ & T a4 md T sd T 708 42043
62i4a®a  43¢aa®a  294a®a  EaDa oV 9&a*  17&8a*  T13a* 21E8%:4(a®)?
PSS T 38 T 10 T 28 12622 T 10a° T 1adt 25208 T 54
95&i(a®)?  18a(a®)?  9&%(a™)?  39£(a™)?  11(a®)?  982d2a®  69&i*a
2843 38 102 1402 | s0a | s 354
137d2a® 624 a®  126aPa®) 29aG)a®) 2£4a©  Ga®  Ea®)  4®)
4204° 5¢2  354° 1260a> | 3542 904 | 140a  630a’ (€2)
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APPENDIX D: EFFECTIVE ACTION

We find it useful to show how to derive approximate
one-loop effective actions with the adiabatic expansions
introduced in the body of the paper. The formal quantum
effective action W, obtained by integrating out the
degrees of freedom of the quantized scalar field, is given
by [1]

W= Sclass / d4 /

where S, 15 the classical action including the Yukawa
coupling and the gravitational interaction. The quantum
corrected part can be further written as

327° / /

The expression above is UV divergent, and it requires
renormalization subtractions up to and including the fourth
adiabatic order. Following the same approach as for the
Feynman propagator, we will use the extended R-summed
expansion until second adiabatic order to approximate
F(x,x;is) and the usual SDW expansion until second
order for the subtraction terms. This ensures that the final
quantity is finite. We have then

e~m (x, s|x,0),  (D1)

e~ F(x, X3 is). (D2)

W = Scpass + 3222 / / el

[emsCRIO) (1 4 Ey (x) (i) + Ex(x)(is)?)
= (1+ Ey(x)(is) + Ex(x)(is)?)].

With this input, and after performing the finite integration
in proper-time ds, one gets

(D3)

W= Sclass + / d4xLeff’ (D4)
where
Lt = —— (ER + hd) 2+§(§R+hq>)
) Ty
_ M?
- (14 + 2E(0) log 1
+— [M4 +2E,)0(-M?). (D5)

647r

The imaginary part of the effective action accounts for the
particle creation phenomena induced by the given metric and
also by the scalar field background. Note that, for 4 =0
(no coupling to the scalar background field), we recover the
effective action calculated in Ref. [13] by means of the
{-function regularization. Here, we have derived the effec-
tive action within the adiabatic approach and in a very
straightforward way.
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