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A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network
named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of
better understanding and comparing ambient air levels of persistent organic pollutants and other
chemicals of emerging concern, to which humans residing in large cities are exposed. The first results
from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs)
including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated
flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and
hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ~3.5
to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of
OPEs of 15,100 and 14,100 pg/m3, respectively. Atmospheric concentrations of OPEs significantly domi-
nated the FR profile at all sites, with total concentrations in air that were 2e5 orders of magnitude higher
compared to other targeted chemical classes. A moderately strong and significant correlation (r ¼ 0.625,
p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although
large differences in FR levels were observed between some cities, when averaged across the five United
Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five.
Results for Toronto, which is a ‘reference city’ for this study, agreed well with a more in-depth inves-
tigation of the level of FRs over different seasons and across eight sites representing different urban
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source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this
project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted
analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating
global exposome.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Urban and metropolitan areas across the globe are home to 4.2
billion people, constituting 55% of the world’s total population
(United Nations, 2018). Urbanization results in increasing need for
housing, transportation and infrastructure as well as an increase in
the challenges related to them such as ambient air pollution which
is one of the main global health risks causing increased mortality
(Lelieveld et al., 2020). According to the World Health Organization
(WHO), in the urban areas where air quality is being monitored
consistently, 80% of the residents are exposed to air quality levels
that exceedWHO limits (WHO, 2016). Air quality is a complex term
representing a range of pollutants but the WHO assessments have
mostly used particulate matter (e.g. PM10 or less) as a proxy indi-
cator of exposure to air pollution. The health effects associated with
PM are not only because of their physical mass concentrations but
the chemical compositions are also critical to understand the
toxicity of PM (Cao et al., 2012; Chung et al., 2015; Wyzga and Rohr,
2015). We hypothesize that in large megacities, persistent organic
pollutants (POPs), particularly the ones associated with particles
present in the air, contribute significantly to the chemical burden
and hence the toxicity of PM and the air mixture. There is previ-
ously established evidence as well as growing literature based on
in vitro and in vivo studies, showing adverse health effects caused
by the exposure to old and new POPs and POPs-like chemicals
(Loganathan and Masunaga, 2009; Kim et al., 2013; Lyche et al.,
2015; Abdel-Shafy and Mansour, 2016; Lam et al., 2017; Guigueno
et al., 2019; Blum et al., 2019) and the importance of considering
chemical mixtures in air (Escher et al., 2020).

The urban environment is a subject of extensive study due to
elevated concentrations and emissions of POPs such as flame re-
tardants (FRs) and other chemicals of emerging concern (CECs) as
compared to remote or background areas (Liu et al., 2009; Bogdal
et al., 2014; Peverly et al., 2015; De la Torre et al., 2016; Mu~noz-
Arnanz et al., 2016; Chakraborty et al., 2017; Rodgers et al., 2018).
Given the importance of urban emission sources of FRs and CECs,
surveillance of urban air can be used to track the dynamic nature of
these emissions, provide updated scenarios of emerging/replace-
ment chemicals, and therefore provide better information for
assessing the effectiveness of imposed regulations (Stockholm
Convention, 2008).

The goal of this study is to provide for the first time a snapshot of
levels of different classes of FRs in megacities and/or major cities
across the globe. The Global Atmospheric Passive Sampling (GAPS)
network has been operational since 2005 in five United Nations
regional groups across the globe: Africa, Asia and Pacific, Central
and Eastern Europe (CEE), Group of Latin American and the
Caribbean (GRULAC), and Western Europe and Other States Group
(WEOG) (Harner et al., 2006; Pozo et al., 2006). Overall, GAPS
contributes to the initiatives under Canada’s Chemical Manage-
ment Plan (CMP) on the domestic level. Internationally, GAPS re-
ports to the Global Monitoring Plan (GMP) supporting Canada’s
obligations as a Party to the Stockholm Convention on POPs
(Stockholm Convention, 2008). The Stockholm Convention, which
came into force in 2004, is one of the largest international treaties
and the air monitoring data reported to GMP contributes to the
“Effectiveness Evaluation” of the regulatory efforts on POPs
implemented under the Convention. The current project, which is a
sub-study under the GAPS network, is named ‘GAPS-Megacities
(GAPS-MC)’. GAPS-MC will provide comparable information on
POPs and CEC in ambient air at representative sites of global cities,
to complement existing information on background sites that is
available under the core GAPS program. Under the GAPS-MC proj-
ect, a range of FR chemicals was chosen for evaluation including
organophosphate esters (OPEs), polybrominated diphenyl ethers
(PBDEs), new flame retardants (NFRs), tetrabromobisphenol A
(TBBPA) and hexabromocyclododecane (HBCDD) e all of which
have important emission sources in urban air. To our knowledge,
this is a first report on FRs in the urban environment at a global
scale from a single sampling network.
2. Materials and methods

2.1. Sampling locations

Twenty cities were selected for a sampling campaign with a
population ranging from 2 million to 22 million (Table S1 and
Figure S1). The megacity, by definition, is a large metropolitan area
with a population of more than 10 million (Cambridge dictionary,
2019). However, some of the countries selected for this study
such as Canada, USA, Poland, Spain and Australia, do not have any
city with a population over 10 million. In such cases, the most
populous city of the country was chosen. Study collaborators were
requested to select a “representative site” with the following
criteria:

i.) well away from any potential sources of FRs such as adjacent
industries or exhaust/ventilation ducts and largemotorways;

ii.) situated centrally in the city, preferably in a less active area
such as a park, campus or rooftop.

iii.) located in an area with unobstructed airflow, at least 2m
above ground. Rooftop sites were encouraged, where
possible.
2.2. Passive air sampling

Passive air sampling was opted for monitoring the target
chemicals using the polyurethane foam (PUF) disk samplers with a
similar configuration as used in GAPS network previously (Rauert
et al., 2018). These samplers are able to gather both gas- and
particle-phase chemicals (Markovic et al., 2015; Gaga et al., 2019),
hence the samples represent the whole air mixture. The sampling
campaign was conducted in 2018 for two consecutive periods of 3
months each, referred to as period 1 and 2. However, samples were
deployed but not returned on time for laboratory analysis from the
Nairobi, Kenya site, hence the site was excluded from this report of
the study. Period 1 samples were analyzed for FRs and reported
here, and sampling details are given in Table S1. Details of sample
deployment and collection are previously reported by Schuster
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et al. (2015) and a brief description is provided in SI, Text S1. Period
2 samples were analyzed for trace metals and results are pending
and will be reported separately. Ongoing sampling under GAPS-MC
will be used for targeting other chemical classes, including non-
targeted analysis, and for evaluating the toxicity of the mixture of
chemicals in air. Eventually, the extension of the pilot programmay
help to reveal longer term temporal trends that reflect changing use
patterns of FRs and the impact of chemical management efforts.

2.3. Extraction, instrumental analysis, QA/QC and data analysis

Samples were extracted and analyzed for FRs using previously
described methods (Rauert et al., 2016, 2018). Briefly, petroleum
ether and acetone solvents (83/17, v/v) were used for extraction
using an accelerated solvent extractor (ASE) instrument (ASE 350,
Dionex Corporation, Sunnyvale, CA, USA) followed by reducing the
sample to 0.5 mL using rotary evaporation and nitrogen blowdown.
The sample was then split after the addition of 100 ng of mirex. The
one half of the sample was reconstituted to 0.5 mL using isooctane
for analyses of PBDEs and NFRs. The other half of sample under-
went silica column cleanup followed by addition of internal stan-
dards (details provided in SI, Table S2) and constituting the final
volume inmethanol for analyses of OPEs, HBCDD and TBBPA. PBDEs
and NFRs were analyzed on an Agilent (Mississauga, ON, Canada)
7890B Gas Chromatograph (GC) using a 15 m Restek RTX-1614
column (15 m, 0.25 mm i.d., 0.1 mm film thickness) for separation,
coupled with an Agilent 7010 triple quadrupole Mass Spectrometer
(MS/MS). OPEs, HBCDD and TBBPA were analyzed using Waters
Acquity I-class Ultra Performance Liquid Chromatograph (UPLC)
coupled with a Xevo TQ-S MS/MS (Waters, Boston, MS, USA). Sep-
aration of target analytes was obtained by using a Waters Acquity
(Waters, Boston, MS) BEH C18 reversed-phase analytical column
(50 mm, 2.1 mm i.d., 1.6 mm particle size) for OPEs and a Waters
Acquity HSS T3 reversed-phase analytical column (50 mm, 2.1 mm
i.d., 1.6 mm particle size) for HBCDD and TBBPA. A detailed list of
target analytes including 18 OPEs, 14 PBDE congeners, spanning
from tri-to deca-BDE and other halogenated flame retardants
(HFRs) including 17 NFRs, TBBPA and 3 isomers of HBCDD is given
in Table S2. Blanks and recoveries were monitored throughout the
extraction and processing to rule out any potential contamination
and losses throughout the process. Further details on QA/QC and
data analysis is provided in the SI, Text S2.

3. Results and discussion

3.1. Spatial profile and correlation analysis with socio-economic
indices of the cities

New York, USA and London, UK exhibited the highest concen-
trations of total FRs, which were 3e30 times higher compared to
the other major cities (Fig. 1 and Table 1). FRs levels for all cities
were dominated by the OPEs. City rankings of FR levels differed for
the OPEs versus other FR classes and are discussed later. The total
concentrations of FRs in New York and London ranged between
14,000 and 16000 pg/m3 followed by Tokyo (Japan), Beijing (China),
Lagos (Nigeria), Toronto (Canada) and S~ao Paulo (Brazil) with the
total concentrations ranging between ~2000e4000 pg/m3. The
remaining cities had total concentrations ranging from 500 to
1700 pg/m3.

Correlation analysis of measured levels of FRs was conducted
with population density, total population and two socio-economic
development indices i.e Gross Domestic Product (GDP) and Human
development index (HDI) of the cities in the current study
(Table S4). GDP and HDI are explained in SI, Text S3. HBCDD was
excluded from correlation analysis as it was detected at <30% of
sites. A moderately strong and significant correlation was observed
for GDP with total OPEs only (r ¼ 0.625, p < 0.001; Figure S2). Since
GDP is related to the production of commercial products (which
contain the FRs targeted here), the strong correlation of OPEs and
GDP might explain the high levels in New York, USA and London,
UK which have among the highest of the GDPs, with the exception
of Tokyo, Japan (Table S1). The stronger correlation (with GDP) for
the OPEs, rather than for the PBDEs and NFRs, may also reflect
increasing production volumes and use of OPEs due to the phase-
out of PBDEs. The industry has shifted towards more usage of
OPEs across the globe, for a wide range of applications from FRs to
plasticizers and additives in commercial products (Reemtsma et al.,
2008; Van der Veen and de Boer, 2012; Schreder et al., 2016; Blum
et al., 2019; Yang et al., 2019; He et al., 2020).

PBDEs and NFRs had a statistically significant but weak positive
correlation with population density and total population (r ¼ 0.22
to 0.48, p < 0.01). It might be reflective of the association of in-
ventory of products containing these FRs with the population and
its density. TBBPA had a negative to weak positive insignificant
correlations with the target indices (r ¼ �0.021 to 0.47). The
additional data obtained from ongoing sampling will be used for
further in-depth correlation analysis of FR concentrations with
socio-economic indices.

3.2. Assessment of intra-city variability of FR levels

Toronto, Canada was assigned as a ‘reference city’ for the GAPS-
MC pilot study. A sampling campaign was conducted in 2016e2017
in Toronto across 8 sites under the study named: Assessing Toxicity
of Organics in Urban Source Sectors for Air (ATOUSSA) (Saini et al.,
2019). Based on the results of ATOUSSA study, we observed rela-
tively small (i.e. less than an order of magnitude) variability for
OPEs, PBDEs (Fig. 2) and NFRs (Figure S3) in the air across different
site types (spanning sources from urban, traffic, semi-urban, in-
dustrial to residential and background sites) and also relatively
small seasonal variability in FR levels in air over time (6 periods of
sampling of 2 months each) at the same site. Some of the observed
variability in derived concentrations is inherent in the sampling
and analysis methodology. Gouin et al. (2005) deployed duplicate
PUF disk samplers across several sites in the Great Lakes Basin over
multiple sampling periods and showed that the coefficient of
variation was <50% in 91% of samples.

Based on the detailed Toronto study, wewere confident that one
representative sampling site for each major city in this study, with
care being taken to avoid sampling near potential sources, would
provide a reasonable representation of average ambient concen-
trations within each city to evaluate average levels to which the
populations are exposed. However, we acknowledge that each city
is subject to unique source sectors and therefore uncertainties and
variabilities in air concentrations of targeted compounds over
space and time (e.g. seasonality), which we are not able to evaluate
based on one sampling site/period. Furthermore, because passive
air samplers are deployed for an extended 3-month period, they are
able to integrate ambient concentrations effectively and dampen
the high and low concentration episodes that sometimes arise from
short term (e.g. 24hr), intermittent (e.g. weekly) high volume
sampling data (Pozo et al., 2009).

3.3. Concentrations and profiles of each FR class

OPEs clearly dominated the profile at all sites with 2e5 orders of
magnitude higher total concentrations as compared to other tar-
geted FRs (ANOVA and student’s t-test assuming unequal variance,
p < 0.002) (Table 1). There was no significant difference between
SPBDEs and SNFRs levels across sites (p > 0.05). Out of the total 54



Fig. 1. Ranking of the 19 major cities based on the total concentration of S10OPEs (outer graph) and S9PBDEs, S11NFRs, SHBCDDs and TBBPA (inset graph) as derived from passive air
samples. Y-axis of both graphs represents air concentrations in pg/m3. Note that the y-axis of the inset graph is on a log scale. The sequences of the sampling site are based on the
decreasing order of concentrations of OPEs and PBDEs in the outer and inset graph, respectively.

Table 1
Total concentrations (pg/m3) of OPEs, PBDEs, NFRs, HBCDD and TBBPA asmeasured in passive air samples collected from19major cities. Note: ND stands for non-detect and the
concentrations are rounded off to 3 significant figures.

United Nations’ region Site code Sites S10OPEs S9PBDEs S11NFRs HBCDD TBBPA

WEOG WE01 Toronto, Canada 2040 38.6 38.2 10.8 1.49
WE02 New York, USA 15,100 111 149 ND 29.7
WE03 Sydney, Australia 1010 4.75 9.41 ND 4.95
WE04 Istanbul, Turkey 774 14.1 5.24 41.8 ND
WE05 London, UK 14,100 88.0 21.1 3.75 0.56
WE06 Madrid, Spain 880 22.0 23.0 ND ND

Average 5650 46.4 41.0 18.8 9.16
Median 1520 30.3 22.1 10.8 3.20

GRULAC GR01 S~ao Paulo, Brazil 2070 18.3 23.0 ND 3.02
GR02 Bogota, Colombia 1420 11.7 39.2 ND 2.33
GR03 Mexico city, Mexico 795 34.9 88.9 0.21 1.37
GR04 Santiago, Chile 1050 13.6 30.0 ND 0.54
GR05 Buenos Aires, Argentina 563 14.5 16.1 ND ND

Average 1180 18.6 39.5 0.21 1.81
Median 1050 14.5 30.0 0.21 1.85

CEE CEE01 Warsaw, Poland 1250 8.48 9.32 1.60 ND
Asia-Pacific AS01 Kolkata, India 464 16.9 26.8 ND 1.39

AS02 Beijing, China 3080 54.8 24.9 53.3 10.6
AS03 Bangkok, Thailand 1570 65.5 59.3 1.30 1.10
AS04 Tokyo, Japan 4010 53.1 43.9 ND 118
AS05 New Delhi, India 714 43.3 35.6 ND 41.0

Average 1970 46.7 38.1 27.3 34.4
Median 1570 53.1 35.6 27.3 10.6

Africa AF01 Lagos, Nigeria 2270 134 121 4.69 27.0
AF02 Cairo, Egypt 633 45.7 31.7 ND 4.08

Average (& median) 1450 89.9 76.4 4.69 15.5
Total Average 2830 41.7 41.9 14.7 16.5
Total Median 1250 34.9 30.0 4.22 3.02

A. Saini et al. / Environmental Pollution 267 (2020) 1154164



Fig. 2. A plot showing the comparison of air concentrations of SOPEs and SPBDEs measured at Toronto, Canada (Red triangle and dashed line, this study) at 8 sites representing
different source sectors in a sampling campaign conducted in 2016e2017 under ATOUSSA study (box and whisker plots) (Saini et al., 2019). Black markers indicate the average; top,
middle and bottom lines of the boxes show 75th percentiles, medians and 25th percentiles, respectively, and whiskers represent the minimum and maximum total concentration
measured in ATOUSSA study samples. MC-WE01 and WB samplers were located at the same site. Note: For comparison, BDE-209 was excluded from MC-WE01 total concentrations
since it was not reported in the ATOUSSA study. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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target analytes, 29 analytes were detected with detection fre-
quencies of �80%, 4 analytes were detected in the range 21%e58%
of samples and the remaining were non-detects across all sites
(Table S2).

OPEs: Total concentration of OPEs in air across the 19 cities
spanned over two orders of magnitude, from 464 to 15,100 pg/m3.
Ten out of 18 target OPEs were detected in >84% of samples
(Table S2). The highest concentration of S10OPEs was measured at
New York, USA (15,100 pg/m3) followed by London, UK (14,100 pg/
m3) (Fig. 1 and S4 and Table 1). The S10OPEs at other sites ranged
from 464 to 4010 pg/m3. Table S6 presents the comparison of levels
of OPEs reported in previous studies conducted in urban areas
across the world. The range of total OPEs measured in the current
study is in agreement with the atmospheric levels reported previ-
ously in the urban areas such as Chicago and Cleveland, USA (1500
and 2100 pg/m3, respectively; Salamova et al., 2014); Toronto,
Canada (3430 pg/m3; Saini et al., 2019); Stockholm, Sweden
(3900 pg/m3; Wong et al., 2018); Paris, France (7770 pg/m3, Rauert
et al., 2018); Bursa, Turkey (8400 pg/m3; Kurt-Karakus et al., 2018),
S~ao Luis, Brazil (919 pg/m3; Rauert et al., 2018) and Concepcion,
Chile (1190 pg/m3; Rauert et al., 2018). However, in comparison to
background concentration of total OPEs (median ¼ 230 pg/m3;
range ¼ 40e1300 pg/m3) reported for 31 background sites under
GAPS network (Rauert et al., 2018), the median value for the
megacities in the current study is 7 times higher. The elevated
levels of OPEs in megacities versus background locations, as well as
instances of extremely high concentrations of OPEs in some cities,
highlight the chemical burden in urban air due to the multitude of
source sectors and hence, associated impacts of human health and
environment.

The concentrations of individual OPEs in each city are listed in
Table S5. The three chlorinated OPEs (Cl-OPEs): tris (2-chloroethyl)
phosphate (TCEP), tris (chloroisopropyl) phosphate (TCIPP), and tris
(1,3 dichloro-2-propyl) phosphate (TDCIPP), constituted 40e87% of
the total and were detected in 95e100% of samples. The S3Cl-OPEs
ranged from a low of 254 pg/m3 in Kolkata, India to a high of



Fig. 3. Concentrations (pg/m3) of three chlorinated OPEs (TCIPP, TDCIPP and TCEP) as measured at 19 major cities across the globe.
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11,500 pg/m3 in London, UK (Fig. 3). The second-highest levels of
S3Cl-OPEs were measured at New York, USA (9930 pg/m3). For the
otherWEOG cities (i.e. Toronto, Madrid, Istanbul and Sydney), S3Cl-
OPEs were about an order of magnitude lower. In the GRULAC re-
gion, S3Cl-OPEs ranged from 304 to 1420 pg/m3. Tri-phenyl
phosphate (TPHP) and tri-p-tolyl phosphate (m-TMPP) were the
two aryl OPEs detected in the current study constituting 4e35% of
total OPEs (Figure S5). TPHP was the predominant one at the ma-
jority of the sites with the levels ranging from 24 pg/m3 (Istanbul,
Turkey) to 2100 pg/m3 (London, UK). The further discussion on the
levels of other individual OPEs has been given in SI Text S4 and
shown in Figures S5 and S6.

PBDEs: The detection frequencies of PBDE congeners ranged
between 58% (BDE-154) to 100% (BDE-28, -47, �99, �100
and �209) (Table S2). The total concentrations of S9PBDEs ranged
from 4.75 pg/m3 (Sydney, Australia) to 134 pg/m3 (Lagos, Nigeria)
(Fig. 1 and S7 and Table 1). Lagos has seen unprecedented urbani-
zation and industrialization in the past decades with an annual
urban growth rate of 5.8%, resulting in an increase in atmospheric
emissions (Aliyu and Amadu, 2017). Furthermore, it is also home to
vast amounts of electronic waste, exported from developed coun-
tries, thus adding to the environmental challenges (Sullivan, 2014).
Landfill fires is also a burning issue in Nigeria due to poor waste
disposal practices (Aderemi and Otitoloju, 2012). For instance, in
the Olusosun landfill in Lagos (~8 km from our sampling site in
Lagos), which is the largest open dumpsite in Africa, there was a fire
outbreak in March 2018 that persisted for months and overlapped
with Period 1 of this study (Kalu, 2018). The Olusosun landfill is
known to receive all types of unsortedwaste including a substantial
amount of plastic and electronic waste. Open burning of waste is
reported as one of the main sources of emission of POPs including
PBDEs to the environment (Gullett et al., 2010). All these factors
speak to the elevated concentrations of PBDEs in Lagos’s
atmosphere.

New York, USA had a second-highest SPBDE concentration
(111 pg/m3) followed by London, UK (88.0 pg/m3) and Bangkok,
Thailand (65.5 pg/m3). Table S8 presents the levels of PBDEs in
urban areas across the world as reported in previous studies. The
total PBDE concentrations reported previously in urban areas of
North America ranged between 15.7 and 52 pg/m3 (Liu et al., 2016b;
Saini et al., 2019), which is in agreement with levels reported in the
current study in the same region. In the GRULAC region, S9PBDEs
ranged from 11.7 (Bogota, Colombia) to 34.9 pg/m3 (Mexico City,
Mexico). PBDEs in the GRULAC urban environment have been re-
ported previously by Rauert et al. (2018) in Cordoba and Mar del
Plata, Argentina (118 and 1.16 pg/m3) which bracket the values
measured in Buenos Aires, Argentina (14.5 pg/m3) in the current
study and demonstrate that the intercity variability of FR burdens
in air, within the same country, can be substantial. However, total
PBDEs levels reported in Concepcion, Chile (10 pg/m3) and S~ao Luis,
Brazil (11.3 pg/m3) (Rauert et al., 2018) are close to 13.6 and 18.3 pg/
m3 of total PBDE levels reported in Santiago, Chile and S~ao Paulo,
Brazil, respectively, in the current study. In the Asia-Pacific region,
S9PBDEs ranged from 16.9 pg/m3 in Kolkata, India to 65.5 pg/m3 in
Bangkok, Thailand. These levels are in line with those reported by
Qi et al. (2014) in Harbin, China (69.0 pg/m3) but lower than those
reported by Chakraborty et al. (2017) in four metropolitan cities of
India including New Delhi and Kolkata (135e264 pg/m3). Two
previous studies reported averages of 16 and 45.8 pg/m3 of SPBDEs
(ranges: 0.08e211 and 0.073e942 pg/m3, respectively) from 4 to 5
urban locations for the years 2008e2013 under the Spanish air
monitoring program (De la Torre et al., 2016; Mu~noz-Arnanz et al.,
2016). The levels of S9PBDEs in Madrid, Spain in the current study
was 22 pg/m3, which is towards the lower end of the range reported
in the Spanish studies. In comparison to the GAPS measurements at
background sites, the median concentration of 34.9 pg/m3 repre-
senting all megacities in the current study, is approximately 12
times higher than the median of 3 pg/m3 (range ¼ 0.08e44 pg/m3)
reported under GAPS network for 31 background sites (Rauert et al.,
2018).

The concentration of individual BDE congeners at each sampling
site is given in Table S7. Penta-BDE congeners (BDE-47, 66, 99, 100,
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153 and 154) and BDE-209 constituted >90% of the total concen-
trations at all sampling locations. Penta- and deca-BDE formula-
tions were listed in the Stockholm Convention in 2009 and 2017,
respectively. These regulations do not address the existing stocks of
in-use PBDE and other POPs-containing products or the products
that have entered the waste phase. Environmentally sound man-
agement and transboundary movement of hazardous waste and
recyclable materials and hazardous chemicals are being regulated
under UNEP’s Basel Convention and Rotterdam Convention,
respectively (Basel Convention, 2019; Rotterdam Convention,
2019). Regardless, the in-use products stock, e-waste and recycled
polymer are expected to continue to be the sources of POPs e.g.
PBDEs to the environment (Ionas et al., 2014; Abbasi et al., 2015;
Breivik et al., 2016). In the current study, except in Sydney and
Bangkok, BDE-209 dominated the profile which reflects the shift in
usage pattern with the earlier phase-out of penta-BDE formulation
in comparison to BDE-209 (Figure S8). Further discussion on indi-
vidual BDEs is given in Text S5.

BDE-209 constituted �70% of the total concentrations at 14 out
of 19 sites. The highest concentration of 84.8 pg/m3 of BDE-209 was
measured at London, UK followed by 63.8 and 49.9 pg/m3 at Lagos,
Nigeria and Tokyo, Japan, respectively (Figure S8 and Table S7). The
comparison of BDE-209 levels reported in the current study and
previous studies is given in Text S5 and Table S8.

HFRs: NFRs: The NFRs were measured with a higher range of
detection frequencies (Table S2) and at similar or higher levels in
comparison to PBDEs at all locations (Table 1 and Fig.1 and S7). This
configuration also indicates the shift towards using alternative FRs
with the phase-out of PBDEs in the past decade. New York, USA had
the highest concentrations of S11NFRs (149 pg/m3) followed by
Lagos, Nigeria (121 pg/m3). The concentrations at other sites ranged
from 5.24 pg/m3 (Istanbul, Turkey) to 89.0 pg/m3 (Mexico City,
Mexico). The NFR levels reported in the current study are in the
range of those previously reported by Drage et al. (2016); Liu et al.
(2016a, b); Rauert et al. (2018); Wong et al. (2018) and Saini et al.
(2019) at urban sites of UK, USA, France, Sweden and Toronto,
Fig. 4. A map of total concentrations (pg/m3) and profile of dechloranes (602 and 604
respectively (Table S10). However, the total levels of NFRs reported
in Istanbul, Turkey and in Guangzhou and Tianjin, China by Kurt-
Karakus et al. (2017) and Li et al. (2017), respectively, were a fac-
tor of �3 higher than the maximum levels reported in the current
study. The median level of 30 pg/m3 in the current study is ~23
times higher than the background median level of 1.3 pg/m3,
(range ¼ 0e16 pg/m3) reported by Rauert et al. (2018). Moreover,
the detection frequencies of NFRs at background sites were �40%
whereas, the detection frequencies of NFRs in the current study
were �90%. It highlights another advantage of monitoring these
compounds in an urban environment where the levels are more
likely well above the detection limits and would provide better
updated scenarios of changing use and emission patterns of FRs.

Table S9 and Fig. 4, S9 and S10 summarize the concentration of
11 out of 17 NFRs that were detected in the samples with the
detection frequency of 89e100%. Bis(2-ethyl-1-hexyl)tetra-
bromophthalate (BEHTEBP) had the highest levels among the
detected NFRs at 89% of the sites with the concentrations ranging
between 1.19 pg/m3 (Beijing, China) and 68.3 pg/m3 (New York,
USA). Pentabromobenzene, pentabromotoluene, pentabromoe-
thylbenzene, 2,3-dibromopropyl-2,4,6-tribromophenyl ether and
hexabromobenzene (PBBZ, PBT, PBEB, TBP-DBPE and HBB, respec-
tively) were among other brominated NFRs that were detected in
the samples in the range of 0.14e7.85, 0.30e8.66, 0.03e6.84,
0.13e7.72 and 0.02e14.7 pg/m3, respectively (Figure S10). Their
levels were comparatively lower in the GRULAC region than in
other regions. A summary of the comparison of their levels
measured in the current study and to those reported by other urban
studies is given in SI, Text S6 and Table S10.

Among chlorinated FRs, the highest concentration of Ssyn- and
anti-dechlorane plus (SDP; 27.9 pg/m3) and Sdechlorane-602 and
-604 (SDec; 5.81 pg/m3) were observed at Lagos, Nigeria (Table S9
and Fig. 4). DP and Dec compounds were introduced as re-
placements for Mirex following the ban on latter’s usage back in the
late 1970s. In the technical mixture of DP, different ratios of syn-
and anti-DP (i.e. fsyn ¼ syn-DP/SDP) ranging between 0.20 and
) and dechlorane plus (syn- and anti-isomers) at 19 major cities across the globe.



Fig. 5. Comparison of atmospheric concentrations (pg/m3) of S10OPEs, S9PBDEs, S11NFRs and TBBPA as shown in box and whisker plots across the five United Nations regional
groups. Black markers indicate the average; top, middle and bottom lines of the boxes show 75th percentiles, medians and 25th percentiles, respectively, and whiskers represent the
minimum and maximum total concentration. N represents the number of major cities sampled in the given region. Note that HBCDD is not included here because of fewer de-
tections. WEOG ¼ Western Europe and Other States Group; GRULAC ¼ Group of Latin American and the Caribbean; CEE ¼ Central and Eastern Europe (green on map). Source of
world map: https://www.informea.org/en/map-5-un-regions.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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0.41 have been reported previously, depending upon the manu-
facturer (e.g. Oxychem, USA and Anpon, China) (Zhu et al., 2007;
Wang et al., 2010). The discussion on fsyn observed in the current
study is given in SI, Text S6. DP is currently being considered for
listing under the Stockholm Convention (Stockholm Convention,
2019).

TBBPA: TBBPA was detected in 79% of samples with concentra-
tions ranging from 0.54 to 118 pg/m3 (Table S2). Tokyo, Japan had
the highest concentration of TBBPA (118 pg/m3) followed by New
Delhi, India (41.0 pg/m3) (Fig. 1 and S7 and Table 1). The concen-
trations at other sites were<30 pg/m3. There is limited literature on
TBBPA levels in outdoor air, especially in urban environments (Liu
et al., 2016a). Abdallah et al. (2008) reported 0.8 pg/m3 of TBBPA
in outdoor air in Birmingham, UK whereas in Hokkaido, Japan,
8.3 pg/m3 of TBBPA was reported by Takigami et al. (2009). Further
discussion on TBBPA is given in Text S6.

HBCDD: The three isomers of HBCDD (a, b and g) were the least
detected compounds with a detection frequency ranging between
21 and 32% only (Table S2). Beijing, China had the highest SHBCDD
concentrations in air of 53.3 pg/m3 followed by Istanbul, Turkey
(41.8 pg/m3) (Tables S4 and S12; Fig. 1 and S7). The remaining sites
had <11 pg/m3 of SHBCDD measured in the samples. The discus-
sion on isomer profile observed in samples is given in SI, Text S6
and shown in Figure S11. The comparison of HBCDD reported in
previous studies is given in Table S10. Qi et al. (2014) and Kurt-
Karakus et al. (2017) reported 150 and 1200 pg/m3 for SHBCDD
in Harbin, China and Istanbul, Turkey, respectively, which is ~3 and
30 times higher than the levels in the present study (Table S10).
Rauert et al. (2018) also reported 16e58.8 pg/m3 of SHBCDD in
Paris, which is within the range of SHBCDD reported in the current
study. They also reported 110e175 pg/m3 of g-HBCDD in 2015 in
Concepci�on, Chile (a city close to an industrial port, Talcahuano,
Chile) whereas HBCDD was not detected in Santiago, Chile in the
current study. Drage et al. (2016) reported 130 pg/m3 of SHBCDD in
Birmingham, UK which is > 30 times higher than the value for
London, UK in the present study.

3.4. Comparison of five United Nations’ regional groups

The concentrations measured in megacities from different
countries were compared according to their United Nations’
regional classification (Table 1 and Fig. 5). Despite observing a wide
range of concentrations of the given chemical classes between
cities, themedian values for each regionwerewithin a factor of five,
excluding the CEE region, which was represented by only one city
(Warsaw, Poland). This relative consistency in levels was somewhat
surprising given different production and usage patterns among
regions. This widespread occurrence of FRs at elevated concentra-
tions in major cities across the globe highlights concerns associated
with highly exposed human populations and chemical mixtures in
the air that result in uncertain but potentially concerning health
impacts.

4. Conclusion

This is the first pilot study to assess levels of FRs in ambient air
across major global cities, using a single monitoring platform. The
total atmospheric concentrations of FRs ranged from 500 pg/m3 to
16,000 pg/m3, with OPEs dominating the profile at each city.
Regardless of the wide range of total FRs, a relatively small differ-
ence was observed when concentrations were averaged across the
United Nations’ regions. A significant positive correlation of OPEs
and GDP of the cities reflected the increased production and ap-
plications of OPEs in commercial products after the phase-out of
PBDEs. This study highlights the importance of ambient air sur-
veillance in urban areas to depict the changes in emission patterns

https://www.informea.org/en/map-5-un-regions
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and eventually temporal trends, in order to assess the effectiveness
of imposed regulations under international treaties such as the
Stockholm Convention. Samples collected under the GAPS-MC pilot
study from period 2 are also being analyzed for trace metals using
the method recently developed by Gaga et al. (2019). Future work
under the GAPS-MC will relate contaminant profiles of FRs and
trace metals to a wide range of toxicity indicators based on the air
sample extracts and in vitro methods. For instance, we have
developed a method for generating and identifying FR trans-
formation products in the air that contribute to themixture toxicity
(Liu et al., 2019) and plan to screen for these in our samples. The
ultimate goal of this approach is to link chemical mixtures in
ambient air to potential health effects, especially considering that
the majority of the world’s population resides in urban areas and
experiences exposure to high levels of pollutants. In the environ-
mental monitoring community, the paradigm is also shifting from
selective chemical-by-chemical assessment approach towards
identification of the ‘unknowns and unforeseen’ chemicals in air
mixtures using non-targeted screening approaches (Escher et al.,
2020), which is also part of the next phase and broader scope of
the GAPS-MC study.
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