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We propose a realistic theory of fermion masses and mixings using a five-dimensional warped scenario
where all fermions propagate in the bulk and the Higgs field is localized on the IR brane. The assumed T 0

flavor symmetry is broken on the branes by flavon fields, providing a consistent scenario where fermion
mass hierarchies arise from adequate choices of the bulk mass parameters, while quark and lepton mixing
angles are restricted by the family symmetry. Neutrino mass splittings, mixing parameters and the Dirac CP
phase all arise from the type-I seesaw mechanism and are tightly correlated, leading to predictions for
the neutrino oscillation parameters, as well as expected 0νββ decay rates within reach of upcoming
experiments. The scheme also provides a good global description of flavor observables in the quark sector.
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I. INTRODUCTION

Understanding flavor from first principles is one of the
greatest challenges in particle physics. The coin has two
sides. On the one hand there is the problem of under-
standing the observed hierarchies of quark and lepton
masses, explaining why is the muon about 200 times
heavier than the electron, or why does the top quark seem
to play such a special role in being the heaviest.
On the other hand comes the problem of finding a

rationale for the observed pattern of mixing parameters.
This problem has only become trickier after the discovery
of neutrino oscillations [1,2], which implies not only the
need for neutrino masses—and understanding their small-
ness with respect to the charged fermion masses—but also
the need to understand why the pattern of neutrino mixing
is so special when compared to that of quarks [3].
The Standard Model (SM) lacks an organizing

principle to account for the observed flavor properties.
The existence of flat extra dimensions has been suggested
as a way to shed light on the possible nature of the family

symmetry [4]. In particular, six-dimensional theories com-
pactified on a torus have been suggested [5,6] and a
successful model has recently been proposed [7,8] in which
fermions are nicely arranged within the framework of an A4

family symmetry, with good predictions for fermion masses
and mixings, including the “golden” quark-lepton unifica-
tion formula [9–13]. Although intriguingly successful, this
orbifold theory of flavor [7,8] remains far from giving a
complete description of mass hierarchies.
As a possible alternative to the flat-extra-dimensions

approach here we turn to the possibility of warped extra
dimensions. These have been proposed by Randall and
Sundrum [14] in order to address the hierarchy problem
without the need to invoke supersymmetry. The funda-
mental scale of gravity gets exponentially reduced with
respect to the Planck scale by having the Higgs sector
localized near the boundary of the extra dimensions. Here
we assume the standard model fermions to propagate in the
bulk, though peaked towards either brane. This allows us to
address at once both aspects of the flavor problem: the
fermion mass hierarchy problem, as well as their mixing
pattern, with the help of a family symmetry group. This
follows the general approach suggested in Ref. [15]. In
such scenarios fermion mass hierarchies are accounted for
by adequate choices of the bulk mass parameters, while
quark and lepton mixing angles are restricted by the
assumed family symmetry, broken on the branes by flavon
fields.
Our present scenario employs a T 0-based family group

and predicts the neutrino mixing parameters and the Dirac
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CP violation phase in terms of only two independent
parameters at leading order. T 0 is the double covering of A4.
Besides the triplet representation 3 and the three singlet
representations 1, 10, and 100, in common with A4, it has
three doublet representations 2, 20, and 200. We will exploit
the presence of the doublet representations to describe the
quark sector, by assigning the three quark families to a
reducible singlet plus doublet representation. In contrast to
Ref. [15] where neutrinos were Dirac particles, here a
viable description of neutrino oscillations requires neutri-
nos to be Majorana particles. Moreover, given the predicted
regions for the oscillation parameters, it follows that there
must be a lower bound on the neutrinoless double beta
decay rate even if the spectrum is normal ordered. We show
that the model also provides a successful global description
of flavor, consistent with the observed CKM quark mixing
matrix, in which the successful Gatto-Sartori relation
emerges in leading order.
The paper is organized as follows. After sketching the

theoretical framework in Sec. II we move on to describe the
lepton sector in Sec. III, and the quark sector in Sec. IV,
giving the corresponding field content and quantum
numbers. In Sec. V we give a numerical analysis of the
resulting flavor predictions. The subleading corrections to
the mass terms and mixing parameters are studied in
Sec. VI. Finally, in Sec. VII we comment briefly on a
variant construction in which the Higgs lives in the bulk. In
Sec. VIII we conclude, giving complementary material in
the Appendixes, as follows. The group theory of T 0 is
summarized in Appendix A. The 5D profiles of fields are
presented in Appendix B, while, in Appendix C, we
investigate the vacuum alignment of the flavon fields.

II. THEORETICAL PRELIMINARIES

Here we study the implementation of a flavor
symmetry within a warped extra dimensional theory con-
text. The bulk electroweak gauge symmetry is extended to
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L, ensuring consistency with
restrictions from the electroweak precision measurements
[16]. We denote the gauge fields and gauge couplings
associated with the gauge groups SUð2ÞL, SUð2ÞR, and
Uð1ÞB−L as Wa

Lμ, W
a
Rμ, Xμ, and gL, gR, gX, respectively,

with a ¼ 1, 2, 3. The extended electroweak gauge group
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L is broken down to the SM
group SUð2ÞL ×Uð1ÞY by orbifold boundary condition
on the UV brane [16]. This symmetry breaking pattern can
be achieved by the following assignment of boundary
conditions,1

W1;2;3
Lμ ðþþÞ; BμðþþÞ; W1;2

Rμð−þÞ; Z0
μð−þÞ; ð1Þ

where the first (second) sign in the bracket stands for the
boundary condition on the UV (IR) brane, and “þ” (“−”)
refers to the Neumann (Dirichlet) boundary condition. The
fields Bμ and Z0

μ are linear combinations of the original
fields W3

Rμ and Xμ

�
Bμ

Z0
μ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2R þ g2X
p �

gR gX
−gX gR

�� Xμ

W3
Rμ

�
: ð2Þ

The hypercharge coupling of Uð1ÞY is given by

gY ¼ gRgXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ g2X

p : ð3Þ

Only the fields with (þþ) boundary condition have zero
modes upon the Kaluza-Klein (KK) decomposition. The
zero modes of the 5D fields W1;2;3

Lμ and Bμ are identified
with the SM gauge bosons. The fields with (−þ) boundary
condition only have massive KK modes, the mass of the
first KK gauge bosons is of the order πke−kL, and as usual it
is around 3 TeV within the reach of the LHC. Furthermore,
the gauge group SUð2ÞL ×Uð1ÞY is broken down to
Uð1ÞEM by the VEV of the Higgs localized on the IR
brane. The Higgs field is a SUð2ÞL ⊗ SUð2ÞR bidoublet
and it obtains the following vacuum expectation value,

hHðxμÞi ¼
�
v 0

0 v

�
; ð4Þ

with v ¼ 174 GeV. The SM-like neutral electroweak
gauge bosons are defined in the usual way Zμ ¼
ðgLW3

Lμ − gYBμÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2L þ g2Y

p
, Aμ ¼ ðgYW3

Lμ þ gLBμÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2L þ g2Y

p
. The Z boson and photon arise as the zero

modes of Zμ and Aμ respectively. For the family symmetry
we choose the T 0 group. The T 0 flavor symmetry has been
studied in the literature [19–28]. We introduce four flavon
fields in our model. The flavons φν and ρν are localized on
the UV brane, while the flavons φl and σl are localized on
the IR brane. The fermion fields live in the bulk, and the
profiles of their zero modes in the fifth dimension are
displayed in Fig. 1.

III. LEPTON SECTOR

The transformation properties of the lepton and scalar
fields under the SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge sym-
metry and T 0 × Z3 × Z4 flavor symmetry are summarized
in Table I. The zero mode of ΨL is the left-handed lepton
doublet, and the zero modes of Ψe;μ;τ and Ψν are the right-
handed charged leptons and neutrinos, respectively. Their
bulk masses are given by cl, ce;μ;τ, and cν, respectively, in
units of the anti–de Sitter (AdS) curvature. The vacuum
expectation values (VEVs) of the flavon fields are

1These boundary conditions can be naturally obtained by
adding a SUð2ÞR scalar doublet or triplet field on the UV brane
[17,18], if they acquire nonzero vacuum expectation value (VEV).
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hφli¼ ð1;0Þvφl
; hσli¼vσl ; hφνi¼ ð1;−2ω2;−2ωÞvφν

;

hρνi¼ ð1;−2ω;−2ω2Þvρν ; ð5Þ

where ω ¼ e
2iπ
3 , vφl

, vσl , vφν
, and vρν are arbitrary complex

numbers. As shown in Appendix C, the alignment in
Eq. (5) is the minimum of the scalar potential.
The leading order charged lepton Yukawa interactions

respecting both gauge and flavor symmetries are of the
following form,

Ll
Y ¼

ffiffiffiffi
G

p

Λ03 ½yeðφ2
l Ψ̄lÞ100HΨe þ yμðφ2

l Ψ̄lÞ10HΨμ

þ yτðφ2
l Ψ̄lÞ1HΨτ�δðy − LÞ þ H:c:; ð6Þ

where G ¼ e−8ky is the determinant of the 5D metric.
Inserting the vacuum configuration of Eq. (5) into Eq. (6)
and noticing that

hφlφli3 ¼ ð0; 0; 1Þv2φl
; ð7Þ

then one can read out the charged lepton mass matrix in the
zero mode approximation as

ml ¼
1

Λ02 v

0
B@

ỹev2φl
0 0

0 ỹμv2φl
0

0 0 ỹτv2φl

1
CA; ð8Þ

where v is the vacuum expectation value of the Higgs
field and

ỹe;μ;τ ¼
ye;μ;τ
LΛ0 fLðL; clÞfRðL; ce;μ;τÞ: ð9Þ

Here fL;R are the zero-mode wave functions of fermion
fields, their explicit forms are given in Appendix B. One
sees that the charged lepton mass matrix is diagonal with

me ¼ ỹe
v2φl

Λ02 v; mμ ¼ ỹμ
v2φl

Λ02 v; mτ ¼ ỹτ
v2φl

Λ02 v: ð10Þ

The correct values of me;μ;τ can be naturally achieved
via the wave function overlaps in the usual way. In our
model, neutrino masses are generated by the type-I seesaw
mechanism. The corresponding terms invariant under the
flavor symmetry T 0 × Z3 × Z4 are given by

Lν
Y ¼ yν1

ffiffiffiffi
G

p

Λ0 ðΨ̄lHΨνÞ1δðy − LÞ

þ 1

2

ffiffiffiffi
G

p

Λ2
½yν2ðNCNÞ1ðφ2

νÞ1 þ yν3ðNCNÞ1ðρ2νÞ1
þ yν4ððNCNÞ3Sðφ2

νÞ3SÞ1 þ yν5ððNCNÞ3Sðρ2νÞ3SÞ1�δðyÞ
þ H:c:; ð11Þ

Here N is the SUð2ÞR doublet partner of the charged lepton
ẽ shown in Eq. (B4) and it is neutral under the SM gauge
group with NC ¼ CN̄T , where C is the charge conjugation
matrix (we could also use directly the more fundamental
two-component spinor formalism [29]). Notice that the
bulk gauge symmetry SUð2ÞL × SUð2ÞR ×Uð1ÞB−L is
broken down to the SM gauge group SUð2ÞL ×Uð1ÞY .
Thus the lepton number is broken only on the UV brane,
and it is preserved in the bulk and on the TeV brane. As a
consequence, a UV brane-localized Majorana mass term
for the right-handed neutrinos N is allowed, as shown in
Eq. (11). Given the vacuum aligment of σν and φν in
Eq. (5), we can read out the Dirac and Majorana neutrino
mass matrices as follows

TABLE I. The transformation properties of the lepton sector under the SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge group and the
T 0 × Z3 × Z4 flavor symmetry, with ω ¼ e2πi=3. The flavons φl, σl and φν, ρν are localized on the IR and UV branes, as indicated.

Field Ψl Ψe Ψμ Ψτ Ψν H φlðIRÞ σlðIRÞ φνðUVÞ ρνðUVÞ
SUð2ÞL×SUð2ÞR×Uð1ÞB−L ð2; 1;−1Þ ð1; 2;−1Þ ð1; 2;−1Þ ð1; 2;−1Þ ð1; 2;−1Þ (2,2,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0)
T 0 3 10 100 1 3 1 2 100 3 3
Z3 ω2 1 1 1 ω2 1 ω ω ω ω
Z4 i i i i i 1 −1 −1 i −i

FIG. 1. Zero-mode profiles of the lepton fields in the fifth
dimension. The flavon fields φl, σl and φν, ρν are localized on the
IR and UV branes, respectively.
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mD ¼ ỹν1v

0
B@

1 0 0

0 1 0

0 0 1

1
CA;

mN ¼
�
ỹν2

v2φν

Λ
þ ỹν3

v2ρν
Λ

�0B@
1 0 0

0 0 1

0 1 0

1
CA

þ ỹν4
v2φν

Λ

0
B@

2 2ω 2ω2

2ω −4ω2 −1
2ω2 −1 −4ω

1
CA

þ ỹν5
v2ρν
Λ

0
B@

2 2ω2 2ω

2ω2 −4ω −1
2ω −1 −4ω2

1
CA; ð12Þ

with

ỹν1 ¼
yν1
LΛ0 fLðL; clÞfRðL; cνÞ;

ỹν2;3;4;5 ¼
yν2;3;4;5
LΛ

f2Rð0; cνÞ: ð13Þ

Notice that the form of the Yukawa interactions imply that
both charged lepton as well as the Dirac neutrino mass
blocks are flavor-diagonal. Therefore the nontrivial mixing
and CP violation parameters required in the physical
neutrino mixing matrix must emerge from the type-I
seesaw mechanism at the scale mN .
By performing the seesaw diagonalization procedure

[30], one gets the effective light neutrino mass matrix
expressed in the usual way as

mν ¼ −mDm−1
N mT

D;

¼ m0

0
BBBBB@

1−2y4−2y5−15y24þ18y4y5−15y25
ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ

−2ωðωy4þy5þ3ωy2
4
þ9ω2y4y5þ3y2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
−2ωðy4þωy5þ3y2

4
þ9ω2y4y5þ3ωy2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
−2ωðωy4þy5þ3ωy2

4
þ9ω2y4y5þ3y2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
4ðωy4þω2y5þ3ωy2

4
þ3ω2y2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
1þy4þy5−6y24−6y

2
5

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
−2ωðy4þωy5þ3y2

4
þ9ω2y4y5þ3ωy2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
1þy4þy5−6y24−6y

2
5

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ
4ðω2y4þωy5þ3ω2y2

4
þ3ωy2

5
Þ

ð3ðy4þy5Þþ1Þð18ðy4−y5Þ2þ3ðy4þy5Þ−1Þ

1
CCCCCA; ð14Þ

where m0 ¼ ỹ2ν1Λv
2

ỹν2v
2
φνþỹν3v

2
ρν
, y4 ¼ ỹν4v

2
φν

ỹν2v
2
φνþỹν3v

2
ρν
, and y5 ¼

ỹν5v
2
ρν

ỹν2v
2
φνþỹν3v

2
ρν
. It is remarkable that, apart from an overall

mass scale m0, the mass matrix mν only depends on two
complex input parameters y4, y5. These will describe the

three neutrino masses and also lead to predictions for the
lepton mixing matrix. We first perform a tribimaximal
transformation on the neutrino fields. The resulting light
neutrino mass matrix becomes

m0
ν ¼ U†

TBMmνU�
TBM;¼ m0

0
BBB@

−1
1þ3ðy4þy5Þ 0 0

0
1−3ðy4þy5Þ

18ðy4−y5Þ2þ3ðy4þy5Þ−1
−3
ffiffi
2

p
iðy4−y5Þ

18ðy4−y5Þ2þ3ðy4þy5Þ−1

0
−3
ffiffi
2

p
iðy4−y5Þ

18ðy4−y5Þ2þ3ðy4þy5Þ−1
−1

18ðy4−y5Þ2þ3ðy4þy5Þ−1

1
CCCA; ð15Þ

where UTBM is the well-known tribimaximal mixing
matrix,

UTBM ¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCCA: ð16Þ

Since m0
ν is a block-diagonal symmetric matrix, it can be

exactly diagonalized as

U0
ν
†m0

νU0
ν
� ¼ diagðm1; m2; m3Þ; ð17Þ

where U0
ν can be generally denoted as

U0
ν ¼

0
BBB@

1 0 0

0 cos θν sin θνeiδν

0 − sin θνe−iδν cos θν

1
CCCA: ð18Þ

Since the charged lepton mass matrix ml is diagonal in this
case, the lepton mixing matrix is determined to be2

2We notice that the first column of the lepton mixing matrix is
fixed to be ð2;−1;−1ÞT= ffiffiffi

6
p

.
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U ¼ UTBMU0
ν;

¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCCA:

0
BB@

1 0 0

0 cosθν sinθνeiδν

0 − sinθνe−iδν cosθν

1
CCA;

¼

0
BBB@

ffiffi
2
3

q
cosθνffiffi

3
p sinθνeiδνffiffi

3
p

− 1ffiffi
6

p cosθνffiffi
3

p þ sinθνe−iδνffiffi
2

p − cosθνffiffi
2

p þ sinθνeiδνffiffi
3

p

− 1ffiffi
6

p cosθνffiffi
3

p − sinθνe−iδνffiffi
2

p cosθνffiffi
2

p þ sinθνeiδνffiffi
3

p

1
CCCA: ð19Þ

A. Predictions for neutrino oscillations

We start this section by noticing that, in the absence of
the Majorana terms in Eq. (11), in this model neutrinos
would be unmixed, since both charged lepton and Dirac
mass terms are simultaneously diagonal. They would
also be degenerate in mass. Hence the neutrino mass
differences, as well as mixing and CP violation parameters,
all result from the seesaw mechanism. This is in sharp
contrast with the warped standard model extension pro-
posed in Ref. [15].
From the lepton mixing matrix obtained in Eq. (19),

one can easily extract the following results for the
neutrino mixing angles as well as the leptonic Jarlskog
invariant,

sin2 θ13 ¼
sin2 θν

3
; ð20Þ

sin2 θ12 ¼ 1 −
4

5þ cos 2θν
; ð21Þ

sin2 θ23 ¼
1

2
−

ffiffiffi
6

p
sin 2θν cos δν
5þ cos 2θν

; ð22Þ

JCP ¼ sin 2θν sin δν
6
ffiffiffi
6

p : ð23Þ

One sees that the three neutrino mixing angles as well as the
Dirac CP violation phase are all expressed in terms of just
two parameters, θν and δν. Therefore there are two relations
between these mixing angles and the Dirac CP violation
phase, that can be expressed analytically as

cos2θ12cos2θ13 ¼
2

3
;

cos δCP ¼ ð3 cos 2θ12 − 2Þ cos 2θ23
3 sin 2θ23 sin 2θ12 sin θ13

: ð24Þ

In Fig. 2 we display the contour plots of sin2 θ12, sin2 θ13,
sin2 θ23 and Dirac CP violation phase δCP in the θν − δν
plane. The shaded regions are the ones allowed by
individual measurements of the three mixing angles,
according to the global oscillation analysis in Ref. [3].
One sees that the parameter θν is constrained to lie within

FIG. 2. Contour plots of sin2 θ12, sin2 θ13, and sin2 θ23 in the θν − δν plane. The red, green, and blue areas denote the 3σ regions of
sin2 θ13, sin2 θ12, and sin2 θ23, respectively, and the dashed lines refer to their best fit values taken from [3].
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quite narrow regions around θν ≃ 0.082π and θν ≃ 0.918π.
The left panel in Fig. 3 shows the contour plots of δCP in the
θν − δν plane. The black bands denote the regions in which
all the three lepton mixing angles lie in the experimentally
allowed 3σ ranges [3]. As in most flavor models, for

example those based on modular symmetries, the sign of
δCP can not be fixed uniquely, the predicted correlation
between jδCPj and sin2 θ23 is shown in the right panel
of Fig. 3.

B. Predictions for the absolute neutrino mass scale

As we already saw, in our model the neutrino mass
differences as well as mixing and CP violation all result
from the seesaw mechanism. This is in sharp contrast with
the warped standard model extension proposed in Ref. [15].
This implies that in our present model neutrinos must be
Majorana particles, leading to the existence of neutrinoless
double beta decay, or 0νββ for short.
One can determine the expected ranges for the 0νββ

decay amplitude, taking into account the allowed neutrino
oscillation parameters obtained from experiment [3]. In
Fig. 4 we plot the expected values for the mass parameter
jmeej characterizing the 0νββ amplitude. In a generic model
the regions expected for inverted-ordered and normal-
ordered neutrino masses are indicated by the broad shaded
regions indicated in Fig. 4.
The current experimental bound from KamLAND-Zen

[32] as well as the estimated experimental sensitivities are
indicated by the horizontal lines [33–38].3 We now show
how, within our model, the predictions for the oscillation
parameters imply important restrictions on the effective

FIG. 3. Contour plots of δCP in the θν − δν plane (left) and correlation between jδCPj and sin2 θ23 (right). The black areas correspond to
the 3σ allowed regions of lepton mixing angles [3]. The vertical solid and dashed lines in the right panel represent the best fit values of
sin2 θ23 for NO and IO, respectively.

FIG. 4. Expected mass parameter characterizing the 0νββ
amplitude, where the red and blue regions are for IO and NO,
respectively. The values of the neutrino oscillation parameters are
taken from [3]. The vertical grey exclusion band denotes the
current bound coming from the cosmological data of Σimi <
0.120 eV at 95% confidence level obtained by the Planck
collaboration [31].

3Note that for all of them we have assumed “optimistic” values
for the corresponding nuclear matrix elements.
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Majorana mass jmeej. In fact, the allowed ranges are quite
narrow. If the neutrino mass spectrum is inverted-ordered
(IO), the effective Majorana masss has a lower limit
jmeej ≥ 0.0162 eV, while the lightest neutrino mass sat-
isfies mlightest ≥ 0.0133 eV. In contrast, in the case of
normal-ordering (NO), the effective mass jmeej lies in
the narrow interval [5.2 meV, 9.6 meV], and the allowed
region of mlightest is [4.8 meV, 7.2 meV].4 As indicated in
the figure, we expect that these predictions will be tested by
the next generation 0νββ decay experiments.
The predicted neutrino mass parameters relevant for

endpoint β decay studies as well as cosmology are also
interesting, as indicated in Table II. These should be
compared with the recent limits from the KATRIN experi-
ment [39], and the 95% confidence limit for the sum of
neutrino masses set by the Planck collaboration [31].

IV. QUARK SECTOR

We now extend our model to the quark sector. The
classification of the quark fields under the flavor symmetry
T 0 × Z3 × Z4 is given in Table III, and no new flavon fields
are required. We show the profiles of the zero modes of the
quark fields in Fig. 5. It is straightforward to read off the
down-type quark Yukawa interactions

Ld
Y ¼

ffiffiffiffi
G

p

Λ03 ½yds1ðΨ̄UCHΨdsÞ3φ�2
l þ yds2ðΨ̄UCHΨdsÞ10σ�2l

þ y0bðΨ̄THΨbÞ100σ2l �δðy − LÞ þ H:cþ � � � ; ð25Þ

where dots stand for higher dimensional operators.
Similarly, the up-type quark Yukawa interactions take
the form

Lu
Y ¼

ffiffiffiffi
G

p

Λ03 ½y0uΛ0ðΨ̄THΨuÞ10σl þ ytΛ0ðΨ̄UCHΨtÞ2φ�
l

þ yuðΨ̄UCHΨuÞ2φlσl þ y0cðΨ̄THΨcÞ100σ2l
þ y0tðΨ̄THΨtÞ10σ�2l �δðy − LÞ þ H:cþ � � � : ð26Þ

In the zero mode approximation, we integrate over the fifth
dimension and then obtain the up-type and down-type
quark mass matrices as follows:

md ¼ v

0
B@

ỹds2v
�2
σl =Λ

02 0 0

ỹds1v
�2
φl
=Λ02 ỹds2v

�2
σl =Λ

02 0

0 0 ỹb0v2σl=Λ
02

1
CA; ð27Þ

mu ¼ v

0
B@

ỹuvφl
vσl=Λ

02 0 0

0 0 ỹtv�φl
=Λ0

ỹu0vσl=Λ
0 ỹc0v2σl=Λ

02 ỹt0v�2σl =Λ
02

1
CA; ð28Þ

with

ỹu;t;ds1;2 ¼
yu;t;ds1;2
LΛ0 fLðL; cUCÞfRðL; cu;t;dsÞ;

ỹ0u;c;t;b ¼
y0u;c;t;b
LΛ0 fLðL; cTÞfRðL; cu;c;t;bÞ: ð29Þ

For simplicity, we denote the ij element of mu (md) as mu
ij

(md
ij). The down-type quark mass matrix is block diagonal

withmd
11 ¼ md

22, and it can easily diagonalized by a unitary
transformation Ud,

Ud ¼

0
B@

cos θd sin θdeiφd 0

− sin θde−iφd cos θd 0

0 0 1

1
CA; ð30Þ

with

tan 2θd ¼ j2md
11=m

d
21j; φd ¼ argðmd

11m
d�
21Þ: ð31Þ

The down-type quark masses are determined to be

md;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmd

11j2 þ jmd
21j2=2� jmd

21j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmd

11j2 þ jmd
21j2=4

qr
;

mb ¼ jmb
33j: ð32Þ

The product of the up-type quark mass matrix with its
Hermitian conjugate is of the following form

mumu† ¼

0
BB@

jmu
11j2 0 mu

11m
u�
31

0 jmu
23j2 mu

23m
u�
33

mu�
11m

u
31 mu�

23m
u
33 jmu

31j2þ jmu
32j2þjmu

33j2

1
CCA:

ð33Þ

The resulting up-type diagonalization matrix can be para-
metrized as

TABLE II. The predictions for the effective neutrino massmβ in
β decay and the sum of neutrino masses. The latest experimental
bounds on mβ and Σimi are taken from KATRIN [39] and Planck
2018 [31], respectively.

Parameter Experimental results Predictions

mβ ½meV� (NO) <1100 10.62
mβ ½meV� (IO) 52.07
Σimi ½meV� (NO) <120 66.81
Σimi ½meV� (IO) 123.34

4As shown in Fig. 4, the neutrino mass spectrum could
possibly be quasidegenerate as well; however, this region is
disfavored by both KamLAND-Zen and Planck.
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Uu ≃

0
B@

1 ϵ sin θue−iφu −ϵ cos θu
0 cos θu sin θueiφu

ϵ� − sin θue−iφu cos θu

1
CA; ð34Þ

where

tan 2θu ¼
2jmu

23m
u
33j

jmu
33j2 þ jmu

32j2 þ jmu
31j2 − jmu

23j2
;

ϵ ¼ −mu
11m

u�
31

jmu
33j2 þ jmu

32j2 þ jmu
31j2 − jmu

11j2
;

φu ¼ argðmu
23m

u�
33Þ: ð35Þ

We find the up-type quark mass eigenvalues are

mu ≃ jmu
11j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jmu
23j2jmu

31j2
m2

cm2
t

s
;

mc;t ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX−Þ2 þ 4jmu

23j2jmu
33j2

qr
; ð36Þ

with X� ¼ jmu
33j2 þ jmu

32j2 þ jmu
31j2 � jmu

23j2. As a result,
the quark mixing matrix is given by

VCKM ¼ U†
uUd;

≃

0
B@

cos θd eiφd sin θd ϵ

−e−iφd cos θu sin θd − eiφu sin θu cos θdϵ� cos θd cos θu − eiðφuþφdÞ sin θu sin θdϵ� −eiφu sin θu
−e−iðφdþφuÞ sin θd sin θu − cos θu cos θdϵ� e−iφu cos θd sin θu − eiφd cos θu sin θdϵ� cos θu

1
CA; ð37Þ

from which we can extract the expressions of CP violation
phase and Jarlskog invariant in the quark sector as follows,

δqCP ¼ π − argðϵÞ þ φd þ φu; ð38Þ

JqCP ≃
1

4
jϵj sin 2θd sin 2θu sin δqCP: ð39Þ

Besides, we can find that in this case θc ≃ θd. With the fact
that the down quark mass matrix is block-diagonalized and it

satisfies the relationmd
11 ¼ md

22, we can obtain the celebrated
Gatto-Sartori relation for the Cabibbo angle [40], i.e.,

md

ms
≃ tan2 θc: ð40Þ

V. GLOBAL FIT OF FLAVOR OBSERVABLES

We have already discussed the predictions for the
oscillation parameters, summarized in Eq. (24). They are
shown in Figs. 2 and 3. Likewise, the predictions for the
absolute neutrino mass scale relevant for neutrinoless
double beta decay, tritium beta decays and cosmology
were discussed in Fig. 4 and Table II. Finally, the quark
sector prediction for the Cabibbo angle is given in Eq. (40).
We now present a global description of all flavor

observables in the theory, including the quark and lepton
mass parameters as well as the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing parameters.

A. Global flavor fit

In our numerical analysis, we assume that the funda-
mental 5D scale is k≃Λ≃MPl, withMPl≃2.44×1018GeV
the reduced Planck mass. In order to account for the

TABLE III. The transformation properties of the quark fields under the bulk gauge group SUð2ÞL × SUð2ÞR × Uð1ÞB−L and the flavor
symmetry T 0 × Z3 × Z4. Note that no new scalars are needed beyond those in Table I.

Field ΨUC ΨT Ψu Ψc Ψt Ψds Ψb H φlðIRÞ σlðIRÞ
SUð2ÞL×SUð2ÞR×Uð1ÞB−L ð2; 1; 1=3Þ ð2; 1; 1=3Þ ð1; 2; 1=3Þ ð1; 2; 1=3Þ ð1; 2; 1=3Þ ð1; 2; 1=3Þ ð1; 2; 1=3Þ (2,2,0) (1,1,0) (1,1,0)
T 0 2 1 10 100 10 20 100 1 2 100
Z3 ω2 ω 1 ω2 1 ω ω2 1 ω ω
Z4 1 −1 1 −1 −1 1 −1 1 −1 −1

FIG. 5. The wave functions of the zero modes of the quark
fields.
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hierarchy between the Planck and the electroweak scales
we also set the scaleΛ0 ¼ ke−kL ≃ 1.5 TeV. This allows for
the lowest Kaluza-Klein gauge boson resonances (with
masses mKK ¼ 3–4 TeV) to be within reach of the LHC
experiments. The Higgs VEV is identified with its SM
value v ≃ 174 GeV, and the ratios vφl

=Λ0, vσl=Λ
0, vφν

=Λ,
and vρν=Λ are all fixed to 0.2, assuming real flavon VEVs.
We now give a set of benchmark values for the bulk mass
parameters and coupling constants of the model. In the
lepton sector, we can choose

cl ¼ 0.460; ce ¼−0.725; cμ ¼−0.553;

cτ ¼−0.117; ye ¼ 1.0; yμ ¼ 1.0; yτ ¼ 1.0; ð41Þ

and

NO∶ cν ¼−0.404; yν1¼ yν2 ¼ yν3 ¼ 1;

yν4 ¼ 0.235þ0.0770i; yν5 ¼ 0.340þ0.0710i; ð42Þ

IO∶ cν¼−0.383; yν1¼ yν2 ¼ yν3¼ 1;

yν4¼−0.354þ0.275i; yν5¼−0.562þ0.270i: ð43Þ

The resulting predictions for neutrino and charged lepton
masses as well as lepton mixing parameters are given as
part of Table IV, and they reproduce very well current

experimental data. The numerical values of the right-
handed neutrino masses are about 1012 GeV–1013 GeV.
For the quark sector we take

cUC ¼ 0.587; cT ¼−0.980; cu ¼−0.516;

cc ¼−0.555; ct ¼ 0.966; cds ¼−0.503; cb ¼−0.532;

yu ¼ 6.321; yt ¼ 6.20; y0u ¼ 4.00; y0c ¼ 1.00;

y0t ¼ 8.30; yds1 ¼ 4.00; yds2 ¼ 0.892; y0b ¼ 4.00: ð44Þ

Thus the numerical fitted results of quark mass matrices are
given by

mu ¼

0
B@

0.109 0 0

0 0 7.407

29.532 0.589 −145.433 − 88.418i

1
CA;

md ¼

0
B@

0.0198 0 0

0.0443þ 0.0769i 0.0198 0

0 0 4.180

1
CA; ð45Þ

in GeV units. The fitted values of fermion masses and the
mixing parameters are summarized in Table IV. In particu-
lar the fitted CKM matrix is given as

VCKM ≃

0
B@

0.974þ 0.0175i −0.0331þ 0.223i −0.00367
0.0329þ 0.222i 0.973 − 0.0176i −0.0359þ 0.0219i

−0.00010þ 0.00879i 0.0353þ 0.0215i 0.999

1
CA; ð46Þ

while the fitted value for the Jarlskog invariant is

JqCP ¼ 3.14 × 10−5: ð47Þ
The phenomenological implications of the Randall-
Sundrum model with custodial symmetry have been ex-
tensively studied in the literature [16,41,42]. The mass
scale of the KK excitations can be as low as a few TeV
consistent with electroweak precision measurements, flavor
changing neutral current processes in rare Kaons and B
mesons as well as lepton flavor violation processes. Some
simple discrete family symmetries such as A4, S4 have been
implemented in a warped extradimensional setup with
custodial symmetry [43–45]. It has been shown that the
discrete flavor symmetry can improve over the generic
Randall-Sundrum models, and it can greatly weaken
bounds from lepton flavor violation, since the lepton
doublets are usually assigned to a triplet of the flavor
symmetry group and, consequently, their bulk wave func-
tions are universal [43–45].
In the present work, we construct a warped model based

on the T 0 flavor symmetry to explain the observed pattern

of quark and lepton masses and mixings. Our basic setup is
similar to previous flavor models [43–45]. Therefore we
expect that the phenomenology related to KK resonances
will be qualitatively similar, the constraints from electro-
weak precision parameters and measurements of flavor
violation in rare decays of Kaons, B mesons, and charged
leptons can be saturated for KK mass scales of the order of
a few TeV. The flavons φl, σl and φν, ρν are localized on the
IR and UV branes, respectively. Thus the masses of the
physical modes of the φl, σl and φν, ρν are naturally of
order TeV and Planck scale, respectively. Since all the
flavons are gauge singlets, they do not participate in the
gauge interactions. Their couplings to quarks and leptons
arise from higher dimensional operators suppressed by the
flavor scale, hence they are typically very small.

VI. HIGH ORDER CORRECTIONS

The above predictions for lepton and quark masses and
flavor mixing will receive corrections from higher dimen-
sional operators consistent with the symmetry of the model.
In the following, we analyze the next-to-leading order
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corrections to Ll;ν;d;u
Y in Eqs. (6), (11), (25), and (26) and

estimate their contributions to the fermion masses and the
mixing parameters.
We first discuss the charged lepton sector. The cubic

flavon terms in charged lepton interactions are forbidden by
the Z4 symmetry. Thus the next-to-leading order correc-
tions to the charged lepton masses are coupled with quartic
flavon interactions. Neglecting terms whose contributions
can be absorbed into the leading-order Yukawa couplings,
we can write down the subleading corrections to Ll

Y as

δLl
Y ¼

ffiffiffiffi
G

p

Λ05 ½xeðφlφ
�
l σ

2
l Ψ̄lÞ100HΨeþxμðφlφ

�
l σ

2
l Ψ̄lÞ10HΨμ

þxτðφlφ
�
l σ

2
l Ψ̄lÞ1HΨτþx0eðφ�2

l σ�2l Ψ̄lÞ100HΨe

þx0μðφ�2
l σ�2l Ψ̄lÞ10HΨμþ x0τðφ�2

l σ�2l Ψ̄lÞ1HΨτ�δðy−LÞ
þH:c:: ð48Þ

The correction to the charged lepton mass matrix is given as

δml ¼ v

�
vIR
Λ0

�
4

0
B@

0 x̃μ x̃0τ
x̃e0 0 x̃τ
x̃e x̃0μ 0

1
CA; ð49Þ

where x̃e;μ;τ ¼ xe;μ;τ
LΛ0 fLðL; clÞfRðL; ce;μ;τÞ and x̃0e;μ;τ ¼

x0e;μ;τ
LΛ0 fLðL; clÞfRðL; ce;μ;τÞ. For simplicity of notation, in
Eq. (49) we have used vIR to represent the VEVs of IR
localized flavons φl, σl and their complex conjugates. In the
neutrino sector, the zeromodeof the right-handedneutrinos is
exponentially localized towards theUVbrane.As a result, the
subleading operators involving the IR-localized flavons φl
and σl are highly suppressed and can be neglected. The next-
to-leading-order corrections to Lν

Y are of the following form

δLν
Y ¼

ffiffiffiffi
G

p

Λ03 ½xνAððΨ̄lHΨνÞ3Aðφlφ
�
l Þ3Þ1 þ xνSððΨ̄lHΨνÞ3Sðφlφ

�
l Þ3Þ1�δðy − LÞ

þ 1

2

ffiffiffiffi
G

p

Λ4
½xν1ððNCNÞ100fðφν; ρνÞ10 Þ1 þ xν2ððNCNÞ10fðφν; ρνÞ100 Þ1

þ xν3ððNCNÞ3Sfðφν; ρνÞ3SÞ1 þ xν4ððNCNÞ3Sfðφν; ρνÞ3AÞ1�δðyÞ þ H:c:; ð50Þ

where fðφν; ρνÞ represent the flavon combinations φ2
νρνρ

�
ν,

ρ2νφνφ
�
ν, φ�

νρ
�3
ν , and ρ�νφ�3

ν . As a result, the corrections to the
Dirac and Majorana neutrino mass matrices are

δmD¼ v

�
vIR
Λ0

�
2

0
B@
2x̃νS 0 0

0 −x̃νS − x̃νA 0

0 0 −x̃νS þ x̃νA

1
CA; ð51Þ

δmN ¼ v4UV
Λ3

2
64x̃ν1

0
B@
0 0 1

0 1 0

1 0 0

1
CAþ x̃ν2

0
B@
0 1 0

1 0 0

0 0 1

1
CA

þ x̃ν3
3

0
B@

2 −1 −1
−1 2 −1
−1 −1 2

1
CAþ x̃ν4

6

0
B@
4 1 1

1 −2 −2
1 −2 −2

1
CA
3
75; ð52Þ

TABLE IV. Global warped flavor dynamics fit: the neutrino
oscillation parameters are taken from the global analysis in [3],
while the quark parameters are obtained from the Particle Data
Group [46].

Parameters Best-fit �1σ Predictions

sin θq12 0.22500� 0.00100 0.22503
sin θq13 0.003675� 0.000095 0.003668
sin θq23 0.04200� 0.00059 0.04205
δqCP=° 66.9� 2 68.2
mu ½MeV� 2.16þ0.49

−0.26 2.16
mc ½GeV� 1.27� 0.02 1.27
mt ½GeV� 172.9� 0.4 172.90
md ½MeV� 4.67þ0.48

−0.17 4.21
ms ½MeV� 93þ11

−5 93.00
mb ½GeV� 4.18þ0.03

−0.02 4.18
sin2 θl12=10

−1 (NO) 3.20þ0.20
−0.16 3.19

sin2 θl12=10
−1 (IO) 3.18

sin2 θl23=10
−1 (NO) 5.47þ0.20

−0.30 5.47
sin2 θl23=10

−1 (IO) 5.51þ0.18
−0.30 5.51

sin2 θl13=10
−2 (NO) 2.160þ0.083

−0.069 2.160
sin2 θl13=10

−2 (IO) 2.220þ0.074
−0.076 2.220

δlCP=π (NO) 1.32þ0.21
−0.15 1.567

δlCP=π (IO) 1.56þ0.13
−0.15 1.571

me ½MeV� 0.511� 3.1 × 10−9 0.511
mμ ½MeV� 105.658� 2.4 × 10−6 105.658
mτ ½MeV� 1776.86� 0.12 1776.86
Δm2

21 ½10−5 eV2� (NO) 7.55þ0.20
−0.16 7.55

Δm2
21 ½10−5 eV2� (IO)

jΔm2
31j½10−3 eV2� (NO) 2.50� 0.03 2.50

jΔm2
31j½10−3 eV2� (IO) 2.42þ0.03

−0.04 2.42
χ2 (NO) … 7.65
χ2 (IO) 7.66
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where x̃νS;A ¼
xνS;A
LΛ0 fLðL;clÞfRðL;cνÞ and x̃νi ¼

xνi
LΛ f

2
Rð0; cνÞ,

and vUV in δmN denotes the VEVs vφν
, vσν , v

�
φν
, and v�σν . To

show the contributions of the above subleading terms, we
perform a numerical analysis for the case of normal ordered
neutrino masses, treating all coupling constants in Eqs. (48)
and (50) as random complex numbers of absolute value
between 0 and 1. We find that the corrections to the lepton
masses and mixing parameters are small, and their order of
magnitudes are

jδmej∼ 0.0003MeV; jδmμj∼ 0.04MeV;

jδmτj∼ 1 MeV; jδðΔm2
21Þj∼ 0.3½10−5 eV2�;

jδðΔm2
31Þj∼ 0.2½10−3 eV2�; jδs213j∼ 0.005; jδs212j∼ 0.06;

jδs223j∼ 0.02; jδðδCPÞj∼ 0.03π: ð53Þ

The next-to-leading order corrections to the quark mass
terms involve three flavon fields. Ignoring those terms
whose contributions can be absorbed by the leading order
operators, the subleading operators of the quark Yukawa
interactions are

δLu
Y ¼

ffiffiffiffi
G

p

Λ04 ½xc1ððΨ̄UCHΨcÞ20 ðφlσ
2
l Þ20 Þ1

þ xc2ððΨ̄UCHΨcÞ20 ðφ�
l σ

�2
l Þ20 Þ1

þ xtððΨ̄UCHΨtÞ2ðφlσ
�2
l Þ200 Þ1�δðy − LÞ;

δLd
Y ¼

ffiffiffiffi
G

p

Λ04 ½xb1ððΨ̄UCHΨbÞ20 ðφlσ
2
l Þ20 Þ1

þ xb2ððΨ̄UCHΨbÞ20 ðφ�
l σ

�2
l Þ20 Þ1

þ xds1ððΨ̄THΨdsÞ20 ðφlσ
2
l Þ20 Þ1

þ xds2ððΨ̄THΨdsÞ20 ðφ�
l σ

�2
l Þ20 Þ1�δðy − LÞ: ð54Þ

Notice that the above operators with the combinations
φlσ

2
l , φ

�
l σ

�2
l replaced by φ3

l and φ�3 are also allowed by
symmetries of the model but their contributions are
vanishing for the leading order alignment in Eq. (5). The
higher terms in Eq. (54) induce the following corrections to
the quark mass matrices,

δmu ¼ v

�
vIR
Λ0

�
3

0
B@

0 x̃c1 x̃t
0 x̃c2 0

0 0 0

1
CA;

δmd ¼ v

�
vIR
Λ0

�
3

0
B@

0 0 x̃b1
0 0 x̃b2

x̃ds2 x̃ds1 0

1
CA; ð55Þ

with x̃bi;ci;t ¼
xbi;ci ;t
LΛ0 fLðL; cUCÞfRðL; cb;c;tÞ and x̃dsi ¼

xdsi
LΛ0 fLðL; cTÞfRðL; cdsÞ. A numerical analysis similar to
the lepton sector is performed, in which all couplings in
Eq. (54) are taken to be random complex numbers with

absolute value in the range of 0 and 1. We find the order of
magnitude of the corrections to the quark masses and CKM
mixing parameters are

jδmuj ∼ 0.4 MeV; jδmcj ∼ 0.2 MeV;

jδmtj ∼ 0.002 MeV; jδmdj ∼ 0.04 MeV;

jδmsj ∼ 0.1 MeV; jδmbj ∼ 10 MeV;

jδðsin θq13Þj ∼ 0.0002; jδðsin θq12Þj ∼ 0.002;

jδðsin θq23Þj ∼ 0.0006; jδðδqCPÞj ∼ 0.009π: ð56Þ

VII. VARIANT MODEL WITH BULK HIGGS

In this section, we consider another scheme in which the
Higgs field lives in the bulk. We assume that the flavons φl
and σl are localized on the UV brane, the flavons φν and ρν
are localized on IR brane, while their vacuum alignments
stay the same. Since the Higgs field and all fermions live in
the bulk in this model, we extend the flavor symmetry to
T 0 × Z3 × Z8 in order to forbid unwanted Yukawa terms.
The transformation properties of fields under T 0 × Z3 are
the same as those in Tables I and III. The Z8 charge
assignments are given as follows

Ψl;Ψe;Ψμ;Ψτ;Ψν∶ ω3
8; ΨT;Ψc;Ψt;Ψb;φl; σl∶ ω4

8;

ΨUC;Ψu;Ψds; H∶ 1; φν∶ ω8; ρν∶ ω5
8; ð57Þ

where ω8 ¼ eπi=4. Within this new setup, the quark and
lepton mass terms are still given by Eqs. (6), (11), (25), and
(26) with δðyÞ and δðy − LÞ interchanged. As a result, both
quark and lepton mass matrices are determined to be of the
same forms as Eqs. (8), (12), (27), and (28). Hence the
excellent global fit to the observed values of quark and
lepton masses and mixing parameters discussed in Sec. V
can be reproduced for adequately chosen values of the
coupling constants and bulk mass parameters. A basic
difference is that the right-handed neutrino masses would
be as low as 300 GeV in this scenario. The Dirac neutrino
Yukawa couplings would be correspondingly smaller so as
to keep the correct neutrino masses.

VIII. SUMMARY AND CONCLUSIONS

We have proposed a realistic five-dimensional warped
extension of the standard model where all leptons and
quarks propagate in the bulk, see Figs. 1 and 5. We have
assumed a T 0 ⊗ Z3 ⊗ Z4 family symmetry broken on the
branes by flavon fields. These are also responsible for
inducing lepton number violation as well as lepton flavor
violation which are therefore connected. This is a nice
feature of the theory, and implies that all the flavor violation
needed to account for neutrino oscillations comes entirely
from the Majorana seesaw sector. We have shown that
the model provides a consistent scenario for the flavor
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problem, in which fermion mass hierarchies are accounted
for by adequate choices of the bulk mass parameters, while
quark and lepton mixing angles are restricted by the flavor
symmetry. Neutrino masses are generated by the type-I
seesaw mechanism, with the Majorana mass terms of the
right-handed neutrinos UV localized, so that the large scale
required by the seesaw mechanism is naturally accommo-
dated in Eq. (11). This is the only fermion mass term that
arises from a Yukawa coupling in the UV brane. Turning on
this Majorana mass term MN is crucial in order to induce a
viable pattern of neutrino masses and mixings. Without this
term neutrinos would be mass degenerate and unmixed
Dirac fermions. The flavor transformation properties of the
heavy Majorana block are dictated by the corresponding
flavon fields. Once these acquire their VEVs one gets
predictions for neutrino oscillations. Indeed, neutrino
mixing parameters and the Dirac CP violation phase are
all described in terms of just two independent parameters.
The resulting predictions for the neutrino oscillation
parameters are summarized in Figs. 2 and 3.
Likewise, our theory predicts a 0νββ decay rate within

reach of the upcoming generation of experiments, as seen in
Fig. 4. We have also discussed the predictions for tritium
beta decays and cosmology, given in Table II.
Finally, our scheme also provides a good description of

the quark sector and the CKM matrix, as seen in Eqs. (46)
and (47), recovering the successful Gatto-Sartori relation
for the Cabibbo angle in Eq. (40). In fact, we have actually
performed a global flavor dynamics fit in our warped
scenario, obtaining very good results, presented in Table IV.
We have also studied the higher order corrections, showing
that they are small enough to be neglected. Finally, we have
commented on an alternative variant of the model, in which
the Higgs field lives in the bulk. Even though the setup is
quite different, the predictions for quark and lepton masses
and mixing parameters are kept unchanged.
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APPENDIX A: GROUP THEORY OF T0

The T 0 group is the double covering of the tetrahedral
group A4. It has 24 elements that can be generated by two
generators S and T obeying the relations,5

S4 ¼ ðSTÞ3 ¼ T3 ¼ 1; S2T ¼ TS2: ðA1Þ

The T 0 group has seven inequivalent irreducible represen-
tations: three singlets 1, 10, and 100, three doublets 2, 20 and
200, and one triplet 3. The representations 10, 100 and 2, 200 are
complex conjugated to each other, respectively. The two-
dimensional representations 2, 20, and 200 are faithful
representations of T 0 group, while the odd dimensional
representations 1, 10, 100, and 3 coincide with those of A4. In
the present work we shall adopt the basis of [47,48]. For the
singlet representations, we have

1∶ S ¼ T ¼ 1;

10∶ S ¼ 1; T ¼ ω;

100∶ S ¼ 1; T ¼ ω2; ðA2Þ

with ω ¼ ei2π=3. In the doublet representations, the gen-
erators S and T are given by

2∶ S¼−
1ffiffiffi
3

p
�

i
ffiffiffi
2

p
eiπ=12

−
ffiffiffi
2

p
e−iπ=12 −i

�
; T¼

�
ω 0

0 1

�
;

20∶ S¼−
1ffiffiffi
3

p
�

i
ffiffiffi
2

p
eiπ=12

−
ffiffiffi
2

p
e−iπ=12 −i

�
; T¼

�
ω2 0

0 ω

�
;

200∶ S¼−
1ffiffiffi
3

p
�

i
ffiffiffi
2

p
eiπ=12

−
ffiffiffi
2

p
e−iπ=12 −i

�
; T¼

�
1 0

0 ω2

�
:

ðA3Þ

For the triplet representation 3, the generators are

S¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA; T ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA: ðA4Þ

Notice that due to the choice of complex representation
matrices for the real representation 3 the conjugate a� of
a ∼ 3 does not transform as 3, but rather ða�1; a�3; a�2Þ
transforms as triplet under T 0. The reason for this is that
T� ¼ UT

3TU3 and S� ¼ UT
3SU3 ¼ S, where U3 is the

permutation matrix, which exchanges the second and third
row and column. Similarly, notice that the irreducible
representations 2 and 200 are complex conjugated to each
other by a unitary transformation U2 with

U2 ¼
�
0 −1
1 0

�
; ðA5Þ

i.e, T�
2 ¼ U†

2T200U2 and S�2 ¼ U†
2S200U2. Besides, the real

doublet representation 20 and its complex conjugation are
also related by the unitary transformation U2, i.e, T�

20 ¼
U†

2T20U2 and S�20 ¼ U†
2S20U2. Thus we have

5The T 0 group can also be equivalently expressed in terms
of three generators S, T, and R with S2 ¼ R, RT ¼ TR, and
ðSTÞ3 ¼ T3 ¼ R2 ¼ 1 [21,23,47,48].
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b ¼ ðb1; b2ÞT ∼ 2;→ ð−b�2; b�1ÞT ∼ 200;

b ¼ ðb1; b2ÞT ∼ 200;→ ð−b�2; b�1ÞT ∼ 2;

b ¼ ðb1; b2ÞT ∼ 20;→ ð−b�2; b�1ÞT ∼ 20: ðA6Þ

In the following, we collect the Clebsch-Gordan coeffi-
cients for the decomposition of product representations in
our basis, all the results are taken from [47,48]. We use αi to
indicate the elements of the first representation of the
product, βi to indicate those of the second representation.
For convenience, we shall denote 1≡ 10, 10 ≡ 11, 100 ≡ 12

for singlet representations and 2≡ 20, 20 ≡ 21, 200 ≡ 22 for
the doublet representations.
The contraction rules involving singlets representations

in the product are as follows,

1a ⊗ 1b ¼ 1aþbðmod 3Þ ∼ αβ; ðA7Þ

1a ⊗ 2b ¼ 2aþbðmod 3Þ ∼
�
αβ1

αβ2

�
; ðA8Þ

10 ⊗ 3 ¼ 3 ∼

0
B@

αβ3

αβ1

αβ2

1
CA; ðA9Þ

100 ⊗ 3 ¼ 3 ∼

0
B@

αβ2

αβ3

αβ1

1
CA; ðA10Þ

where a, b ¼ 0, 1, 2. The contraction rules for the products
of two doublet representations are

2⊗ 2¼ 20 ⊗ 200 ¼ 3⊕ 10

with

8>>><
>>>:

10 ∼ α1β2 − α2β1

3∼

0
B@

eiπ=6α2β2
1ffiffi
2

p ei7π=12ðα1β2 þ α2β1Þ
α1β1

1
CA;

ðA11Þ

2⊗ 20 ¼ 200 ⊗ 200 ¼ 3⊕ 100

with

8>>><
>>>:

100 ∼ α1β2 − α2β1

3∼

0
B@

α1β1

eiπ=6α2β2
1ffiffi
2

p ei7π=12ðα1β2 þ α2β1Þ

1
CA;

ðA12Þ

2⊗ 200 ¼ 20 ⊗ 20 ¼ 3⊕ 1

with

8>>><
>>>:

1∼α1β2 −α2β1

3∼

0
B@

1ffiffi
2

p ei7π=12ðα1β2þα2β1Þ
α1β1

eiπ=6α2β2

1
CA:

ðA13Þ

The products of doublet and triplet representations are
decomposed as follows,

2⊗ 3¼ 2⊕ 20 ⊕ 200

with

8>>>>>>>>><
>>>>>>>>>:

2∼
�

α1β1−
ffiffiffi
2

p
ei7π=12α2β2

−α2β1þ
ffiffiffi
2

p
ei5π=12α1β3

�
;

20∼
�

α1β2−
ffiffiffi
2

p
ei7π=12α2β3

−α2β2þ
ffiffiffi
2

p
ei5π=12α1β1

�
;

200 ∼
�

α1β3−
ffiffiffi
2

p
ei7π=12α2β1

−α2β3þ
ffiffiffi
2

p
ei5π=12α1β2

�
;

ðA14Þ

20 ⊗ 3¼ 2⊕ 20 ⊕ 200

with

8>>>>>>>>><
>>>>>>>>>:

2∼
�

α1β3−
ffiffiffi
2

p
ei7π=12α2β1

−α2β3þ
ffiffiffi
2

p
ei5π=12α1β2

�
;

20∼
�

α1β1−
ffiffiffi
2

p
ei7π=12α2β2

−α2β1þ
ffiffiffi
2

p
ei5π=12α1β3

�
;

200∼
�

α1β2−
ffiffiffi
2

p
ei7π=12α2β3

−α2β2þ
ffiffiffi
2

p
ei5π=12α1β1

�
;

ðA15Þ

200 ⊗ 3¼ 2⊕ 20 ⊕ 200

with

8>>>>>>>>><
>>>>>>>>>:

2∼
�

α1β2−
ffiffiffi
2

p
ei7π=12α2β3

−α2β2þ
ffiffiffi
2

p
ei5π=12α1β1

�
;

20∼
�

α1β3−
ffiffiffi
2

p
ei7π=12α2β1

−α2β3þ
ffiffiffi
2

p
ei5π=12α1β2

�
;

200∼
�

α1β1−
ffiffiffi
2

p
ei7π=12α2β2

−α2β1þ
ffiffiffi
2

p
ei5π=12α1β3

�
:

ðA16Þ

Finally the contractions of two triplets are given by

3 ⊗ 3 ¼ 3S ⊕ 3A ⊕ 1 ⊕ 10 ⊕ 100

with

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

3S ∼

0
B@

2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1

1
CA;

3A ∼

0
B@

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

1
CA;

1 ∼ α1β1 þ α2β3 þ α3β2;

10 ∼ α3β3 þ α1β2 þ α2β1;

100 ∼ α2β2 þ α1β3 þ α3β1;

ðA17Þ
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APPENDIX B: 5D PROFILES OF HIGGS
AND FERMION FIELDS

We formulate our model in the framework of Randall-
Sundrum model [14], assuming the bulk of our model to be
a slice of AdS5 with curvature radius 1=k. The extra
dimension y is compactified, and the two 3-branes with
opposite tension are located at y ¼ 0, the UV brane, and
y ¼ L, the IR brane. The bulk metric is nonfactorizable,

ds2 ¼ e−2kyημνdxμdxν − dy2: ðB1Þ

In this paper we adopt the zero mode approximation which
identifies the standard model fields with zero modes of
corresponding 5D fields. If the Higgs field lives in the bulk,
its Kaluza-Klein decomposition is [49]

Hðxμ; yÞ ¼ HðxμÞ fHðyÞffiffiffiffi
L

p þ heavy KK Modes; ðB2Þ

where fHðyÞ is the zero-mode profile,

fHðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kLð1 − βÞ
1 − e−2ð1−βÞkL

r
ekLeð2−βÞkðy−LÞ; ðB3Þ

with β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

H=k
2

p
and mH as the bulk mass of the

Higgs field. For 5D fermion fields, the three families of
leptons and quarks and their SUð2ÞL ⊗ SUð2ÞR assign-
ments are given as follows:

Ψli
¼
 
ν½þþ�
i

e½þþ�
i

!
∼ ð2; 1Þ; Ψei ¼

 
ν̃½þ−�
i

e½−−�i

!
∼ ð1; 2Þ;

Ψνi ¼
 
N½−−�

i

ẽ½þ−�
i

!
∼ ð1; 2Þ; ðB4Þ

ΨQi
¼
 
u½þþ�
i

d½þþ�
i

!
∼ ð2; 1Þ; Ψdi ¼

 
ũ½þ−�
i

d½−−�i

!
∼ ð1; 2Þ;

Ψui ¼
 
u½−−�i

d̃½þ−�
i

!
∼ ð1; 2Þ: ðB5Þ

where the two signs in the bracket indicate Neumann (þ) or
Dirichlet (−) boundary conditions (BCs) for the left-handed
component of the corresponding field on UVand IR branes,
respectively. The Kaluza-Klein decomposition for the two
different BCs are

ψ ½þþ�ðxμ;yÞ¼ e2kyffiffiffiffi
L

p fψLðxμÞfLðy;cLÞþheavy KKmodesg;

ðB6Þ

ψ ½−−�ðxμ;yÞ¼ e2kyffiffiffiffi
L

p fψRðxμÞfRðy;cRÞþheavy KKmodesg;

ðB7Þ

with ψ ¼ νi; ei; Ni; ui; di. The 5D fields with [þþ] BCs
only have left-handed zero modes, and those with [−−]
BCs only have right-handed zero modes. The functions
fLðy; cLÞ and fRðy; cRÞ are the zero mode profiles [50–52]

fLðy; cLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2cLÞkL
eð1−2cLÞkL − 1

r
e−cLky;

fRðy; cRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2cRÞkL
eð1þ2cRÞkL − 1

r
ecRky; ðB8Þ

where cL and cR represent the bulk mass of the 5D fermions
in units of k.

APPENDIX C: VACUUM ALIGNMENT

In this section, we will investigate the vacuum alignment
of the flavon fields φl, σl, φν, and ρν. At the IR brane
y ¼ L, the scalar potential invariant under the flavor
symmetry T 0 and the auxiliary symmetry Z3 × Z4 takes
the following form

VIR¼M2
φðφlφ

�
l Þ1þM2

σσlσ
�
l þf1ðφlφlÞ10 ðφ�

lφ
�
l Þ100

þf2e−iπ=6ððφlφlÞ3ðφ�
lφ

�
l Þ3Þ1

þf3σ2l σ
�2
l þf4ðφlφ

�
l Þ1σlσ�l ;

¼M2
φðφl1φ

�
l1þφl2φ

�
l2ÞþM2

σσlσ
�
l þf2ðφl1φ

�
l1þφl2φ

�
l2Þ2

þf3σ2l σ
�2
l þf4σlσ�l ðφl1φ

�
l1þφl2φ

�
l2Þ; ðC1Þ

where the parameters M2
φ, M2

σ , f1, f2, f3, and f4 are real
free parameters. For the field configuration

hφli ¼ ð1; 0Þvφl
; hσli ¼ vσl ; ðC2Þ

the minimum conditions of the IR potential read

∂VUV

∂φ�
l1

¼ vφl
ðM2

φ þ 2f2vφl
v�φl

þ f4vσlv
�
σlÞ ¼ 0;

∂VUV

∂φ�
l2

¼ 0;

∂VUV

∂σ�l ¼ vσlðM2
σ þ 2f3vσlv

�
σl þ f4vφl

v�φl
Þ ¼ 0; ðC3Þ

and the solution is

jvφl
j2¼ f4M2

σ −2f3M2
φ

4f2f3−f24
; jvσl j2¼

f4M2
φ−2f2M2

σ

4f2f3−f24
: ðC4Þ
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At the UV brane y ¼ 0, the most general renormalizable scalar potential VUV for the flavon fields φν and ρν is given as

VUV ¼ M1ðφνφ
�
νÞ1 þM2ðρνρ�νÞ1 þ g1ððφνφνÞ1ðφ�

νφ
�
νÞ1Þ1 þ g2ððφνφνÞ10 ðφ�

νφ
�
νÞ100 Þ1 þ g3ððφνφνÞ100 ðφ�

νφ
�
νÞ10 Þ1

þ g4ððφνφνÞ3Sðφ�
νφ

�
νÞ3SÞ1 þ g5ððφνφ

�
νÞ1ðρνρ�νÞ1Þ1 þ g6ððφνφ

�
νÞ10 ðρνρ�νÞ100 Þ1 þ g7ððφνφ

�
νÞ100 ðρνρ�νÞ10 Þ1

þ g8ððφνφ
�
νÞ3Sðρνρ�νÞ3SÞ1 þ g9ððφνφ

�
νÞ3Sðρνρ�νÞ3AÞ1 þ g10ððφνφ

�
νÞ3Aðρνρ�νÞ3SÞ1 þ g11ððφνφ

�
νÞ3Aðρνρ�νÞ3AÞ1

þ g12ððρνρνÞ1ðρ�νρ�νÞ1Þ1 þ g13ððρνρνÞ10 ðρ�νρ�νÞ100 Þ1 þ g14ððρνρνÞ100 ðρ�νρ�νÞ10 Þ1 þ g15ððρνρνÞ3Sðρ�νρ�νÞ3SÞ1
þ ½g16ððφνφνÞ1ðρ�νρ�νÞ1Þ1 þ g17ððφνφνÞ10 ðρ�νρ�νÞ100 Þ1 þ g18ððφνφνÞ100 ðρ�νρ�νÞ10 Þ1
þ g19ððφνφνÞ3Sðρ�νρ�νÞ3SÞ1 þ H:c�; ðC5Þ

where the coupling parameters M1;2 and g1→15 are real, while the remaining coupling parameters g16;17;18;19 are complex.
For the desired flavon vacuum alignments

hφνi ¼ ð1;−2ω2;−2ωÞvφν
; hρνi ¼ ð1;−2ω;−2ω2Þvρν ; ðC6Þ

we find the minimization conditions are

∂VUV

∂φ�
ν1

¼ A1 − 12ð3g8 − 2i
ffiffiffi
3

p
g10Þvφν

jvρν j2 − 72g�19v
�
φν
v2ρν ¼ 0;

∂VUV

∂φ�
ν2

¼ −2ω2½A1 þ 3ð6ωg8 − ð3þ i
ffiffiffi
3

p
Þg10Þvφν

jvρν j2 þ 36ωg�19v
�
φν
v2ρν � ¼ 0;

∂VUV

∂φ�
ν3

¼ −2ω½A1 þ 3ð6ω2g8 þ ð3 − i
ffiffiffi
3

p
Þg10Þvφν

jvρν j2 þ 36ω2g�19v
�
φν
v2ρν � ¼ 0;

∂VUV

∂ρ�ν1 ¼ A2 − 12ð3g8 þ 2i
ffiffiffi
3

p
g9Þvρν jvφν

j2 − 72g19v�ρνv
2
φν

¼ 0;

∂VUV

∂ρ�ν2 ¼ −2ω½A2 þ 3ð6ω2g8 − ð3 − i
ffiffiffi
3

p
Þg9Þvρν jvφν

j2 þ 36ω2g19v�ρνv
2
φν
� ¼ 0;

∂VUV

∂ρ�ν3 ¼ −2ω2½A2 þ 3ð6ωg8 þ ð3þ i
ffiffiffi
3

p
Þg9Þvρν jvφν

j2 þ 36ωg19v�ρνv
2
φν
� ¼ 0: ðC7Þ

with

A1 ¼ M1vφν
þ 18ðg1 þ 4g4Þvφν

jvφν
j2 þ 9g5vφν

jvρν j2 þ 18g�16v
�
φν
v2ρν ;

A2 ¼ M2vρν þ 18g16v�ρνv
2
φν
þ 9g5vρν jvφν

j2 þ 18ðg12 þ 4g15Þvρν jvρν j2: ðC8Þ

From above equations, we find that the nontrivial solutions can be achieved if the couplings g8;9;10;19 are vanishing. Under
such assumptions, the minimization conditions are simplified into

∂VUV

∂φ�
ν1

¼ A1 ¼ 0;
∂VUV

∂φ�
ν2

¼ −2ω2A1 ¼ 0;
∂VUV

∂φ�
ν3

¼ −2ωA1 ¼ 0;

∂VUV

∂ρ�ν1 ¼ A2 ¼ 0;
∂VUV

∂ρ�ν2 ¼ −2ωA2;
∂VUV

∂ρ�ν3 ¼ −2ω2A2: ðC9Þ

One sees that the assumed vacuum alignment of the flavon fields can, indeed, be achieved within certain regions of
parameter space.
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