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Abstract: Breast cancer is the most common invasive tumor in women and the second leading
cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as
it can provide better, more efficient, and affordable healthcare, and it has the potential to develop
novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be
encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation
with antibodies—the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve
the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain
breast cancer subtypes and indications have limited therapeutic options, this field provides hope
for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss
the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown
clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their
translation to the clinic is placed on the revision.

Keywords: breast cancer; antibody drug conjugates; antibody conjugate nanoparticles; nanomedicines;
targeted delivery systems

1. Introduction

Breast cancer is the second leading cause of cancer-related death and the most common invasive
cancer in women. Classical available systemic therapies for the treatment of this disease include
cytotoxic agents alone or in combination with targeted therapies [1,2]. However, the major limitations
of systemic treatment include dose-limiting toxicity due to poor specificity, in addition to primary
and secondary resistance to the given therapy. In this context, guided targeted therapies can reduce
toxicity, improving the therapeutic index. At this moment, antibody–drug conjugates (ADCs) are the
most successful targeted delivery systems [3–6]. To date, a total of eight ADCs have been approved
by the United States Food and Drug Administration (FDA) (Figure 1). The translation of ADCs into
clinically useful therapeutic options is still hampered by their construction as well as by the appearance
of mechanisms of resistance [7].
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Figure 1. Antibody-drug conjugates (ADCs) approved by the Food and Drug Administration (FDA).

Antibody-conjugated nanoparticles (ACNPs) are built on the potential of both antibody conjugation
and nanotechnology [8,9]. In the same manner as ADCs, the membrane proteins expressed in tumoral
cells can be used to design antibodies that are then conjugated, as a vector, to the nanoparticle (NP) [10].
In comparison to ADCs, ACNPs can deliver drugs in a controlled manner, preserving their chemical
structure, avoiding unpredicted metabolization, and reducing toxicity.

This review focuses specifically on ACNPs under development for breast cancer therapy.

2. Selective Targeting of Breast Tumors

Nanoparticles (NPs) can offer several advantages as drug carriers, including those related to
the nanoscale size, high surface/volume ratio, potential for selective targeting, and a controlled drug
release [11–13]. It is considered that non-vectorized NPs of 100–400 nm diameter can accumulate
within the tumor through the enhanced permeability and retention (EPR) effect [14,15]. They can
deliver high concentrations of the drug to the site of interest by a convection and diffusion process [16]
that can also reduce the effects to the surrounding tissues [17,18]. Even though the nanomedicine
field had relied on the EPR effect to increase delivery to the tumor, recent works suggest potential
limitations when explored in the clinic. Indeed, the EPR effect can differ among patients and types of
tumors [19,20].

Vectorized NPs can be generated by conjugation with antibodies designed against membrane
proteins expressed mainly on tumoral cells [21–23]. This ligand–receptor interaction induces
internalization of the NPs via receptor-mediated endocytosis followed by drug release inside the
cell [20,24]. Antibodies are the most frequently used ligands to actively target tumor cells due to their
high specificity and affinity [20,25]. IgG is the most abundant antibody in normal human serum and
the most widely used antibody to vectorize NPs. Smaller antibody fragments are also conjugated to
improve tumor uptake [26,27]. Other options include the use of the antigen-binding fragments (Fab)
generated by the enzymatic cleavage of a full-size antibody [28]. The use of antibodies to target the
tumor and elicit independent therapeutic effects enhances the opportunities of ACNPs in clinic.

2.1. Targeting Breast Cancer with Antibody Conjugates

Ado-trastuzumab emtansine also known as T-DM1 (KadcylaTM; Genentech/Roche) is a human
epidermal growth factor receptor 2 (HER2) ADC that comprises the humanized anti-HER2 IgG1
trastuzumab linked to the anti-mitotic agent emtansine, which is a tubulin polymerisation inhibitor
that interferes with mitosis and promotes apoptosis. After binding to HER2, T-DM1 undergoes
receptor-mediated internalization and lysosomal degradation, resulting in the intracellular release
of DM1-containing cytotoxic catabolites. The binding of emtansine to tubulin disrupts microtubule
formation during the mitotic process, resulting in cell-cycle arrest and apoptotic cell death. In vitro
studies have also shown that, similar to trastuzumab, T-DM1 inhibits HER2-receptor signaling,
mediates antibody-dependent cell-mediated cytotoxicity, and inhibits shedding of the HER2
extracellular domain in human breast cancer cells that overexpress HER2 [29].
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Novel ADCs with different chemical properties have obtained clinical approval. For instance,
the ADC DS-8201TM (trastuzumab deruxtecan) has been approved for HER2-positive metastatic
breast cancer in patients receiving previous treatment with anti-HER2 therapies including T-DM1 [30].
Of note, this ADC has a cleavable linker inducing a bystander effect in the surrounding cells [31].
In this context, the development of this ADC is moving beyond breast cancer and, also, it includes
patients with low to moderate levels of HER2.

Similarly, novel ACNPs can be active therapeutics. Figure 2 indicates the pros of ACNPs
in comparison to ADCs. The presence of antibodies on the NPs surface can specifically bind
to an overexpressed receptor on target cells, overcoming some of the limitations of nude NPs,
including inefficient drug diffusion into the tumor and the induction of multiple-drug resistance
mechanisms [32]. The ideal system for breast cancer treatment using ACNPs should control drug
loading and delivery in an efficient manner.

Figure 2. Pros of ACNPs in comparison to ADCs.

After recognition and binding to the target antigen, the internalization of the ADC-antigen complex
into the cell is produced through receptor-mediated endocytosis [5,33]. Internalization results in early
endosomes formation [34]. The high affinity of the antigen–antibody binding stabilizes the interaction,
preventing this back circulation and enhancing the specificity of this therapeutic approach [35]. Finally,
the early endosome is transformed into a late endosome by reducing the presence of proteins involved
in recycling. This late endosome couples to lysosomes that cleave the ADC, which subsequently release
the free cytotoxic warheads into the cytoplasm [34,36], interfering with the cellular mechanisms and
ultimately promoting cell death [37,38]. Figure 3 shows the action mechanism of ADCs in comparison
with that proposed for ACNPs.
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Figure 3. Action mechanism of antibody-conjugated nanoparticles (ACNPs) and ADCs.

2.2. Conjugation Strategies for ACNPs Generation

NPs can be functionalized with antibodies or antibody fragments by adsorption or covalent
binding. The immobilization of antibodies should ensure the desired amount of these biomolecules
per nanoparticle and their correct orientation [39]. The higher the ratio of antibody molecules over the
NP surface, the lower the spatial accessibility of the antigen that is present [40]. Moreover, the coupling
method must maintain the biological activity of the antibody [41].

Adsorption is a non-covalent immobilization strategy that includes physical adsorption and ionic
binding [42]. Physical adsorption involves antibody attachment to the NP surface through weak
interactions (electrostatic, hydrogen binding, hydrophobic and van der Waals attractive forces) [43],
while ionic binding is based on ionic linkages between oppositely charged surfaces of the antibody
and the NPs [44].

Covalent binding requires prior activation of the nanoparticle [45]. The most common
covalent methods are based on carbodiimide chemistry, maleimide chemistry, or “click chemistry”.
Carbodiimide chemistry is a simple method and chemical modification of the antibody is not required.
However, coupling between the functional groups and cross-linkers is not selective and leads to the
major disadvantage of lacking control over antibody orientation onto the nanoparticle surface [46,47].
Maleimide chemistry involves binding through sulfhydryl groups of antibodies. These chemical
groups are not as abundant as primary amines in the antibody structure [48,49]; thus, the incorporation
of free sulfhydryl groups is required [50,51]. The use of heterobifunctional maleimide cross-linkers
provides greater flexibility to the conjugation and control over the reactions in terms of cross-linking
sites and extent [52,53]. Maleimide reactions involve free amino groups present at the N-terminal end
of a protein or in lysines. However, non-selectivity in bio-conjugation to cysteines due to exchange
reactions with thiol-containing proteins in serum has been reported. “Click chemistry” chemical
reactions provide orthogonality, site-specificity, and a favorable reaction rate. Besides, the reactions are
performed with ease and require no or minimal purification [54–57].

Most covalent strategies produce low coupling efficiency and randomly oriented antibodies.
Non-covalent approaches using adapter biomolecules can provide orientation of the immobilized
antibodies on the NP surface [58]. The most relevant binding strategy with adapter molecules exploits
biotin–avidin interaction as the strongest non-covalent biological interaction between a protein and a
ligand [59]. The most common approach using biotin–avidin interaction implies chemical modification
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of the antibody with biotin (biotinylation) and functionalization of the nanoparticle with avidin or its
derivatives [60].

2.3. Remaining Challenges for Bringing ACNPs to the Clinic

ACNPs have failure in clinical translation. The lack of knowledge about the interaction between
nanocarriers and biological systems, poor tumor accumulation, inadequate pharmacokinetics, the safety
issue of raw materials for NPs generation, and limited number of reported in vivo studies remain
limitations to upgrade ACNP to the clinic [61]. In general terms, there is not sufficient understanding
about the interaction between NPs with biological macrostructures—even more so when referring to
ACNPs. For example, it is well known that the surface of the non-targeted NPs is quickly covered
by serum proteins. This fact implies important changes in NPs stability and metabolism that cannot
be merely anticipated when using in vitro studies. In this matter, the influence of the size, shape,
and surface charge of ACNPs are crucial to understand immune response and therefore facilitate better
ACNPs design [62]. At this moment, the influence of the shape is a much-discussed subject and is still
at an early stage. Further investigations and in vivo outcomes are required to determine the effects of
NPs shape, size, and surface charge on cellular uptake [63].

On the other hand, NPs must prevent the mononuclear phagocyte system to increase circulating
time. Toxicity, immunogenicity, and mechanism of action studies support the grafting of polyethylene
glycol (PEG) to the nanoparticle surface as an adequate strategy for cellular internalization [64].
Other alternatives have been explored such as the use of protein and cell membrane coatings [65,66].
Enhanced efforts are underway to develop reliable technologies in this matter. Again, deeper in vivo
outcomes—or, where that is not possible, simulated in vivo model culture systems—to mimic the
specific tumor microenvironment are required. Insufficient accumulation in the tumor is another
concern for clinical translation. As a very small quantity of NPs are delivered to a solid tumor [67],
a superior tumor accumulation with ACNPs is expected. Some recent clinical trials point in that way,
improving the overall patient survivals [68]. Promising approaches to the controlled release of the
drug via an external stimulus are being pursued, but there is very scarce knowledge regarding ACNPs.

The choice of the raw material for ACNPs generation is dependent on the structure of the
cargo to ensure high entrapment. Clinical safety is another issue for NPs entering clinical trials.
Preclinical studies concerning the stability, sterility, and in vivo cytotoxicity and immunotoxicology
are always required before entering the clinical phase. However, despite formal toxicology evaluation
of the raw materials, the toxicity of NPs related clinical failures is observed [69]. Still, researchers must
understand the chemistry of NPs to better design ACNPs. It seems that the use of biodegradable and
biocompatible polymers might reinforce the potential translation of ACNPs to the clinic.

A need for better animal models that could predict toxicity and efficacy in humans is a main goal
particularly for those agents with immunologic properties. On the other hand, ACNPs offer further
development opportunities. (1) First, there is the payload; in contrast to ADCs, a wide variety of
drugs can be incorporated into ACNPs. More importantly, a direct linker to the drug is not required,
avoiding changes in the chemical structure that could modify the antitumoral properties. (2) Second,
there is the drug-to-antibody ratio; the versatility of the ACNPs to modulate the cargo of antibodies
over the surface by different conjugation strategies may ensure the internalization of a much higher
concentration of the drug [70]. (3) Third, there is the drug release; the release of the drug in ACNPs is
independent of the linker. The drug release from ACNPs is only a consequence of drug diffusion and
nanoparticle degradation [71]. (4) Last, there are the multivalent effects; the conjugation of antibodies
over the surface of NPs can provide therapeutic effects also.

3. ACNPs for Breast Cancer Therapy

There are different nanocarriers reported for the generation of ACNPs as novel therapeutics.
Among them, inorganic, polymeric ACNPs, and immunoliposomes have been the most evaluated
ACNPs in this setting [72].



Int. J. Mol. Sci. 2020, 21, 6018 6 of 21

3.1. Immunoliposomes

Since the discovery of DoxilTM [73], a liposomal-based nanocarrier for doxorubicin (DOX) currently
used to treat metastatic breast cancer, liposomes have been the most clinically successful nanocarriers
for the treatment of cancer [74]. DoxilTM, MyocetTM, and LipusuTM are all liposomal formulations of
different chemotherapies approved for breast cancer therapy. MyocetTM is a DOX-loaded liposomal
formulation approved for metastatic breast cancer with reduced cardiotoxicity compared to traditional
DOX [75]. LipusuTM represents the first paclitaxel (PTX) liposome formulation, which was approved
in China in 2003 for clinical use. LipusuTM showed similar clinical activity in breast cancer, but with
lower side effects compared to PTX [76,77]. Finally, the liposomal cytarabine DepoCytTM is in the
Phase III clinical stage for the treatment of leptomeningeal metastasis from breast cancer [78].

Immunoliposomes are liposomal formulations with antibody molecules conjugated to the surface.
There are numerous types of targeting ligands reported in the literature for the generation of targeted
liposomes (Table 1) [79]. To date, there have been five targeted liposomes in clinical trials: Endotag-1TM,
C225-ILsTM, MM-310TM, MM-302TM, and MBP-42TM [61]. C225-ILsTM, MM-302TM, and MM-310TM are
immunoliposomes. C225-ILsTM are under clinical evaluation in a Phase I Clinical trial for glioblastoma
(NCT03603379). MM-302TM and MM-310TM are immunoliposomes for the treatment of breast cancer.
MM-302TM reported negative outcomes in clinical trials in 2016 (NCT02735798). MM-310TM reported
cumulative peripheral neuropathy in a Phase I clinical trial, and its development was terminated
(NCT03076372).

Table 1. Immunoliposomes for breast cancer therapy. DOX: doxorubicin, HER2: human epidermal
growth factor receptor 2, PTX: paclitaxel, HBEGF: Heparin binding EGF like growth factor,
EGFR: Epidermal Growth Factor Receptor, RON: Recepteur d’Origine Nantais, DTX: Docetaxel,
EpCAM:Epithelial Cell Adhesion Molecule.

Drug Tumor Antigen Status Reference

DOX HER2 In vitro [80–82]
DOX HER2 In vitro/In vivo [83–85]
DOX EGFR In vitro/In vivo [86]
DOX HBEGF In vitro/In vivo [87]
DOX RON In vitro [88]
DOX ErbB2 In vitro/In vivo [89]
DOX HER2/CD3 In vitro [90]
PTX HER2 In vitro/In vivo [91]
DTX HER2 In vitro [92]
DTX HER2 In vitro/In vivo [93]

DTX/Ephrin A2 HER2/HER2 In vitro [94]
Simvastatin HER In vitro [95]
Simvastatin EGFR In vitro/In vivo [96]

Rapamycin/rapamycin-PTX HER In vitro/In vivo [97,98]
Curcumin-reverastrol HER2 In vitro [99]

Bleomycin HER2 In vitro [100]
Gemcitabine HER2 In vitro [101]

siRNA EGFR In vitro/In vivo [102]
siRNA EpCAM In vitro/In vivo [103]

Looking at the scientific literature, most studies used trastuzumab as the antibody for conjugation
with the aim of targeting HER2 overexpressing tumors (Table 1). Of note, other antibodies have been used
for conjugation with immunoliposomes in an intent to overcome drug resistance mechanisms [87–89,104].
The review from Benz et al. in 2000 claimed that approaches involving clinical testing in vivo with
advanced HER2 overexpressing breast cancer are urgently needed to provide conclusive evidence for the
superior therapeutic efficacy of anti-HER2 immunoliposomes [86]. In this context, Moase et al. reported
DOX-loaded trastuzumab effective immunoliposomes in treating early lesions in pseudometastatic and
metastatic mice models, but limitations to the access of the targeted liposomes to tumor cells in the primary
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tumor compromised their therapeutic efficacy in treating the more advanced lesions [83]. Therapeutic
efficacy studies in vivo showed that immunoliposomes constructed with different fragments derived
from trastuzumab are significantly superior to free DOX, DOX-loaded liposomes, and DOX-loaded
trastuzumab immunoliposomes [81,82,84,105]. However, concerns were raised regarding the real
mechanism of action [106]. In 2016, shortly before the negative clinical outcomes of MM-302TM for
HER2-positive metastatic breast cancer, researchers reported a novel combination therapy that efficiently
targets HER2-overexpressing [80]. The mechanism of action of MM-302TM was not altered by the
presence of trastuzumab, while trastuzumab decreased intracellular signaling m × (p − Akt).

Other agents apart from DOX have also been included in ACNPs to treat breast cancer [73–78].
Similar to the use of DOX, taxanes have demonstrated significant toxicity in normal tissues for
breast cancer therapy. The patient’s quality of life is significantly impacted by side effects. In this
context, immunoliposomes offer substantial advantages compared to common liposomes and ADCs.
An evaluation of the antitumor activity and mechanism of action of PTX-loaded trastuzumab
immunoliposomes were performed in various breast cancer cells and in xenograft nude mouse
models [92]. Immunoliposomes showed superior antitumor efficacy and higher tumor tissue
distribution of PTX in the BT-474 xenograft model compared to TaxolTM and non-targeted liposomes.
However, in the MDA-MB-231 xenograft model, PTX-loaded liposomes and immunoliposomes showed
similar tumor outcomes. In vitro studies reported by Fanciullino et al. showed a higher antiproliferative
efficacy of docetaxel (DTX)-loaded trastuzumab immunoliposomes in breast cancer cell lines than a
standard combination of DTX plus trastuzumab [93]. One year later, this group questioned the use of
anti-HER2 antibodies to improve liposomes distribution and efficacy, reporting no difference in tumor
uptake between immunoliposomes and standard DTX liposomes [94]. Very recently, they optimized
the DTX-loaded immunoliposomes using a quantitative assay based on flow cytometry to demonstrate
that the density of the targeting agent should be finely tuned to get the highest efficacy [95].

The mammalian target of rapamycin pathway plays a key role in the malignant progression
of breast tumor cells [107]. Consequently, rapamycin has been extensively studied as an option for
breast cancer treatment [108]. The co-delivery of PTX and rapamycin from trastuzumab-targeted
immunoliposomes reduced tumor growth in vivo compared to untreated controls [79,86]. On the other
hand, the co-delivery of curcumin and resveratrol from trastuzumab-targeted immunoliposomes were
also explored for HER2 breast cancer [100]. The combinations of the two compounds in their free form
did not improve the cytotoxic effect, but the co-loaded immunoliposomes significantly increased the
cytotoxic effect in MCF-7 and JIN cell lines.

A considerable body of clinical trials assessing the putative benefit of statins to impair proliferation
on breast cancer cells have been performed [109]. The mechanism for this effect remains poorly
understood and requires further investigation. Furthermore, there are still no effective and safe
methods to provide statins at doses effective in breast cancer treatment, which is mostly due to
their lipophilic character and poor bioavailability. To solve this problem, the encapsulation of
simvastatin on epidermal growth factor receptor (EGFR)- and HER2-targeted immunoliposomes were
proposed [96,97]. In vitro and in vivo studies showed the effectiveness of the immunoliposomes in the
induction of apoptosis.

Better therapeutic outcomes are expected for the use of gemcitabine and bleomycin in breast cancer
therapy. Bleomycin is highly cytotoxic when delivered directly to the cytoplasm but relatively innocuous
extracellularly, whereas gemcitabine is highly hepatotoxic. Trastuzumab-targeted immunoliposomes
were used as nanocarriers to overcome such limitations. Although further in vivo studies are
required for its clinical evaluation, gemcitabine-loaded immunoliposomes allowed decreasing the
concentration-dependent antitumoral activity for gemcitabine therapy [102]. The direct linking of
bleomycin-loaded immunoliposomes to the pore-forming protein listeriolysin O was the strategy
proposed to allow the liposomal cargo of bleomycin to pass into the cytoplasm [101].

Finally, target-specific gene delivery to HER2 and epidermal growth factor receptor
(EGFR)-overexpressing cells were successfully developed by the insertion of lipid-modified
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anti-HER2-Fab or anti-EGFR Fab into the preformed liposomes by conventional maleimide
conjugation [103]. Recently, hybrid immunoliposomes encapsulating a Poly (L-lysine)-siRNA complex
were designed to silence the epithelial cell adhesion molecules highly expressed in breast cancer [104].

The recent advancements involving immunoliposomes to target breast cancer were shortly
reviewed by Khan et al. in 2018 [105]. Since then, researchers have reported combinatorial strategies
involving immunoliposomes [85,91]. Identifying appropriate biomarkers for patient stratification will
be of high importance in future trial design. However, advanced antibody engineering and innovative
manufacturing techniques must be addressed for the generation of more effective immunoliposomes.
Despite the significant progress in the liposome field, there are not any approved immunoliposomes
on the market.

3.2. Inorganic ACNPs

Inorganic NPs have been classified into superparamagnetic NPs, quantum dots, quantum rods,
nanoshells, silica nanoparticles, gold nanoparticles, and nanocages [110]. Some inorganic ACNPs have
been developed as diagnostic biomarkers to be used as screening tools [110–112] and for hyperthermia
therapy [113–119]. To a lesser extent, some of them have been explored for the tumor-selective delivery
of chemotherapeutics (Table 2) [110].

Table 2. Inorganic ACNPs for breast cancer diagnosis and therapy. QDs: quantum dots, SPIONS: iron oxide
superparamagnetic, VEGF: vascular endothelial growth factor, mTOR: mammalian target of rapamycin,
ER: estrogen receptor, PR: progesterone receptor, Wnt-1: protein that in humans is encoded by the Wnt1
gene, CD: cluster of differentiation, TMUC1: polymorphic epithelial mucin.

Early detection

NPs Tumor antigen Status Reference

SPIONs HER2 In vitro/In vivo [120–123]
SPIONs EGFR In vitro [124]
SPIONs VEGF In vitro/In vivo [125]

Manganese oxide CD10539 In vitro/In vivo [126]
Mesoporous TMUC1 In vitro/In vivo [127,128]

Thermotherapy

NPs Tumor antigen Status Reference

Gold HER2 In vitro [113]
Gold EGFR In vitro/In vivo [114]

Bismuth-mesoporous HER2 In vitro/In vivo [115]
Gold nanocages EGFR In vitro [116]

Silica-gold
nanoshells HER2 In vitro [117]

SPIONs HER2 In vitro/In vivo [118]
Gold Nanoantenna HER2 In vitro [119]

Biomolecular profiling

NPs Tumor antigen Status Reference

QDs HER2 In vitro/In vivo [129–133]
QDs HER2/ER In vitro [134]
QDs EGFR In vitro [135]
QDs HER2/ER/PR/mTOR/EGFR In vitro [136]

Drug Delivery

Drug NPs Tumor antigen Status Reference

PTX SPIONs HER2 In vitro/In vivo [137]
siRNA SPIONs HER2 In vitro [138]
DOX SPIONs HER2/VEGF In vitro [139]
DOX SPIONs HER2 In vitro [140]

DOX–PTX SPIONs HER2 In vitro/In vivo [141]
siRNA QDs HER2 In vitro [134]

Cisplatin Au-Fe3O4 HER2 In vitro [142]
None Gold Wnt-1 In vitro [143]
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There are several inorganic NPs in clinical trials; all of them are metallic NPs [61]. NanothermTM

therapy is based on injecting iron oxide nanoparticles directly into the tumor [144]. Phase III clinical
trials for the hafnium oxide NPs NBTX3TM indicated for head and neck cancer or non-small cell lung
cancer are ongoing. Other inorganic NPs are currently in early stages of clinical development in
different indications [145–147].

To date, inorganic ACNPs have been used for early detection, thermotherapy, and biomarker
identification for the treatment of breast cancer (Table 2). Moreover, iron oxide superparamagnetic
(SPIONs)-, gold- and quantum dots- (QDs)-based ACNPs have been proposed as drug and siRNA
delivery systems [25,148,149]. In this regard, the strategy relies on an organic polymeric coating on the
NPs surface to enable the encapsulation of the drug or the siRNA.

In a first approach, SPIONs and DOX were encapsulated into a poly (lactic-co-glycolic acid)
(PLGA) core through a nano-emulsion method followed by trastuzumab conjugation by EDC/NHS
chemistry [92]. The ACNPs showed excellent colloidal stability in aqueous phase and released DOX
sustainably. However, the ACNPs exhibited the saturation magnetization superparamagnetic behavior
due to the presence of organic components such as DOX, poly (lactic-co-glycolic acid) (PLGA) and
polyvinyl alcohol (PVA).

Regarding SPIONs-based ACNPs, PTX, DOX, and siRNA were successfully encapsulated
in ACNPs, showing selective breast cancer cell death [137–139]. A polyethylenimine coating
allowed the generation of anti-HER2 ACNPs for siRNA delivery [138]. The ACNPs showed
intracellular delivery and therapeutic effects of vascular endothelial growth factor (VEGF) siRNA
against cancer cells. DOX were encapsulated in dextrane-modified SPIONs by ionic gelation
and HER2 monoclonal antibody conjugated via EDC/NHS chemistry over the surface of the
NPs [139]. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTTs) assays and
transmission microscopy confirmed the selective uptake and cellular internalization of the DOX-loaded
ACNPs. Interestingly, a multifunctional nanoplatform for DOX delivery and positron emission
tomography-magnetic (PET/MR) imaging were obtained by loading DOX into 64Cu-labeled trastuzumab
and rituximab ACNPs [140]. The simultaneous co-delivery of DOX and PTX from magnetic
trastuzumab-conjugated ACNPs was reported to successfully suppress cancer growth in vivo [141].

Drug delivery using QDs-based ACNPs is very scarce. To highlight, the work of Zhang et al.
reported the delivery of HER2 siRNA to overexpressing SKBR3 breast cancer cells through ACNPs
conjugated with HER2 antibodies over a modified chitosan surface modification [150].

In the case of gold ACNPs, anti-HER2 conjugated gold ACNPs as a theranostic probe for imaging
and breast cancer treatment have been described [113]. Strong therapeutic effects were reported
using hybrid Au-Fe3O4 nanoparticles conjugated with trastuzumab for the delivery of cisplatin [142].
Recently, anti-Wnt-1 monoclonal antibodies were conjugated to inorganic NPs to induce apoptosis
without requiring a therapeutic payload [143,151].

3.3. Polymeric ACNPs

Polymeric ACNPs are generated from biocompatible and biodegradable polymers, using either
natural or synthetic materials. The delivery of the drug is based on a triphasic profile where there
is a first step called “burst release”, followed by a second diffusion step that finishes with a third
process called the erosion stage [152]. The customized design of the polymeric structure can control
the extension of each one of these steps and therefore optimize the delivery of the compound.

The targeting ligands of immunoliposomes are commonly attached by unspecific chemical
conjugation, bearing risks derived from structural heterogeneity. The first studies on non-liposomes
formulation that demonstrate the specific targeting of anti-HER2 ACNPs were published in 2004 by
Langer et al. [153,154]. These data provided the basis for the development of stable and biological
active polymeric ACNPs for breast cancer therapy.

From the first FDA approval of DoxilTM to the latest European Medicines Agency (EMA)
approval of ApealeaTM, there are at least 15 cancer nanomedicines on the market. None of them
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are ACNPs [122–124]. Regarding polymeric nanomedicines approved for breast cancer therapy,
Genexol-PMTM is a PTX polymeric micelle formulation that has been clinically approved to treat breast
cancer in South Korea in 2007 [155–157]. PICN is a 100–110 nm formulation of PTX stabilized with
polymer and lipids and was approved in India for metastatic breast cancer in 2014 [158].

In 2013, 13 targeted NPs had progressed into clinical trials, but their therapeutic efficacy in
humans has not been proven yet. Among them, 2 were of polymeric nature [61]: BIND-014TM,
composed of a copolymer polylactide–polyethylene glycol (PLA-PEG) for the controlled release of DTX
against cancer (NCT01300533, NCT02479178, NCT02283320, NCT01792479, NCT01812746) [159–161],
and CALAA-01TM, which were targeted polymeric NPs generated for the siRNA-mediated treatment
of solid tumors (NCT00689065) [162]. Of note, no polymeric ACNPs have entered clinical studies.

Table 3 compiles polymeric ACNPs reported for the treatment of breast cancer. As a proof
of concept, DOX was encapsulated into a PLGA core through nanoemulsion methods followed by
trastuzumab conjugation [163–165]. Trastuzumab-targeted PLGA ACNPs were also successfully
designed to entrap rapamycin 150 and DTX [133].

Table 3. Polymeric ACNPs for breast cancer therapy. PEI: polyethylenImine, PLA-PEG:
polylactide-polyethylene glycol, PLGA: poly(lactic-co-glycolic acid).

Drug Polymer Tumor Antigen Status Reference

None PLGA HER2 In vitro [163]
DOX Poly(TMCC-co-LA)-g-PEG-furan HER2 In vitro [165]

Tamoxifen PLGA HER2 In vitro [164]
Rapamycin PLGA EGFR In vitro [166]

DTX PLA-PEG HER2 In vitro [167]
Tamoxifen PLGA HER2 In vitro/In vivo [168]
Curcumin PLGA AnxA2 In vitro/In vivo [169]

PTX PLGA HER2 In vitro [170]
DOX PLA-PEG HER2 In vitro/In vivo [171]
DOX chitosan HER2 In vitro [172]
DOX PCL-PEG-PCL-urethane HER2 In vitro/In vivo [173]

Coumarin PLA-PEG HER2 In vitro [174]
PTX PCL-PEG HER2 In vitro [175]

Epirubicin PLGA HER2 In vitro [176]
DOX–cisplatin Chitosan HER2 In vitro [177]

siRNA PEI-PEG HER2 In vitro [178]
PTX PLGA HER2 In vitro/In vivo [179]

Dasatinib PLA-PEI HER2 In vitro [180]

Knowing that the combination of tamoxifen with trastuzumab promoted therapeutic efficacy in
treating HER2-positive and ER-positive metastatic breast cancers, PLGA ACNPs were generated by
polyvinyl-pyrrolidone coating and the subsequent conjugation of trastuzumab by EDC activation [168].
In vivo studies showed an inhibition rate of ACNPs higher than the non-targeted NPs and free
tamoxifen. The control of the surface density of trastuzumab over PTX-loaded PLGA NPs showed
impact over the performance of the ACNPs [170].

In 2016, Chudasama et al. highlighted how antibody-derived fragments can been used for ACNPs
generation [28]. They claimed that the conjugation of antibody-derived fragments is a step in the
right direction to overcome fundamental and practical issues encountered during ACNPs generation.
However, advancements in protein engineering and expression are still needed for a careful and
precise disassembly of a full antibody easily. One representative work with polymeric ACNPs is the
selective insertion of pyridazinedione moieties bearing reactive handles into reduced disulfide bonds
to site-selectively modify trastuzumab [181].

Due to many patients acquiring trastuzumab resistance, pertuzumab, a monoclonal antibody that
binds to HER2 and sterically blocks the homodimerization and heterodimerization of HER receptors,
was presented as a potential vector for ACNPs generation. Nevertheless, no ACNPs have been
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generated to date based on this target ligand [182]. To increase the bioavailability and reduce the innate
immunogenicity of trastuzumab coumarin-loaded ACNPs, a PEG coating over the targeted surface of
the ACNPs was achieved [174]. PEG-modified ANCPs showed the most optimal performance in terms
of a reduction in phagocyte uptake as well as immunogenicity.

For the first time, redox responsive-modified copolymers of PLA and PEG were designed as raw
materials for ACNPs generation [171]. By comparing in vivo and in vitro targeting efficiency, there were
not differences observed regarding their previous work focused on polycaprolactone ACNPs [183].
Epirubicin-loaded PLGA ACNPs were obtained by nanoprecipitation methods and trastuzumab
conjugated with the help of carbodiimide chemistry to modify the pharmacokinetic parameters and
the therapeutic index of the new compound [176]. On the other hand, DOX/cisplatin co-loaded
chitosan ACNPs were designed with the aim of obtaining a synergistic interaction [177]. The influence
of the ACNP shapes on efficacy is still under evaluation and needs further investigation [184].
Worn-like polycaprolactone (PCL)-PEG ACNPs for the controlled release of PTX to HER2 positive
breast cancer cells were designed to enhance the binding capability of the nanoparticles [175].

Recently, our group reported the development of dasatinib-loaded ACNPs. The ACNPs were
generated by nanoprecipitation methods and trastuzumab anchored after the polyethylenImine (PEI)
coating using carbodiimide chemistry. The results showed efficacy, particularly in HER2-overexpressing
cells, maintaining the same mechanism of action as dasatinib given alone [180].

4. Outlook and Recent Implications in Breast Cancer Therapy

There is no ACNP that has yet reached clinical stage, and only non-vectorized NPs have entered
the clinical setting. While marketed NPs have shown a more favorable pharmacokinetic profile than
their free payload, the optimization of aspects such as nanoparticle size, shape, and surface charge
should be taken into consideration to improve efficacy. To reach this goal, tumor type and location
should be considered due to the specific microenvironment characteristics.

In an effort to increase tumor delivery, several approaches are now emerging to augment the
permeability and penetration of the particle within the tumor. Those include the selective targeting of
components of the tumor neovasculature or targeting tumoral cells to enhance the immune system.
Therefore, ACNPs can be oriented not only against the tumoral component but against the extracellular
compartment, the vasculature structure, or the immune system. In this way, using antibodies to target
negative immune modulators can augment the efficacy of the payload included in the NPs, inducing a
double effect: the one produced by the targeted agent or chemotherapy payload, and the one against
the specific antibody. An example would be the use of anti-PD-L1 (programmed death-ligand 1)
antibodies that disrupt the inhibitory effect of the PD1/PD-L1 axis by acting on this receptor expressed
in tumoral cells. A similar approach using ADCs has been recently reported [185].

ADCs have proven their ability to deliver cytotoxic payloads to tumors and are currently the most
beneficial targeted, conjugated therapy for patients. ACNPs allow for existing chemotherapies to be
made available in nanomedicine preparations. Drug release from NPs can be more finely controlled
with a range of nanoparticle materials and co-excipients. Selection of the more adequate ones could
make a difference. Since ACNPs favors drug structure preservation, ACNPs may provide benefit
over ADCs when targeting receptors that have also a biological effect and by inducing a bystander
effect. This effect can be particularly relevant in HER2-positive tumors that become resistant to TDM1
due the proliferation of breast cancer cells with low levels of HER2. As mentioned, in the age of
immunotherapy, the ability to use ACNPs to augment immune responses in tumors holds much
promise. In this context, given the fact that immunotherapy has shown efficacy in triple negative breast
cancer, evaluation of agents acting in this indication is a main goal [186].

In conclusion, with strategies enhancing the ability of these agents to reach tumors by facilitating
active targeting, combined with improved uniform manufacturability using conjugation chemistries, it is
anticipated that there will be an increase in the interest of this family of agents for clinical development.
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ErbB2 Receptor tyrosine-protein kinase;
HBEGF Heparin binding EGF like growth factor
RON Recepteur d’Origine Nantais
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VEGF Vascular Endothelial Growth Factor
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