
sensors

Article

A Sensor Fusion Method for Pose Estimation of
C-Legged Robots

Jorge De León * , Raúl Cebolla and Antonio Barrientos

Centro De Automática y Robótica (UPM-CSIC), Universidad Politécnica de Madrid,
Calle José Gutiérrez Abascal, 2. 28006 Madrid, Spain; raul.cebolla.arroyo@alumnos.upm.es (R.C.);
antonio.barrientos@upm.es (A.B.)
* Correspondence: jorge.deleon@upm.es

Received: 5 October 2020; Accepted: 18 November 2020; Published: 25 November 2020
����������
�������

Abstract: In this work the authors present a novel algorithm for estimating the odometry of “C”
legged robots with compliant legs and an analysis to estimate the pose of the robot. Robots with “C”
legs are an alternative to wheeled and tracked robots for overcoming obstacles that can be found in
different scenarios like stairs, debris, etc. Therefore, this kind of robot has become very popular for its
locomotion capabilities, but at this point these robots do not have developed algorithms to implement
autonomous navigation. With that objective in mind, the authors present a novel algorithm using the
encoders of the legs to improve the estimation of the robot localization together with other sensors.
Odometry is necessary for using some algorithms like the Extended Kalman Filter, which is used
for some autonomous navigation algorithms. Due to the flexible properties of the “C” legs and the
localization of the rotational axis, obtaining the displacement at every step is not as trivial as in a
wheeled robot; to solve those complexities, the algorithm presented in this work makes a linear
approximation of the leg compressed instead of calculating in each iteration the mechanics of the leg
using finite element analysis, so the calculus level is reduced. Furthermore, the algorithm was tested
in simulations and with a real robot. The results obtained in the tests are promising and together with
the algorithm and fusion sensor can be used to endow the robots with autonomous navigation.

Keywords: legged locomotion; mobile robots; robot control; robot kinematics; robot motion;
robot sensing systems; robots

1. Introduction

Legged robots have experienced a significant growth in interest during the last decade due to
the natural limitation pf the ground robots with conventional systems, wheels and tracks, concerning
overcoming uneven terrains or obstacles like steps.

The robots with legs are inspired in diverse types of animal species that can walk, whether biped
(ATLAS [1], TEO [2]), quadruped (Cheetah [3], Anymal [4]), hexapods (LAURON [5], R-III [6]) or
octopods. Nevertheless, the majority of these robots attempt replications of the morphology of the
animal by which they are inspired; therefore, they try to obtain the same degrees of freedom (DoF) in
each extremity, this fact leads to the robots obtaining a high complexity for the control system and its
mechanics. In Table 1, a quantity of the DoF for the different legged robots is shown.

For solving both complexities, control and mechanical, in 2001 the robot called “RHex” [7] was
developed. This robot is the first one that presents a configuration with six legs where each leg has a
“C” shape and only one rotation DoF.

Sensors 2020, 20, 6741; doi:10.3390/s20236741 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8904-1084
https://orcid.org/0000-0003-1691-3907
http://dx.doi.org/10.3390/s20236741
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/23/6741?type=check_update&version=3

Sensors 2020, 20, 6741 2 of 38

Table 1. Degrees of freedom (DoFs) for different configurations of legged robots.

Configuration DoF/Extremity Extremities Total DoFs

Biped 6 2 12
Quadruped 3–6 4 12–24
Hexapod 3–6 6 18–36
Octopod 3–6 8 24–48

The reason to select a configuration of the hexapod robot is due to the conclusions of several
biological studies of insects (cockroaches and beetles). These studies have shown that the hexapods
have developed a gait pattern (GP) called “alternating tripod” that presents the advantage of been
always statically stable [8–10]. On the other hand, the implementation of one leg with “C” shape and 1
DoF gives to the robot the ability to overcome obstacles but with a control and mechanical complexity
much lower [11]. However, the design of the legs with a unique DoF restricts the capabilities for
the displacement; therefore, this robot does not present the mobility of a holonomic robot. Even so,
the results obtained for its maneuverability and displacement are excellent [12] and present complex
gait patterns for overcoming stairs [13,14], pronking [15], walking with only two legs [16] or realizing
backflips [17].

The development of the RHex robot was initially supported by a DARPA CBS/CBBS program
and National Science Foundation grants. From this original project, different versions of the robot
were designed in order to include new features, for example, to be water resistant (Rugged RHex [18],
Shelly [18], AQUA [19,20]), to be used as a research platform (X-RHex [21], XRL [22], EduBOT [23],
Sensor-RHex [24], MiniRHex [25]), and for work in desert environments (Desert RHex [26],
SandBot [27]).

Subsequently, new robotics platforms with similar configurations were developed in other robotics
laboratories and research centers: AbhisHex [28], Quattroped [29], ELHR [10], Turboquad [30,31],
iRHex [32] and the robot presented in this work CLHeRo v2.5 (C-Legs HExapod RObot) [33].

However, despite the movement qualities of this robots family, some capabilities have not yet
been achieved that nowadays are essentials for a mobile robot platform, like autonomous navigation.
This is a largely due to the difficulty of obtaining a robust method to analyze and compute the pose and
orientation of the robot. Some developments were carried out to try to estimate the displacement of the
robot with proprioceptive sensors [34–36] or with the use of external sensors [37–42]. However, none
of the previous works have made a sensor fusion with an odometry algorithm to obtain a better and
more robust pose estimation. This lack of the develop of this kind of hexapod robot will be addressed
in this work.

Autonomous navigation allows to guide and orientate a mobile robot to reach a desired
position. To achieve this objective is necessary to endow with sensors the robot. These sensors
can be implemented redundantly, complementary or both at the same time [43]. The sensor fusion
is a technique that have been used for decades, and become more important when the abilities for
autonomous exploration, mapping and autonomous navigation could be achieved. Some relevant
articles in this field is the one by Luo and Kay [44], the report “Where Am I” [45] and the book
“Integration, coordination and control of multi-sensor robot systems” [46].

Using the encoder sensors of the motors, like a traditional wheeled robot, to estimate the robot
position using the differential drive algorithm is not possible for the “C” leg family. There are
3 main factors: the first one is that the leg is not always in contact with the ground, and therefore,
the measurements are not always valid. Imagine the robot lay down on the ground and the 6 legs
turning in its aerial phase, the encoder is counting, but the robot is not moving. The second point,
is the movement in the XZ plane, sagittal plane (Figure 1), described by the C-legs robots is a cycloid.
This kind of curve cannot be computed as the radius of the leg by the distance to the motor, it is more
complex. Finally, the legs has flexible properties; therefore, the radius of the leg varies increasing or
decreasing the nominal length of it.

Sensors 2020, 20, 6741 3 of 38Sensors 2020, 1, 5 3 of 39

Figure 1. Sagittal plane of the CLHeRo.

Therefore, in this work the authors present a study of the mathematical model for obtaining the
odometry of robots with “C” legs. The theoretical model developed is supported by simulations and
tests with the CLHeRo robot and the ROS middleware. Moreover, the pose of the robot is compare
with the measures of other external sensors and an extended Kalman filter.

In this present study, we start with the description of the platform that will be used (Section 2) and
proceed with the study of the kinematic model of the robot (Section 3). Next, the solutions provided
(Section 4) where the mathematical model for the odometry will be described. Finally the simulations
and tests in indoor and outdoor scenarios with the real robot will be explained (Section 5) and the
work conclusions (Section 6).

2. Robotic Platform

The CLHeRo V2.5 is an autonomous robot for Search and Rescue tasks inspired in the RHex
robots family, designed and built by Robotics and Cybernetics Group of the Centre for Automation
and Robotics (UPM-CSIC) [33,47–49]. The robot has two main components: the chassis and the legs.
The chassis is composed by two lateral frames connected between them, inside, all the electronics
components are enclosures. The legs are located in the external sides of the chassis, like any hexapod
insect. The actual design of the robot can be seen in the Figure 2c, together with the prior versions
(Figure 2a,b) . This is the third version for the CLHeRo platform, in this new design we have introduce
some improvements in order to make its construction simpler but at the same time as robust as the
original version. With that in mind, we have try, whenever possible, select components that can be
purchased instead of having to manufacture the pieces with specific machines or complicated and
delicate processes. The robot’s body is compact and thin in profile, as strength as the original CLHeRo
and very similar to the RHex platforms.

(a) CLHeRo V1 (b) CLHeRo V2 (c) CLHeRo V2.5

Figure 2. The three versions of the CLHeRo robot.

The robot legs only have 1 DoF of rotation and each one is actuated by a Maxon Compact Drive
(MCD), with a nominal voltage between 12 volts and 50 volts. The MCD has coupled a planetary
gearbox (33:1) that permits to achieve 3.5N/m and a maximum of 12000/33 RPM. Communications
between the main computer and the main motor control modules operate over USB/RS232 adapter,

Figure 1. Sagittal plane of the CLHeRo.

Therefore, in this work the authors present a study of the mathematical model for obtaining the
odometry of robots with “C” legs. The theoretical model developed is supported by simulations and
tests with the CLHeRo robot and the ROS middleware. Moreover, the pose of the robot is compare
with the measures of other external sensors and an extended Kalman filter.

In this present study, we start with the description of the platform that will be used (Section 2) and
proceed with the study of the kinematic model of the robot (Section 3). Next, the solutions provided
(Section 4) where the mathematical model for the odometry will be described. Finally the simulations
and tests in indoor and outdoor scenarios with the real robot will be explained (Section 5) and the
work conclusions (Section 6).

2. Robotic Platform

The CLHeRo V2.5 is an autonomous robot for Search and Rescue tasks inspired in the RHex
robots family, designed and built by Robotics and Cybernetics Group of the Centre for Automation
and Robotics (UPM-CSIC) [33,47–49]. The robot has two main components: the chassis and the legs.
The chassis is composed by two lateral frames connected between them, inside, all the electronics
components are enclosures. The legs are located in the external sides of the chassis, like any hexapod
insect. The actual design of the robot can be seen in the Figure 2c, together with the prior versions
(Figure 2a,b) . This is the third version for the CLHeRo platform, in this new design we have introduce
some improvements in order to make its construction simpler but at the same time as robust as the
original version. With that in mind, we have try, whenever possible, select components that can be
purchased instead of having to manufacture the pieces with specific machines or complicated and
delicate processes. The robot’s body is compact and thin in profile, as strength as the original CLHeRo
and very similar to the RHex platforms.

Sensors 2020, 1, 5 3 of 39

Figure 1. Sagittal plane of the CLHeRo.

Therefore, in this work the authors present a study of the mathematical model for obtaining the
odometry of robots with “C” legs. The theoretical model developed is supported by simulations and
tests with the CLHeRo robot and the ROS middleware. Moreover, the pose of the robot is compare
with the measures of other external sensors and an extended Kalman filter.

In this present study, we start with the description of the platform that will be used (Section 2) and
proceed with the study of the kinematic model of the robot (Section 3). Next, the solutions provided
(Section 4) where the mathematical model for the odometry will be described. Finally the simulations
and tests in indoor and outdoor scenarios with the real robot will be explained (Section 5) and the
work conclusions (Section 6).

2. Robotic Platform

The CLHeRo V2.5 is an autonomous robot for Search and Rescue tasks inspired in the RHex
robots family, designed and built by Robotics and Cybernetics Group of the Centre for Automation
and Robotics (UPM-CSIC) [33,47–49]. The robot has two main components: the chassis and the legs.
The chassis is composed by two lateral frames connected between them, inside, all the electronics
components are enclosures. The legs are located in the external sides of the chassis, like any hexapod
insect. The actual design of the robot can be seen in the Figure 2c, together with the prior versions
(Figure 2a,b) . This is the third version for the CLHeRo platform, in this new design we have introduce
some improvements in order to make its construction simpler but at the same time as robust as the
original version. With that in mind, we have try, whenever possible, select components that can be
purchased instead of having to manufacture the pieces with specific machines or complicated and
delicate processes. The robot’s body is compact and thin in profile, as strength as the original CLHeRo
and very similar to the RHex platforms.

(a) CLHeRo V1 (b) CLHeRo V2 (c) CLHeRo V2.5

Figure 2. The three versions of the CLHeRo robot.

The robot legs only have 1 DoF of rotation and each one is actuated by a Maxon Compact Drive
(MCD), with a nominal voltage between 12 volts and 50 volts. The MCD has coupled a planetary
gearbox (33:1) that permits to achieve 3.5N/m and a maximum of 12000/33 RPM. Communications
between the main computer and the main motor control modules operate over USB/RS232 adapter,

Figure 2. The three versions of the CLHeRo robot.

The robot legs only have 1 DoF of rotation and each one is actuated by a Maxon Compact Drive
(MCD), with a nominal voltage between 12 volts and 50 volts. The MCD has coupled a planetary
gearbox (33:1) that permits to achieve 3.5 N/m and a maximum of 12, 000/33 RPM. Communications
between the main computer and the main motor control modules operate over USB/RS232 adapter,

Sensors 2020, 20, 6741 4 of 38

but the motors units are connected to one another with CanOpen protocol. In contrast with prior RHex
platforms and similar robots, our robot control software uses the ROS framework [50].

The convention for the reference system is showed on the Figure 3. The assignment for the
reference system is accord with the SNAME (Society of Naval Architects & Marine Engineers [51])
notation. The dimensions of the robot are required for generate its physical model, the most relevant
characteristics are the dimensions and mass. These characteristics and a comparison with some of the
robots mentioned in the introduction is shown in Table 2.

Sensors 2020, 1, 5 4 of 39

but the motors units are connected to one another with CanOpen protocol. In contrast with prior RHex
platforms and similar robots, our robot control software uses the ROS framework [50].

The convention for the reference system is showed on the Figure 3. The assignment for the
reference system is accord with the SNAME (Society of Naval Architects & Marine Engineers [51])
notation. The dimensions of the robot are required for generate its physical model, the most relevant
characteristics are the dimensions and mass. These characteristics and a comparison with some of the
robots mentioned in the introduction is shown in Table 2.

Figure 3. Global (G) and Body-fixed (B) Coordinate Frames for CLHeRo V2.5.

Table 2. Physical properties of the robots. All measures in mm, except the total weight (kg).

Attribute Body
Height

Overall
Width

Body
Length

Leg to Leg
Spacing

Ground
Clearance

Inverted
Ground cl.

Leg
Diameter

Total
Weight

RHex [7] 139 390 500 200 115 95 175 8.9
Rugged [18] 148 465 623 235 106 106 195 15
EduBOT [23] 108 340 360 155 90 N/A 117 3.6
X-RHex [21] 75 390 570 220 125 120 175 9.5
XRL [22] 100 405 510 205 110 110 175 9.5
Abhis [28] 100 380 560 220 115 115 180 9.2
IRHex [32] 135 410 540 N/A N/A N/A N/A 12.5
CLHeRo 80 650 800 245 120 80 160 9.3
CLHeRo V2.5 80 650 555 245 160 160 200 10.0

The CLHeRo platform can be configured with 2 different computers. If the user wants only to
teleoperate the robot and send video via streaming, the best option is a Raspberry PI 3 B+. The reason
is because for teleoperating the robot, all the gaits pattern algorithms can be run in a processor with
low specifications. Moreover, the RPI 3 B+ consumes about 400 mA of current at 5.0 VDC (which is
about 2 watts), that increases the power autonomy of the robot greatly.

The second option is intended to proved to the robot high level tasks, like autonomous navigation,
3D reconstruction or Visual SLAM. As these tasks requires a high computational cost and send all
the data collected to via wireless to compute it in the ground station and send back the information
is impracticable, we decided to install a computer with a powerful processor. Unfortunately this

Figure 3. Global (G) and Body-fixed (B) Coordinate Frames for CLHeRo V2.5.

Table 2. Physical properties of the robots. All measures in mm, except the total weight (kg).

Attribute Body
Height

Overall
Width

Body
Length

Leg to Leg
Spacing

Ground
Clearance

Inverted
Ground cl.

Leg
Diameter

Total
Weight

RHex [7] 139 390 500 200 115 95 175 8.9
Rugged [18] 148 465 623 235 106 106 195 15
EduBOT [23] 108 340 360 155 90 N/A 117 3.6
X-RHex [21] 75 390 570 220 125 120 175 9.5
XRL [22] 100 405 510 205 110 110 175 9.5
Abhis [28] 100 380 560 220 115 115 180 9.2
IRHex [32] 135 410 540 N/A N/A N/A N/A 12.5
CLHeRo 80 650 800 245 120 80 160 9.3
CLHeRo V2.5 80 650 555 245 160 160 200 10.0

The CLHeRo platform can be configured with 2 different computers. If the user wants only to
teleoperate the robot and send video via streaming, the best option is a Raspberry PI 3 B+. The reason
is because for teleoperating the robot, all the gaits pattern algorithms can be run in a processor with
low specifications. Moreover, the RPI 3 B+ consumes about 400 mA of current at 5.0 VDC (which is
about 2 watts), that increases the power autonomy of the robot greatly.

The second option is intended to proved to the robot high level tasks, like autonomous navigation,
3D reconstruction or Visual SLAM. As these tasks requires a high computational cost and send all
the data collected to via wireless to compute it in the ground station and send back the information
is impracticable, we decided to install a computer with a powerful processor. Unfortunately this

Sensors 2020, 20, 6741 5 of 38

configuration reduces drastically the power autonomy of the robot. In the Table 3 a description of the
components of the computer are list.

Table 3. Computer components.

Component Model

Processor Intel i7 8700
Memory Kingston HyperX DDR4@2400 8GB
Hard disk SSD m.2 256GB
Motherboard Asus Prime H310i mini-Itx
Power supply M4-ATX-HV 6-34V
Sink Scythe Kodati rev-B

Both, the RPI 3 B+ and the computer with x64 bits architecture must have installed the same
Debian version and ROS distribution (Kinetic and Melodic have been tested successfully) in order the
code generate for controlling the motors can be used indistinctly.

The computer controls the robot’s gait and other behaviors, gathers and logs sensory information
from various parts of the system, and communicates with the control station. This communication is
maintained via either and internal wireless card connected to the computer or an external wireless
solution for wide ranges as payload.

In addition to the sensors used in the motor control and battery management, there is a SparkFun
9DoF Razor (SEN-14001) which combines a SAMD21 microprocessor with an MPU-9250 9DoF
(9 Degrees of Freedom) sensor, placed at the center of the chassis, that provides inertial sensing
of the robot. The 9DoF Razor’s MPU-9250 features three 3-axis sensors an accelerometer, gyroscope
and magnetometer that give it the ability to sense linear acceleration, angular rotation velocity and
magnetic field vectors. The onboard microprocessor, Atmel’s SAMD21, is an Arduino-compatible,
32-bit ARM Cortex-M0+ microcontroller also featured on the Arduino Zero and SAMD21 Mini Breakout
boards. It also has an official ROS package (http://wiki.ros.org/razor_imu_9dof). In the front of the
robot there is a RealSense D435, which is an active stereo depth camera that uses Intel’s custom ASIC,
the Intel RealSense VisionProcessor D4, to conduct a custom variant of the Semi Global Matching
algorithm to compute the depth. It also has an optional infrared (IR) projector that assists in improving
the depth accuracy by projecting a non-visible static IR pattern when the scene’s texture is low, can get
up to 848 × 480 @90 frames per second. Upper the Intel RealSense D435 there is an Intel RealSense
T265 tracking camera (see Figure 4) which outputs the current pose (position and orientation) 200 time
per second. The camera has two fish eye lenses with combined 1635 FOV and BMI055 IMU Sensor on
board. Visual Inertial Odometry from Intel is running on board.

Sensors 2020, 1, 5 5 of 39

configuration reduces drastically the power autonomy of the robot. In the Table 3 a description of the
components of the computer are list.

Table 3. Computer components.

Component Model

Processor Intel i7 8700
Memory Kingston HyperX DDR4@2400 8GB
Hard disk SSD m.2 256GB
Motherboard Asus Prime H310i mini-Itx
Power supply M4-ATX-HV 6-34V
Sink Scythe Kodati rev-B

Both, the RPI 3 B+ and the computer with x64 bits architecture must have installed the same
Debian version and ROS distribution (Kinetic and Melodic have been tested successfully) in order the
code generate for controlling the motors can be used indistinctly.

The computer controls the robot’s gait and other behaviors, gathers and logs sensory information
from various parts of the system, and communicates with the control station. This communication is
maintained via either and internal wireless card connected to the computer or an external wireless
solution for wide ranges as payload.

In addition to the sensors used in the motor control and battery management, there is a SparkFun
9DoF Razor (SEN-14001) which combines a SAMD21 microprocessor with an MPU-9250 9DoF
(9 Degrees of Freedom) sensor, placed at the center of the chassis, that provides inertial sensing
of the robot. The 9DoF Razor’s MPU-9250 features three 3-axis sensors an accelerometer, gyroscope
and magnetometer that give it the ability to sense linear acceleration, angular rotation velocity and
magnetic field vectors. The onboard microprocessor, Atmel’s SAMD21, is an Arduino-compatible,
32-bit ARM Cortex-M0+ microcontroller also featured on the Arduino Zero and SAMD21 Mini Breakout
boards. It also has an official ROS package (http://wiki.ros.org/razor_imu_9dof). In the front of the
robot there is a RealSense D435, which is an active stereo depth camera that uses Intel’s custom ASIC,
the Intel RealSense VisionProcessor D4, to conduct a custom variant of the Semi Global Matching
algorithm to compute the depth. It also has an optional infrared (IR) projector that assists in improving
the depth accuracy by projecting a non-visible static IR pattern when the scene’s texture is low, can get
up to 848 × 480 @90 frames per second. Upper the Intel RealSense D435 there is an Intel RealSense
T265 tracking camera (see Figure 4) which outputs the current pose (position and orientation) 200 time
per second. The camera has two fish eye lenses with combined 1635 FOV and BMI055 IMU Sensor on
board. Visual Inertial Odometry from Intel is running on board.

Figure 4. Intel D435 and T265 cameras.Figure 4. Intel D435 and T265 cameras.

http://wiki.ros.org/razor_imu_9dof

Sensors 2020, 20, 6741 6 of 38

The MCD control unit includes the EPOS controllers, also from Maxon. This motor controller
comes preprogrammed with a variety of control modes [52] (profile position, profile velocity,
homing mode, interpolated position, position, velocity, current, master encoder and step direction).
While using a controller like this, one saves the time and effort needed to develop the gait
control modes.

The EPOS includes a 32 bits@60 MHz microprocessor for managing all the parameters with 256 KB
of free memory in case the user wants to store a program. This microprocessor closes a low-level
feedback internally at a rate of 10 KHz; this high speed loop permits motor current targets to be
reached and accurately. In addition to control loops, these family of controllers handle the sinusoidal
commutation for the brushless motors, provide the sensor feedback for position, velocity, current and
temperature of the motor.

These units can be controlled with two different communication protocols: RS-232 at 115200 bauds
and CanOpen at 1 MB/s.

For using the CanOpen protocol is necessary to acquire one of the recommended PC-CAN
interface cards. We use the IXXAT USB-to-CAN v2. Once, all the motors were wired and configured,
it works perfectly with the example cpp program (tested under Ubuntu 16.04). Unfortunately ROS
framework does not accept this protocol, even there are some developments like ROS_canopen and
Kacanopen, they have not implemented the functions for controlling the MCD units with all their
functionalities. Moreover, the ROS package “epos_hardware” developed by the RIVeR-Lab [53] was
tested. This package was programmed to control the Maxon EPOS 2 controllers via USB, but with
a modification in the code made by Jimmy Da Silva [54], the serial communication was available.
The connection with the motors was successfully, but when we try to write or read from the controllers,
there was a big delay in the communications. This delay caused that the execution of the robot’s
control failed.

Therefore, to solve this problem, we developed a new ROS package to manage the
communications with the Maxon EPOS and implemented a mixed communication network.
This option creates an internally CanOpen network between all the motors, assigning an identifier to
each motor. Then, the CanOpen master unit established an external communication with the computer
via the RS-232 protocol. This master node manages the information for all the motors and sent it to the
target unit.

3. Robot Kinematic

As was explained in the introduction, the CLHeRo robot walks with a GP called alternating tripod,
which is inspired in some insects like beetles or cockroaches. From a engineering point of view, it can
be described as a differential robot.

To achieve the differential mode, the robot combines its six legs as two virtual legs (Figure 5).
Each virtual leg includes the front and the back leg from a side, and the middle one from the opposite
side. Therefore, the tripod 1 (T1) is formed by the frontal left leg (L1), the back left leg (L3) and the
middle right leg (R2), on the other hand, the tripod 2 (T2) is formed by the frontal right leg (R1),
the back right leg (R3) and the middle left leg (L2).

The cyclic sequence described by the alternating tripod established that at every step one tripod is
in the aerial phase and the other in the ground phase. At the aerial phase no reaction forces are present,
while in the ground phase each leg experiment the following forces:

• The ground reaction forces vector, which is break down into two components, the X and the Z.
• This is assumed because the robot only moves in the sagittal plane. Together with

gravitational force.
• The moment generate by the motor.

The reaction forces have to take in consideration the flexible properties of the legs, because the
radius of the leg varies together with the motor rotation. So it is necessary to add the formal spring
expression (−Ki(li − l0)).

Sensors 2020, 20, 6741 7 of 38
Sensors 2020, 1, 5 7 of 39

Figure 5. CLHeRo 2.5: Tripods and virtual legs.

From Figure 6, the moment of the motor is τφi and the reaction forces is FAi =
τφi
li

, where τφ is the
torque generated by the i motor in the DoF φ and li represents the length of the leg at every moment
because of the passive flexion produced due the flexible properties of the “C” leg. Therefore, when a
leg i is in contact with the ground experiments a reaction force (FAi) directly proportional to the torque
generated by the motor i and the length of the leg i.

Figure 6. Leg forces on the XZB plane.

For a better comprehension of the kinematic model for the CLHeRo, an exhaustive study is
published in [49].

4. Odometry Estimation

As was explained in the introduction, to achieve some applications with the robot is necessary
to require the information of the actuators of the robot. In this section the authors explain how is
implemented the odometry for the CLHeRo robot.

4.1. Legs Odometry

As was mentioned in the introduction, calculate the odometry for the “C” legs robots is not as
easy as in wheeled robots. Various are the factors that have to be take into consideration:

Figure 5. CLHeRo 2.5: Tripods and virtual legs.

From Figure 6, the moment of the motor is τφi and the reaction forces is FAi =
τφi
li

, where τφ is the
torque generated by the i motor in the DoF φ and li represents the length of the leg at every moment
because of the passive flexion produced due the flexible properties of the “C” leg. Therefore, when a
leg i is in contact with the ground experiments a reaction force (FAi) directly proportional to the torque
generated by the motor i and the length of the leg i.

Sensors 2020, 1, 5 7 of 39

Figure 5. CLHeRo 2.5: Tripods and virtual legs.

From Figure 6, the moment of the motor is τφi and the reaction forces is FAi =
τφi
li

, where τφ is the
torque generated by the i motor in the DoF φ and li represents the length of the leg at every moment
because of the passive flexion produced due the flexible properties of the “C” leg. Therefore, when a
leg i is in contact with the ground experiments a reaction force (FAi) directly proportional to the torque
generated by the motor i and the length of the leg i.

Figure 6. Leg forces on the XZB plane.

For a better comprehension of the kinematic model for the CLHeRo, an exhaustive study is
published in [49].

4. Odometry Estimation

As was explained in the introduction, to achieve some applications with the robot is necessary
to require the information of the actuators of the robot. In this section the authors explain how is
implemented the odometry for the CLHeRo robot.

4.1. Legs Odometry

As was mentioned in the introduction, calculate the odometry for the “C” legs robots is not as
easy as in wheeled robots. Various are the factors that have to be take into consideration:

Figure 6. Leg forces on the XZB plane.

For a better comprehension of the kinematic model for the CLHeRo, an exhaustive study is
published in [49].

4. Odometry Estimation

As was explained in the introduction, to achieve some applications with the robot is necessary
to require the information of the actuators of the robot. In this section the authors explain how is
implemented the odometry for the CLHeRo robot.

Legs Odometry

As was mentioned in the introduction, calculate the odometry for the “C” legs robots is not as
easy as in wheeled robots. Various are the factors that have to be take into consideration:

Sensors 2020, 20, 6741 8 of 38

• The rotation axis is not locate at the center of the leg.
• The trajectory described by the leg is a cycloid.
• The leg presents elastic properties.
• At every cycle, the leg rotates without being in contact with the ground.

Odometry Model

The mathematical model for the odometry has been developed considering future improvements
(modifications on the CLHeRo chassis) and the adaptability of the model to any “C” legs robot (can be
adapted to “C” legs with different width, radius, elasticity or material). The model follows the steps
shown in Figure 7.

Sensors 2020, 1, 5 8 of 39

• The rotation axis is not locate at the center of the leg.
• The trajectory described by the leg is a cycloid.
• The leg presents elastic properties.
• At every cycle, the leg rotates without being in contact with the ground.

4.1.1. Odometry Model

The mathematical model for the odometry has been developed considering future improvements
(modifications on the CLHeRo chassis) and the adaptability of the model to any “C” legs robot (can be
adapted to “C” legs with different width, radius, elasticity or material). The model follows the steps
shown in Figure 7.

Figure 7. Odometry model steps.

Moreover, for the mathematical model the authors have made the following assumptions:

• The robot’s movement is planar
• The legs roll without sliding or skidding.

Identify the legs in contact with the ground:
In contrast with the mobile robots with wheels that always are in contact with the ground, the legged
robots need to identify which of these are in the position to transmit the effort.

This identification proceeds in 2 steps: a filter that chooses those legs which position can be in
contact with the ground and a final identification through a weighting function that selects the legs
which extension to the ground is higher.

Figure 7. Odometry model steps.

Moreover, for the mathematical model the authors have made the following assumptions:

• The robot’s movement is planar
• The legs roll without sliding or skidding.

Identify the legs in contact with the ground:
In contrast with the mobile robots with wheels that always are in contact with the ground, the legged
robots need to identify which of these are in the position to transmit the effort.

Sensors 2020, 20, 6741 9 of 38

This identification proceeds in 2 steps: a filter that chooses those legs which position can be in
contact with the ground and a final identification through a weighting function that selects the legs
which extension to the ground is higher.

The first step filters those legs that have a configuration valid to be in contact with the ground.
Due to the CLHeRo’s geometry, exists a range of rotation for the legs where it cannot touch the ground,
this points are called, takeoff max angle (θmax

takeo f f) and landing min angle (θmin
landing). The value of each is

obtained with the geometric relations from the previous work [48], and for the CLHeRo V2.5 with a
leg with 160 mm of diameter are shown in the Equation (1). Figure 8 shows the limits. Both represent
the boundary between the aerial and ground movements, being this the origin of their names.

θmax
takeoff = 103.7287o ; θmin

landing = 241.954o (1)

Sensors 2020, 1, 5 9 of 39

The first step filters those legs that have a configuration valid to be in contact with the ground.
Due to the CLHeRo’s geometry, exists a range of rotation for the legs where it cannot touch the ground,
this points are called, takeoff max angle (θmax

takeo f f) and landing min angle (θmin
landing). The value of each is

obtained with the geometric relations from the previous work [48], and for the CLHeRo V2.5 with a
leg with 160 mm of diameter are shown in the Equation (1). Figure 8 shows the limits. Both represent
the boundary between the aerial and ground movements, being this the origin of their names.

θmax
takeoff = 103.7287o ; θmin

landing = 241.954o (1)

(a) Takeoff max angle. (b) Landing min angle.

Figure 8. Limit angles for aerial movements.

From this, the condition for the filter is shown in Equation (2).

Leg in possible ground position ⇐⇒
{

θ ∈ [0, 103.7287] o

θ ∈ [241.954, 360] o (2)

Due to the configuration of the hexapods, the minimum number of legs that configure a stable
situation is with 3, a tripod. Any configuration with a number of legs less than 3 and more than
0 is considered as an unstable position, that either the robot cannot move or if it did it would be
uncontrolled, thus, in that case it is considered that the robot remains halt, see Equation (3).

If legs in possible ground position < 3 =⇒ vrobot = 0 (3)

If the number of legs is equal or superior to 3, the identification will continue. Only the tripod
with the 3 legs closest to the maximum elevation position of the robot is considered to realize the
traction with the ground. The maximum elevation occurs in the position 0 or 2π.

The elevation of each leg is assessed by a weighting function that contributes with a score
proportional to itself. This weighting function (Equation (4)) corresponds to a second degree polynomial
function with a double root at π, point of lower elevation. Figure 9 represents this function in the
definition interval of the legs position. A leg is perpendicular to the ground at 0 rads or 2π rads, as a
leg get nearer to this position, the weighting function scores higher that leg. Otherwise, at π rads the
leg is at the highest position; therefore, the score obtained is zero.

fpond(θ) = (θ − π)2 (4)

Once the elevation score is obtained, these are in order of highest to lowest ratings with a quicksort
algorithm [55] and the 3 legs with highest score are chosen. Then, the state of these 3 legs will be used
to obtain the velocity of the robot.

When the legs that are in traction with the ground have been identified, the velocity of the
robot is calculated from the state of the legs with the kinematic of the CLHeRo. The direct kinematic

Figure 8. Limit angles for aerial movements.

From this, the condition for the filter is shown in Equation (2).

Leg in possible ground position⇐⇒
{

θ ∈ [0, 103.7287] o

θ ∈ [241.954, 360] o (2)

Due to the configuration of the hexapods, the minimum number of legs that configure a stable
situation is with 3, a tripod. Any configuration with a number of legs less than 3 and more than
0 is considered as an unstable position, that either the robot cannot move or if it did it would be
uncontrolled, thus, in that case it is considered that the robot remains halt, see Equation (3).

If legs in possible ground position < 3 =⇒ vrobot = 0 (3)

If the number of legs is equal or superior to 3, the identification will continue. Only the tripod
with the 3 legs closest to the maximum elevation position of the robot is considered to realize the
traction with the ground. The maximum elevation occurs in the position 0 or 2π.

The elevation of each leg is assessed by a weighting function that contributes with a score
proportional to itself. This weighting function (Equation (4)) corresponds to a second degree polynomial
function with a double root at π, point of lower elevation. Figure 9 represents this function in the
definition interval of the legs position. A leg is perpendicular to the ground at 0 rads or 2π rads,
as a leg get nearer to this position, the weighting function scores higher that leg. Otherwise, at π rads
the leg is at the highest position; therefore, the score obtained is zero.

fpond(θ) = (θ − π)2 (4)

Once the elevation score is obtained, these are in order of highest to lowest ratings with a quicksort
algorithm [55] and the 3 legs with highest score are chosen. Then, the state of these 3 legs will be used
to obtain the velocity of the robot.

Sensors 2020, 20, 6741 10 of 38

When the legs that are in traction with the ground have been identified, the velocity of the
robot is calculated from the state of the legs with the kinematic of the CLHeRo. The direct kinematic
implemented is based in the same model of other mobile robots [56–58]. Grouping the legs into two
tripods the CLHeRo presents a kinematic similar to a differential-drive robot, as Siegwart explains,
where each tripod/wheel contributes to the motion.

Using this method, the velocity of the robot in a leg can be defined as:

vleg = vrobot + ω× rrp (5)

Now, expressing the forward and rotation velocity of the robot from the reference system of the
leg, the general expression for the direct kinematic is obtained (see Equation (6)). This expression is
similar to other systems that can be found in the literature for a model with a unique leg [56].

[
vleg,i

0

]
=

[
s(αi + βi) −c(αi + βi) −di · c(βi)

c(αi + βi) s(αi + βi) di · s(βi)

] 


vrx

vry

θr


 (6)

where α is the angular position of the leg with respect to the center of the robot. β is the angle that
forms the Y axis with the line that joins the center of the robot with the center of the leg and d is the
distance between the center of the robot and the leg. Figure 10 shows a diagram with these parameters.

The velocity of the leg only presents the term of forward velocity in the X axis, because one of the
assumptions of the model is that the legs neither slip nor skid.

Sensors 2020, 1, 5 10 of 39

implemented is based in the same model of other mobile robots [56–58]. Grouping the legs into two
tripods the CLHeRo presents a kinematic similar to a differential-drive robot, as Siegwart explains,
where each tripod/wheel contributes to the motion.

Using this method, the velocity of the robot in a leg can be defined as:

vleg = vrobot + ω × rrp (5)

Now, expressing the forward and rotation velocity of the robot from the reference system of the
leg, the general expression for the direct kinematic is obtained (see Equation (6)). This expression is
similar to other systems that can be found in the literature for a model with a unique leg [56].

[
vleg,i

0

]
=

[
s(αi + βi) −c(αi + βi) −di · c(βi)

c(αi + βi) s(αi + βi) di · s(βi)

] ⎡
⎢⎣

vrx

vry

θr

⎤
⎥⎦ (6)

where α is the angular position of the leg with respect to the center of the robot. β is the angle that
forms the Y axis with the line that joins the center of the robot with the center of the leg and d is the
distance between the center of the robot and the leg. Figure 10 shows a diagram with these parameters.

The velocity of the leg only presents the term of forward velocity in the X axis, because one of the
assumptions of the model is that the legs neither slip nor skid.

Figure 9. Weighting function for elevation.

Figure 10. Representation of parameters used in the kinematics for a leg.

So, the velocity of the robot expressed from a fixed reference system is obtained by rotation
matrices. Therefore, the direct kinematic for a i leg can be expressed as (Equation (7)):

Figure 9. Weighting function for elevation.

Sensors 2020, 1, 5 10 of 39

implemented is based in the same model of other mobile robots [56–58]. Grouping the legs into two
tripods the CLHeRo presents a kinematic similar to a differential-drive robot, as Siegwart explains,
where each tripod/wheel contributes to the motion.

Using this method, the velocity of the robot in a leg can be defined as:

vleg = vrobot + ω × rrp (5)

Now, expressing the forward and rotation velocity of the robot from the reference system of the
leg, the general expression for the direct kinematic is obtained (see Equation (6)). This expression is
similar to other systems that can be found in the literature for a model with a unique leg [56].

[
vleg,i

0

]
=

[
s(αi + βi) −c(αi + βi) −di · c(βi)

c(αi + βi) s(αi + βi) di · s(βi)

] ⎡
⎢⎣

vrx

vry

θr

⎤
⎥⎦ (6)

where α is the angular position of the leg with respect to the center of the robot. β is the angle that
forms the Y axis with the line that joins the center of the robot with the center of the leg and d is the
distance between the center of the robot and the leg. Figure 10 shows a diagram with these parameters.

The velocity of the leg only presents the term of forward velocity in the X axis, because one of the
assumptions of the model is that the legs neither slip nor skid.

Figure 9. Weighting function for elevation.

Figure 10. Representation of parameters used in the kinematics for a leg.

So, the velocity of the robot expressed from a fixed reference system is obtained by rotation
matrices. Therefore, the direct kinematic for a i leg can be expressed as (Equation (7)):

Figure 10. Representation of parameters used in the kinematics for a leg.

So, the velocity of the robot expressed from a fixed reference system is obtained by rotation
matrices. Therefore, the direct kinematic for a i leg can be expressed as (Equation (7)):

Sensors 2020, 20, 6741 11 of 38

[
vleg,i

0

]
= Ri




vx

vy

θ̇r


 =⇒ vp,i = Ri · v (7)

This represents the general model of the direct kinematic for mobile robots,
nevertheless, to particularize for the CLHeRo is necessary to specify the velocity of the legs
and solve the values of α and β.

The legs of the CLHeRo do not present any DoF in the direction of the leg, consequently, they are
always attached with the same orientation with respect to the chassis of the robot. This peculiarity
causes that the α and β parameters present fixed values for each one of the legs.

For every i leg =⇒ αi + βi =
π

2
(8)

This demonstration makes that the Ri matrix can be simplified in the following form (Equation (9)):

s(αi + βi) = s(π
2) = 1

c(αi + βi) = c(π
2) = 0

}
⇒ Ri (9)

Ri =
[

R1 R2 R3
]

R1 =

[
1 0 −d · c(βi)

0 1 d · s(βi)

]
; R2 =




c(θ) s(θ) 0
−s(θ) c(θ) 0

0 0 1


 ; R3 =

[
c(θ) s(θ) −d · c(βi)

−s(θ) c(θ) d · s(βi)

]

To obtain the velocity of the legs is necessary draw on their kinematic, which has been presented
by the authors in previous works ([33,47,48]). The kinematic of the legs corresponds to a cycloid;
therefore, the velocity can be defined as:

vp,i =

[
vp

0

]
=

[
R · [ϕ̇− ϕ̇ · cos(ϕ)]

0

]
(10)

where ϕ is the position angle of the cycloid and R is the radius of the leg. The algorithm, also includes
a mathematical lineal approximation to the nominal length of the radius of the length, this lineal
approximation is obtained after the results of several simulations with finite elements analysis of the
“C” legs and allows to implement the effective radius at every step and avoid calculating the mesh
elements and the requirement of high computational capabilities to estimate the pose at every step.
To reference the kinematics with the same angle, is possible to make the next change of variable.

ϕ = π + θ =⇒ ϕ̇ = θ̇ (11)

Finally, the expression for the velocity for any leg is:

vp,i =

[
vp

0

]
=

[
R ·
[
θ̇ − θ̇ · cos(π + θ)

]

0

]
(12)

At this point, is necessary to remember the assumptions made by the authors: the movement of
the robot has only be considered in the plane, this does not take into account the displacement in the Z
axis. And the legs have an ideal rolling without sliding or skidding, which makes the velocity in the Y
axis zero.

Sensors 2020, 20, 6741 12 of 38

Nevertheless, so far it has only applied the kinematic for a leg, giving rise to a undetermined
system a priori. To apply it to the rest of the legs, which receive the subscript i, j, k is enough with
extend the same definition.




vp,i
vp,j
vp,k


 =




Ri

Rj

Rk


 ·




vx

vy

θ̇


 =⇒ vp = R · v (13)

Since there are a greater number of restrictions to that of DoF, it may result in an incompatible
system. So with minimum squares the minimum error solution can be obtained, that will be taken as
an estimate of the robot’s speed.

Pose integration and estimation:
Once we have estimate the velocity of the robot with the direct kinematic, the estimation of the pose is
done with the last position and the numerical integration.

vrobot =

[
R

t · R
]−1

R
t · vp (14)

The final expression for the pose obtained is taken as an estimate of the pose resulting from the
odometry of the legs.

5. Tests and Validation

The objective with the tests is to verify two objectives:

• The validation of the proposed model for the odometry algorithm
• The analysis of fusing the odometry information with more sensors and compare if the localization

is more precise.

The simulation tests were run with the Gazebo simulator version 7 and the model detailed in
the C-Legs ROS metapackage [49]. On the other hand, the real tests can be distinguished between
indoor and outdoor tests. The indoor tests were monitored with a ground truth system to validate the
measurement of the different sensors, while the outdoor tests uses the onboard sensors of the robot
and manual measure tools.

5.1. Simulation Tests

Test environment description: As was mentioned above, the software used for the simulations
has been Gazebo simulator version 7, which is the default simulator for ROS Kinetic. For the tests
Gazebo was updated to the version 7.14. However, everything has been test and is possible to run it
with Ubuntu 18.04, ROS Melodic and Gazebo 9.0.

The implemented model for the simulation faithfully reproduces the physically characteristics of
the robot and the behavior of the robot’s actuator.

The empty default world from Gazebo was used to carry out the tests, because to analyze the gait
patterns is not necessary to implement any special scenario.

Test conditions: For analyzing the forward displacement 10 tests were performed. The robot and
the control program were configured for the fiberglass legs with 160 mm of diameter, a ground sweep
angle of 60 degrees, a rotation velocity for the legs of 1 rad/s at the ground phase and to complete
10 steps.

After each test, the final position error and the mean squared error were analyzed to verify the
accuracy of the algorithm.

Conclusions and discussion:
Is important to point, that one of the reasons why the results vary is, largely due, to the manually
initialization of all the ROS nodes and they stop. So, the human factor has an important effect on the

Sensors 2020, 20, 6741 13 of 38

results. However, despite that, the variations in each tests are very small. In the Table 4, the mean
squared error and the maximum error for each test are listed. The error is measured between the pose
of the robot given by Gazebo and the estimation calculated by the odometry algorithm. Figure 11
shows the results for the test #1. Analyzing in detail the graph, it is possible to observe that the
measures from Gazebo have a continues slope, while the odometry algorithm present the particular
jumps at every step, for example at time = 3 [s] or time = 8 [s].

The objective of these simulations were to analyze if the odometry algorithm was enough accurate
as the other sensors mounted on the CLHeRo, for that reason, only the forward displacement was
analyzed in the tests.

Table 4. Error results for the simulated forward tests.

Test MSE [m2] Maximum Error [m]

1 0.0001 0.0352
2 0.0001 0.0501
3 0.0006 0.0524
4 0.0014 0.0652
5 0.0010 0.0643
6 0.0008 0.0747
7 0.0019 0.3258
8 0.0030 0.1005
9 0.0039 0.1059

10 0.0014 0.0797

Sensors 2020, 1, 5 13 of 39

results. However, despite that, the variations in each tests are very small. In the Table 4, the mean
squared error and the maximum error for each test are listed. The error is measured between the pose
of the robot given by Gazebo and the estimation calculated by the odometry algorithm. Figure 11
shows the results for the test #1. Analyzing in detail the graph, it is possible to observe that the
measures from Gazebo have a continues slope, while the odometry algorithm present the particular
jumps at every step, for example at time = 3 [s] or time = 8 [s].

The objective of these simulations were to analyze if the odometry algorithm was enough accurate
as the other sensors mounted on the CLHeRo, for that reason, only the forward displacement was
analyzed in the tests.

Table 4. Error results for the simulated forward tests.

Test MSE [m2] Maximum Error [m]

1 0.0001 0.0352
2 0.0001 0.0501
3 0.0006 0.0524
4 0.0014 0.0652
5 0.0010 0.0643
6 0.0008 0.0747
7 0.0019 0.3258
8 0.0030 0.1005
9 0.0039 0.1059
10 0.0014 0.0797

Figure 11. Gazebo test #1.

The mean of all the mean squared errors and the mean of the maximum errors are very small,
see results below:

Mean MSE = 0.0015 m2

Mean Maximum Error = 0.0954 m

Figure 11. Gazebo test #1.

The mean of all the mean squared errors and the mean of the maximum errors are very small,
see results below:

Sensors 2020, 20, 6741 14 of 38

Mean MSE = 0.0015 m2

Mean Maximum Error = 0.0954 m

If we do not take in consideration the results from the test 7, which presents a result outside of
the mode, the new value of the mean for the maximum errors is reduced to 0.0069 m. This means
that for all the tests were the robot has walk a mean distance of 3.257 m, the odometry algorithm
has an estimation error less than 7 cm, in other words, 2.14% of the traveled distance. This is a very
accurate result considering that the algorithm uses an approximate model of the leg that makes a lineal
approximation of the flexible characteristics of the leg. Or an error less than the 10% of the total body
length of the robot. So, the authors consider that the results obtained from the odometry algorithm
have sufficient precision to use it in the real robot.

The graphs for the simulation results of the tests, the simulation tests dataset and the Matlab
scripts can be downloaded from this repository (https://github.com/grafoteka/clhero_pose_tests).

5.2. Indoor Real Tests

Test environment description: To carry out the indoor tests, two scenarios were set up for this
purpose. The first one, include a test bench developed in previous works [59] and a Optitrack motion
capture system to obtain the pose of the robot. This test bench has been designed to analyze the forward
displacement of the robot and analyze different gait patterns and configurations (rotation speed, attack
angles, . . .). The test bench includes a computer that uses the Optitrack system information to calculate
the difference between the pose of the robot and the center of the test bench and thereby regulate the
speed of it. Figure 12 shows the schema of all the system for the real tests and Figure 13 shows the test
room once it was operational. In this room, a total of 6 cameras of the Optitrack system were installed
together with a computer exclusively dedicated to running the Optitrack control software (Tracking
Tools). The effective volume that is covered with the cameras was focused on the test bench since it
would be the area where the robot would perform the tests.

Sensors 2020, 1, 5 14 of 39

If we do not take in consideration the results from the test 7, which presents a result outside of
the mode, the new value of the mean for the maximum errors is reduced to 0.0069 m. This means
that for all the tests were the robot has walk a mean distance of 3.257 m, the odometry algorithm
has an estimation error less than 7 cm, in other words, 2.14% of the traveled distance. This is a very
accurate result considering that the algorithm uses an approximate model of the leg that makes a lineal
approximation of the flexible characteristics of the leg. Or an error less than the 10% of the total body
length of the robot. So, the authors consider that the results obtained from the odometry algorithm
have sufficient precision to use it in the real robot.

The graphs for the simulation results of the tests, the simulation tests dataset and the Matlab
scripts can be downloaded from this repository (https://github.com/grafoteka/clhero_pose_tests).

5.2. Indoor Real Tests

Test environment description: To carry out the indoor tests, two scenarios were set up for this
purpose. The first one, include a test bench developed in previous works [59] and a Optitrack motion
capture system to obtain the pose of the robot. This test bench has been designed to analyze the forward
displacement of the robot and analyze different gait patterns and configurations (rotation speed, attack
angles, . . .). The test bench includes a computer that uses the Optitrack system information to calculate
the difference between the pose of the robot and the center of the test bench and thereby regulate the
speed of it. Figure 12 shows the schema of all the system for the real tests and Figure 13 shows the test
room once it was operational. In this room, a total of 6 cameras of the Optitrack system were installed
together with a computer exclusively dedicated to running the Optitrack control software (Tracking
Tools). The effective volume that is covered with the cameras was focused on the test bench since it
would be the area where the robot would perform the tests.

Figure 12. Schema of all the system for the indoor tests with the test bench.Figure 12. Schema of all the system for the indoor tests with the test bench.

https://github.com/grafoteka/clhero_pose_tests

Sensors 2020, 20, 6741 15 of 38Sensors 2020, 1, 5 15 of 39

Figure 13. Test room for the odometry tests.

The second indoor scenario area is bigger than the first one and has been conceived to analyze
more complex maneuvers like turning or complete a circuit. The effective work area for this scenario
is 8 × 6 m. For covering this area, two more cameras were necessary to be installed, so a Optitrack
system with 8 cameras was configured. As in the first indoor scenario, one computer is exclusively
necessary to run the Optitrack control software and publish the global pose of the robot. Figure 14
shows the second test area once it was operational.

Figure 14. Indoor tests scenario 2.

5.2.1. Indoor Tests—Scenario 1

Test conditions: The tests carried out in the test bench (Fig.15) aimed to validate the results
obtained in the Gazebo simulations. The real tests consisted on a set of 10 tests walking forward on the
test bench. In order to reproduce the conditions of the simulation, the configuration of the parameters
of the robot were the same as in the simulations, see Table 5.

Figure 13. Test room for the odometry tests.

The second indoor scenario area is bigger than the first one and has been conceived to analyze
more complex maneuvers like turning or complete a circuit. The effective work area for this scenario
is 8 × 6 m. For covering this area, two more cameras were necessary to be installed, so a Optitrack
system with 8 cameras was configured. As in the first indoor scenario, one computer is exclusively
necessary to run the Optitrack control software and publish the global pose of the robot. Figure 14
shows the second test area once it was operational.

Sensors 2020, 1, 5 15 of 39

Figure 13. Test room for the odometry tests.

The second indoor scenario area is bigger than the first one and has been conceived to analyze
more complex maneuvers like turning or complete a circuit. The effective work area for this scenario
is 8 × 6 m. For covering this area, two more cameras were necessary to be installed, so a Optitrack
system with 8 cameras was configured. As in the first indoor scenario, one computer is exclusively
necessary to run the Optitrack control software and publish the global pose of the robot. Figure 14
shows the second test area once it was operational.

Figure 14. Indoor tests scenario 2.

5.2.1. Indoor Tests—Scenario 1

Test conditions: The tests carried out in the test bench (Fig.15) aimed to validate the results
obtained in the Gazebo simulations. The real tests consisted on a set of 10 tests walking forward on the
test bench. In order to reproduce the conditions of the simulation, the configuration of the parameters
of the robot were the same as in the simulations, see Table 5.

Figure 14. Indoor tests scenario 2.

5.2.1. Indoor Tests—Scenario 1

Test conditions: The tests carried out in the test bench (Figure 15) aimed to validate the results
obtained in the Gazebo simulations. The real tests consisted on a set of 10 tests walking forward on the
test bench. In order to reproduce the conditions of the simulation, the configuration of the parameters
of the robot were the same as in the simulations, see Table 5.

Sensors 2020, 20, 6741 16 of 38

Table 5. CLHeRo parameters for tests at indoor scenario 1.

Parameter Value

Legs diameter 160 [mm]
Ground sweep angle 60 [degrees]
Ground rotation speed 1 [rad/s]
Flight rotation speed 5 [rad/s]

Sensors 2020, 1, 5 16 of 39

Table 5. CLHeRo parameters for tests at indoor scenario 1.

Parameter Value

Legs diameter 160 [mm]
Ground sweep angle 60 [degrees]
Ground rotation speed 1 [rad/s]
Flight rotation speed 5 [rad/s]

Figure 15. CLHeRo forward tests—scenario 1.

In order to prevent a result influenced by the human factor, the teleoperation of the CLHeRo was
forbidden and a ROS C++ script was created, so in each test the execution orders were send always
with the same time-stamp. To reproduce or execute the same tests, the reader can download the codes
and rosbags available in this repository (https://github.com/grafoteka/clhero_test_bench).

In this tests, the set up of the robot was without its batteries, instead of that, it was supplied with
a cable that was also used as an umbilical cord, like in some real search and rescue tasks. In the other
hand, the communications between the robot and the control station were untethered, with Wi-Fi
protocol at 2.4 GHz.

Results and discussion: As was explained before, the objective with this tests is to validate if the
odometry algorithm is enough accurate to use it in the real robot and can be used as an input data for
fusion sensor. Like in the simulation study, in the test bench tests, only the forward displacement of
the robot has been taken into consideration.

In the Table 6, the mean squared error and the maximum error for each test are listed. The error is
measured between the pose of the robot given by Optitrack system and the estimation calculated by
the odometry algorithm. Figure 16 shows the results for the real test #6.

For all the tests the robot has walk a mean distance of 1.259 m, which is equal to 8 steps with a
ground sweep angle of 60 degrees. The odometry algorithm has an estimation error of 2.5 cm at the
final position, the mean of the odometry values is 1.269 m and the mean for the Optitrack measures is
1.244 m, in other words, 1.97% error of the traveled distance.

Mean MSE = 0.0055 m2

Mean Maximum Error = 0.1096 m

The tests show that the results obtained are even better than the obtained in the simulations.
But some facts have to be pointed, the distance traveled by the robot is less in the real tests than in the
simulations, so tests with a longer distance traveled are required to evaluate if the error is constant or
increases with the distance. Second, some physical parameters or coefficients cannot be modeled in
the simulation, so it could be another point to take into consideration.

Figure 15. CLHeRo forward tests—scenario 1.

In order to prevent a result influenced by the human factor, the teleoperation of the CLHeRo was
forbidden and a ROS C++ script was created, so in each test the execution orders were send always
with the same time-stamp. To reproduce or execute the same tests, the reader can download the codes
and rosbags available in this repository (https://github.com/grafoteka/clhero_test_bench).

In this tests, the set up of the robot was without its batteries, instead of that, it was supplied with
a cable that was also used as an umbilical cord, like in some real search and rescue tasks. In the other
hand, the communications between the robot and the control station were untethered, with Wi-Fi
protocol at 2.4 GHz.

Results and discussion: As was explained before, the objective with this tests is to validate if the
odometry algorithm is enough accurate to use it in the real robot and can be used as an input data for
fusion sensor. Like in the simulation study, in the test bench tests, only the forward displacement of
the robot has been taken into consideration.

In the Table 6, the mean squared error and the maximum error for each test are listed. The error is
measured between the pose of the robot given by Optitrack system and the estimation calculated by
the odometry algorithm. Figure 16 shows the results for the real test #6.

For all the tests the robot has walk a mean distance of 1.259 m, which is equal to 8 steps with a
ground sweep angle of 60 degrees. The odometry algorithm has an estimation error of 2.5 cm at the
final position, the mean of the odometry values is 1.269 m and the mean for the Optitrack measures is
1.244 m, in other words, 1.97% error of the traveled distance.

Mean MSE = 0.0055 m2

Mean Maximum Error = 0.1096 m

The tests show that the results obtained are even better than the obtained in the simulations.
But some facts have to be pointed, the distance traveled by the robot is less in the real tests than in the
simulations, so tests with a longer distance traveled are required to evaluate if the error is constant or
increases with the distance. Second, some physical parameters or coefficients cannot be modeled in
the simulation, so it could be another point to take into consideration.

https://github.com/grafoteka/clhero_test_bench

Sensors 2020, 20, 6741 17 of 38

Table 6. Error results for the real forward tests.

Test MSE [m2] Maximum Error [m]

1 0.1802 0.0122
2 0.2130 0.0344
3 0.3025 0.0194
4 0.1416 0.0029
5 0.0824 0.0019
6 0.0376 0.0002
7 0.0753 0.0017
8 0.0702 0.0008
9 0.0283 0.0001

10 0.0452 0.0003
11 0.1115 0.0052
12 0.0985 0.0025
13 0.1017 0.0028
14 0.1005 0.0028
15 0.1311 0.0000
16 0.0334 0.0001

Sensors 2020, 1, 5 17 of 39

Table 6. Error results for the real forward tests.

Test MSE [m2] Maximum Error [m]

1 0.1802 0.0122
2 0.2130 0.0344
3 0.3025 0.0194
4 0.1416 0.0029
5 0.0824 0.0019
6 0.0376 0.0002
7 0.0753 0.0017
8 0.0702 0.0008
9 0.0283 0.0001
10 0.0452 0.0003
11 0.1115 0.0052
12 0.0985 0.0025
13 0.1017 0.0028
14 0.1005 0.0028
15 0.1311 0.0000
16 0.0334 0.0001

Figure 16. Real test #1.

5.2.2. Indoor Tests—Scenario 2

Test conditions: For the indoor scenario 2, three different tests were performed: Walking straight,
turn in place and complete a circuit. The first one, walking straight, can be considered as an extension
of the test in the indoor scenario 1. However, this time the analysis will include all the sensors installed
in the robotic platform (IMU, RealSense D435 and T265). On one side, the IMU is used together with
the odometry algorithm and the ROS package Robot pose EKF to estimate the pose of the robot. It uses
an extended Kalman filter with a 6D model (3D position and 3D orientation) to combine the input
measurements. On the other side, the RealSense D435 is used with the algorithm ORB-SLAM2 [60]
which is a SLAM solution to compute in realtime the camera trajectory and a sparse 3D reconstruction.
It is able to detect loops and relocalize the camera in realtime. Finally, the RealSense T265 uses the
Intel tracking software to calculate the position and orientation of the robot. Figure 17 shows all the
components for this test and the following.

Figure 16. Real test #1.

5.2.2. Indoor Tests—Scenario 2

Test conditions: For the indoor scenario 2, three different tests were performed: Walking straight,
turn in place and complete a circuit. The first one, walking straight, can be considered as an extension
of the test in the indoor scenario 1. However, this time the analysis will include all the sensors installed
in the robotic platform (IMU, RealSense D435 and T265). On one side, the IMU is used together with
the odometry algorithm and the ROS package Robot pose EKF to estimate the pose of the robot. It uses
an extended Kalman filter with a 6D model (3D position and 3D orientation) to combine the input
measurements. On the other side, the RealSense D435 is used with the algorithm ORB-SLAM2 [60]
which is a SLAM solution to compute in realtime the camera trajectory and a sparse 3D reconstruction.
It is able to detect loops and relocalize the camera in realtime. Finally, the RealSense T265 uses the

Sensors 2020, 20, 6741 18 of 38

Intel tracking software to calculate the position and orientation of the robot. Figure 17 shows all the
components for this test and the following.
Sensors 2020, 1, 5 18 of 39

Figure 17. Components installed on the CLHeRo for the tests.

Walking straight test: The walking straight test can be subdivided into two different tests. The first
one consists in 5 trials to analyze the final localization of the robot and the error measurement from
each sensor respect to the ground truth system. These analyzes include the XY trajectory of the robot
and three individual studies of the displacement in the three axis respect to the time (X, Y, Z). The XY
trajectory is used to recreate the path followed by the robot in the trial and get the final error in the
coordinates (X, Y). The individual studies of each variable is used to find some periodic behaviors or
disturbance in the sensor measurements. For this trials the robot configuration is the same as in the
indoor scenario 1 (see Table 5).

Table 7 resumes the final errors for each trial and sensor. The “Odometry” tag results are the EKF
values with the input of the odometry algorithm and the IMU sensor, but is called with that name,
for a better comprehension.

Table 7. Results for the indoor scenario 2 test 1: Walking straight. Error units (m).

Trial

1 2 3 4 5

ORB-SLAM2
X 0.0184 0.0013 0.0238 0.0070 0.0007
Y 0.1931 0.1176 0.2293 0.4302 0.0755
Z 0.0438 0.0438 0.0746 0.0727 0.0874

T265
X 0.7464 0.8530 0.6511 0.3196 0.2189
Y 0.1446 0.0196 0.2640 0.3068 0.1052
Z 0.1561 0.2085 0.0434 0.1170 0.1641

Odometry
X 0.1449 0.0866 0.0611 0.0440 0.0663
Y 0.1247 0.4174 0.1024 0.2769 0.1866
Z 0.0430 0.0438 0.0487 0.0456 0.0561

In the Figures 18 and 19, the results of the final X and Y errors are shown. The T265 presents
much worse errors than the ORB SLAM2 and EKF algorithms, even though Intel specifies that the
algorithm of the T265 uses an EKF algorithm together with the onboard IMU sensor of the camera.
The magnitude of the error for the trials 1 and 2 is even bigger than the length of the body of the
robot. However, if we study, for example, the XY graph of the trial 1 (see Figure 20), it shows that the
T265 presents a more erratic and not as smooth path as the ORB SLAM2 path. After some more tests,
the reason why the T265 presents this error in the measurements is because the Intel’s Visual SLAM
requires more features in the scene than the ORB SLAM2 algorithm. When the amount of features that
are present in the scene increases, this error is reduced.

Figure 17. Components installed on the CLHeRo for the tests.

Walking straight test: The walking straight test can be subdivided into two different tests. The first
one consists in 5 trials to analyze the final localization of the robot and the error measurement from
each sensor respect to the ground truth system. These analyzes include the XY trajectory of the robot
and three individual studies of the displacement in the three axis respect to the time (X, Y, Z). The XY
trajectory is used to recreate the path followed by the robot in the trial and get the final error in the
coordinates (X, Y). The individual studies of each variable is used to find some periodic behaviors or
disturbance in the sensor measurements. For this trials the robot configuration is the same as in the
indoor scenario 1 (see Table 5).

Table 7 resumes the final errors for each trial and sensor. The “Odometry” tag results are the EKF
values with the input of the odometry algorithm and the IMU sensor, but is called with that name,
for a better comprehension.

Table 7. Results for the indoor scenario 2 test 1: Walking straight. Error units (m).

Trial

1 2 3 4 5

ORB-SLAM2
X 0.0184 0.0013 0.0238 0.0070 0.0007
Y 0.1931 0.1176 0.2293 0.4302 0.0755
Z 0.0438 0.0438 0.0746 0.0727 0.0874

T265
X 0.7464 0.8530 0.6511 0.3196 0.2189
Y 0.1446 0.0196 0.2640 0.3068 0.1052
Z 0.1561 0.2085 0.0434 0.1170 0.1641

Odometry
X 0.1449 0.0866 0.0611 0.0440 0.0663
Y 0.1247 0.4174 0.1024 0.2769 0.1866
Z 0.0430 0.0438 0.0487 0.0456 0.0561

In the Figures 18 and 19, the results of the final X and Y errors are shown. The T265 presents
much worse errors than the ORB SLAM2 and EKF algorithms, even though Intel specifies that the
algorithm of the T265 uses an EKF algorithm together with the onboard IMU sensor of the camera.
The magnitude of the error for the trials 1 and 2 is even bigger than the length of the body of the
robot. However, if we study, for example, the XY graph of the trial 1 (see Figure 20), it shows that the
T265 presents a more erratic and not as smooth path as the ORB SLAM2 path. After some more tests,
the reason why the T265 presents this error in the measurements is because the Intel’s Visual SLAM
requires more features in the scene than the ORB SLAM2 algorithm. When the amount of features that
are present in the scene increases, this error is reduced.

Sensors 2020, 20, 6741 19 of 38Sensors 2020, 1, 5 19 of 39

Figure 18. Indoor tests scenario 2. Test 1. Trial 1. Final error X position.

Figure 19. Indoor tests scenario 2. Test 1. Trial 1. Final error Y position.

Figure 20. Indoor tests scenario 2. Test 1. Trial 1. Final error XY position.

So, the error measure in the final X position has acceptable results, specially for the EKF and
ORB SLAM algorithms, however, none of the three methods presents a perfect estimation for the
displacement in the Y axis. However, the errors measured are smaller than the half of the width of the
length of the chassis of the robot, which can be marked as an acceptable result.

Another important point is that, for all the trials, the T265 presents a worse estimation of the robot
position in the Z axis. While the measure should be between 0.0[m] and −0.1[m] in some trial, the T265

Figure 18. Indoor tests scenario 2. Test 1. Trial 1. Final error X position.

Sensors 2020, 1, 5 19 of 39

Figure 18. Indoor tests scenario 2. Test 1. Trial 1. Final error X position.

Figure 19. Indoor tests scenario 2. Test 1. Trial 1. Final error Y position.

Figure 20. Indoor tests scenario 2. Test 1. Trial 1. Final error XY position.

So, the error measure in the final X position has acceptable results, specially for the EKF and
ORB SLAM algorithms, however, none of the three methods presents a perfect estimation for the
displacement in the Y axis. However, the errors measured are smaller than the half of the width of the
length of the chassis of the robot, which can be marked as an acceptable result.

Another important point is that, for all the trials, the T265 presents a worse estimation of the robot
position in the Z axis. While the measure should be between 0.0[m] and −0.1[m] in some trial, the T265

Figure 19. Indoor tests scenario 2. Test 1. Trial 1. Final error Y position.

Sensors 2020, 1, 5 19 of 39

Figure 18. Indoor tests scenario 2. Test 1. Trial 1. Final error X position.

Figure 19. Indoor tests scenario 2. Test 1. Trial 1. Final error Y position.

Figure 20. Indoor tests scenario 2. Test 1. Trial 1. Final error XY position.

So, the error measure in the final X position has acceptable results, specially for the EKF and
ORB SLAM algorithms, however, none of the three methods presents a perfect estimation for the
displacement in the Y axis. However, the errors measured are smaller than the half of the width of the
length of the chassis of the robot, which can be marked as an acceptable result.

Another important point is that, for all the trials, the T265 presents a worse estimation of the robot
position in the Z axis. While the measure should be between 0.0[m] and −0.1[m] in some trial, the T265

Figure 20. Indoor tests scenario 2. Test 1, trial 1. Final error XY position.

So, the error measure in the final X position has acceptable results, specially for the EKF and
ORB SLAM algorithms, however, none of the three methods presents a perfect estimation for the
displacement in the Y axis. However, the errors measured are smaller than the half of the width of the
length of the chassis of the robot, which can be marked as an acceptable result.

Another important point is that, for all the trials, the T265 presents a worse estimation of the robot
position in the Z axis. While the measure should be between 0.0 [m] and −0.1 [m] in some trial, the

Sensors 2020, 20, 6741 20 of 38

T265 exceeds the +0.2 [m], which is a difference as big as go up one step. Figure 21 resumes the Z
measures from the first test, the black line is the T265 camera.

Sensors 2020, 1, 5 20 of 39

exceeds the +0.2[m], which is a difference as big as go up one step. Figure 21 resumes the Z measures
from the first test, the black line is the T265 camera.

Figure 21. Indoor tests scenario 2. Test 1. Trials 1–5. Error in Z position.

The second test consisted in 3 different trials, and each one was repeated twice. Moreover, in
each one of the three trials the ground sweep angle was modified (30◦, 45◦ and 60◦). The objective
of this second test is to analyze if different gait patterns configurations help to achieve a better pose
estimation and try to find a better configuration to solve the errors showed by the T265 camera. For
the six tests, the CLHeRo was programmed to walk for a period of sixteen strides and not to achieve
a certain distance, because the distance travelled in each step is directly correlated with the ground
sweep angle. The ground rotation speed parameter has kept constant at 1 rads/s. Moreover, for this
test, more EKF filters were configured. This new EKF filters have been configured in pairs of sensors
(Odometry + IMU, Odometry + ORB SLAM2, IMU + ORB SLAM2), so now the study can also indicate
if a couple of sensors make a great difference in the pose estimation of the robot. Moreover, the EKF
filter for this test include three sensors measurements (Odometry, IMU and ORB SLAM2). To verify the
conclusion from the previous test, where the T265 was not very accurate, some objects were included
in the scene, so the T265 can extract more features in each frame.

Table 8 resumes the final mean errors for each trial, sensor and EKF combination. In the Figure 22
in and Figure 23 the results of the final X and Y errors are shown.

Figure 21. Indoor tests scenario 2. Test 1, trials 1–5. Error in Z position.

The second test consisted in 3 different trials, and each one was repeated twice. Moreover, in
each one of the three trials the ground sweep angle was modified (30◦, 45◦ and 60◦). The objective
of this second test is to analyze if different gait patterns configurations help to achieve a better pose
estimation and try to find a better configuration to solve the errors showed by the T265 camera. For
the six tests, the CLHeRo was programmed to walk for a period of sixteen strides and not to achieve
a certain distance, because the distance travelled in each step is directly correlated with the ground
sweep angle. The ground rotation speed parameter has kept constant at 1 rads/s. Moreover, for this
test, more EKF filters were configured. This new EKF filters have been configured in pairs of sensors
(Odometry + IMU, Odometry + ORB SLAM2, IMU + ORB SLAM2), so now the study can also indicate
if a couple of sensors make a great difference in the pose estimation of the robot. Moreover, the EKF
filter for this test include three sensors measurements (Odometry, IMU and ORB SLAM2). To verify the
conclusion from the previous test, where the T265 was not very accurate, some objects were included
in the scene, so the T265 can extract more features in each frame.

Table 8 resumes the final mean errors for each trial, sensor and EKF combination. In the Figure 22
in and Figure 23 the results of the final X and Y errors are shown.

Sensors 2020, 20, 6741 21 of 38

Table 8. Results for the indoor scenario 2 test 2: Walking with different ground sweep angle.

Trial

30◦ 45◦ 60◦

ORB-SLAM2
X 0.0184 0.0013 0.0238
Y 0.1931 0.1176 0.2293
Z 0.0438 0.0438 0.0746

T265
X 0.7464 0.8530 0.6511
Y 0.1446 0.0196 0.2640
Z 0.1561 0.2085 0.0434

Odometry
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

EKF
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + IMU
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

IMU + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Sensors 2020, 1, 5 21 of 39

Table 8. Results for the indoor scenario 2 test 2: Walking with different ground sweep angle.

Trial

30◦ 45◦ 60◦

ORB-SLAM2
X 0.0184 0.0013 0.0238
Y 0.1931 0.1176 0.2293
Z 0.0438 0.0438 0.0746

T265
X 0.7464 0.8530 0.6511
Y 0.1446 0.0196 0.2640
Z 0.1561 0.2085 0.0434

Odometry
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

EKF
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + IMU
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

IMU + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Figure 22. Indoor tests scenario 2. Test 1. Trials 1–5. Final error X position.

Figure 23. Indoor tests scenario 2. Test 1. Trials 1–5. Final error Y position.

Figure 22. Indoor tests scenario 2. Test 1. Trials 1–5. Final error X position.

Sensors 2020, 1, 5 21 of 39

Table 8. Results for the indoor scenario 2 test 2: Walking with different ground sweep angle.

Trial

30◦ 45◦ 60◦

ORB-SLAM2
X 0.0184 0.0013 0.0238
Y 0.1931 0.1176 0.2293
Z 0.0438 0.0438 0.0746

T265
X 0.7464 0.8530 0.6511
Y 0.1446 0.0196 0.2640
Z 0.1561 0.2085 0.0434

Odometry
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

EKF
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + IMU
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Odometry + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

IMU + ORB SLAM2
X 0.1449 0.0866 0.0611
Y 0.1247 0.4174 0.1024
Z 0.0430 0.0438 0.0487

Figure 22. Indoor tests scenario 2. Test 1. Trials 1–5. Final error X position.

Figure 23. Indoor tests scenario 2. Test 1. Trials 1–5. Final error Y position.Figure 23. Indoor tests scenario 2. Test 1. Trials 1–5. Final error Y position.

Sensors 2020, 20, 6741 22 of 38

The first thing that the reader can notice from the results is that the final error in X position for
the T265 has decreased considerably (in some cases more than 0.6 m which is an improve of the 85%).
In the 6 trials the raw measurements of all the sensors is below than 0.2 m of error and in the majority
of cases under 0.1 m, which can be considered as a very precise results. The worst results are the
combination of the EKFs that combines the IMU with another sensor (odometry or camera), it could be
caused by the oscillations and forces that the robot suffers at every step. Decreasing the rotation speed
of the motors can help to reduce this negative effect.

The final Y error position has also been significantly improved. The gait pattern with the ground
sweep angle of 30 degrees has proved to be a very precise gait pattern in order to estimate the pose of
the robot in both axis (X and Y). While in the two other configurations (45 degrees and 60 degrees)
a major oscillation of the robot’s body provokes that the cameras have several problems to perform
a better estimation and therefore the EKF that includes the odometry and the IMU presents the
better results.

Finally, to complete this analysis, is necessary to compare the oscillation in the Z axis (Figure 24).
As happened with the X and Y final errors, the Z position error with the legs angle configured as
30 degrees presents the better estimation, but only for the ORB SLAM2 algorithm. For the other two
configurations, both visual estimators presents a negative derivative, but with the combination of the
EKF algorithm with the three inputs (odometry, IMU, ORB SLAM2) this negative error can be solved
and the Z error position is almost null.

Sensors 2020, 1, 5 22 of 39

The first thing that the reader can notice from the results is that the final error in X position for
the T265 has decreased considerably (in some cases more than 0.6 m which is an improve of the 85%).
In the 6 trials the raw measurements of all the sensors is below than 0.2 m of error and in the majority
of cases under 0.1 m, which can be considered as a very precise results. The worst results are the
combination of the EKFs that combines the IMU with another sensor (odometry or camera), it could be
caused by the oscillations and forces that the robot suffers at every step. Decreasing the rotation speed
of the motors can help to reduce this negative effect.

The final Y error position has also been significantly improved. The gait pattern with the ground
sweep angle of 30 degrees has proved to be a very precise gait pattern in order to estimate the pose of
the robot in both axis (X and Y). While in the two other configurations (45 degrees and 60 degrees)
a major oscillation of the robot’s body provokes that the cameras have several problems to perform
a better estimation and therefore the EKF that includes the odometry and the IMU presents the
better results.

Finally, to complete this analysis, is necessary to compare the oscillation in the Z axis (Figure 24).
As happened with the X and Y final errors, the Z position error with the legs angle configured as
30 degrees presents the better estimation, but only for the ORB SLAM2 algorithm. For the other two
configurations, both visual estimators presents a negative derivative, but with the combination of the
EKF algorithm with the three inputs (odometry, IMU, ORB SLAM2) this negative error can be solved
and the Z error position is almost null.

Figure 24. Indoor tests scenario 2. Test 1. Trials 1–5. Final error Z position.

Turn in place: This type of movement has been the second to be implemented in the CLHeRo.
Having this two different actions (walking straight and turning in place) for moving the robot, allows to
achieve more complex tasks in a future, e.g., path following or autonomous navigation.

In order to have a more detailed study for this test, it was divided in five trials, where only the
ground sweep angle was modified. The first trial begin with a configuration for walking straight,
60 degrees (1.05 rads). After that, in the next trials the angle was reduced: 45, 30, 22.5, 11.25 degrees
(0.79, 0.52, 0.39, 0.2 rads). However, in all the trials the ground rotation velocity was kept constant:
0.1 rads/s.

Moreover, in this test and in the futures one, to have a more detailed analysis the EKF combinations
with couples of sensors have been configured, as in the previous test. And taking in consideration

Figure 24. Indoor tests scenario 2. Test 1, trials 1–5. Final error Z position.

Turn in place: This type of movement has been the second to be implemented in the CLHeRo.
Having this two different actions (walking straight and turning in place) for moving the robot, allows to
achieve more complex tasks in a future, e.g., path following or autonomous navigation.

In order to have a more detailed study for this test, it was divided in five trials, where only the
ground sweep angle was modified. The first trial begin with a configuration for walking straight,
60 degrees (1.05 rads). After that, in the next trials the angle was reduced: 45, 30, 22.5, 11.25 degrees
(0.79, 0.52, 0.39, 0.2 rads). However, in all the trials the ground rotation velocity was kept constant:
0.1 rads/s.

Moreover, in this test and in the futures one, to have a more detailed analysis the EKF combinations
with couples of sensors have been configured, as in the previous test. And taking in consideration

Sensors 2020, 20, 6741 23 of 38

some lessons learned from the previous test, different objects were included in the scene in order to
have more features and get a better tracking.

The first trial, with the 60 degrees configuration failed, the robot was only able to do some steps
and then was necessary to do some recovery maneuvers and resynchronize the legs to be able to
continue turning. After several tries, this trial was considered as null due to the lack of torque of
the motors.

The second trial, with 45 degrees (0.79 rads) configuration, was also repeated several times,
and each trial consisted in two and a half turns. The extra turns in each trial were done because both
cameras were lost. So, closing the loop was intended to relocalize the robot after each complete turn.
However, this only was useful to correct the ending position of the turn, during the rest of the turn
there was a translational error that could not be reduced.

The configuration with 30 degrees (0.52 rads) was the third trial. In this case, the same strategy as
in the previous configuration was repeated, turn more than one turn in order to close the loop and
relocate the robot.

For the last two trials, 22.5 and 11.25 degrees (0.39 and 0.2 rads) configuration, only one turn was
executed, because in these configurations, the oscillation in the Y and Z are less aggressive than in the
previous cases.

Figure 25 shows the tracked XY position for the trials 2− 5. It is important to notice that both
localization methods based on images present the same and constant error. It draws the attention that
for all the trials, the visual error have more or less the same magnitude and presents the shape of a
circumference. In the case that the robot needs to realize one complete turn, there should not be any
problem because the XY localization is correct (less than 10 cm of error, which is an acceptable value).
Nevertheless if the robot only turns a portion of a complete turn, a translational error appears in the
robot localization, it can get a maximum value of the length of the robot’s body for 180 degrees or half
of the body length for 90 degrees or 270 degrees, Tables 9 and10 show in detail this error.

For its part, the odometry algorithm, except for the last trial, presents a good estimation of the
position of the robot, with only a few centimeters of error. This error is provoke because the algorithm
takes in consideration the maneuver of turn in place as an ideal turn with no friction or drift, but this
is not true, because of the morphology of the robot and its properties to rotate the legs, is necessary
some drift to be able to turn.

With the final results of the previous tests, the authors can confirm that the odometry algorithm
presents a good accuracy to estimate the pose of the robot. Some reasons to accept the algorithm as
valid are that the estimation error is not increased with the distance and the estimation is better when
it is compared with other sensors like the T265 that is highly accepted for autonomous navigation with
ground and aerial robots.

Now, analyzing the EKF results, in one hand, the IMU + VO combination does not improve
the estimation, so this configuration can be rejected. In the other hand, the complete EKF and the
odometry + VO reduces the effect of the translational error in a range about the 50% (see Table 11).
And finally the odometry + IMU shows an excellent result, drawing a perfect turn in place movement.

One possible reason why the visual odometry sensors a loosing the localization of the robot is
due to the complex movement of the turn. In each step, the robot rotates, but also some vertical
displacement is registered. This vertical displacement is bigger as the ground sweep angle is increased,
table shows the average vertical displacement at every step depending on the angle.

Circuit: This test combine the movements studied in the last two previous explained tests. This
test can be used as a first approach to achieve autonomous navigation for robots with “C” shape legs.

The circuit consisted of traversing a rectangle with approximate dimensions of 3 × 2 m. A total
of four trials were done for this test, and all of them were teleoperated, so each one differ a little bit
in the path generated. The important facts for the study is not to do always the same path, but are:
first, that the path covered presents the minimum possible error between the Optitrack system and the

Sensors 2020, 20, 6741 24 of 38

information from the sensors. Second, the final position must be as close as possible to the physical
final position.

Sensors 2020, 1, 5 24 of 39

information from the sensors. Second, the final position must be as close as possible to the physical
final position.

Figure 25. Indoor tests scenario 2. Test 1. Trials 1–5. Final error XY position.

Table 9. Visual odometry systems, mean error measurements.

Angle [degrees] Angle [rads] X Error [m] Y Error [m]

45 π/4 −0.1 0.15
90 π/2 −0.3 0.2

135 3π/4 −0.45 0.15
180 pi −0.6 0.0
225 5π/4 −0.45 −0.25
270 3π/2 −0.3 −0.35
315 7π/4 −0.05 −0.25

Table 10. Vertical average distance.

Angle [degrees] Angle [rads] Vertical Displacement [cm]

45 0.79 1.2
30 0.52 1.6

22.5 0.39 2.1
11.25 0.2 2.7

Figure 25. Indoor tests scenario 2. Test 1, trials 1–5. Final error XY position.

Table 9. Visual odometry systems, mean error measurements.

Angle [degrees] Angle [rads] X Error [m] Y Error [m]

45 π/4 −0.1 0.15
90 π/2 −0.3 0.2

135 3π/4 −0.45 0.15
180 pi −0.6 0.0
225 5π/4 −0.45 −0.25
270 3π/2 −0.3 −0.35
315 7π/4 −0.05 −0.25

Table 10. Vertical average distance.

Angle [degrees] Angle [rads] Vertical Displacement [cm]

45 0.79 1.2
30 0.52 1.6

22.5 0.39 2.1
11.25 0.2 2.7

Figure 26 shows the trajectory followed by each trial. The three first trials were done with a
turning configuration of: ground sweep angle 0.39 rads and a ground rotation velocity of 0.5 rads/s.
In the third trial, the ORB SLAM2 algorithm lost the robot localization. For that reason, a more
conservative setting was selected (ground sweep angle of 0.2 rads and ground rotation velocity of
0.1 rads/s). However, for both cases, the walking straight configuration was 60 degrees and 1.0 rads/s.
Table 12 resumes this information.

Sensors 2020, 20, 6741 25 of 38

Table 11. Translational error for turn in place test. Angle units—degrees. Error units—m.

Trial

T2 T3 T4 T5

X Y X Y X Y X Y

ORB-SLAM2

0o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90◦ −0.273 0.270 −0.242 0.183 −0.268 0.193 −0.275 0.205

180◦ 0.643 0.011 −0.517 −0.003 −0.568 0.008 −0.563 0.004
270◦ −0.296 −0.324 −0.246 −0.286 −0.268 −0.323 −0.276 −0.360
360◦ −0.059 −0.002 0.047 0.000 0.020 0.000 0.008 0.000

T265

0◦ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90◦ −0.270 0.191 −0.256 0.174 −0.265 0.213 −0.263 0.181

180◦ −0.511 0.006 −0.434 −0.002 −0.504 0.008 −0.499 0.004
270◦ −0.303 −0.248 −0.248 −0.230 −0.265 −0.284 −0.262 −0.335
360◦ 0.009 0.005 0.034 0.007 0.009 0.002 0.001 0.009

Odom+VO

0◦ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90◦ −0.264 0.212 −0.117 0.085 −0.140 0.092 −0.154 0.084

180◦ −0.327 −0.001 −0.244 −0.003 −0.287 −0.002 −0.324 −0.048
270◦ −0.244 −0.070 −0.098 −0.172 −0.146 −0.173 −0.141 −0.254
360◦ −0.068 0.022 0.032 −0.005 0.148 −0.007 0.004 −0.018

EKF

0◦ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90◦ −0.262 0.157 −0.111 0.081 −0.142 0.093 0.153 0.087

180◦ −0.321 −0.001 −0.236 −0.017 −0.287 −0.027 −0.337 −0.074
270◦ −0.251 −0.059 −0.097 −0.138 −0.142 −0.174 −0.135 −0.249
360◦ −0.080 0.015 0.037 −0.005 0.004 −0.017 0.004 −0.020

Analyzing the results, some conclusions can be done from a first sight: the odometry algorithm
has failed in all the trials at every turn action. So, the odometry algorithm needs to be improved to
have a better accuracy when alternating different types of movement. The second conclusion is that the
translational error described in by the visual odometry sensors in the turn in place test is also present
in the turns of this test. Eventhough the translational error exists, there is not a problem with the
orientation because the walking straight path is parallel to the path described by the Optitrack system.

Now, studying the final error position error, there is not a great difference between the different
sensor to identify which one is the best one. The ORB SLAM2 algorithm and the T265 camera present
very similar results. For the X position error, both sensors are giving a precision under the 4 cm of error.
Meanwhile, for the Y position, the T265 average error is 0.11 m and for the ORB SLAM2 (excluding the
trial 3) the average error is 0.159 m.

Attending now to the EKF combinations, only the odom+vo configuration helps to reduce the final
error in both axis (X, Y). Although for the trials 2 and 4 there is not a real benefit or improve. In the
opposite side, the imu+vo configuration have a worse result in all the trials than the Visual SLAM
methods by themselves. Finally, the complete EKF presents a similar performance as the odom+vo,
but in this case, it is able to correct the predicted trajectory along the path and is very similar to the one
followed by the robot. Table 13 resumes all the final errors from this test.

Table 12. Configuration parameters for the indoor circuit test.

Trial

Units 1 2 3 4

Turn Angle [rads] 0.39 0.39 0.39 0.20
Speed [rads/s] 0.50 0.50 0.50 0.10

Straight Angle [rads] 1.05 1.05 1.05 1.05
Speed [rads/s] 1.00 1.00 1.00 1.00

Sensors 2020, 20, 6741 26 of 38Sensors 2020, 1, 5 26 of 39

(a) Trial 2 (b) Trial 3

(c) Trial 4 (d) Trial 5

Figure 26. Indoor tests scenario 3. Trials 2–5. Error in XY position.

Table 12. Configuration parameters for the indoor circuit test.

Trial

Units 1 2 3 4

Turn Angle [rads] 0.39 0.39 0.39 0.20
Speed [rads/s] 0.50 0.50 0.50 0.10

Straight Angle [rads] 1.05 1.05 1.05 1.05
Speed [rads/s] 1.00 1.00 1.00 1.00

Figure 26. Indoor tests scenario 3. Trials 2–5. Error in XY position.

Table 13. Final errors for the indoor scenario 2 test 3: Complete a circuit. Error units—m.

Trial

1 2 3 4

ORB-SLAM2
X 0.0269 0.0469 2.2719 0.0037
Y 0.2226 0.1527 2.3802 0.1026
Z 0.0098 0.0782 0.0329 0.0081

T265
X 0.0352 0.0233 0.0018 0.0261
Y 0.2367 0.0756 0.0251 0.1034
Z 0.0625 0.0058 0.0067 0.0011

Odometry
X 0.1654 0.7119 1.0992 1.9157
Y 1.5035 2.6927 3.6621 3.5649
Z 0.0085 0.0074 0.1154 0.1102

EKF
X 0.1048 0.1424 0.285 0.07
Y 0.1618 0.1129 1.4407 0.1013
Z 0.1174 0.2355 0.0858 0.3018

Odometry + ORB SLAM2
X 0.0668 0.145 0.0743 0.0868
Y 0.0336 0.0881 2.9011 0.2136
Z 0.0099 0.0782 0.0017 0.0081

IMU + ORB SLAM2
X 0.0248 2.0957 2.8439 2.2643
Y 0.2216 0.2475 0.0885 0.4837
Z 0.0066 0.2001 0.0878 0.2025

5.3. Outdoor Real Tests

Finally, to complete this work, some outdoor tests were performed in order to analyze the precision
of the algorithms and sensor in real conditions. Because of the characteristics of the outdoor scenarios
is not possible to have the Optitrack system, but a conventional measurement system, which can give
a precision of millimeters is used.

Sensors 2020, 20, 6741 27 of 38

Two of the three tests explained in the previous section were adapted to the outdoor scenario,
the walking straight and the circuit. Moreover, each test was carried out in two different types of
terrain: asphalt and meadow. The first one offers a high coefficient of friction in addition to be a flat
surface. The second one is an uneven terrain with remnants of cut vegetation on the surface, this can
provoke that the legs drift.

5.3.1. Walking Straight

Test conditions: The walking straight test was carried out in three different places: one paved
road and two different uneven terrains (see Figure 27).

Sensors 2020, 1, 5 27 of 39

Table 13. Final errors for the indoor scenario 2 test 3: Complete a circuit. Error units—m.

Trial

1 2 3 4

ORB-SLAM2
X 0.0269 0.0469 2.2719 0.0037
Y 0.2226 0.1527 2.3802 0.1026
Z 0.0098 0.0782 0.0329 0.0081

T265
X 0.0352 0.0233 0.0018 0.0261
Y 0.2367 0.0756 0.0251 0.1034
Z 0.0625 0.0058 0.0067 0.0011

Odometry
X 0.1654 0.7119 1.0992 1.9157
Y 1.5035 2.6927 3.6621 3.5649
Z 0.0085 0.0074 0.1154 0.1102

EKF
X 0.1048 0.1424 0.285 0.07
Y 0.1618 0.1129 1.4407 0.1013
Z 0.1174 0.2355 0.0858 0.3018

Odometry + ORB SLAM2
X 0.0668 0.145 0.0743 0.0868
Y 0.0336 0.0881 2.9011 0.2136
Z 0.0099 0.0782 0.0017 0.0081

IMU + ORB SLAM2
X 0.0248 2.0957 2.8439 2.2643
Y 0.2216 0.2475 0.0885 0.4837
Z 0.0066 0.2001 0.0878 0.2025

5.3. Outdoor Real Tests

Finally, to complete this work, some outdoor tests were performed in order to analyze the precision
of the algorithms and sensor in real conditions. Because of the characteristics of the outdoor scenarios
is not possible to have the Optitrack system, but a conventional measurement system, which can give
a precision of millimeters is used.

Two of the three tests explained in the previous section were adapted to the outdoor scenario, the
walking straight and the circuit. Moreover, each test was carried out in two different types of terrain:
asphalt and meadow. The first one offers a high coefficient of friction in addition to be a flat surface.
The second one is an uneven terrain with remnants of cut vegetation on the surface, this can provoke
that the legs drift.

5.3.1. Walking Straight

Test conditions: The walking straight test was carried out in three different places: one paved
road and two different uneven terrains (see Figure 27).

(a) Paved road (b) Uneven terrain #1 (c) Uneven terrain #2

Figure 27. Real tests scenarios.

The paved road presents a high coefficient of friction (friction coefficient between rubber and dry
asphalt = 0.9 [61]) between the asphalt and the rubber that covers the legs of the robot, so the rotation
of the motors can be transform into forward displacement without losses.

Figure 27. Real tests scenarios.

The paved road presents a high coefficient of friction (friction coefficient between rubber and dry
asphalt = 0.9 [61]) between the asphalt and the rubber that covers the legs of the robot, so the rotation
of the motors can be transform into forward displacement without losses.

In the two uneven localizations, the remnants of vegetation cause that the legs can present some
loss of traction on some steps. Moreover, the ups and downs of the terrain induce that for a total
forward displacement, more steps will be required than from a flat surface.

For both types of terrain, the robot was configured with the same parameters, which are
established as the default configuration for walking straight in alternating tripod, and are resumed in
Table 5.

Each trial had a different final position because of the characteristics of the terrain, Table 14
resumes the final position measure for each trial. It is important to notice, that for the uneven terrain is
not possible to have a certain measure of the real displacement in the Z axis due to the lack of a ground
truth system. While for the asphalted surface the authors assume that is completed flat, so the initial Z
height is equal to the final Z height.

Results and discussion: Table 15 resumes the mean error for the final position in each trial and
Figure 28 shows the path followed by the robot in each one.

For the paved surface all the sensors and EKF combinations, with the exception of the odom+IMU
configuration, present a good final position estimation. The majority of the methods have a final
X error less than the 0.5% of the distance traveled. In the other hand, for the final Y position error,
both visual slam methods present an error around the 20% of the final position. However, the ORB
SLAM2 algorithm reflects the real trajectory of the robot, while the T265 corrects the position after
detecting an approximate error of 20 cm., see Figure 29a. Moreover, the full EKF configuration presents
a higher error than the ORB SLAM2 because it has to correct the error from the odometry algorithm
estimation, which it does not add any displacement in the Y axis.

If now we attend to the Z graph of the same trial (Figure 29b), the T265 shows a negative drift that
is never corrected and with each step it is increased. This error could be caused because the camera
should need more features in each frame, as happened in the previous indoor experiments.

Sensors 2020, 20, 6741 28 of 38

The first trial on uneven terrain shows an error similar to the detected on the asphalt, the IMU
shows a big drift from the beginning of the trial. Another point is that the T265 camera stopped
tracking the position almost at the end of the experiment (see Figure 28b). Moreover, the odometry
algorithm presents a large error in the final X position. So, the best estimation is done by the ORB
SLAM2 algorithm. In this trial, the Z displacement cannot be measure, but ORB SLAM2 and T265
presents a similar curve, and that is a good sign. Figure 30 shows the absolute error in each axis for
this test.

For the second uneven terrain trial (Figure 28c), again the IMU shows a drift that is not related
with the path followed by the robot. It may be possible that the IMU algorithm cannot filter the
perturbations provoked by the displacement on the uneven terrain. Moreover, due to this behavior of
the IMU, the full EKF combination shows a deviation from the path followed by the robot. The analysis
of the X distance traveled by robot reveal that one more time the ORB SLAM2 algorithm together
with the RealSense 435 is more precise than the other two methods included in the robot (odometry and
RealSense T265). However, for this trial, the odometry algorithm has less error than the T265, although
this error can be considered as bad estimation (18.36% of the total distance). On the other hand, the
EKFs that include the visual odometry as input have corrected the error of the odometry (75.56%) and
the full EKF (91.43%). Attending now to the Y error, both visual sensors presents a good estimation,
the T265 even better than the D435, despite it has a worse result for the X position.

Like in the previous test on uneven terrain, both visual sensors have a parallel trajectory on the
Z axis but with a difference of 20 cm, nevertheless there is not option to identify which one is more
accuracy, see Figure 31.

Finally, it is possible to confirm that for walking on a paved road the odometry algorithm and
the visual slam methods present very accurate results during the path and at the final position.
However, when the robot has to walk through uneven terrain the odometry algorithm presents a
worse estimation, always considering that it has traveled less distance. Moreover, the combination
with the IMU presents a bad result because the IMU cannot filter the disturbance generated by the
steps and that are increased with the obstacles on the surface.

Table 14. Results for the outdoor scenario 2 test 1: Walking straight.

Final Position [m]

X Y Z

Paved road 10.75 0.37 0.00

Uneven terrain 1 10.10 1.17 –

Uneven terrain 2 9.8 1.22 –

5.3.2. Circuit

Finally, to complete this work, the last test carried out was to complete a circuit, but only on the
paved road and on the uneven terrain #2. The experiments on the asphalt were repeated twice and in
both occasions the robot was able to complete it. However, on the uneven terrain the trial was repeated
five times and only in one occasion the robot could achieved the end point successfully. The reason
why the robot could not success all the test is provoke by the characteristics of the terrain and the
maximum torque that the motors can achieved. As the terrain is not flat, in some steps all the legs
are not in contact with the ground; therefore, some motors have to increase the torque generated to
move the robot to the next step. Sometimes it was possible, but when the torque required is too high,
the motor’s protection for over current is activated and does not allow to move the motor. This could
be solved by acquiring a motor with a higher torque, but it will decreased the maximum travel velocity.

Sensors 2020, 20, 6741 29 of 38

Table 15. Results for the outdoor scenario 1: Walking straight. Error units—m.

Trial

Asphalt Uneven #1 Uneven #2

ORB-SLAM2
X 0.0404 0.1729 0.3716
Y 0.0795 0.0773 0.1369
Z 0.0106 0.1135 0.2352

T265
X 0.0471 1.6320 2.2178
Y 0.0868 0.3560 0.1082
Z 0.3424 0.0570 0.0676

Odometry
X 0.0667 1.8340 1.8043
Y 0.3700 1.1700 1.17
Z 0.0000 0.0000 0.0000

EKF
X 0.4730 0.7388 0.9753
Y 0.1990 0.2043 0.4433
Z 0.0487 0.2161 0.3085

Odometry + IMU
X 0.7727 1.8332 1.8038
Y 0.7868 2.0644 1.6895
Z 0.0000 0.0007 0.0001

Odometry + ORB SLAM2
X 0.0163 0.6670 0.8209
Y 0.0822 0.3524 0.2330
Z 0.0116 0.1123 0.2348

IMU + ORB SLAM2
X 0.0405 0.2252 0.3718
Y 0.0795 0.1045 0.1366
Z 0.0118 0.1006 0.2345

Sensors 2020, 1, 5 30 of 39

(a) Outdoor test. Paved road. Error in XY
position.

(b) Outdoor test. Uneven terrain 1. Error in XY
position.

(c) Outdoor test. Uneven terrain 2. Error in XY
position.

Figure 28. Outdoor test #1.

(a) Paved road test Y error.

(b) Paved road test Z error.

Figure 29. Outdoor test #1.

Figure 28. Outdoor test #1.

Sensors 2020, 20, 6741 30 of 38

Sensors 2020, 1, 5 30 of 39

(a) Outdoor test. Paved road. Error in XY
position.

(b) Outdoor test. Uneven terrain 1. Error in XY
position.

(c) Outdoor test. Uneven terrain 2. Error in XY
position.

Figure 28. Outdoor test #1.

(a) Paved road test Y error.

(b) Paved road test Z error.

Figure 29. Outdoor test #1.Figure 29. Outdoor test #1.

Sensors 2020, 1, 5 31 of 39

Figure 30. Outdoor uneven terrain #1. Walking straight test. Absolute errors.

Figure 31. Outdoor test 1. Uneven terrain #2. Absolute Z error.

5.3.2. Circuit

Finally, to complete this work, the last test carried out was to complete a circuit, but only on the
paved road and on the uneven terrain #2. The experiments on the asphalt were repeated twice and in
both occasions the robot was able to complete it. However, on the uneven terrain the trial was repeated
five times and only in one occasion the robot could achieved the end point successfully. The reason
why the robot could not success all the test is provoke by the characteristics of the terrain and the
maximum torque that the motors can achieved. As the terrain is not flat, in some steps all the legs
are not in contact with the ground; therefore, some motors have to increase the torque generated to
move the robot to the next step. Sometimes it was possible, but when the torque required is too high,
the motor’s protection for over current is activated and does not allow to move the motor. This could
be solved by acquiring a motor with a higher torque, but it will decreased the maximum travel velocity.

The circuit on the paved road had a maximum width of 9 m (the width of the road), so the circuit
describes a square of 9 × 9 m, see Figure 32a. Thus, the trajectory of the robot will be inscribed in this
square. While the circuit on the uneven terrain is a square of 4 × 4 m (Figure 32b).

Figure 30. Outdoor uneven terrain #1. Walking straight test. Absolute errors.

Sensors 2020, 1, 5 31 of 39

Figure 30. Outdoor uneven terrain #1. Walking straight test. Absolute errors.

Figure 31. Outdoor test 1. Uneven terrain #2. Absolute Z error.

5.3.2. Circuit

Finally, to complete this work, the last test carried out was to complete a circuit, but only on the
paved road and on the uneven terrain #2. The experiments on the asphalt were repeated twice and in
both occasions the robot was able to complete it. However, on the uneven terrain the trial was repeated
five times and only in one occasion the robot could achieved the end point successfully. The reason
why the robot could not success all the test is provoke by the characteristics of the terrain and the
maximum torque that the motors can achieved. As the terrain is not flat, in some steps all the legs
are not in contact with the ground; therefore, some motors have to increase the torque generated to
move the robot to the next step. Sometimes it was possible, but when the torque required is too high,
the motor’s protection for over current is activated and does not allow to move the motor. This could
be solved by acquiring a motor with a higher torque, but it will decreased the maximum travel velocity.

The circuit on the paved road had a maximum width of 9 m (the width of the road), so the circuit
describes a square of 9 × 9 m, see Figure 32a. Thus, the trajectory of the robot will be inscribed in this
square. While the circuit on the uneven terrain is a square of 4 × 4 m (Figure 32b).

Figure 31. Outdoor test 1. Uneven terrain #2. Absolute Z error.

Sensors 2020, 20, 6741 31 of 38

The circuit on the paved road had a maximum width of 9 m (the width of the road), so the circuit
describes a square of 9 × 9 m, see Figure 32a. Thus, the trajectory of the robot will be inscribed in this
square. While the circuit on the uneven terrain is a square of 4 × 4 m (Figure 32b).

As happened in the indoor experiments, the IMU is not detecting correctly the turning action
and points that the robot has turn less than 90 degrees in each corner. Therefore, with that large
measurement error the estimation of the full EKF is not valid either.

In both experiments on the paved road (Figure 33), the T265 camera describes a path shorter than
the showed by the ORB SLAM2 algorithm and followed by the real robot, but is able to recognize that
has closed the loop and correct the final position. For the paved road, the second trial obtained a better
pose correction from the full EKF, very similar to the odom + vo configuration, but in both cases the best
estimation is with the ORB SLAM2 algorithm. Despite, the measures in the Z axis are not valid (see
Figure 34) because its values are out of the range that the robot can achieve, furthermore it presents
high variations.

The circuit on the uneven terrain was more difficult to complete for the robot, in three of the four
experiments, the result was unexpected. The ORB SLAM2 algorithm stopped tracking the position
because it lost the references, even the T265 not always gave a good estimation, it never stopped
tracking the position, while the odom + IMU still showing a big error. The best pose estimation was on
the third test (see Figure 35).

Due to the fail of the ORB SLAM2 algorithm and the drift from the IMU sensor, all the EKFs
combinations that include one of these two sensors, or both, shows a result that is not representative of
the path followed by the robot. So, for the circuit test on the uneven terrain, only the results from the
third test are valid for this analysis.

Like in al the previous circuit tests, the odometry algorithm and the IMU are not giving a good
estimation; therefore, the full EKF combination deteriorates the pose given by the ORB SLAM2
algorithm. To try to correct this, for the combinations with the ORB SLAM2 algorithm the EKF
configuration was modified and more weight was given to the data received from the algorithm.

Attending now, only to the results from the T265 and the ORB SLAM2 (that one more time are
giving the best results), the T265 describes a curve on the right side of the circuit, after the first turn,
and it is not correct, it should be a straight line. Moreover, the path show by this sensor indicates that
the robot continue walking straight more than one meter after reach the initial Y point. Therefore the
ORB SLAM2 algorithm shows a more accurate result.

Sensors 2020, 1, 5 32 of 39

As happened in the indoor experiments, the IMU is not detecting correctly the turning action
and points that the robot has turn less than 90 degrees in each corner. Therefore, with that large
measurement error the estimation of the full EKF is not valid either.

In both experiments on the paved road (Figure 33), the T265 camera describes a path shorter than
the showed by the ORB SLAM2 algorithm and followed by the real robot, but is able to recognize that
has closed the loop and correct the final position. For the paved road, the second trial obtained a better
pose correction from the full EKF, very similar to the odom + vo configuration, but in both cases the best
estimation is with the ORB SLAM2 algorithm. Despite, the measures in the Z axis are not valid (see
Figure 34) because its values are out of the range that the robot can achieve, furthermore it presents
high variations.

The circuit on the uneven terrain was more difficult to complete for the robot, in three of the four
experiments, the result was unexpected. The ORB SLAM2 algorithm stopped tracking the position
because it lost the references, even the T265 not always gave a good estimation, it never stopped
tracking the position, while the odom + IMU still showing a big error. The best pose estimation was on
the third test (see Figure 35).

Due to the fail of the ORB SLAM2 algorithm and the drift from the IMU sensor, all the EKFs
combinations that include one of these two sensors, or both, shows a result that is not representative of
the path followed by the robot. So, for the circuit test on the uneven terrain, only the results from the
third test are valid for this analysis.

Like in al the previous circuit tests, the odometry algorithm and the IMU are not giving a good
estimation; therefore, the full EKF combination deteriorates the pose given by the ORB SLAM2
algorithm. To try to correct this, for the combinations with the ORB SLAM2 algorithm the EKF
configuration was modified and more weight was given to the data received from the algorithm.

Attending now, only to the results from the T265 and the ORB SLAM2 (that one more time are
giving the best results), the T265 describes a curve on the right side of the circuit, after the first turn,
and it is not correct, it should be a straight line. Moreover, the path show by this sensor indicates that
the robot continue walking straight more than one meter after reach the initial Y point. Therefore the
ORB SLAM2 algorithm shows a more accurate result.

(a) Paved road. (b) Uneven terrain #2.

Figure 32. Outdoor test #2Figure 32. Outdoor test #2.

Sensors 2020, 20, 6741 32 of 38Sensors 2020, 1, 5 33 of 39

(a) Outdoor circuit test. Paved road. Test 1
Error in XY position.

(b) Outdoor circuit test. Paved road. Test 2
Error in XY position.

Figure 33. Outdoor circuit test on paved road.

(a) Outdoor circuit test. Paved road. Test 1 Error in Z axis.

(b) Outdoor circuit test. Paved road. Test 2 Error in Z axis.

Figure 34. Outdoor circuit test on paved road. Error in Z axis.

Figure 33. Outdoor circuit test on paved road.

Sensors 2020, 1, 5 33 of 39

(a) Outdoor circuit test. Paved road. Test 1
Error in XY position.

(b) Outdoor circuit test. Paved road. Test 2
Error in XY position.

Figure 33. Outdoor circuit test on paved road.

(a) Outdoor circuit test. Paved road. Test 1 Error in Z axis.

(b) Outdoor circuit test. Paved road. Test 2 Error in Z axis.

Figure 34. Outdoor circuit test on paved road. Error in Z axis.Figure 34. Outdoor circuit test on paved road. Error in Z axis.

Sensors 2020, 1, 5 34 of 39

(a) Outdoor circuit test. Uneven terrain #2.
Test 1 Error in XY position.

(b) Outdoor circuit test. Uneven terrain #2.
Test 2 Error in XY position.

(c) Outdoor circuit test. Uneven terrain #2.
Test 3 Error in XY position.

(d) Outdoor circuit test. Uneven terrain #2.
Test 4 Error in XY position.

Figure 35. Outdoor circuit test on paved road.

6. Conclusions

The authors have present in this work a complete study that includes different maneuvers,
scenarios and configuration parameters for estimate the pose in C-legs robots with a novel odometry
algorithm and the conjunction with other sensors to evaluate how useful it is. In addition, this work
not only analyze the behavior of the robot for a few steps in a straight path.

In contrast to previous studies like [35,36], this study is focus in the alternating tripod gait and
not in the analysis with dynamics gaits like jogging.

With the results obtained, the authors can confirm that the algorithm have a precision similar
to the visual odometry methods and, in scenarios with few visual characteristics can have better
results. Moreover, can be used in robots that do not have a high performance computer because the
algorithm does not required high computational costs as the ORB SLAM2 algorithm. And in some
other conditions, specially in the turn in place maneuvers the odometry algorithm can help to improve
the estimation of the visual and IMU sensors.

In Section 4, the authors defined the algorithm for a “C” leg with a initial diameter of 160 mm,
however, due to the intrinsic flexible properties of the leg and the variations during the displacement of

Figure 35. Cont.

Sensors 2020, 20, 6741 33 of 38

Sensors 2020, 1, 5 34 of 39

(a) Outdoor circuit test. Uneven terrain #2.
Test 1 Error in XY position.

(b) Outdoor circuit test. Uneven terrain #2.
Test 2 Error in XY position.

(c) Outdoor circuit test. Uneven terrain #2.
Test 3 Error in XY position.

(d) Outdoor circuit test. Uneven terrain #2.
Test 4 Error in XY position.

Figure 35. Outdoor circuit test on paved road.

6. Conclusions

The authors have present in this work a complete study that includes different maneuvers,
scenarios and configuration parameters for estimate the pose in C-legs robots with a novel odometry
algorithm and the conjunction with other sensors to evaluate how useful it is. In addition, this work
not only analyze the behavior of the robot for a few steps in a straight path.

In contrast to previous studies like [35,36], this study is focus in the alternating tripod gait and
not in the analysis with dynamics gaits like jogging.

With the results obtained, the authors can confirm that the algorithm have a precision similar
to the visual odometry methods and, in scenarios with few visual characteristics can have better
results. Moreover, can be used in robots that do not have a high performance computer because the
algorithm does not required high computational costs as the ORB SLAM2 algorithm. And in some
other conditions, specially in the turn in place maneuvers the odometry algorithm can help to improve
the estimation of the visual and IMU sensors.

In Section 4, the authors defined the algorithm for a “C” leg with a initial diameter of 160 mm,
however, due to the intrinsic flexible properties of the leg and the variations during the displacement of

Figure 35. Outdoor circuit test on paved road.

6. Conclusions

The authors have present in this work a complete study that includes different maneuvers,
scenarios and configuration parameters for estimate the pose in C-legs robots with a novel odometry
algorithm and the conjunction with other sensors to evaluate how useful it is. In addition, this work
not only analyze the behavior of the robot for a few steps in a straight path.

In contrast to previous studies like [35,36], this study is focus in the alternating tripod gait and
not in the analysis with dynamics gaits like jogging.

With the results obtained, the authors can confirm that the algorithm have a precision similar
to the visual odometry methods and, in scenarios with few visual characteristics can have better
results. Moreover, can be used in robots that do not have a high performance computer because the
algorithm does not required high computational costs as the ORB SLAM2 algorithm. And in some
other conditions, specially in the turn in place maneuvers the odometry algorithm can help to improve
the estimation of the visual and IMU sensors.

In Section 4, the authors defined the algorithm for a “C” leg with a initial diameter of 160 mm,
however, due to the intrinsic flexible properties of the leg and the variations during the displacement of
the CLHeRo, this length varies continuously. Calculating the exactly length of the leg in real time with
FEA methods is not possible due to the actual limitations of computer calculating; therefore, after the
simulation tests and the indoor tests—scenario 1, a linear approximation of the average compression
of the leg was approached. This approximation was generated for the physical characteristics of the
CLHeRo v2.5, the “C” legs properties and the velocity and acceleration profile specified for the rest
of the tests. Moreover, this "new" length of the leg, was introduced as a parameter in the odometry
algorithm which can be interpreted as a correction factor for the nominal diameter of the leg. It is
important to point, that for an optimal implementation in other platforms, is necessary to do some tests
with different parameters and analyze the results to obtain the adequate factor for the new platform.

Despite, there are some limitations and problems that have to be take in consideration, which will
be described below.

6.1. Problems and Limitations

6.1.1. Motors Data Update Frequency

Due to the communication problems, involving the Maxon interface and the ROS protocols, which
are problems unrelated to the focus of this work, the frequency to obtain the parameters of the motor
(current position, velocity, and torque) is very slow (8 Hz). Considering that the odometry is obtained
with a callback message, the intervals for the numeric integration are high. If the publish frequency

Sensors 2020, 20, 6741 34 of 38

would be higher, like in the Gazebo simulations (100 Hz), the odometry results could be more accurate
by reducing update times.

6.1.2. Legs Elasticity

One of the characteristics of the “C” legs robots is the elasticity of its legs, which provides to the
robot the ability to perform unique actions, nevertheless this implies the deformation of the legs when
they are in contact with the ground.

To solve this situation, for the fiberglass legs, a elasticity coefficient has been included in the
equation. For this work, using a value of 0.9125 has demonstrate to be valid. This value has been
calculated taking in consideration the robot standing with 3 legs, its mass and the compression
parameter of the fiberglass legs (k = 8166 N/m).

A good proposal could be to test the robot with different legs (varying the its diameters and
elasticity) and walking configurations (angles and speeds) to create a database. So the algorithm could
be adapted perfectly to different C-legs robots.

6.1.3. IMU

The IMU installed in the robot is frequently used in different robotics platforms like autonomous
ground vehicles [62] or underwater vehicles [63]; and for other applications like 3D reconstruction
with visual odometry [64]. Nevertheless, in none of these previous works the IMU presented an erratic
performance as in the study presented here. Analyzing the displacement in the Z axis (see Figures 30,
31 and 34) the reader can observe that the IMU is reading constantly variances in the measurements,
and therefore adding a drift in the estimation of the pose causing loss of confidence in the sensor.

6.2. Computational Cost

The ORB SLAM2 algorithm used for the calculating the robot localization with the RealSense D435,
demands high compute capabilities, using this algorithm with the RPi 3 is not possible because the
processor does not have enough capabilities. For this option, the best configuration can be to only use
the Odometry algorithm proposed by the authors together with the RealSense T265, which computes
all the tracking system in the camera and only sends a message with the position and orientation of
the robot. Nevertheless, using the ORB SLAM2 algorithm offers a very precise and robust localization,
even for outdoor environments. And with the results of the tests it needs less features in the scene
than the RealSense T265.

Having in consideration this problems and limitations, the authors are aware that the
implementation of the odometry model presented in this study for fusing the information with
other sensors can improve the pose estimation of a “C” legs robot. Moreover, the results obtained after
the tests can help to understand that this kind of robot has peculiar characteristics and the maneuver of
turning can provoke to lose the estimation of the pose, specially because the visual odometry systems
are used when the turning action only presents a rotation in the Z axis without any perturbation in the
other two axis.

The next steps to improve the pose estimation of the robot, specially for the indoor scenarios can
be the use of other sensors like LIDARs and other techniques like SLAM so the error can be reduced
and for outdoor scenarios the use of a GPS or A-GPS be very helpful.

Another future implementation will be the detection and recognition of steps to automate
autonomous climbing of stairs; the authors can identify at this moment the steps of a stair using
a velodyne, but the objective is to be able of do the detection with the RealSense D435 to avoid adding
more sensors. Moreover, the sequence for stair climbing has been successfully tested in simulations
using finite state machines with an algorithm developed with Matlab/Simulink software. If all this
implementation can be done in the real platform, the CLHeRo could be able to autonomously locate,
navigate and create a map in buildings with several floors.

Sensors 2020, 20, 6741 35 of 38

Finally, the authors wants to remark that this work presented is all available in their repository
(https://www.github.com/grafoteka/clhero_common) and can be tested following the steps explained
in the “Test and Validation” section and the results of the tests carried out (https://github.com/
grafoteka/clhero_pose_tests).

Author Contributions: Conceptualization, J.D.L.; methodology, J.D.L.; software, J.D.L. and R.C.; validation,
J.D.L. and R.C.; formal analysis, J.D.L. and R.C.; investigation, J.D.L. and R.C.; resources, J.D.L. and A.B.; data
curation, J.D.L. and R.C.; writing—original draft preparation, J.D.L.; writing—review and editing, J.D.L., R.C.
and A.B.; visualization, J.D.L.; supervision, A.B.; project administration, J.D.L. and A.B.; funding acquisition, A.B.
All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from RoboCity2030-DIH-CM, 426 Madrid
Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad
Madrid” and also by the project TASAR (Team of Advanced Search And Rescue Robots), PID2019-105808RB-I00,
funded by the Ministerio de Ciencia e Innovación (Government of Spain).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feng, S.; Xinjilefu, X.; Atkeson, C.G.; Kim, J. Optimization based controller design and implementation for the
Atlas robot in the DARPA Robotics Challenge Finals. In Proceedings of the 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November 2015; pp. 1028–1035. [CrossRef]

2. Lorente, J.; García-Haro, J.M.; Martinez, S.; Hernández, J.; Balaguer, C. Waiter Robot: Advances in Humanoid
Robot Research at UC3M. In: RoboCity16 Open Conference on Future Trends in Robotics; Fernández, R.E.,
Montes, H., Eds.; CSIS: Madrid, Spain, 2016; pp. 195–202.

3. Bledt, G.; Powell, M.; Katz, B.; Carlo, J.; Wensing, P.; Kim, S. MIT Cheetah 3: Design and Control of a Robust,
Dynamic Quadruped Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [CrossRef]

4. Hutter, M.; Gehring, C.; Jud, D.; Lauber, A.; Bellicoso, D.; Tsounis, V.; Hwangbo, J.; Bodie, K.; Fankhauser, P.;
Bloesch, M.; et al. ANYmal—A highly mobile and dynamic quadrupedal robot. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October
2016; pp. 38–44. [CrossRef]

5. Roennau, A.; Heppner, G.; Nowicki, M.; Dillmann, R. LAURON V: A versatile six-legged walking robot with
advanced maneuverability. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Besacon, France, 8–11 July 2014. [CrossRef]

6. Nelson, G.M.; Quinn, R.D.; Bachmann, R.J.; Flannigan, W.C.; Ritzmann, R.E.; Watson, J.T. Design and
simulation of a cockroach-like hexapod robot. In Proceedings of the International Conference on Robotics
and Automation, Albuquerque, NM, USA, 25 April 1997; Volume 2, pp. 1106–1111. [CrossRef]

7. Saranlı, U.; Buehler, M.; Koditschek, D.E. RHex: A Simple and Highly Mobile Hexapod Robot. Int. J.
Robot. Res. 2001, 20, 616–631. [CrossRef]

8. Ting, L.; Blickhan, R.; Full, R. Dynamic and static stability in hexapedal runners. J. Exp. Biol. 1995,
197, 251–269.

9. Graham, D. Pattern and Control of Walking in Insects; Academic Press: Cambridge, MA, USA, 1985; Volume 18,
pp. 31–140. [CrossRef]

10. Tan, X.; Wang, Y.; He, X. The gait of a hexapod robot and its obstacle-surmounting capability. In Proceedings
of the 2011 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan, 21–25 June 2011;
pp. 303–308. [CrossRef]

11. McMordie, D.; Prahacs, C.; Buehler, M. Towards a dynamic actuator model for a hexapod robot.
In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),
Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 1386–1390. [CrossRef]

12. Johnson, A.M.; Koditschek, D.E. Robot Parkour: The Ground Reaction Complex & Dynamic Transitions.
Dynamic Walking. Available online: http://kodlab.seas.upenn.edu/uploads/Aaron/Johnson-dw13.pdf
(accessed on 21 June 2020).

https://www.github.com/grafoteka/clhero_common
https://github.com/grafoteka/clhero_pose_tests
https://github.com/grafoteka/clhero_pose_tests
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363480
http://dx.doi.org/10.1109/IROS.2018.8593885
http://dx.doi.org/10.1109/IROS.2016.7758092
http://dx.doi.org/10.1109/aim.2014.6878051
http://dx.doi.org/10.1109/ROBOT.1997.614284
http://dx.doi.org/10.1177/02783640122067570
http://dx.doi.org/10.1016/S0065-2806(08)60039-9
http://dx.doi.org/10.1109/WCICA.2011.5970748
http://dx.doi.org/10.1109/ROBOT.2003.1241785
http://kodlab.seas.upenn.edu/uploads/Aaron/Johnson-dw13.pdf

Sensors 2020, 20, 6741 36 of 38

13. Johnson, A.M.; Hale, M.T.; Haynes, G.C.; Koditschek, D.E. Autonomous Legged Hill and Stairwell Ascent.
In Proceedings of the IEEE International Workshop on Safety, Security, & Rescue Robotics, Kyoto, Japan,
1–5 November 2011; pp. 134–142.

14. Ilhan, B.D.; Johnson, A.M.; Koditschek, D.E. Autonomous Stairwell Ascent. Robotica 2020, 38, 159–170.
[CrossRef]

15. McMordie, D.; Buehler, M. Towards pronking with a hexapod robot. In Proceedings of the International
Conference on Climbing and Walking Robots, Karlsruhe, Germany, 24–26 September 2001.

16. Neville, N.; Buehler, M.; Sharf, I. A bipedal running robot with one actuator per leg. In Proceedings of the
2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May
2006; pp. 848–853. [CrossRef]

17. Saranlı, U.; Rizzi, A.; Koditschek, D. Model-based dynamic self-righting maneuvers for a hexapedal robot.
Int. J. Robot. Res. 2004, 23, 903. [CrossRef]

18. Prahacs, C.; Saunders, A.; Smith, M.; Mcmordie, D.; Buehler, M. Towards legged amphibious mobile robotics.
In Proceedings of the Canadian Engineering Education Association, Montreal, QC, Canada, 29–30 July 2004.

19. Georgiades, C.; German, A.; Hogue, A.; Liu, H.; Prahacs, C.; Ripsman, A.; Sim, R.; Torres, L.;
Zhang, P.; Buehler, M.; et al. AQUA: An aquatic walking robot. In Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai,
Japan, 28 September–2 October 2004; Volume 4, pp. 3525–3531. [CrossRef]

20. Dudek, G.; Giguere, P.; Prahacs, C.; Saunderson, S.; Sattar, J.; Torres-Mendez, L.; Jenkin, M.; German, A.;
Hogue, A.; Ripsman, A. AQUA: An amphibious autonomous robot. Computer 2007, 40, 46–53. [CrossRef]

21. Galloway, K.; Haynes, G.; Ilhan, D.; Johnson, A.; Knopf, R.; Lynch, G.; Plotnick, B.; White, M.; Koditschek, D.
X-RHex: A Highly Mobile Hexapedal Robot for Sensorimotor Tasks. Tech. Rep. (ESE) 2010, 8, 1–35.

22. Haynes, G.; Pusey, J.; Knopf, R.; Johnson, A.; Koditschek, D. Laboratory on Legs: An Architecture for
Adjustable Morphology with Legged Robots. Proc. SPIE Int. Soc. Opt. Eng. 2012, 8387, 83870W. [CrossRef]

23. Johnson, A.; Haynes, G.; Koditschek, D. Disturbance detection, identification, and recovery by gait transition
in legged robots. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5347–5353. [CrossRef]

24. Saranli, U.; Avci, A.; Ozturk, M.C. A Modular Real-Time Fieldbus Architecture for Mobile Robotic Platforms.
IEEE Trans. Instrum. Meas. 2011, 60, 916–927. [CrossRef]

25. Barragan, M.; Flowers, N.; Johnson, A.M. MiniRHex: A Small, Open-source, Fully Programmable Walking
Hexapod. In Proceedings of the Robotics: Science and Systems Workshop on “Design and Control of Small
Legged Robots”, Pittsburgh, PA, USA, 30 June 2018.

26. Roberts, S.; Duperret, J.; Li, X.; Wang, H.; Koditschek, D.E. Desert RHex Technical Report: Tengger Desert Trip;
Technical Report; University of Pennsylvania: Philadelphia, PA, USA, 2014.

27. Li, C.; Umbanhowar, P.; Komsuoglu, H.; Koditschek, D.; Goldman, D. Sensitive dependence of the motion of
a legged robot on granular media. Proc. Natl. Acad. Sci. USA 2009, 106, 3029–3034. [CrossRef]

28. Bapat, A.A. Design, Prototyping and Testing of An Autonomous Hexapod Robot With C Shaped Compliant
Legs: Abhishex. Master’s Thesis, The University Of Texas At San Antonio, San Antonio, TX, USA, 2016.

29. Huang, K.J.; Chen, S.C.; Chou, Y.C.; Shen, S.Y.; Li, C.H.; Lin, P.C. Experimental validation of a leg-wheel
hybrid mobile robot Quattroped. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011; pp. 2976–2977. [CrossRef]

30. Chen, W.; Lin, H.; Lin, P. TurboQuad: A leg-wheel transformable robot using bio-inspired control.
In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong
Kong, China, 31 May–7 June 2014; pp. 2090–2090. [CrossRef]

31. Chen, W.; Lin, H.; Lin, Y.; Lin, P. TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and
Fast Behavioral Transitions. IEEE Trans. Robot. 2017, 33, 1025–1040. [CrossRef]

32. Kebritchi, A.; Havashinezhadian, S.; Rostami, M. Design and Experimental Development of Hexapod Robot
with Fiberglass-Fibercarbon Composite Legs. In Proceedings of the 2018 6th RSI International Conference
on Robotics and Mechatronics (IcRoM), Tehran, Iran, 23–25 October 2018; pp. 439–444. [CrossRef]

33. De León Rivas, J. Definición y Análisis de los Modos de Marcha de un Robot Hexápodo para Tareas de
Búsqueda y Rescate. Master’s Thesis, Industriales, Universidad Politécnica de Madrid, Madrid, Spain, 2015.

34. Lin, P.C.; Komsuoglu, H.; Koditschek, D. Legged Odometry from Body Pose in a Hexapod Robot; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 439–448.

http://dx.doi.org/10.1017/S0263574719000535
http://dx.doi.org/10.1109/ROBOT.2006.1641815
http://dx.doi.org/10.1177/0278364904045594
http://dx.doi.org/10.1109/IROS.2004.1389962
http://dx.doi.org/10.1109/MC.2007.6
http://dx.doi.org/10.1117/12.920678
http://dx.doi.org/10.1109/IROS.2010.5651061
http://dx.doi.org/10.1109/TIM.2010.2078351
http://dx.doi.org/10.1073/pnas.0809095106
http://dx.doi.org/10.1109/ICRA.2011.5980480
http://dx.doi.org/10.1109/ICRA.2014.6907143
http://dx.doi.org/10.1109/TRO.2017.2696022
http://dx.doi.org/10.1109/ICRoM.2018.8657521

Sensors 2020, 20, 6741 37 of 38

35. Lin, P.C.; Komsuoglu, H.; Koditschek, D. Sensor Data Fusion for Body State Estimation in a Hexapod Robot
With Dynamical Gaits. IEEE Trans. Robot. 2006, 22, 932–943. [CrossRef]

36. Skaff, S.; Rizzi, A.; Choset, H.; Tesch, M. Context Identification for Efficient Multiple-Model State Estimation
of Systems With Cyclical Intermittent Dynamics.IEEE Trans. Robot. 2011, 27, 14–28. [CrossRef]

37. De, A.; Bayer, K.S.; Koditschek, D.E. Active sensing for dynamic, non-holonomic, robust visual servoing.
In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong,
China, 31 May–7 June 2014; pp. 6192–6198. [CrossRef]

38. Vasilopoulos, V.; Arslan, O.; De, A.; Koditschek, D.E. Sensor-based legged robot homing using range-only
target localization. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Macau, China, 5–8 December 2017; pp. 2630–2637. [CrossRef]

39. Aladem, M.; Rawashdeh, S. Lightweight Visual Odometry for Autonomous Mobile Robots. Sensors 2018,
18, 2837. [CrossRef] [PubMed]

40. Osman, M.; Hussein, A.; Al-Kaff, A.; García, F.; Cao, D. A Novel Online Approach for Drift Covariance
Estimation of Odometries Used in Intelligent Vehicle Localization. Sensors 2019, 19, 5178. [CrossRef]
[PubMed]

41. Bonin-Font, F.; Gomila, C.C.; Codina, G.O. Towards Visual Navigation of an Autonomous Underwater
Vehicle in Areas with Posidonia Oceanica. Rev. Iberoam. Automática Informática Ind. 2018, 15, 24–35.
[CrossRef]

42. Patruno, C.; Colella, R.; Nitti, M.; Renò, V.; Mosca, N.; Stella, E. A Vision-Based Odometer for Localization of
Omnidirectional Indoor Robots. Sensors 2020, 20, 875. [CrossRef]

43. Kam, M.; Zhu, X.; Kalata, P. Sensor fusion for mobile robot navigation. Proc. IEEE 1997, 85, 108–119.
[CrossRef]

44. Luo, R.C.; Kay, M.G. Multisensor integration and fusion in intelligent systems. IEEE Trans. Syst. Man Cybern.
1989, 19, 901–931. [CrossRef]

45. Feng, L.; Borenstein, J.; Everett, H. “Where Am I?”: Sensors and Methods for Autonomous Mobile Robot Positioning;
University of Michigan: Ann Arbor, MI, USA, 1994.

46. Durrant-Whyte, H.F. Integration, Coordination and Control of Multi-Sensor Robot Systems; Kluwer Academic
Publishers: Boston, MA, USA, 1987.

47. Torres, J.T.; del León, J.; Giner, J.D.C.; Cruz, A.B. Modelo Cinemático de un Robot Hexápodo con “C-LEGS”. Actas
de las XXXVII Jornadas de Automática; Comité Español de Automática (CEA-IFAC): Madrid, Spain, 2016;
pp. 352–359. Robótica y Cibernética RobCib.

48. Cebolla Arroyo, R. Sistema de Control Para Robot Hexápodo de Exploración. Available online: http:
//oa.upm.es/49190/ (accessed on 21 June 2020).

49. De León Rivas, J.; Arroyo, R.C.; Giner, J.D.C.; Cruz, A.B. ROS Book; Springer: Berlin/Heidelberg, Germany,
2020; Volume 5, chapter ClegS: A meta-package to develop C-legged robots.

50. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12–17 May 2009.

51. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons, Ltd.: Hoboken,
NJ, USA, 2011. [CrossRef]

52. Maxon Motor Control. EPOS Positioning Controllers. Command Library, rel6806 ed.; Maxon Motor Control:
Sachseln, Switzerland, 2016.

53. EPOS Hardware. 2015. Available online: https://github.com/RIVeR-Lab/epos_hardware (accessed on 21
June 2020).

54. Silva, J.D. EPOS Hardware Node. 2016. Available online: https://github.com/JimmyDaSilva/epos_
hardware/(accessed on 21 June 2020).

55. Hoare, C.A.R. Quicksort. Comput. J. 1962, 5, 10–16. [CrossRef]
56. Siegwart, R.; Nourbakhsh, I.R. Introduction to Autonomous Mobile Robots; MIT Press Ltd: Cambridge, MA,

USA, 2004.
57. Waldron, K.J.; Schmiedeler, J.; Kinematics. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.;

Springer International Publishing: Cham, Switzerland, 2016; pp. 11–36. [CrossRef]
58. Siciliano, B.; Khatib, O. (Eds). Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008.

http://dx.doi.org/10.1109/TRO.2006.878954
http://dx.doi.org/10.1109/TRO.2010.2073011
http://dx.doi.org/10.1109/ICRA.2014.6907772
http://dx.doi.org/10.1109/ROBIO.2017.8324816
http://dx.doi.org/10.3390/s18092837
http://www.ncbi.nlm.nih.gov/pubmed/30154311
http://dx.doi.org/10.3390/s19235178
http://www.ncbi.nlm.nih.gov/pubmed/31779211
http://dx.doi.org/10.4995/riai.2017.8828
http://dx.doi.org/10.3390/s20030875
http://dx.doi.org/10.1109/JPROC.1997.554212
http://dx.doi.org/10.1109/21.44007
http://oa.upm.es/49190/
http://oa.upm.es/49190/
http://dx.doi.org/10.1002/9781119994138.refs
https://github.com/RIVeR-Lab/epos_hardware
https://github.com/JimmyDaSilva/epos_hardware/
https://github.com/JimmyDaSilva/epos_hardware/
http://dx.doi.org/10.1093/comjnl/5.1.10
http://dx.doi.org/10.1007/978-3-319-32552-1_2

Sensors 2020, 20, 6741 38 of 38

59. De León, J.; Ángel López, J.; Cerro, J.D.; Barrientos, A. Banco de pruebas instrumentado para robots móviles
terrestres. In Proceedings of the Spanish Robotics Conference, Alicante, Spain, 13–14 June 2019; pp. 126–133.

60. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

61. Persson, B.N.J.; Tartaglino, U.; Albohr, O.; Tosatti, E. Rubber friction on wet and dry road surfaces:
The sealing effect. Phys. Rev. B 2005, 71. [CrossRef]

62. Abdelhamed, A.; Peddagolla, B.Y.; Tewolde, G.; Kwon, J. MIR-Vehicle: Cost-Effective Research Platform for
Autonomous Vehicle Applications. arXiv 2019, arXiv:2001.00048.

63. Merino, M.V. Automation of an Underwatervacuum Cleaner. Master’s Thesis, Technische Universität
Darmstadt, Darmstadt, Germany, 2018.

64. Merino, F.N. Aplicaciones de la Reconstrucción 3D: Odometría Visual e Integración con la Realidad Virtual.
Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, July 2017.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1103/PhysRevB.71.035428
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Robotic Platform
	Robot Kinematic
	Odometry Estimation
	Tests and Validation
	Simulation Tests
	Indoor Real Tests
	Indoor Tests—Scenario 1
	Indoor Tests—Scenario 2

	Outdoor Real Tests
	Walking Straight
	Circuit

	Conclusions
	Problems and Limitations
	Motors Data Update Frequency
	Legs Elasticity
	IMU

	Computational Cost

	References

