
Neural Networks 124 (2020) 158–169

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Performance boost of time-delay reservoir computing by
non-resonant clock cycle
Florian Stelzer a,b,∗, André Röhm c,d, Kathy Lüdge c, Serhiy Yanchuk a

a Institute of Mathematics, Technische Universität Berlin, D-10623, Germany
b Department of Mathematics, Humboldt-Universität zu Berlin, D-12489, Germany
c Institute of Theoretical Physics, Technische Universität Berlin, D-10623, Germany
d Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

a r t i c l e i n f o

Article history:
Received 3 May 2019
Revised and accepted 9 January 2020
Available online 15 January 2020

Keywords:
Time-delay
Reservoir computing
Clock cycle
Resonance
Memory capacity
Network representation

a b s t r a c t

The time-delay-based reservoir computing setup has seen tremendous success in both experiment and
simulation. It allows for the construction of large neuromorphic computing systems with only few
components. However, until now the interplay of the different timescales has not been investigated
thoroughly. In this manuscript, we investigate the effects of a mismatch between the time-delay and
the clock cycle for a general model. Typically, these two time scales are considered to be equal. Here we
show that the case of equal or resonant time-delay and clock cycle could be actively detrimental and
leads to an increase of the approximation error of the reservoir. In particular, we can show that non-
resonant ratios of these time scales have maximal memory capacities. We achieve this by translating
the periodically driven delay-dynamical system into an equivalent network. Networks that originate
from a system with resonant delay-times and clock cycles fail to utilize all of their degrees of freedom,
which causes the degradation of their performance.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Reservoir computing is a machine learning method, which
was introduced independently by both Jaeger (2001) as a math-
ematical framework and by Maass, Natschläger, and Markam
(2002) from a biologically inspired background. It fundamen-
tally differs from many other machine learning concepts and
is particularly interesting due to its easy integration into hard-
ware, especially photonics (Brunner et al., 2018; Van der Sande,
Brunner, & Soriano, 2017). With the help of the reservoir com-
puting paradigm, the naturally occurring computational power
of almost any dynamical or physical system can be exploited. It
is particularly valuable for solving the class of time-dependent
problems, which is usually more difficult to address with artificial
neural network-based approaches. A time-dependent problem
requires to estimate a target signal (y(t))t∈T which depends non-
trivially on an input signal (u(t))t∈T, the set of times T may be
continuous or discrete. This class of problems contains, in partic-
ular, speech recognition or time series prediction (Jaeger & Haas,
2004; Verstraeten, Schrauwen, & Stroobandt, 2006; Verstraeten,

∗ Corresponding author at: Department of Mathematics, Humboldt-
Universität zu Berlin, D-12489, Germany.

E-mail addresses: stelzer@math.tu-berlin.de (F. Stelzer),
aroehm@mailbox.tu-berlin.de (A. Röhm), kathy.luedge@tu-berlin.de (K. Lüdge),
yanchuk@math.tu-berlin.de (S. Yanchuk).

Schrauwen, Stroobandt, & Van Campenhout, 2005), and also has
great promise for error correction in optical data transmission
(Argyris, Bueno, & Fischer, 2018). Furthermore, reservoir comput-
ing can be used to study fundamental properties of dynamical
systems in a completely novel way (Pathak, Hunt, Girvan, Lu, &
Ott, 2018), enabling new ways of characterizing physical systems.

The main idea of reservoir computing is simple, yet powerful:
A dynamical system, the reservoir, is driven by an input u(t). The
state of the reservoir is described by a variable x(t), which can
be high- or even infinite-dimensional. A linear readout mapping
x(t) ↦→ ŷ(t) provides an output. While the parameters of the
reservoir itself remain fixed at all times, the coefficients of the
linear mapping x(t) ↦→ ŷ(t) are subject to adaptation, i.e. the
readout can be trained.

Reservoir computing is a supervised machine learning method.
An input u(t) and the corresponding target function y(t) are
given as a training example. Then optimal output weights, i.e. co-
efficients of the linear mapping x(t) ↦→ ŷ(t), are determined
such that ŷ(t) approximates the target y(t). This is analogous
to a conventional artificial neural network where only the last
layer is trained. The goal of this procedure is to approximate
the mapping u(t) ↦→ y(t) via u(t) ↦→ x(t) ↦→ ŷ(t) such that
it not only reproduces the target function for the given training
input but also provides meaningful results for other, in certain
sense similar, inputs. From a nonlinear dynamics perspective, the

https://doi.org/10.1016/j.neunet.2020.01.010
0893-6080/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2020.01.010
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.01.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:stelzer@math.tu-berlin.de
mailto:aroehm@mailbox.tu-berlin.de
mailto:kathy.luedge@tu-berlin.de
mailto:yanchuk@math.tu-berlin.de
https://doi.org/10.1016/j.neunet.2020.01.010
http://creativecommons.org/licenses/by/4.0/


F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 159

readout mapping x(t) ↦→ ŷ(t) is a linear combination of different
degrees of freedom of the system.

The reservoir must fulfill several criteria to exhibit good com-
putational properties: First, it must be able to carry information
of multiple past input states, i.e. have memory. References Jaeger
(2002) and Lymburn et al. (2019) study how a reservoir can store
information about past inputs. Second, the system should contain
a non-linearity to allow for non-trivial data processing. Jaeger
(2001) proposed to use a recurrent neural network with random
connections as reservoir. In this case the reservoir x has a high-
dimensional state space by design, as the dimension equals the
number of nodes. Such systems are in general able to store a large
amount of information. Moreover, the recurrent structure of the
network ensures that information about past input states remains
for a number of time steps and fades slowly. Jaeger compared the
presence of past inputs in the state of x to echoes. For this reason
he called his proposed reservoir system echo state network.

In recent years, the field of reservoir computing has profited
from experimental approaches that use a continuous time-delay
dynamical system as reservoir (Appeltant et al., 2011). While
hybrid network-delay systems have also been proposed (Röhm &
Lüdge, 2018), typically, only a single dynamical nonlinear system
is employed and connected to a long delay loop; i.e. as op-
posed to a network-based approach only a single active element
is needed for a delay-based reservoir. Here, the complexity is
induced by the inherent large phase space dimension of the
dynamical system with time-delay (Erneux, 2009; Erneux, Javal-
oyes, Wolfrum, & Yanchuk, 2017; Yanchuk & Giacomelli, 2017).
The main advantage of using a delay system over Jaeger’s echo
state approach (Jaeger, 2001) is that one can physically imple-
ment the delay system with analogue hardware at relatively
low costs—either electronically (Appeltant et al., 2011) or even
optically (Brunner, Soriano, Mirasso, & Fischer, 2011; Larger et al.,
2012).

Two main time scales exist in such delay-based reservoir
systems: the delay-time τ given by the physical length of the
feedback line, and a clock cycle τ ′ given by the input speed. In
this paper, we show that the non-trivial cases of mismatched
delay-time and clock cycle possess better reservoir computing
properties. We explain this by studying the corresponding equiv-
alent network, where we can show that non-resonant ratios of τ ′

to τ have maximal memory capacities.
The paper is organized as follows: In Section 2 the general

model of a reservoir computer based on a single delay-differential
system is introduced. We refer to this method as time-delay
reservoir computing (TDRC). Section 3 shows numerical simula-
tions and the effect of mismatching clock cycles and delay-times.
Section 4 derives a representation of the TDRC system with mis-
matching clock cycle and delay-time as an equivalent echo state
network. Section 5 presents a direct calculation of the memory
capacity. Section 6 derives a semi-analytic explanation for the ob-
served decreased memory capacity for resonant τ ′ to τ ratios and
provides an intuitive interpretation. All results are summarized in
Section 7.

2. Time-delay reservoir computing

In this section we describe the reservoir computing system
based on a delay equation. Its choice is inspired by the publi-
cations (Appeltant et al., 2011; Brunner et al., 2011), where it
was experimentally implemented using analogue hardware. In
comparison to the general reservoir computing scheme u(t) ↦→

x(t) ↦→ ŷ(t) described above, an additional ‘preprocessing’ step
is added to transform the input u in an appropriate way before
being sent to the reservoir. This is particularly necessary when

the input u is discrete and the reservoir x is time-continuous. In
the following, we describe the resulting chain of transformations

u
(I)
↦→ J(t)

(II)
↦→ x(t)

(III)
↦→ ŷ(t) (1)

in detail.

2.1. Step (I): preprocessing of the input

Since the reservoir is implemented with the physical exper-
iment in mind (e.g. semiconductor laser), its state variable x(t)
is time-continuous. However, the input data is discrete in typical
applications of TDRC (Appeltant et al., 2011; Brunner et al., 2011;
Röhm & Lüdge, 2018). For this reason the preprocessing function
u ↦→ J(t) translates the discrete input u into a continuous function
J(t).

We consider a discrete input sequence (u(k))k∈N0 , where u(k) ∈

R is one-dimensional, however, the method can be extended to
multi-dimensional inputs. The important parameters that define
the preprocessing are the clock cycle τ ′ > 0, number of virtual
nodes N ∈ N and the resulting time per virtual node θ := τ ′/N . In
Ref. Appeltant et al. (2011) the parameter value for the clock cycle
was chosen τ ′

= τ and the optimal values for θ are shown to be
in the interval [0.1, 1]. Therefore, we will consider the parameter
τ ′ of the order of the delay τ and θ within the interval [0.1, 1]
or even larger. In fact the exact value of θ , or correspondingly,
N , does not qualitatively influence the phenomenon of the error
increase by rational τ ′/τ (as we show in the Appendix).

First, a function ū(t) is defined as step function

ū(t) := u(k), t ∈ [kτ ′, (k + 1)τ ′), k ∈ N0 (2)

with step length τ ′. Using the indicator function

ΠM (t) =

{
1, t ∈ M,

0, t ̸∈ M,
(3)

the definition of ū can be equivalently written as

ū(t) =

∑
k∈N0

u(k)Π[kτ ′,(k+1)τ ′)(t). (4)

Secondly, ū(t) is multiplied by the τ ′-periodic mask

M(t) =

N∑
n=1

wnΠ[(n−1)θ,nθ )(t mod τ ′), (5)

which is piecewise constant with step length θ = τ ′/N and
values wn. Multiple options for the choice of a mask function are
compared in Ref. Kuriki, Nakayama, Takano, and Uchida (2018).
The final preprocessed input signal J(t) is

J(t) := M (t) ū(t)

=

∑
k∈N0
1≤n≤N

wnu(k)Π[kτ ′+(n−1)θ,kτ ′+nθ )(t). (6)

It is a piecewise constant function with values

Jk,n := wnu(k) (7)

on the intervals [kτ ′
+ (n − 1)θ, kτ ′

+ nθ ). The details of the
preprocessing are illustrated in Fig. 1.

For further analysis, it is convenient to denote the ‘mask’-
vector Wmask and the input vector Jk as follows:

Wmask
:= (w1, . . . , wN )T , Jk = Wmasku(k). (8)



160 F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169

Fig. 1. Schematic representation of the preprocessing step: the discrete input
sequence u(0), u(1), . . . defines the function ū(t) (blue), which is multiplied by
a τ ′-periodic mask function M(t) to obtain the preprocessed input J(t) (red).
Here the length of the mask vector is N = 4. The resulting function J(t) enters
the reservoir equation (9). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2.2. Step (II): reservoir

Inspired by the previous works (Appeltant et al., 2011), we
study the reservoir given by the delay-differential equation
dx
dt

(t) = −x(t) + f [x(t − τ ) + γ J(t)], (9)

where τ > 0 is the delay-time, γ > 0 is the input strength,
f :R → R the activation function, and J(t) the preprocessed input
function. For a given preprocessed input J(t), the reservoir vari-
able x(t) is computed by solving the delay differential equation (9)
with an initial history function x0(s), s ∈ [−τ , 0]. In order for the
reservoir to be consistent, the reservoir state x(t) for sufficiently
large t > 0 should depend only on the input J and be independent
on the initial state x0(s). In other words, identical reservoirs which
are driven by the same input but have different initial states will
approximate each other asymptotically. In the literature about
reservoir computing this property is often referred to as echo
state property or fading memory property (Jaeger, 2001). In the
literature about dynamical systems, the phenomenon is called
generalized synchronization (Pikovsky, Rosenblum, & Kurths, 2001;
Rulkov, Sushchik, Tsimring, & Abarbanel, 1995) or asymptotic
stability (Hale & Verduyn Lunel, 1993; Smith, 2010).

2.3. Step (III): readout

The continuous reservoir variable x(t) needs to be discretized
for the output. For this, the dynamical system is read out every θ
time units. Because every small time window [kτ ′

+(n−1)θ, kτ ′
+

nθ ) is fed with its own input Jk,n, these time windows are often
seen as ‘virtual nodes’, and the whole delay system as a ‘virtual
network’ (Appeltant et al., 2011; Schumacher, Toutounji, & Pipa,
2013b). We discretize the reservoir variable correspondingly:

X(k) :=

⎛⎜⎝X1(k)
...

XN (k)

⎞⎟⎠ :=

⎛⎜⎜⎝
x((k − 1)τ ′

+ θ )
x((k − 1)τ ′

+ 2θ )
...

x((k − 1)τ ′
+ Nθ )

⎞⎟⎟⎠ . (10)

In fact, X(k) is the vector containing the N-point discretization
of the variable x(t) on the interval ((k − 1)τ ′, kτ ′

]. The output
ŷ = (ŷ(k))k∈N0 of the machine learning system is defined as

ŷ(k) = W outX(k) + c, (11)

where W out is an N-dimensional row vector and c ∈ R is a scalar
bias. The output weight variables W out and c are to be adjusted

in the training process and are chosen by linear regression for
reservoir computers (Jaeger, 2001).

3. Effect of the mismatch between delay and clock cycle times

When TDRC was first introduced, the clock cycle τ ′ for the
preprocessing of the input mask was chosen to be equal to the
delay τ (Appeltant et al., 2011; Brunner et al., 2011). In this case
one can easily find an ‘equivalent network’ which is a discrete
approximation of the reservoir system. See the supplementary
material of Appeltant et al. (2011) or Ref. Schumacher, Toutounji,
and Pipa (2013a) for an example. However, recent numerical
observations show, that the performance may be improved if one
sets τ ′

̸= τ . The earliest example of this can be arguably found in
Ref. Paquot et al. (2012).

We use the NARMA-10 task (Atiya & Parlos, 2000), the mem-
ory capacity (MC) (Jaeger, 2002), the time series prediction task
for the chaotic Lorenz system and the Santa Fe time-series pre-
diction task (Weigend & Gershenfeld, 1993) to measure the per-
formance of a simple TDRC to illustrate the role of the clock
cycle τ ′. These are typical benchmark tasks and we refer to
Appendices C–E for a detailed explanation.

Moreover, we use four different functions for the activation
function f in Eq. (9),

linear: f (x) = αx, (12)

Mackey-Glass: f (x) = α
x

1 + xp
, (13)

hyperbolic tangent: f (x) = α tanh(x), (14)

quadratic sin: f (x) = α sin2(x + ϕ), (15)

where we use the parameter values p = 1 and ϕ = 0.5. The
activation factor is chosen α = 0.9 for all cases. In fact, the
precise choice of the parameter α does not influence qualitatively
the phenomenon which we consider, see Appendix F for more
details. The other parameters are set to τ = 80, N = 50, and
γ = 0.02. For our tests we choose 100 different input weight
vectors Wmask with independently U(−1, 1)-distributed entries
wn. For each input weight vector we train the system with 50000
training time steps and a Tikhonov regularization with parameter
β = 10−8. The training starts after an initial period of 200000
inputs which is necessary to ensure that the reservoirs initial
state does not influence the results. Only then do we record the
system state for the next 20000 inputs, with which we facilitate
the training. The only exception are the simulations for the Santa
Fe time-series prediction task. Since the Santa Fe dataset contains
only about 9000 data points, we choose a period of 4000 initial
inputs, 4000 training steps and 1000 test steps. All parameters for
the simulations are summarized in Table 1. The memory capacity
is evaluated up to length 300. Values that are close to 0 are
not included in the sum. We estimate this overfitting threshold
dynamically during the run, by using uncorrelated random target
variables.

The top panel of Fig. 2 shows the results of simulations for
the NARMA-10 task for the four different activation functions
(12)–(15). The figure shows clear peaks of the error for certain
values of the clock cycle τ ′. These peaks are located close to
low-order resonances with the delay-time τ = 80 and fulfill
the relation aτ ≈ bτ ′ for small a, b ∈ N. In fact, the peaks are
located slightly above the resonant τ ′ values. Note, that tanh and
the linear function have very similar values. The lower panel of
Fig. 2 depicts the memory capacity and reveals at least part of
the reason for this: The total memory capacity for these resonant
clock cycles decreases dramatically.

To explore if the observed effect is related to the choice of task,
we plot the performance for four different tasks in Fig. 3. In each



F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 161

Fig. 2. Normalized mean square error (NMSE) of four different TDRCs given in
Eq. (9) with nonlinearities of Eqs. (12)–(15) for the NARMA-10 task (top) and the
total memory capacity MCtot (bottom). Clearly visible are error peaks for values
of τ ′ that are close to integer multiples of τ and low-order resonances. The
presence of the peaks does not depend on the type of the activation function.
Vertical lines denote the resonant values of τ to τ ′ as indicated on the top axis.
The parameters for the simulations are listed in Table 1.

Fig. 3. Normalized mean square error (NMSE) for the NARMA-10 task, the Santa
Fe time-series task and the Lorenz task (left axis) and the total memory capacity
MCtot (right axis) of the TDRC of Eq. (9) with linear activation function Eq. (12).
For all tasks error peaks (resp. memory capacity drops) are visible for values of
τ ′ that are close to integer multiples of τ and low-order resonances. Vertical
lines denote the resonant values of τ to τ ′ as indicated on the top axis. The
parameters for the simulations are listed in Table 1.

case the linear activation (12) was used. One can see that the error
peaks (resp. performance drops) are visible in all tested tasks.

The rest of this paper is devoted to the explanation of this
phenomenon. Thereby we focus on the linear activation (12).
Lacking a nonlinearity, this is not the optimal choice for the TDRC,
the resonance effects that we are interested in seem to be general
and independent of f as shown in Fig. 2, where the performance
for the activation functions (12)–(15) is computed. Furthermore,
this simplification will allow us to deduce analytical results. In
particular, we will be able to show the reason for the drop of the
linear memory capacity explicitly.

4. Approximation by a network

In order to explain the degradation of the memory capacity
for the resonant clock cycles, we present the time delay-system
reservoir as an equivalent network. Similar procedure was done

Table 1
Parameters for the numerical computation of the NMSE for the NARMA-10,
Lorenz and Santa Fe task and the memory capacity of the system.
System parameters

Delay-time τ 80
Input scaling γ 0.02
Number of nodes N 50
Activation factor α 0.9
Range of clock cycle τ ′ [30, 235]
Mackey-glass exponent p 1
Phase shift ϕ in activation function (15) 0.5

Simulation parameters

Regularization parameter β 10−8

Number of runs (with random mask) 100
Number of initial steps per run:

◦ for Santa Fe task 4000
◦ for all other task 200000

Number of training steps per run:
◦ for Santa Fe task 4000
◦ for all other task 50000

Number of test steps per run:
◦ for Santa Fe task 1000
◦ for all other task 20000

Time step of 4th order Runge–Kutta 0.01

in Appeltant et al. (2011) for a TDRC with τ ′
= τ and arbitrary

activation function. Here we present a derivation of an equivalent
network for the case τ ′

̸= τ , where the results of Appeltant et al.
(2011) cannot be applied. However, we have to restrict it to a
linear activation function in order to obtain an explicit network
representation.

An alternative way to describe the dependence of X(k+ 1) on
X(k) and the input for the case τ ′

̸= τ is presented in Larger et al.
(2017), where the authors use an integral formula instead of a
network formulation. This integral formula includes the case of a
nonlinear activation function. For our explanation of the observed
memory capacity drops, the network representation presented in
this section is, however, indispensable.

Since a detailed derivation is technical, we move it to
Appendix A and present the main results in this section.

As follows from Appendix A, the TDRC dynamics can be ap-
proximated by the discrete mapping

X̃(k + 1) = BX̃(k) + (1 − e−θ )F
[
AqX̃(k + 1 − ℓ)

+A−(N−q)X̃(k − ℓ) + γ Jk
]
,

(16)

where

X̃(k) := A−1
0 X(k) (17)

and X(k) is the discretized vector of the reservoir defined in
Eq. (10). Let us define and explain further notations used in the
mapping (16). The matrix

A0 :=

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

e−θ 1
. . .

...
...

. . .
. . . 0

e−(N−1)θ . . . e−θ 1

⎞⎟⎟⎟⎟⎠ (18)

is the classical coupling matrix of an equivalent network for TDRC
with τ ′

= τ (Appeltant et al., 2011). Moreover,

ℓ :=

⌊m
N

⌋
, q := m mod N,

m :=

⌈τ

θ

⌉
=

⌈ τ

τ ′
N
⌉

, θ =
τ ′

N
,

(19)

where ⌊·⌋ and ⌈·⌉ denote the floor and the ceiling function, which
we need to employ to allow delay-times τ that are not an integer



162 F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169

multiple of the time per virtual node θ . These quantities can be
interpreted as follows: m is the number of virtual nodes that are
needed to cover a τ -interval, q is a measure of the misalignment
between τ and τ ′, and ℓ is roughly the ratio between the delay-
time τ and the clock cycle τ ′. For ℓ = 0, the delay τ is shorter
than the clock cycle τ ′, and it is similar to or larger than the clock
cycle for ℓ ≥ 1. The matrices Aq and A−(N−q) are shifted versions
of the matrix A0. They are defined as follows:

Aq :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · · · · 0
...

...

0
...

1 0
...

e−θ 1
. . .

...
...

. . .
. . . 0

...

e−(N−1−q)θ
· · · e−θ 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

is obtained by a downwards shift of A0 by q rows and

A−(N−q) :=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−(N−q)θ
· · · e−2θ e−θ 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

e−(N−1)θ
· · · · · · · · · · · · e−2θ e−θ 1

0 · · · · · · · · · · · · 0 0 0
...

...

0 · · · · · · · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

is obtained by the upwards shift of A0 by N−q rows. Furthermore

B :=

⎛⎜⎜⎝
e−Nθ . . . e−θ

0 . . . 0
...

...

0 . . . 0

⎞⎟⎟⎠ , (22)

F

⎛⎜⎝x1
...

xN

⎞⎟⎠ :=

⎛⎜⎝f (x1)
...

f (xN )

⎞⎟⎠ , (23)

and Jk is defined as the input vector (8).
The mapping (16) generalizes previous results from Appeltant

et al. (2011) and Schumacher et al. (2013b). If the clock cycle τ ′

satisfies τ ′
∈ [τ , τ+θ ), the description coincides with the classical

case τ ′
= τ and the approximate equation (16) yields the same

mapping

X̃(k + 1) = BX̃(k) + (1 − e−θ )F [A0X̃(k) + γ Jk] (24)

as presented in Appeltant et al. (2011) because then ℓ = 1, q = 0,
and A−(N−q) = 0.

Analytical approaches for the nonlinear system (16) are chal-
lenging. To simplify, we will study the effect of different clock
cycles τ ′ with the help of a linear activation function f (x) = αx,
where α is a scalar. Then Eq. (16) can be written as

X̃(k + 1) = BX̃(k) + να[AqX̃(k + 1 − ℓ)

+ A−(N−q)X̃(k − ℓ) + γWmasku(k)]
(25)

by plugging in Wmasku(k) for Jk and by writing ν := 1 − e−θ for
the sake of shortness.

System (16) possesses the following properties: in the case
τ ′

≥ τ + θ , we have ℓ = 0, and hence, Eq. (16) is in general

an implicit map. This is the physical case of a delay shorter than
the clock cycle, which means that the feedback from some of
the virtual nodes will act on other virtual nodes within the same
cycle. However, for the linear activation function in Eq. (25) and
by (17) we obtain for the case ℓ = 0 the explicit map

X(k + 1) = AX(k) + W inu(k), (26)

where

A := A0(Id − ναAq)−1(B + ναA−(N−q))A−1
0 (27)

is a matrix that describes the coupling and local dynamics of the
virtual network and

W in
:= ναγA0(Id − ναAq)−1Wmask (28)

is the generalized input matrix.
Eq. (26) is the main result of this section. It shows that the

TDRC system can be modeled by an equivalent network for τ ′
≥

τ + θ if its activation function f is linear. In previous publi-
cations (Appeltant et al., 2011) such a network representation
was derived for the case τ ′

= τ , however, in that case also for
nonlinear activation functions.

An important observation from Eq. (26) is that the spectral
radius of the matrix A must be smaller than one, otherwise
the system (26) will not be asymptotically stable. We achieve
this by choosing appropriate parameter α = 0.9 (see Fig. 7 in
Appendix F).

Eq. (26) allows us to calculate directly some figures of merit in
the following. We first use it to explain the drops in the memory
capacity in Fig. 2 for resonant delays. One important aspect to
note, is that the basic shape of Eq. (26) does not change with
τ ′. Rather, a changing of the clock cycle leads to a change of
the evolution matrices A and W in of the equivalent network. The
obtained system (26) can be equivalently considered as a specific
echo state network.

5. Direct calculation of memory capacity

One can find an estimation for the memory capacity of a
reservoir computing system by solving the system numerically
and let it perform the memory task. But there are also analytic
methods for some cases. In this section we explain how to cal-
culate analytically the memory capacity of the linear echo state
network (26) which corresponds to the case τ ′

≥ τ + θ .
Memory capacity was originally defined by Jaeger in Jaeger

(2002). In the following, we use a slightly modified formulation.
Let the elements u(k) of the input sequence be independently
N (0, 1)-distributed. Jaeger introduced the quantity MCd which
indicates how well the output ŷ(k) of an ESN may approximate
the input value u(k − d) which was fed into the reservoir d time
steps earlier. The memory capacity for a recall of d time steps in
the past is defined by

MCd := max
Wout

(
1 −

E[(W outX(k + d) − u(k))2]
var(u(k))

)
, (29)

where E denotes the expectation value and we require the initial
state X(0) of the reservoir to be stationary distributed in order to
ensure that this definition is consistent, i.e. that the distribution
of X(k) does not depend on k. Since the spectral radius of A is
less than one, the stationary distribution exists. In such a case,
the memory capacity (29) with stationary distributed X(0) can be
equivalently written as

MCd := max
Wout

(
1 −

E[(W outX(d) − u(0))2]
var(u(0))

)
= 1 − min

Wout
E[(W outX(d) − u(0))2].

(30)



F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 163

Note that u(0) ∼ N (0, 1) means that we can drop the term
var(u(0)) in (30).

The total memory capacity MC is defined as the sum of all
d-step memory capacities

MC :=

∞∑
d=1

MCd. (31)

In the following we denote the optimal output weight vector
for (30) by W out

d . Let Σ be the covariance matrix of the stationary
distribution of the reservoir. Jaeger (2002) noted that, if Σ is
invertible, one can apply the Wiener–Hopf equation (Haykin,
1995) to find

W out
d = (Ad−1W in)TΣ−1. (32)

For details we refer to Appendix B. Using this optimal value W out
d ,

the memory capacity (30) can be calculated as

MCd = (Ad−1W in)TΣ−1Ad−1W in, (33)

where we have used the relations
E[W out

d X(d)u(0)] = cov(W out
d X(d), u(0))

= (Ad−1W in)TΣ−1Ad−1W in (34)

and

E[(W out
d X(d))2] = var(W out

d X(d))

= (Ad−1W in)TΣ−1Ad−1W in.
(35)

So once the covariance matrix of the reservoir X is invertible,
one can directly calculate the memory capacity. The stationary
distribution of system (26) with standard normal distributed
input elements u(k) is a multivariate normal distribution with
mean zero and covariance matrix

Σ =

∞∑
j=0

AjW in(W in)TAjT. (36)

We refer to Appendix B for a derivation. It is worth to comment
on the structure of the matrix Σ . We note that the summands
AjW in(W in)TAjT in (36) are rank one symmetric matrices with the
norm ∥AjW in

∥
2. Since the spectral radius of A is less than one,

this norm converges to zero as j → ∞ and there is only a finite
number of terms in (36) which can make numerically significant
contribution to the rank of Σ . In addition, as we will see in the
following, these rank-one matrices may have almost coinciding
eigenspaces. As a result, the matrix Σ is in general numerically
not invertible. Since our approach for the derivation of Eq. (33)
relies on the invertibility of Σ , we cannot simply replace Σ−1

by a pseudo-inverse. In order to obtain an invertible covariance
matrix, we need to perturb the stochastic process (26). We choose
a small number ση > 0 and let η(k) ∼ N (0, Id) be a sequence
of independent multivariate normal distributed random variables.
The stochastic process

X(k + 1) = AX(k) + W inu(k) + σηη(k), (37)

has the stationary distribution N (0, Ση) where the covariance
matrix given by

Ση =

∞∑
j=0

Aj(W in(W in)T + σηId)AjT (38)

is invertible.

6. Explanation for memory capacity gaps

Using the expressions (31) and (33) for the memory capacity
obtained in Section 5, we provide an explanation for the loss of

the memory capacity when τ ′/τ is close to rational numbers with
small denominator. The explanation is based on the structure of
the covariance matrix Ση given by Eq. (38) and the corresponding
expression for the memory capacity, which we repeat here for
convenience

MC =

∞∑
d=1

MCd,

MCd = (Ad−1W in)TΣ−1
η Ad−1W in,

(39)

where

Ση :=

∞∑
j=0

(Πj + σηAjAjT),

Πj := AjW in(W in)TAjT.

(40)

Our further strategy is as follows:

(i) Firstly, we remark that the norms of the individual terms in
the sum (40) are converging to zero due to the convergence
of the series. Hence, only the first finitely many terms play
an important role. For instance, for our previously chosen
parameters in Fig. 2, the terms with j ≳ 30 do not make a
large contribution and can be neglected. In the following we
denote the approximate number of significant terms by jn.

(ii) We show that the largest eigenvalue of the jth term in (40)
can be approximated by ∥AjW in

∥
2 with the corresponding

eigenvector AjW in.
(iii) We show that the memory capacity is high, i.e. MCd ≈ 1 for

d ≤ jn, when the eigenvectors AjW in corresponding to the
first relevant terms in the sum (40) are orthogonal.

(iv) Using our setup, we show numerically that the lower order
resonances τ ′/τ ≈ a/b, where a, b ∈ N and b is small, lead
to the alignment of the eigenvectors AjW in, and hence, to the
loss of the memory capacity. The small shift from the exact
resonance values is explained by the standard drift property
of delay systems.

(v) Finally we give an intuitive explanation of the obtained
orthogonality conditions.

(i) Convergence of the series (40). The series (40) can be con-
sidered as the Neumann series (Id − T )−1

=
∑

∞

j=0 T
j, where

TX := AXAT, applied to the matrix W in(W in)T +σηId. A sufficient
condition for the convergence of such a series is that ∥T k

∥op :=

sup∥X∥=1 ∥T kX∥ < 1 for some k > 0, where ∥ · ∥ is some matrix
norm. Moreover, ∥T kX∥ = ∥AkXAkT

∥ ≤ ∥Ak
∥∥X∥∥AkT

∥ = ∥Ak
∥
2

when ∥X∥ = 1. Since the spectral radius of A is smaller than one,
Gelfand’s formula implies that there is a number k > 0 such that
∥Ak

∥ < 1, and hence, the sufficient condition ∥T k
∥op < 1 for the

convergence of the series is satisfied.

(ii) Estimating the largest eigenvalues and eigenvectors of the jth
term in (40). Consider at first the term with j = 0: W in(W in)T +

σηId. The largest eigenvalue of this matrix is ∥W in
∥
2
2 +ση and the

corresponding eigenvector is W in as can be easily checked by the
direct calculation

[W in(W in)T + σηId]W in
= (∥W in

∥
2
2 + ση)W in. (41)

For all other eigenvectors v, which are orthogonal to W in due to
the symmetry of the matrix, the corresponding eigenvalues are
ση because

[W in(W in)T + σηId]v = W in
⟨W in, v⟩ + σηv = σηv. (42)

These eigenvalues are by definition small, since ση is a small
perturbation.

We can also find approximations of the eigenvectors and
eigenvalues for the higher order terms Πj+σηAjAjT, j > 0. Namely,



164 F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169

Fig. 4. The angles between AjW in and AiW in , i, j = 1, . . . , 50 are plotted in color,
measuring, in particular, the orthogonality of the vectors AjW in with different
j. Panels (a) and (b) correspond to different ratios of τ ′/τ : (a) τ ′/τ = 1.06; (b)
τ ′/τ = 1.52 ≳ 3/2. The former is off-resonant, while the later is close to the
3/2 resonance, in particular when the drift property of the DDE system is taken
into account. In (b) the vectors AjW in point into the same direction for j, j + 2,
j + 4, etc., i.e. after two time steps the input values u(k) overlap in the state
space of X and the memory capacity drops. In contrast, in the case τ ′/τ = 1.06
(a) it takes almost 30 time steps before the input overlaps with past inputs in
the network state. This explains the high memory capacity in this case, which
is illustrated in Fig. 2.

for the unperturbed matrix Πj, the largest eigenvalue is ∥AjW in
∥
2

and the corresponding eigenvector is AjW in because

ΠjAjW in
= [AjW in(W in)TAjT

]AjW in

= AjW in
⟨AjW in, AjW in

⟩

= ∥AjW in
∥
2
2A

jW in.

(43)

All other eigenvalues are zero. Since the largest eigenvalue of
Πj is geometrically and algebraically simple, it is continuous
under the perturbation by σηId. Hence, the largest eigenvalue and
the eigenvector of Πj + σηAjAjT are approximated by ∥AjW in

∥
2

and AjW in with an error of order ση . All other eigenvalues are
correspondingly small of order ση .

(iii) The orthogonality of AjW in leads to the high memory capacity.
Let jn be the number of terms in (40) that are significant (see (i)),
and let us assume that the eigenvectors AjW in, j = 0, 1, . . . , jn are
close to be orthogonal, i.e.⏐⏐⟨AjW in, AiW in⟩⏐⏐ ≪ 1, i, j = 0, 1, . . . , jn, j ̸= i. (44)

As we will see in (iv), such an assumption is indeed reason-
able in our setup. More precisely, one could consider (44) as⏐⏐⟨AjW in, AiW in

⟩⏐⏐ < ε introducing another small parameter ε ≪ 1.
In case, when the orthogonality (44) holds, the largest eigen-

values of Ση and their corresponding eigenvectors can be approx-
imated by ∥AjW in

∥
2 and AjW in, j = 0, . . . , jn. Indeed

ΣηAjW in
=

∞∑
k=0

(ΠkAjW in
+ σηAkAkTAjW in)

= ∥AjW in
∥
2
2A

jW in
+ O(ση) + O(ε).

(45)

In this case, the memory capacity can be calculated as follows:

MCd = (Ad−1W in)TΣ−1
η Ad−1W in

= (Ad−1W in)T
1

∥Ad−1W in∥2
2
Ad−1W in

+ O(ση) + O(ε)

= 1 + O(ση) + O(ε)

(46)

for d ≤ jn. Hence, the orthogonality of the vectors AjW in with
AiW in, i ̸= j guarantees a high memory capacity. We will present
an intuitive explanation for this shortly.

(iv) Resonances of τ ′ and τ lead to lower memory capacity. The
plots in Fig. 4 show

⟨
AjW in, AiW in

⟩
for different ratios τ ′/τ . White

to light blue off-diagonal squares indicate that assumption (44) is
satisfied, i.e. orthogonal or almost orthogonal vectors. Dark blue
indicates a strong parallelism of the vectors. As can bee seen
in the top panel of Fig. 4, the assumption (44) holds indeed for
ratios τ ′/τ which yield a good memory performance. Conversely,
it is strongly violated for critical ratios τ ′/τ ≳ a/b with small
denominator b, e.g. the center panel of Fig. 4.

We note that the critical ratios τ ′/τ are slightly shifted from
the exact resonant values 1, 3/2, etc. This shift is a manifestation
of the ‘drift’ property of delay systems (Yanchuk & Giacomelli,
2017), which is caused by the fact that the effective round-trip
of a signal in a delay system equals to the delay τ plus a finite
processing time δ due to the integration (filtering). Therefore,
the small shift of the error peaks is actually due to a resonance
between the clock cycle τ ′ and τ +δ. This fact can be seen also in
the structure of the coupling matrix A of the equivalent network.

(v) Intuitive explanations. There is an additional intuitive under-
standing of the above derived formulas. Recall that the original
system of the reservoir of Eq. (9) combines the delay term x(t−τ )
and the input J(t) additively. The approximated network formula
for an equivalent network translated this into the matrix A, which
describes the free dynamics of the network, and the driving
term defined by W in. The state of the network is given by an
N-dimensional system, and thus can at most hold N orthogonal
dimensions (Dambre, Verstraeten, Schrauwen, & Massar, 2012).
Each summand of Ση can now be understood as an imprint of
the driving term on the system after j time steps. For j = 0 the
matrix A0

= Id, and thus the imprint is given by W in, i.e. the
information of the current step is stored in the nodes as given
by the weights of the effective input weight vector W in. In the
next step, the system will get an additional input, but also evolve
according to its local dynamics A. Thus, after one time step, the
imprint has transformed into AW in, i.e. the summand for j = 1
and ση → 0. Now in every step, the information that is currently
present in the network will be ‘rotated’ in the phase space of
the network according to A, while a new input will be projected
onto the direction of W in. This holds in general, so that the jth
summand of Ση of Eq. (38) AjW in describes the linear imprint of
the input j steps in the past.

The orthogonality condition of Eq. (44) then is the same con-
cept as demanding that new information from the inputs should
not overwrite the already present information. If Ar

≈ sId for
some s ∈ R, then the information that was stored from r steps in
the past will be partially overwritten by the currently injected
step and lost. Hence, ensuring that the orthogonality between
AjW in is fulfilled as much as possible will maximize the linear
memory. For the case of resonant feedback, i.e. τ ′

= τ , this
condition is not fulfilled. This is due to the fact, that A has a
strong diagonal component for the resonant cases, i.e. virtual
nodes are most strongly coupled to themselves. This is a simple
consequence of the fact that for τ = τ ′, virtual nodes return to the
single real node at the same time that they are updated. Similarly,
for higher resonant cases bτ ′

= aτ , Ab will in general have a
strong diagonal part and thus the eigenvector AbW in will not be
orthogonal to A0W in, and the information will be overwritten.

7. Discussion

In this paper we have shown a generalization of the frequently
used time-delay reservoir computing for cases other than τ ′

=

τ . We observed that a sudden increase in the computing error
(NARMA-10, Lorenz, and Santa-Fe NRMSE) and a drop in the
linear memory capacity (MC) can be seen for resonant cases of
bτ ′

≈ aτ with a, b ∈ N where b is small for different activation
functions including the linear, tanh, sin2, and the Mackey-Glass
function. We derived an equivalent network for the case τ ′

≥



F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 165

Fig. 5. The time interval over which the function x is integrated in Eq. (49) is highlighted in blue. As stated is Eq. (50), the point k′τ ′
+ n′θ must be chosen such

that it lies within this interval. In Eq. (51) the value of x on the integration interval is approximated by the value of x(k′τ ′
+ n′θ ). If the endpoints of the interval

are grid points, k′τ ′
+ n′θ is chosen to be the right endpoint. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

τ +θ which extends the previously studied case τ ′
= τ . Assuming

a linear activation function f (x) = αx, we can analytically solve
the resulting implicit equations and obtain an expression for
the total memory capacity MC. Here we find that the resulting
memory capacity will be small for cases where τ and τ ′ are
resonant because the information within the equivalent network
will be overwritten by new inputs very quickly. Even though our
analytics so far are only derived for the linear case, we expect
these results to hold in more general situations, as numerical
simulations with several different nonlinear activation functions
in Figs. 2, 7, 8 indicate. More detailed analysis can be performed
in future studies.

Acknowledgments

S.Y. acknowledges the financial support by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
Project 411803875. A.R. and K.L. acknowledge support from the
Deutsche Forschungsgemeinschaft (Germany) in the framework
of the CRC910. F.S. acknowledges financial support provided by
the Deutsche Forschungsgemeinschaft through the IRTG 1740.
A.R. acknowledges the Spanish State Research Agency, through
the Severo Ochoa and Maria de Maeztu Program for Centers and
Units of Excellence in R&D (MDM-2017-0711). This paper was
developed within the scope of the IRTG 1740 / TRP 2015/50122-0,
funded by the DFG / FAPESP.

Appendix A. Derivation of equivalent networks

This section presents a detailed derivation of the ESN rep-
resentation of TDRC systems. The derivation is structured as
follows:

1. The delay system (9) is discretized such that the state of a
virtual node x(kτ ′

+nθ ) depends on the state of its neighbor
node x(kτ ′

+(n−1)θ ), the input Jk,n and the state of a second
node x(k′τ ′

+ n′θ ) at the time k′
≤ k. In order to do so, we

approximate the integral of the continuous TDRC system
on a small integration interval of length θ which covers the
point x(k′τ ′

+ n′θ ).
2. The formulas for n′ and k′ are derived.
3. The TDCR system can be written as a matrix equation. For

this we use the same vectorization (10) of x(t) as for the
readout. An recurrent argument is employed to obtain the
matrix equation.

4. It follows that the discretized TDRC system can be repre-
sented by an ESN if τ ≤ τ ′

−θ and if the activation function
f is linear.

5. For the sake of completeness, we formulate the equivalent
ESN for the classical case τ ′

= τ , which was described
in Appeltant et al. (2011).

A.1. The delay reservoir system and discretization

Consider the delay-system (9), which we repeat here for con-
venience:

ẋ(t) = −x(t) + f [x(t − τ ) + γ J(t)], (47)

where τ > 0, γ > 0 and f :R → R.
It follows that

et−t0x(t) = x(t0) +

∫ t

t0

es−t0 f [x(s − τ ) + γ J(s)] ds (48)

for t ≥ t0. Set t0 = kτ ′
+ (n − 1)θ and t = kτ ′

+ nθ . Then

x(kτ ′
+ nθ ) = e−θx(kτ ′

+ (n − 1)θ )

+

∫ θ

0
es−θ f [x(kτ ′

+ (n − 1)θ + s − τ ) + γ Jk,n] ds,
(49)

where Jk,n is defined in (7). One option to discretize the system, is
to approximate the function x by a step function with step length
θ which is constant on the integration interval. One can find an
appropriate step function by choosing k′(k, n) and n′(n) such that

k′τ ′
+ n′θ ∈ (kτ ′

+ (n − 1)θ − τ , kτ ′
+ nθ − τ ] (50)

and defining x(t) ≈ x̃(t) := x(k′τ ′
+ n′θ ) for t ∈ (kτ ′

+ (n − 1)θ −

τ , kτ ′
+ nθ − τ ]. Then, one can replace x by x̃ in the integrand

in Eq. (49). This yields

x(kτ ′
+ nθ )

≈ e−θx(kτ ′
+ (n − 1)θ )

+

∫ θ

0
es−θ f [x(k′(k, n)τ ′

+ n′(n)θ ) + γ Jk,n] ds

= e−θx(kτ ′
+ (n − 1)θ )

+ (1 − e−θ )f [x(k′(k, n)τ ′
+ n′(n)θ ) + γ Jk,n].

(51)

A.2. The choice of k′ and n′

The floor and the ceiling function are denoted by ⌊·⌋ and ⌈·⌉,
respectively. One can choose k′ and n′ in the following way:

First, let m ∈ Z, m ≥ 1 be the unique number such that
τ ∈ ((m − 1)θ,mθ ], i.e. m = ⌈τ/θ⌉. Then

k′τ ′
+ n′θ = kτ ′

+ nθ − mθ (52)

as illustrated in Fig. 5. Now, the choice of n′ follows directly from
the restriction n′

∈ {1, . . . ,N}. It holds that

n′(n) =

{
(n − m) mod N, if N ∤ (n − m),
N, if N | (n − m).

(53)



166 F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169

From this result follows that

(n − m)θ = n′θ + Nθ ·

{⌊ n−m
N

⌋
, if N ∤ (n − m),

n−m
N − 1, if N | (n − m),

= n′θ +

(⌈
n − m

N

⌉
− 1

)
τ ′.

(54)

Hence, Eq. (52) implies

k′(k, n) = k +

⌈
n − m

N

⌉
− 1. (55)

Note that one has k′
= k as long as n−m ∈ {1, n− 1}. If n−m ∈

{−N +1, . . . , 0}, then k′
= k−1. For n−m ∈ {−2N +1, . . . ,−N}

holds k′
= k − 2, etc.

A.3. Vectorization of the state space and a matrix equation for the
discretized system

Define

X(k) :=

⎛⎜⎝X1(k)
...

XN (k)

⎞⎟⎠ :=

⎛⎜⎜⎝
x((k − 1)τ ′

+ θ )
x((k − 1)τ ′

+ 2θ )
...

x((k − 1)τ ′
+ Nθ )

⎞⎟⎟⎠ (56)

and f̃ ≡ (1 − e−θ )f . From (51) follows

X1(k + 1) = x(kτ ′
+ θ )

= e−θx(kτ ′) + f̃ [x(k′(k, 1)τ ′
+ n′(1)θ ) + γ Jk,1]

= e−θXN (k) + f̃ [Xn′(1)(k′(k, 1) + 1) + γ Jk,1]

(57)

and repeated application of Eq. (51) yields

Xn(k + 1)

= e−nθXN (k)

+ e−(n−1)θ f̃ [Xn′(1)(k′(k, 1) + 1) + γ Jk,1]

+ e−(n−2)θ f̃ [Xn′(2)(k′(k, 2) + 1) + γ Jk,2]
...

+ e−θ f̃ [Xn′(n−1)(k′(k, n − 1) + 1) + γ Jk,n−1]

+ f̃ [Xn′(n)(k′(k, n) + 1) + γ Jk,n]

(58)

for n ∈ {2, . . . ,N}.
These equations can by rewritten as a matrix equation. Let

A0 :=

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

e−θ 1
. . .

...
...

. . .
. . . 0

e−(N−1)θ . . . e−θ 1

⎞⎟⎟⎟⎟⎠ (59)

and

F̃

⎛⎜⎝x1
...

xN

⎞⎟⎠ :=

⎛⎜⎝ f̃ (x1)
...

f̃ (xN )

⎞⎟⎠ . (60)

Then

X(k + 1) = A0F̃

⎛⎜⎝ Xn′(1)(k′(k, 1) + 1) + γ Jk,1
...

Xn′(N)(k′(k,N) + 1) + γ Jk,N

⎞⎟⎠
+

⎛⎜⎝ e−θXN (k)
...

e−NθXN (k)

⎞⎟⎠
(61)

Let ℓ := ⌊m/N⌋ and q := m mod N , as defined in (19), i.e
m = ℓN + q. By plugging this into Eq. (53) and noting that
1 ≤ n ≤ N and 0 ≤ q ≤ N − 1, one obtains

n′(n) =

{
n − q + N, for n ≤ q,
n − q, for n > q,

(62)

and by replacing m by ℓN + q Eq. (55) follows

k′(k, n) =

{
k − ℓ, n > q,
k − ℓ − 1, n ≤ q.

(63)

Hence, the vector
(
Xn′(n)(k′(k, n) + 1)

)
n=1,...,N can be written as

follows:

⎛⎜⎝Xn′(1)(k′(k, 1) + 1)
...

Xn′(N)(k′(k,N) + 1)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
X1(k + 1 − ℓ)

...

XN−q(k + 1 − ℓ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

XN−q+1(k − ℓ)
...

XN (k − ℓ)
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(64)

Thus, the map (61) can be written as

X(k + 1) := A0F̃ [MqX(k + 1 − ℓ)

+ M−(N−q)X(k − ℓ) + γ Jk] + A0

⎛⎜⎜⎝
e−θXN (k)

0
...

0

⎞⎟⎟⎠ ,
(65)

where the matrices Mq = (δi,j+q)1≤i,j≤N and M−(N−q) = (δi,j−(N−q))

1≤i,j≤N are shift matrices.
The matrix A0 is invertible and can be used to transform the

system. Let X̃ := A−1
0 X . Then

X̃(k + 1) = BX̃(k) + F̃ [AqX̃(k + 1 − ℓ)

+ A−(N−q)X̃(k − ℓ) + γ Jk],
(66)

where the matrix

Aq = MqA0 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · · · · 0
...

...

0
...

1 0
...

e−θ 1
. . .

...
...

. . .
. . . 0

...

e−(N−1−q)θ
· · · e−θ 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(67)



F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 167

is obtained by a q rows downwards shift of A0 and the matrix

A−(N−q) = M−(N−q)A0 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−(N−q)θ
· · · e−2θ e−θ 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

e−(N−1)θ
· · · · · · · · · · · · e−2θ e−θ 1

0 · · · · · · · · · · · · 0 0 0
...

...

0 · · · · · · · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(68)

is obtained by an N − q rows upwards shift of A0 and

B =

⎛⎜⎜⎝
e−Nθ . . . e−θ

0 . . . 0
...

...

0 . . . 0

⎞⎟⎟⎠ . (69)

Eq. (69) for matrix B follows from Eq. (65). It must hold that⎛⎜⎜⎝
e−θXN (k)

0
...

0

⎞⎟⎟⎠ = BX̃(k) = BA−1
0 X(k). (70)

Hence,

B =

⎛⎜⎜⎝
0 . . . 0 e−θ

0 . . . . . . 0
...

...

0 . . . . . . 0

⎞⎟⎟⎠ A0. (71)

A.4. An ESN representation of TDRC systems with suitable parame-
ters

If τ ≤ τ ′
− θ , then ℓ = 0. This follows from the definitions

ℓ := ⌊m/N⌋ and m = ⌈τ/θ⌉. Eq. (66) is in this case an implicit
map:

X̃(k + 1) = BX̃(k)

+ F̃ [AqX̃(k + 1) + A−(N−q)X̃(k) + γ Jk].
(72)

However, for a linear activation function f (x) = αx, where α is a
scalar, holds f̃ (x) = (1−e−θ )αx and hence one obtains the explicit
linear map

X̃(k + 1) = (Id − ναAq)−1(B + ναA−(N−q))X̃(k)

+ ναγ (Id − ναAq)−1Jk,
(73)

where ν := 1 − e−θ . Since X̃ = A−1
0 X and Jk = Wmaskuk, one can

write this map in the original coordinates and in terms of the
original input sequence

X(k + 1) = AX(k) + Wu(k), (74)

where

A := A0(Id − ναAq)−1(B + ναA−(N−q))A−1
0 (75)

and

W in
:= ναγA0(Id − ναAq)−1Wmask. (76)

The network matrix A is plotted in Fig. 6 for different parameters.

Fig. 6. Plot of the network matrix A, given by (75) resp. (80), for N = 50 and
diverse values of τ and τ ′ . The connection weights are truncated at 0.3. The
panels (a) and (c) show matrices for the classical case τ = τ ′ . (See Appendix A.5.)
The panels (b) and (d) show matrices for the case τ ≤ τ ′

− θ (Appendix A.4).
These particular examples have resonant values of τ and τ ′ , in fact we have (b)
τ ′/τ = 1.5 and (d) τ ′/τ = 2. The strongest connection weights lie on diagonal
lines which are shifted as the ratio of τ ′ and τ changes. The weights below
these lines scale with the factor e−nθ , where n is the distance to the line. Since
θ = τ ′/N , the (off-diagonal) weights are larger in panels (c) and (d), were τ ′ is
smaller.

A.5. The ESN representation of classical TDRC systems

The article (Appeltant et al., 2011) contains a description of
an equivalent echo state network for TDRC systems with τ ′

= τ .
This description is consistent with the case τ ∈ (τ ′

− θ, τ ′
] in the

framework of our discretization. In this case,

m = N, ℓ = 1, q = 0, (77)

and therefore, Aq = A0 and A−(N−q) is the zero matrix. Thus,
Eq. (66) simplifies to

X̃(k + 1) = BX̃(k) + F̃ [A0X̃(k) + γ Jk]. (78)

For a linear activation function f (x) = αx and τ ≤ τ ′
−θ , i.e. ℓ = 0,

the equivalent network written in the original coordinates is

X(k + 1) = AX(k) + Wu(k), (79)

where

A := A0BA−1
0 + ναA0 (80)

and

W in
:= ναγA0Wmask. (81)

Appendix B. Derivation of the memory capacity formula

We consider the linear echo state network

X(k + 1) = AX(k) + W inu(k), (82)

where the input elements u(k) are independently N (0, 1)
-distributed. In Section 5 we defined

MCd = max
Wout

(
1 − E[(W outX(k + d) − u(k))2]

)
(83)

and we claimed that

W out
d = (Ad−1W in)TΣ−1 (84)

is the optimal argument for (83). In the following we show that
W out

d is indeed the optimal argument for (83).



168 F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169

Fig. 7. Influence of the parameter α of the linear model of Eq. (12) on the
linear memory capacity. All other parameters are as in Table 1. The numerical
simulations in the main part of this report were obtained with α = 0.9.

Fig. 8. Influence of the parameter N for the linear model of Eq. (12) on the
linear memory capacity. All other parameters are as in Table 1. The numerical
simulations in the main part of this report were obtained with N = 50.

In order to maximize (83), we need to minimize the mean
square error

MSE = E[(W outX(k + d) − u(k))2]

= E[(W outX(k + d))2] + E[u(k)2]
− 2E[W outX(k + d)u(k)].

(85)

We know that X(k) ∼ N (0, Σ) and hence

W outX(k) ∼ N (0,W outΣ(W out)T). (86)

Note that W outΣ(W out)T is a scalar because W out is a row vector.
Since the mean of W outX(k + d) is zero and u(k) ∼ N (0, 1), we
have

E[(W outX(k + d))2] = var(W outX(k + d))
= W outΣ(W out)T, (87)

E[u(k)2] = 1, (88)
E[W outX(k + d)u(k)] = cov(u(k),W outX(k + d)). (89)

Moreover,

W outX(k + d)

= W out

⎛⎝AdX(k) +

d−1∑
j=0

AjW inu(k + d − 1 − j)

⎞⎠ (90)

and u(k) is independent of X(k). Therefore,

cov(u(k),W outX(k + d))

= cov(u(k),W outAd−1W inu(k))

= W outAd−1W in.

(91)

Thus, we obtain

MSE = W outΣ(W out)T + 1 − 2W outAd−1W in. (92)

Since the mean square error is quadratic in the argument W out
=

(wout
1 , . . . , wout

N ), it has exactly one local minimum, which is the
global minimum. A row vector W out

d is the minimum argument if
and only if

∂

∂wout
n

MSE(W out
d ) = 0, n = 1, . . . ,N. (93)

For a quadratic form

Q (v) = vTMv, (94)

where v ∈ RN and M is a symmetric matrix, the vector of the
partial derivatives is given by

∂Q (v)
∂v

= 2vTM. (95)

Therefore,

∂MSE
∂W out = 2W outΣ − 2(Ad−1W in)T (96)

and hence

W out
d Σ = (Ad−1W in)T. (97)

This formula is called Wiener–Hopf equation (Haykin, 1995). It
follows that

W out
d = (Ad−1W in)TΣ−1. (98)

Appendix C. The NARMA-10 benchmark

The 10th-order nonlinear autoregressive moving average
(NARMA-10) task was introduced in Atiya and Parlos (2000) to
evaluate the performance of machine learning methods on time
series estimation. The NARMA-10 sequence (y(k))k≥0 is defined
as follows: for an input sequence with independently U(0, 0.5)-
distributed elements u(k), let

y(0) = y(1) = · · · = y(9) = 0 (99)

and

y(k + 1) = 0.3y(k) + 0.05y(k)

⎛⎝ 9∑
j=0

y(k − j)

⎞⎠
+ 1.5u(k − 9)u(k) + 0.1

(100)

for k ≥ 9.
In order to evaluate the performance of a reservoir computer,

we choose sufficiently large numbers k0, K ∈ N and we compare
the output values ŷ(k0 + 1), . . . , ŷ(k0 + K ) to the desired target
values y(k0 + 1), . . . , y(k0 + K ) by the normalized mean square
error

NMSE =
1
K

k0+K∑
k=k0+1

(ŷ(k) − y(k))2

var(y)
. (101)



F. Stelzer, A. Röhm, K. Lüdge et al. / Neural Networks 124 (2020) 158–169 169

Appendix D. The Lorenz benchmark

For the Lorenz task we use the three-dimensional Lorenz
system:

ξ̇ = 10(υ − ζ ),
υ̇ = ξ (28 − ζ ) − υ,

ζ̇ = ξυ −
8
3
ζ .

(102)

We obtain a three-dimensional input sequence u(k) of the reser-
voir by sampling with period 0.1 and normalization of all compo-
nents, i.e.

u(k) :=

(
ξ (k/10)/var(ξ )
υ(k/10)/var(υ)
ζ (k/10)/var(ζ )

)
. (103)

The task is a one-time-step-prediction task for the ξ -component,
i.e. the target sequence is given by y(k) := ξ ((k + 1)/10)/var(ξ ).
For the evaluation we use the NMSE (101).

Appendix E. The Santa Fe benchmark

For the Santa Fe time-series prediction task we use a normal-
ized version of the Santa Fe laser series (Weigend & Gershen-
feld, 1993) as input. The target is to predict the next value of
the series, i.e. as the Lorenz task, the Santa Fe task is a one-
time-step-prediction task. For the evaluation we use the NMSE
(101).

Appendix F. Parameters

Our choice of parameters does not significantly influence our
results. In this section we present the numerical simulations that
we used to verify this for α, θ resp. N .

Fig. 7 shows the memory capacity as a function of the clock
cycle τ ′ for different α. The effect is visible for a large range of
values. In the paper, we have used α = 0.9, corresponding to the
highest capacity out of the tested ones.

Fig. 8 shows the memory capacity as a function of the clock
cycle τ ′ for two different numbers of virtual nodes N = 50 and
N = 100. Since the time per virtual node is θ = τ ′/N , it ranges
between 0.6 and 5.0 in the case N = 50 and between 0.3 and 2.5
in the case N = 100. In both cases The effect is visible. In the
paper, we have used N = 50.

References

Appeltant, L., Soriano, M., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,
Schrauwen, B., et al. (2011). Information processing using a single dynam-
ical node as complex system. Natural Communications, [ISSN: 2041-1723]
2(1), 468. http://dx.doi.org/10.1038/ncomms1476, URL http://www.nature.
com/articles/ncomms1476.

Argyris, A., Bueno, J., & Fischer, I. (2018). Photonic machine learning implementa-
tion for signal recovery in optical communications. Scientific Reports, 8(8487),
1–13. http://dx.doi.org/10.1038/s41598-018-26927-y.

Atiya, A. F., & Parlos, A. G. (2000). New results on recurrent network training:
Unifying the algorithms and accelerating convergence. IEEE Transactions on
Neural Networks, 11(3).

Brunner, D., Penkovsky, B., Marquez, B. A., Jacquot, M., Fischer, I., & Larger, L.
(2018). Tutorial: Photonic neural networks in delay systems. Journal of
Applied Physics, 124(15), 152004. http://dx.doi.org/10.1063/1.5042342.

Brunner, D., Soriano, M. C., Mirasso, C. R., & Fischer, I. (2011). Parallel photonic
information processing at gigabyte per second data rates using transient
states. Natural Communications, 2.

Dambre, J., Verstraeten, D., Schrauwen, B., & Massar, S. (2012). Information
processing capacity of dynamical systems. Scientific Reports, 2, 514. http:
//dx.doi.org/10.1038/srep00514.

Erneux, T. (2009). Surveys and Tutorials in the Applied Mathematical Sciences: vol.
3, Applied delay differential equations (p. 204). Springer.

Erneux, T., Javaloyes, J., Wolfrum, M., & Yanchuk, S. (2017). Introduction to
focus issue: Time-delay dynamics. Chaos: An Interdisciplinary Journal of
Nonlinear Science, [ISSN: 1054-1500] 27(11), 114201. http://dx.doi.org/10.
1063/1.5011354, URL http://aip.scitation.org/doi/10.1063/1.5011354.

Hale, J., & Verduyn Lunel, S. (1993). An introduction to functional differential
equations. 99,

Haykin, S. (1995). Adaptive filter theory (3rd ed.). Prentice Hall.
Jaeger, H. (2001). The ‘‘echo state’’ approach to analysing and training recurrent

neural networks: Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 148.
Jaeger, H. (2002). Short term memory in echo state networks: Ger. Natl. Res. Cent.

Inf. Technol. GMD Tech. Rep. 152.
Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic sys-

tems and saving energy in wireless communication. Science (80-. )., [ISSN:
0036-8075] 304(5667), 78–80. http://dx.doi.org/10.1126/SCIENCE.1091277.

Kuriki, Y., Nakayama, J., Takano, K., & Uchida, A. (2018). Impact of input mask
signals on delay-based photonic reservoir computing with semiconductor
lasers. Optics Express, 26.

Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V. S., Chembo, Y.
K., & Jacquot, M. (2017). High-speed photonic reservoir computing using
a time-delay-based architecture: Million words per second classification.
Physical Review X, 7, 011015. http://dx.doi.org/10.1103/PhysRevX.7.011015,
URL https://link.aps.org/doi/10.1103/PhysRevX.7.011015.

Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutierrez, J. M., Pes-
quera, L., et al. (2012). Photonic information processing beyond turing:
an optoelectronic implementation of reservoir computing. Optics Express,
20(3), 3241–3249. http://dx.doi.org/10.1364/OE.20.003241, URL http://www.
opticsexpress.org/abstract.cfm?URI=oe-20-3-3241.

Lymburn, T., Khor, A., Stemler, T., Corrẽa, D. C., Small, M., & Jüngling, T. (2019).
Consistency in echo-state networks. Chaos, 29.

Maass, W., Natschläger, T., & Markam, H. (2002). Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11), 2531–2560.

Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
& Massar, S. (2012). Optoelectronic reservoir computing. Scientific Reports,
2(287), http://dx.doi.org/10.1038/srep00287.

Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing
approach. Physical Review Letters, 120(2), 24102. http://dx.doi.org/10.1103/
physrevlett.120.024102.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal
concept in nonlinear science. Cambridge University Press.

Röhm, A., & Lüdge, K. (2018). Multiplexed networks: reservoir computing with
virtual and real nodes. Journal of Physics Communications, 2, 85007. http:
//dx.doi.org/10.1088/2399-6528/aad56d.

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., & Abarbanel, H. D. I. (1995). Gen-
eralized synchronization of chaos in directionally coupled chaotic systems.
Physical Review E, 51, 980–994. http://dx.doi.org/10.1103/PhysRevE.51.980,
URL https://link.aps.org/doi/10.1103/PhysRevE.51.980.

Van der Sande, G., Brunner, D., & Soriano, M. C. (2017). Advances in photonic
reservoir computing. Nanophotonics, 6(3), 561. http://dx.doi.org/10.1515/
nanoph-2016-0132.

Schumacher, J., Toutounji, H., & Pipa, G. (2013a). An analytical approach to single
node delay-coupled reservoir computing. In Conference: 23rd international
conference on artificial neural networks. http://dx.doi.org/10.1007/978-3-642-
40728-4_4.

Schumacher, J., Toutounji, H., & Pipa, G. (2013b). An analytical approach to single
node delay-coupled reservoir computing. http://dx.doi.org/10.1007/978-3-
642-40728-4_4.

Smith, H. (2010). An introduction to delay differential equations with applications
to the life sciences, Vol. 57. http://dx.doi.org/10.1007/978-1-4419-7646-8.

Verstraeten, D., Schrauwen, B., & Stroobandt, D. (2006). Reservoir-based tech-
niques for speech recognition. In 2006 IEEE Int. Jt. Conf. Neural Netw. Proc.
(pp. 1050–1053). IEEE, http://dx.doi.org/10.1109/IJCNN.2006.246804, URL
http://ieeexplore.ieee.org/document/1716215/.

Verstraeten, D., Schrauwen, B., Stroobandt, D., & Van Campenhout, J. (2005).
Isolated word recognition with the Liquid State Machine: a case study.
Information Processing Letters, [ISSN: 0020-0190] 95(6), 521–528. http:
//dx.doi.org/10.1016/J.IPL.2005.05.019, URL https://www.sciencedirect.com/
science/article/pii/S0020019005001523?via{%}3Dihub.

Weigend, A. S., & Gershenfeld, N. A. (1993). Results of the time series prediction
competition at the santa fe institute. In IEEE international conference on
neural networks, Vol. 3 (pp. 1786–1793). http://dx.doi.org/10.1109/ICNN.1993.
298828.

Yanchuk, S., & Giacomelli, G. (2017). Spatio-temporal phenomena in com-
plex systems with time delays. Journal of Physics A, [ISSN: 1751-
8113] 50(10), 103001. http://dx.doi.org/10.1088/1751-8121/50/10/103001,
URL http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c06
2e912b820ac69c9174ac61305.

http://dx.doi.org/10.1038/ncomms1476
http://www.nature.com/articles/ncomms1476
http://www.nature.com/articles/ncomms1476
http://www.nature.com/articles/ncomms1476
http://dx.doi.org/10.1038/s41598-018-26927-y
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb3
http://dx.doi.org/10.1063/1.5042342
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb5
http://dx.doi.org/10.1038/srep00514
http://dx.doi.org/10.1038/srep00514
http://dx.doi.org/10.1038/srep00514
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb7
http://dx.doi.org/10.1063/1.5011354
http://dx.doi.org/10.1063/1.5011354
http://dx.doi.org/10.1063/1.5011354
http://aip.scitation.org/doi/10.1063/1.5011354
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb12
http://dx.doi.org/10.1126/SCIENCE.1091277
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb14
http://dx.doi.org/10.1103/PhysRevX.7.011015
https://link.aps.org/doi/10.1103/PhysRevX.7.011015
http://dx.doi.org/10.1364/OE.20.003241
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-3-3241
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-3-3241
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-3-3241
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb18
http://dx.doi.org/10.1038/srep00287
http://dx.doi.org/10.1103/physrevlett.120.024102
http://dx.doi.org/10.1103/physrevlett.120.024102
http://dx.doi.org/10.1103/physrevlett.120.024102
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30012-5/sb21
http://dx.doi.org/10.1088/2399-6528/aad56d
http://dx.doi.org/10.1088/2399-6528/aad56d
http://dx.doi.org/10.1088/2399-6528/aad56d
http://dx.doi.org/10.1103/PhysRevE.51.980
https://link.aps.org/doi/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1515/nanoph-2016-0132
http://dx.doi.org/10.1515/nanoph-2016-0132
http://dx.doi.org/10.1515/nanoph-2016-0132
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-3-642-40728-4_4
http://dx.doi.org/10.1007/978-1-4419-7646-8
http://dx.doi.org/10.1109/IJCNN.2006.246804
http://ieeexplore.ieee.org/document/1716215/
http://dx.doi.org/10.1016/J.IPL.2005.05.019
http://dx.doi.org/10.1016/J.IPL.2005.05.019
http://dx.doi.org/10.1016/J.IPL.2005.05.019
https://www.sciencedirect.com/science/article/pii/S0020019005001523?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0020019005001523?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0020019005001523?via{%}3Dihub
http://dx.doi.org/10.1109/ICNN.1993.298828
http://dx.doi.org/10.1109/ICNN.1993.298828
http://dx.doi.org/10.1109/ICNN.1993.298828
http://dx.doi.org/10.1088/1751-8121/50/10/103001
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305
http://stacks.iop.org/1751-8121/50/i=10/a=103001?key=crossref.f760c062e912b820ac69c9174ac61305

	Performance boost of time-delay reservoir computing by non-resonant clock cycle
	Introduction
	Time-delay reservoir computing
	Step (I): preprocessing of the input
	Step (II): reservoir
	Step (III): readout

	Effect of the mismatch between delay and clock cycle times
	Approximation by a network
	Direct calculation of memory capacity
	Explanation for memory capacity gaps
	Discussion
	Acknowledgments
	Appendix A. Derivation of equivalent networks
	The delay reservoir system and discretization
	The choice of k' and n'
	Vectorization of the state space and a matrix equation for the discretized system
	An ESN representation of TDRC systems with suitable parameters
	The ESN representation of classical TDRC systems

	Appendix B. Derivation of the memory capacity formula
	Appendix C. The NARMA-10 benchmark
	Appendix D. The Lorenz benchmark
	Appendix E. The Santa Fe benchmark
	Appendix F. Parameters
	References


