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Abstract

Structural balance theory affirms that in signed social networks with simultaneous friendly/hostile interactions, there
is a general tendency of evolving to reduce the tensions. From this perspective, individuals iteratively invert their
sentiments to reduce the felt tensions induced by imbalance. Each agent in a signed network has a mixture of positive
and negative links representing friendly or antagonistic interactions and his stubbornness about interactions. We define
stubbornness as an extreme antagonistic interaction that is resistant to change. In the current paper, we investigate if
the presence of stubborn links renders an impact on the balanced state of the network and whether or not the degree
of balance in a signed network depends on the location of stubborn links. Our results show that a poorly balanced
configuration consists of multiple antagonistic groups. Both analytical and simulation results demonstrate that the
global level of balance of the network is more influenced by the locations of stubborn links in the resulting network
topology than by the fraction of stubborn links. This means that even with a large fraction of stubborn links the network
would evolve towards a balanced state. On the other hand, if a small fraction of stubborn links are clustered in five
stubborn communities, the network evolves into an unbalanced state.
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1. Introduction

The problem of minimizing social tension or frustra-
tion among a group of agents contributes remarkably to
the development of interactions, hence shaping commu-
nities, alliances, and political groups. Structural balance
theory (SBT), proposed by Heider [1], was the first at-
tempt to explain the structure and origin of human ten-
sions in terms of friendship and hostility relationships.
In particular, it postulates that social systems with si-
multaneous friendly/hostile interactions tend to evolve to
reduce stress. Signed networks representing the relation
(positive or negative, i.e. friendly or hostile) between in-
teracting agents can provide us with significant insights
into unveiling the global properties from local interac-
tions [2, 3, 4, 5]. Cartwright and Harary [6] formerly
modeled SBT to analyze the dynamics and construction
of signed networks.The SBT studies the formation, the
dynamic features of pairwise interactions among indi-
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viduals or communities and finally the system’s final
configuration of interactions.

A generalization of Heider’s original hypothesis has
been extensively applied to many interesting real-world
systems, including social systems [7, 8, 9, 10, 11], the en-
tities within economical activities [12], ecologic commu-
nities [13, 14] and biological neural networks[15]. There
has been a large number of previous works studying
structural balance[16] and partial balance [17] in signed
networks, using methods motivated by spin glasses
[4, 18], the dynamic evolution of structural balance
[19, 20, 21, 22, 23], reverse transformation of balanced
structure [24], time-varying relationship strengths [25]
and networks with non-active links [26].

The SBT states that the network is either balanced or
moves towards a balanced state. For the latter case, a
measure of balance is needed to trace movement towards
balance. Energy function (as specifically defined in Sec.
2), stated in terms of cycles is defined to measure the bal-
ance degree of the signed network. If a network becomes
balanced, it achieves the global minimum of the energy
landscape. However, the energy landscape also contains
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many metastable states, i.e., local minima, named as
jammed states [19]. The concept of such energy land-
scapes has been studied in a wide range of systems from
structural glasses [27] to brain activity [28] and social
networks [29], to explain how the system gets trapped
into local minima as it moves down the energy landscape.

Following the SBT, balance dynamics act as the driv-
ing mechanism bringing the network to its minimum
energy state. In its dynamical evolution, the network
may fall into a jammed state in which no single sign
change can decrease the energy of the system. Marvel
et al. [29] observed that the maximum energy allowed
for a jammed state is usually found in the lower half
of the energy spectrum and it is hard for any system to
achieve this upper bound. However, the transformation
cost of changing an link from -1 to 1 is ignored during
the dynamical or optimization process. The findings re-
veal some factors affecting the relationship outside of
balance theory in the real world. There is a growing
literature studying opinion dynamics in social systems
with stubborn agents (whose opinions are kept constant
throughout time) [30, 31, 32, 33]. Therefore, complete
balance is rarely achieved in real systems as a conse-
quence of the complexity of interactions [34]. Each
individual can decide whether to change his/her relation-
ship with others or not, which describes some dynamical
processes occurring in the whole system. As such, the de-
cisions that people make and the beliefs that people hold
have profound consequences on the structure of the net-
work. Here we consider social systems in the presence
of "stubborn links", which is likely to generate tension.
We study how the degree of balance of a signed network
depends on the locations of stubborn links and under
which conditions we can avoid conflicting situations.

The SBT at most predicts partitioning nodes into one
or two strong subsets (bipolar) at the macro-level. This
strict condition makes it quite unlikely for a signed net-
work to achieve complete balance in practice. Human
social networks are rarely found to be in general strongly
balanced ([35, 36]). As most empirical structures are
not balanced [37], Doreian and Mrvar have proposed a
method for the composition of the network to plus-sets
(more than two) as close to balance as possible [38].

Here, we discuss how the so-called stubborn negative
links presence results in the system achieving high en-
ergy of a jammed state, using the energy function and
the signed network topology. Through simulations, we
show that a network can non-trivially tolerate a large
population of stubborn links depending on their distribu-
tion. Still, the network with a large number of stubborn
links does not have a high probability to reach a balanced
state.

A link-clustering approach to detect communities in
terms of closely interrelated links was proposed by Ahn
et al. [39]. The role of cooperative and antagonistic
interactions in generating clustering, polarization and
dynamics evolution in the social network have also been
studied [40, 41, 42]. In this study, the community forma-
tion of stubborn links is observed. Moreover, we study
the number of antagonistic communities form.

2. Structural Balance with stubborn links

Following structural balance theory, the two signed tri-
adic configurations (+ - -) and (+ + +) are considered as
balanced and (+ + -) and (- - -) signed triadic configura-
tions are considered as unbalanced. The two unbalanced
triangles are identified as a source of inherent tension
which may drive them into more balanced configurations
(Figure. 1).
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Figure 1: Different balanced and unbalanced configurations of a trian-
gle. Solid lines with ’+’ label represent positive links and dashed lines
with ’–’ label represent negative links.

We begin by modeling a fully connected network as
a signed complete graph G(N; S ), with N agents and
S links. Each positive or negative link S i j represent-
ing a feeling of trust/mistrust, like/dislike, or friend-
ship/enmity between the node i and j [43, 4]. Following
the SBT, a potential energy function to quantify the de-
gree of balance of any signed social network is defined
as[29]:

E = −

∑
i jk S i jS jkS ki(

N
3

) (1)

where S i j, S jk, and S ki are signed links forming a triad
and the sum is overall triangles i, j, k of the network. The
energy ranges between −1 and +1 corresponding to a
balanced and an imbalanced structure respectively.

Structural balance theory provides the basic compo-
nents of a dynamic model by specifying sign changes of
links in the unbalanced triples to be balanced—a graph is
balanced if all of its triples are balanced. Two internally
friendly communities with mutual antagonism between
them, is the only sign configuration in global minima
(The paradise configuration is considered as the extreme
in which one community is empty).
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2.1. Stubborn links

There is no guarantee, however, that all of the links in
the network will cooperate in balance dynamics. Some
links may refuse to switch and lead the network to an
imbalanced final state (stubborn links). In this term, a
network may fall into a final state containing imbalanced
triads (Figure. 1). Changing the sign of any such negative
links would thereby render all the triads imbalanced. To
create the network, we first generate a matrix of N nodes.
The signs "+" or "-" are randomly assigned to the links.
The negative stubborn links (ns = 1 : N(N − 1)/2) are
randomly distributed. Generally, we observe that the
presence of stubborn links affects the final balance state,
and the deviation depends not only on the fraction but
specifically on the location of the stubborn links in the
network structure.

2.2. Stubborn Communities

In a weaker form of structural balance proposed by
Davis [44], a clusterable network can be partitioned into
some clusters such that within the clusters, links are
positive and the rest are negative as much as possible.
When a graph is balanced, individuals partition into two
(strong balance) or more (weak balance) subgroups to
minimize the structural conflicts. It has been shown that a
signed complete graph trapped in the jammed state has a
natural decomposition into internally balanced modules.
[29]. The states with high-energy local minima must be
structurally more complex than low-energy ones. The
communities formed by nodes with only negative or
very few positive links have been studied before [45].
We define stubborn communities as those communities
made of stubborn links only and having positive links
with the rest of the network. Our study shows that when
stubborn communities are formed (Figure. 2), a few
numbers of stubborn links can substantially make the
energy positive.

The stubborn links affect the final balance state of the
network. In addition to the fraction of stubborn links,
their location as the network structure evolves may also
strongly affect the degree of balance in a signed network.
The density of interactions among neighbors can be mea-
sured by the local clustering coefficient, which has re-
markable impacts on network dynamics. The clustering
coefficient has been recently generalized to signed net-
works [46]. The mutually antagonistic communities can
be found in a weakly balanced network [47]. Motivated
by this, the clustering task is to identify stubborn antag-
onistic communities in the network, such that nodes of
the same community share many stubborn relationships
with one another. Studying the clustering coefficient

Stubborn-Communities

A

B

Figure 2: Schematic pattern of a network with stubborn links (red dash
lines) clustered in stubborn communities (blue dashed circles); they
provoke a stubborn-community, i.e. stubborn links forming a cluster.

on the network as it moves down the energy landscape
can explain how stubborn links located through the net-
work. The signed clustering coefficient is interpreted as
a node’s tendency to be correlated with its similar neigh-
borhood. These correlations tend to form communities
over the network.

The clustering coefficient quantitatively measures the
connectivity between stubborn links located in the whole
network. Therefore, this measure is calculated for the
network of stubborn links obtained by only taking into
account stubborn links in a network. Then we ignore the
negative sign and use regular methods. If we remove all
non-stubborn links in a network, then the resulting net-
work is not a complete graph. The clustering coefficient
of a node i is high if the pairs of nodes that have a stub-
born connection to i are also connected by a stubborn
link.

The clustering coefficient represented by C is defined
as the probability that two incident links are completed
by a third link to form a triangle [48]:

C =
{number o f closed triangles}

{number o f all open and closed triplets}
(2)

It can be safely said that a tendency to form commu-
nity structure (community by stubborn links) is present.
Figure. 3.b shows the scatter plot of energy against the
clustering coefficient. What we observe in this Figure is
that the formation of stubborn communities moderately
grows with energy, while it remains fairly constant in
E = 0 for 0.3 < C < 0.7 and again grows to C = 1 as
unbalanced communities grow in numbers.

Here, the optimization problem is to minimize the
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Figure 3: (a) Energy as a function of the fraction of stubborn links for a network with N = 100 nodes. Each point represents the final state of a single
realization. The red points represent the energy reached by networks with a random displacement of stubborn links in the network. The blue points
represent the extreme values of the energy of the final state when stubborn links form communities. The blue solid lines are related to a network with
approximately same size stubborn communities, the upper line represents the communities formed by the minimum fraction of stubborn links and the
lower line corresponds to the maximum fraction of stubborn links. (b) Energy as a function of the clustering coefficient (C) for stubborn links in
networks in the final state of every simulation.

fraction of stubborn links necessary to reach an imbal-
anced state of a network. For the estimation of the energy
during the evolution, the method follows this sequence.
We start from an antagonistic network that all the links
are -1 and a fraction of stubborn links ∈ [0, 1]. At each
time step, links must fulfill two conditions. First, links
are selected randomly and their signs are flipped if this
produces more balanced triangles than unbalanced ones.
Second, stubborn links are not allowed to switch their
signs. After each link flipping the energy of the new con-
figuration is evaluated. According to these conditions,
the network in different paths towards global minimum
tension states falls into a local minimum. To have a
statistic of the final states, we repeat simulations 1000
independent times.

The red points in Figure. 3(a), show the energy of the
final state versus the fraction of stubborn links when they
are randomly displaced. Stubborn links clustering is cru-
cial for the definition of the final state network energy, as
shown in Figure. 3 (b). Although, a high fraction of such
links does not imply a high clustering coefficient. There
are a minimum fraction of such links able to move the
network to a positive energy final state. In this case, we
define the energy upper bound as the maximum energy
reachable by the system with this configuration. On the
other side, there is also a maximum number of stubborn
links able to keep the system into negative energy final
states. We define the range of variation of the energy
function for these extremes and the energy lower bound
as the minimum energy reachable by this configuration.

Without stubborn links, the network eventually
reaches a balanced state. By imposing a subset of stub-
born links the energy changes significantly. A small
fraction of stubborn links has more chance to locate ran-
domly in the network in such a way that they do not
link to any other stubborn link. With few stubborn links
(less than 20% of all the links) the chance of reaching a
balanced state is still high (Figure. 3). However, by in-
creasing the number of stubborn links many imbalanced
triads cannot reach a balance, resulting in a frozen state.
In this case, the only way to reduce the energy of the
system would be by flipping a stubborn link, which does
not occur by definition. We aim to determine the optimal
placement of the minimum number of stubborn links
with the maximum impact on the energy. The spatial dis-
tance apart stubborn links allowing more triangles to be
unbalanced. This feature causes more (- + +) unbalance
triangles and also increases energy. Progressively in-
creasing the fraction of stubborn links, they less and less
likely locate separately and the probability of connecting
each other increases. This way the number of (- - +)
balance triangles increases and also energy can decrease.
On the other hand, more stubborn links, more probability
of clustering, more probability of reaching high energy
(red points in Figure. 3(a)). When stubborn links as-
semble in negative communities, the number of (- + +)
unbalance triangles increases causing a raise of energy
(upper blue points in Figure 3(a)). The lower blue points
in Figure 3(a) show the extremely opposite state with
positive links inside communities and stubborn negative
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Figure 4: (a) Distribution of energy of the final state. (b) Distribution of the number of triangles for any of the four types. For networks with N = 100
nodes and 1000 realizations.

links between them. We quantify these observations by
measuring the clustering coefficient (C) of the negative
stubborn links in the network, which shows how they
progressively assemble into communities (Figure 3(b)).

For energy reduction, the distribution of balanced and
unbalanced triangles should be taken explicitly into ac-
count. To compare how the energy and the number of
balanced and unbalanced triangles change as the frac-
tion of stubborn links increases, we plot in Figure. 4 the
distribution of triangles and the distribution of energy.
As expected, energy increases and the range of energy
decreases due to stubborn links higher density. This is
related to the fact that increasing the fraction of stubborn
links causes more unbalanced (- - -) triangles to appear.
The tendency of a network over time to become more bal-
anced leads to a reduction in the number of imbalanced
triangles, which in this case is followed by a reduction
in the number of negative links. On the other hand, to
find the minimum number of negative links to allow a
positive energy final state we should look at the configu-
rations with more positive links. It ultimately could turn
the system into an unstable state in which there is no
propensity to reduce the unbalanced triangles in favor of
balance [49]. Our results show that stubborn links form-
ing communities may lead the system to fall into a local
minimum with positive energy. Even a small fraction of
stubborn links may evolve into stubborn communities.

3. OPTIMUM NUMBER OF Stubborn-
Communities

Marvel et al. [29] showed that jammed states may be
derived from the undirected Paley graphs [50]. Our first
result is that the local minima of clustered networks with

stubborn links can have energies above zero (defined in
eq.(1). To see this, note that in a balanced state, there
are at least as many unbalanced triangles as balanced
triangles. A triad is balanced if any three nodes from
any three distinct stubborn-communities are selected (+
+ +) or two nodes from one community and the third
one from another community (+ - -). On the other hand,
three nodes from the same community form an unbal-
anced triangle. There are therefore

∑
i

(
mi
2

)
(N − mi) +

(
m
3

)
balanced triangles and (N −mi)

(
mi
3

)
unbalanced triangles,

where i = 1, ..., k is the number of communities and mi

is the number of vertices in the community i. Thus, sum-
ming over all triads yields the upper bound on the energy
function:

E 6 −
∑

i

mi

(
k
3

)
−

mi(mi−1)
2 k(N − mi) +

(
mi
3

)(
N
3

) (3)

Our results show that the number of stubborn commu-
nities formed in a network with similar size is limited
(Figure 3). Consider a fixed number of stubborn com-
munities m, in a network of size N. If all N nodes in the
network are uniformly distributed among the m ∼ N/k
communities, we have:

E 6 −
N
k

(
k
3

)
− N

2k ( N
k − 1)k(N − N

k ) +
( N

k
3

)(
N
3

) (4)

In the extreme case k → ∞, the condition implies
that the number of stubborn-communities will be m ∼ 5.
This is consistent with the obtained numerical results,
which point at the existence of bounds for the stubborn-
community size. Figure. 5 shows the numerical solution
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of energy as a function of the number of clusters. As
presented in this figure, the number of these stubborn-
communities is limited to five communities.

5102030405060708090100

m

-1

-0.5

0

0.5

1

E

5 50 100

Figure 5: Numerical solution of energy (E) as a function of the number
of clusters (m), for a network of N=100 nodes.

One possible way to find the sign configuration that
achieves this upper bound on E is through computational
searches: From an initial state in which all the links
are negative, one link is randomly selected and the sign
switches following SBT. This process continues until the
network reaches a local minimum of E. For a small net-
work in a zero-energy local minimum, configurations on
nodes with several stubborn links are complex. Finding
such states on larger networks is more computationally
expensive. We test whether such communities are signif-
icantly likely to appear in the networks:

Pm,k ∝
1(

N
k

)
k(k−1)

2 k(N − k)
(5)

where Pm,k is the probability that k nonempty m-vertices
stubborn-communities form in G. Which Pm,k is cal-
culated as the product of the probability that no vertex
inside the subgraph is connected to any outside vertex
(m(N − m)) and the probability that the vertices are fully
connected, for the same size communities m = N

k . With
large numbers of nodes, (N → ∞), Pm,k → 0. This is
consistent with the findings of Antal et al. [19], who
showed that probability to reach jammed states using
such local search methods decreases to zero as a func-
tion of the network size. Such a probability increases in
the presence of stubborn links. According to the compu-
tational difficulty in finding such local minima via algo-
rithmic search, we now show how the sign configuration
in positive-energy can be seen through a direct construc-
tion which is motivated by computational searching for
small examples.

Consider a fixed number of stubborn communities k
in which the nodes are equidistributed among the stub-
born communities. As the fewest number of links are
in the communities, hence the least links are available
for inclusion in unbalanced triangles. The simulations
show that the stubborn-communities with an equal num-
ber of nodes, move the network towards positive energy
with a lower stubborn link ratio in comparison with ran-
domly distributed nodes(Figure 3.b). We now show
that this clustered signed complete graph has positive
energy. Consider a network with N nodes and m non-
overlapping mutually antagonistic communities of equal
sizes k = N/m. In the extreme state, all negative links
are stubborn and flipping positive links leads to increase
unbalanced triads, so energy is increased by δE:

δE =

(
m
2

)
(N − k) +

(
m
2

)
[N − 2(k) − 2

(
k
2

)
k]. (6)

According to the dynamic models for structural balance,
the overall number of imbalanced triads cannot increase
in an update event, which implies an upper bound on
the energy (E). Hence, the network evolves into sub-
communities with uniformly distributed negative links
having the maximum energy and all adjacent sign con-
figurations having lower energies. This lower bound is
related to the constraints

∑
m cm = n, where cm is the

number of nodes in the mth stubborn-community. If
all the nodes are distributed in 5 roughly equal-sized
groups, then the proportion of unbalanced triangles (and
consequently energy) would be maximized. This con-
figuration is the most stressful configuration with the
minimum number of stubborn links.
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Figure 6: S-S distribution of stubborn degree for a network with N = 20
nodes. The symmetric graphics represent the cases of the minimum
number of stubborn links with positive energy.

The correlation between nodes degree based on their
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number of stubborn links also shows interesting behavior
(S in Figure 6). Nodes with the same stubbornness de-
gree (defined as the number of stubborn links normalized
by the node’s degree) are strongly connected. In other
words, stubborn nodes tend to connect to those who are
similar to them, a condition essential in peer to peer
multi-agent competition and cooperation dynamics [51].
The graphics represent the case of the minimum number
of stubborn links with positive energy. This correlation
supports the idea that emerging stubborn-communities
formed by stubborn links lead to positive energies. We ar-
gue that if networks with stubborn links are divided into
stubborn-communities, the division alone can produce
both degree-degree correlations and clustering. This
evidence is compatible with the results regarding the
stubborn-community forming.

4. Conclusions

While structural balance theory shows the tendency of
locally interacting agents to avoid conflictual situations,
this dynamic changes upon the introduction of stubborn
links into social systems. We investigated how instability
can emerge as a result of such local stubborn interactions.
Using the structural balance theory, we study the fraction
of stubborn links and where to place them to maximize
the energy. Our results show that these links which are
typically few in numbers can alter the equilibrium of the
balance dynamics in a fully connected signed network.
We observed the tendency to form stubborn communities,
such that there is a kind of stubbornness assortativity
emerging from the balance dynamics. Specifically, the
final state energy of networks does not directly depend
on the fraction of stubborn links, it depends on their
position in the network, i.e. on the way they topologically
assemble into the system, e.g. stubborn communities.
To understand how much the fraction of stubborn links
could affect the network energy, we numerically found
upper and lower bounds to the energy function depending
on the number of stubborn links present in the network.
We computed the maximum positive energy reachable
by a minimum fraction of such links and the minimum
negative energy reachable by a maximum fraction of
stubborn links. Our analytical results show that in the
infinite network size limit, the energy upper bound is
reachable with only 5 stubborn communities. This result
provide new insights on SBT dynamics in the presence
of stubborn relations among people, parties or countries.
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