
1

1 Current viticultural techniques to mitigate the effects of global warming on grape 

2 and wine quality: A comprehensive review

3

4 Gastón Gutiérrez-Gamboa1, Wei Zheng2,* and Fernando Martínez de Toda3,*

5

6 1Universidad de Talca, Facultad de Ciencias Agrarias, 2 Norte 685, Casilla 747, 346000, 

7 Talca, Chile

8 2Faculty of Functional Food and Wine, Shenyang Pharmaceutical University. 

9 *zheng1987wei@126.com

10 3Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de 

11 La Rioja). Carretera de Burgos, Km. 6. 26007 Logroño, Spain. 

12 *fernando.martinezdetoda@unirioja.es

13

14 Abstract

15 Climate is the main factor affecting grape and wine quality in Mediterranean 

16 viticulture. Global warming provokes an increase in the accumulation of soluble solids in 

17 grapes, together with a lower content of anthocyanins and acidity. This result in stuck and 

18 sluggish fermentations causing economic losses in the winery. Climate adaptation 

19 strategies are essential to minimize the detrimental effects of global warming on grape 

20 and wine quality. This review summarized the effect of viticultural techniques to delay 

21 grapevine ripening with emphasis on canopy management and we overviewed the effects 

22 of high temperatures on grape and wine quality. Some viticultural techniques such as 

23 severe shoot trimming, minimal pruning, late winter pruning and apical leaf removal may 

24 delay grapevine ripening close to 15 days. Forcing regrowth is the most interesting 

25 technique since it allows to delay grape ripening at least of two months which can be 

26 essential in warm grapevine production areas. 
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31 1. Introduction

32 Viticulture is one of the agricultural sectors of major economic importance in 

33 Mediterranean climate zones (Costa et al., 2016). Environmental conditions such as soil 

34 and climate are determinant key factors affecting grapevine productivity, grape and wine 

35 quality and the sensory attributes of wines (van Leeuwen & Seguin, 2006). These 

36 characteristics strongly impact the sale price of the grape and with it, winegrowers 

37 incomes (Gutiérrez-Gamboa & Moreno-Simunovic, 2019).

38 Several scientific manuscripts have reported the impacts of climate change on 

39 viticulture sector and the first reports began to be published at the beginning of the XXI 

40 century (Easterling, Meehl, Parmesan, Changnon, Karl, & Mearns, 2000; Parmesan & 

41 Yohe, 2003). During this decade, the most cited articles on the subject were published, 

42 especially those published by Schultz (2000) and Jones, White, Cooper and Storchmann 

43 (2005), who found that growing season mean temperatures from 1950 to 1999 have 

44 increased in most of the viticultural regions. 

45 Early phenological timings and shortening of grapevine growing season have been 

46 reported by several authors due to the current global warming. (Fraga et al., 2016; García 

47 de Cortázar-Atauri et al., 2017; Jones & Davis, 2000; Sadras & Moran, 2012; Webb, 

48 Whetton, & Barlow, 2011). These changes occur during the warmer period of the 

49 grapevine growing and entails to detrimental impacts on grape and wine quality, thus 

50 threatening the wine typicity of a given region and ultimately its viticultural suitability 

51 (Compés & Sotés, 2018). 

52 Climate change has also affected grapevine variety distribution in different wine 

53 growing regions (Alonso & O’Neill, 2011; Battaglini, Barbeau, Bindi, & Badeck, 2009; 

54 Mozell & Thachn, 2014). Some regions such as Northern Europe may benefit from 

55 climate change since it has been demonstrated that the cultivation of grapevine varieties 
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grapevine growing and entails to detrimental impacts on grape and wine quality, thus 

threatening the wine typicity of a given region and ultimately its viticultural suitability 

Whetton, & Barlow, 2011). These changes occur during the warmer period of the 

grapevine growing and entails to detrimental impacts on grape and wine quality, thus 

de Cortázar-Atauri et al., 2017; Jones & Davis, 2000; Sadras & Moran, 2012; Webb, 

Whetton, & Barlow, 2011). These changes occur during the warmer period of the 

de Cortázar-Atauri et al., 2017; Jones & Davis, 2000; Sadras & Moran, 2012; Webb, 

Whetton, & Barlow, 2011). These changes occur during the warmer period of the 

reported by several authors due to the current global warming. (Fraga et al., 2016; García 

Early phenological timings and shortening of grapevine growing season have been 

(2005), who found that growing season mean temperatures from 1950 to 1999 have 

increased in most of the viticultural regions. 

Early phenological timings and shortening of grapevine growing season have been 

especially those published by Schultz (2000) and Jones, White, Cooper and Storchmann 

(2005), who found that growing season mean temperatures from 1950 to 1999 have 

especially those published by Schultz (2000) and Jones, White, Cooper and Storchmann 

(2005), who found that growing season mean temperatures from 1950 to 1999 have 

Yohe, 2003). During this decade, the most cited articles on the subject were published, 

century (Easterling, Meehl, Parmesan, Changnon, Karl, & Mearns, 2000; Parmesan & 

Yohe, 2003). During this decade, the most cited articles on the subject were published, 

viticulture sector and the first reports began to be published at the beginning of the XXI 

century (Easterling, Meehl, Parmesan, Changnon, Karl, & Mearns, 2000; Parmesan & 

Several scientific manuscripts have reported the impacts of climate change on 

viticulture sector and the first reports began to be published at the beginning of the XXI 

Several scientific manuscripts have reported the impacts of climate change on 

characteristics strongly impact the sale price of the grape and with it, winegrowers characteristics strongly impact the sale price of the grape and with it, winegrowers 



4

56 such as Merlot and Cabernet Franc could be performed at 50º Latitude North (Moriondo 

57 et al., 2013). The increase in the average temperature of the growing season from 13.7 ºC 

58 (1989-2003) to 14 ºC (2004-2013) has provided to the United Kingdom an interesting 

59 opportunity for the grapevine cultivation not only for the production of sparkling wines 

60 but also for white wines and potentially red wines. Currently, the vineyard surface in the 

61 United Kingdom has increased by 148 % from 2004 to 2013 (Nesbitt, 2016). 

62 Many current traditional wine growing regions have been or will be affected by 

63 climate change (Jones et al., 2005). To achieve good quality wines is important that the 

64 berry ripening period occurs under temperate temperatures (Gutiérrez-Gamboa, Carrasco-

65 Quiroz, Martínez-Gil, Pérez-Álvarez, Garde-Cerdán, & Moreno-Simunovic, 2018; Mira 

66 de Orduña, 2010). The best conditions for wine production are generally achieve at the 

67 moment in which the grapes reach a complete ripening when temperatures are still high 

68 (25 to 30 ºC) enough to obtain an optimal maturity, but not too high (> 30 ºC) (van 

69 Leeuwen & Seguin, 2006; van Leeuwen et al., 2019a). This allows to preserve a balanced 

70 level of sugar to acid ratio in the grape juice, low astringency and bitterness in grapes and 

71 wines, and a floral and fruity aromatic expression in the wines (van Leeuwen & Seguin, 

72 2006; van Leeuwen et al., 2019a). 

73 As temperatures increase during growing season, the grapes tend to ripen earlier 

74 along its develop (Martínez-Gil, Gutiérrez-Gamboa, Garde-Cerdán, Pérez-Álvarez, & 

75 Moreno-Simunovic, 2018; van Leeuwen & Seguin, 2006). Due to this, winegrowers 

76 should to adapt to this difficult situation by delaying grapevine phenology, in order to 

77 reach the harvest in less warm conditions (van Leeuwen, Roby, & Ollat, 2019b). Certain 

78 viticultural techniques have been proposed by the experts such as the choose of late 

79 ripening varieties or clones, use of more vigorous rootstocks, increase the proportion of 

80 the use of autochthonous varieties, adaptation of training systems, irrigation or late 
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81 pruning (Gutiérrez Gamboa, Liu, & Pszczólkowski, 2020a; van Leeuwen et al., 2019b). 

82 However, these solutions are not enough to mitigate the effects of global warming in 

83 viticulture. Therefore, the aims of this review are: i) to analyze the effects of high 

84 temperatures on the grapevine, grape and wine; ii) to analyze the most promising 

85 viticultural techniques against the effects of high temperatures, with a special focus in 

86 those techniques of canopy management that produce a strong delay of berry maturation 

87 and iii) to propose research guidelines for future investigations.

88

89 2. Global warming incidence on the current viticulture 

90 Grapevine productivity and fruit quality are the most important concerns in 

91 viticulture because they directly determine the profits of the viticulturists. Despite the fact 

92 that both variables depend on the genetic of the variety, it is widely known that 

93 environmental conditions and cultural practices alter yield components and fruit 

94 composition (Keller, 2020). Therefore, it is essential to gain a deep insight into the impacts 

95 of the global warming on grape yield and quality (Table 1).

96

97 2.1. Effects of high temperatures on grapevine ripening 

98 Currently the viticulture has experienced a series of modifications due to the 

99 increase of temperatures, which has had direct impacts on grapevine ripening (Gutiérrez-

100 Gamboa, Pérez-Donoso, Pou-Mir, Acevedo-Opazo, & Valdés-Gómez, 2019a; van 

101 Leeuwen & Darriet, 2016). Different authors worldwide have reported accelerated 

102 phenological stages for grapevines as well as, earlier dates of phenological events 

103 including harvest (Fraga et al., 2016; Jones et al., 2005; Ramos & Martínez de Toda, 2020; 

104 Schultz, 2000). Model outputs have predicted an increase in the average temperature of 

105 2ºC for the next 50 years for global wine producer regions (Jones et al., 2005; Schultz, 
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106 2000). Predictions of advances from 8 to 11 days for budburst and from 16 to 24 days for 

107 veraison have been reported for the end of the 21st century for white grapevine varieties 

108 cultivated in Alsace (Duchêne, Huard, Dumas, Schneider, & Merdinoglu et al., 2010). A 

109 precocity towards the end of the 21st century of at least 40 days earlier than the current 

110 ones has been reported for each phenological stage in grapevines (Sgubin et al., 2018; van 

111 Leeuwen et al., 2019a). 

112 Currently, grapevine budburst and anthesis take place 8-10 days earlier than to 

113 those occurred in 1950s, while veraison date advanced from 18 to 23 days for the same 

114 period in Rheingau (Germany) (Stock, Gerstengarbe, Kartschall, & Werner, 2005). In 

115 Alsace (France), from 1972 to 2002, all the grapevine phenological stages moved forward 

116 and the period between budburst and harvest shortened significantly (Duchêne & 

117 Schneider, 2005). In Bordeaux (France) harvest dates have moved forward by two weeks 

118 in the past 20 years (Jones & Davis, 2000). In Napa and Sonoma valleys (United States), 

119 grapevine budburst advanced by 18-24 days between 1951 and 1997 (Nemani et al., 

120 2001). Even in the southern hemisphere, based on the model calculations, the harvest 

121 dates for Cabernet Sauvignon and Chardonnay grapes will be shifted forward by 2-3 

122 weeks in most of the Australian wine regions in 2050, compared to 1990 (Webb, Whetton, 

123 & Barlow, 2007). The greatest consequence of the advance on grapevine phenological 

124 stages is that the grape ripening is taking place under warmer conditions than before. 

125

126 2.2. Effects of high temperatures on grapevine yield 

127 Grapevine yield depends of the number of buds per grapevine, the number of 

128 clusters per bud (bud fertility), the number of berries per cluster, and the berry weight 

129 (Keller, 2020). Number of buds per grapevine is manually determined by the pruning 

130 severity however, all the other yield components are dependent by the environment and 
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131 genotype interactions (Dry, Longbottom, Mcloughlin, Johnson, & Collins, 2010; Petrie & 

132 Clingeleffer, 2005). 

133

134 2.2.1. Floral initiation

135 Grapevine flowers formation from the inflorescence primordia occurs at the time 

136 of bud burst in the next season (Vasconcelos, Greven, Winefield, Trought, & Raw, 2009). 

137 To maximize number of inflorescence primordia are necessary warm temperatures, high 

138 irradiance, nitrogen stress and an adequate supply of water (Guilpart, Metay, & Gary, 

139 2014; May, 2000; Vasconcelos et al., 2009). Recently, it was reported that bud fruitfulness 

140 was mostly influenced by bud light interception, while the size of inflorescence primordia 

141 was positively correlated with shoot growth capacity and the carbohydrate level of buds 

142 (Collins, Wang, Lesefko, De Bei, & Fuentes, 2020). However, extreme high temperatures 

143 (> 35 ºC) during the floral initiation phase could make the buds unfruitful (Keller, 2020; 

144 Zheng, del Galdo, García, Balda, & Martínez de Toda, 2017a). High daytime temperatures 

145 of 35-40°C during flowering had a detrimental effect in fruit set and ovule fertility and 

146 resulted in fewer berries per cluster (Ebadi, Coombe, & May, 1995; Greer & Weston, 

147 2010). Flowering and fruit set are strongly influenced by temperature changes and 

148 extreme temperatures (>35°C) during the flowering period detrimentally affect fruit set 

149 (–48 to 38 %) and final yield (–27 %) (Pagay & Collins, 2017). 

150
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155 Fontaine, Vaillant-Gaveau, & Clément, 2008). Similar to the loss of inflorescences before 

156 flowering, high temperatures could cause shoots to grow rapidly and to compete fiercely 

157 with the flower formation for the carbohydrate supply, resulting in flower abortion 

158 (Bowen & Kliewer, 1990; Keller, 2020). Manipulation of carbon supply caused 

159 reductions in fruit set in Concord and Riesling varieties and they were most sensitive to 

160 these reductions during the period between 5 and 12 days after flowering (Intrigliolo et 

161 al., 2018). Berry size of grapes that set after bloom is determined by the number of cell 

162 divisions before and after bloom, the extend of these cells and the degree of weight loss 

163 (Coombe, 1976; Keller, 2020). Both low (< 15 ºC) and high temperatures (> 35 ºC) may 

164 reduce cell division before the lag phase of berry growth and by consequence to limit 

165 berry size (Cohen, Tarara, Gambetta, Matthews, & Kennedy, 2012; Keller, 2020). 

166

167 2.2.3. Berry size

168 During the second phase of grape berry development, a rapid loss of berry weight 

169 can be registered, causing berry shrinkage phenomena (Gutiérrez-Gamboa, Pardo, & 

170 Moreno-Simunovic, 2019b). The softening and deformability of fruit caused by this 

171 disorder are due to breakdown of cortex parenchyma cell walls, the latter which are mainly 

172 composed of cellulose, hemicellulose and pectin (Hunter et al., 2018). Berry shrinkage 

173 phenomena has been described in Syrah and Merlot grapevine varieties (Carlomagno, 

174 Novello, Ferrandino, Genre, Lovisolo, & Hunter, 2018; Carrasco-Quiroz, Martínez-Gil, 

175 Gutiérrez-Gamboa, & Moreno-Simunovic, 2020; McCarthy, 1997; Rogiers, Smith, 

176 White, Keller, Holzapfel, & Virgona, 2001; Rogiers, Greer, Hatfield, Orchard, & Keller, 

177 2006; Šuklje, Zhang, Antalick, Clark, Deloire, & Schmidtke, 2016), where yield losses 

178 are estimated at around 25 % of the total production (Krasnow, Matthews, Smith, Benz, 
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179 Weber, & Shackel, 2010; Rogiers et al., 2001). Heat events have strongly effects on berry 

180 ripening and they cause a high incidence of berry shrivel and sunburn (Greer & Weston, 

181 2010). Shrinkage disorder is associated to berry dehydration and direct sun exposure of 

182 clusters so extreme temperatures can trigger its process (Carlomagno et al., 2018). 

183 However, specific mechanisms or events leading to berry shrinkage phenomena are not 

184 yet fully elucidated and research is continuing globally (Hunter et al., 2018).

185

186 2.2.4 CO2 accumulation 

187 Due to global warming, it is considered that the continuously rising temperatures 
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193 higher atmospheric CO2 concentration could improve the water-use efficiency (WUEc) 

194 of grapevines, which may benefit the yield in arid or semi-arid regions (Gutiérrez-
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203 evidenced a cultivar-dependence in the response of elevated CO2 in terms of bud 

204 fruitfulness (Wohlfahrt, Collins, & Stoll, 2019). A higher WUEc (net CO2 

205 assimilation/stomatal conductance) may have critical implications for the future 

206 adaptation of non-irrigated viticulture against the increase of temperatures and the periods 

207 of rainfall deficit.

208

209 2.2.5. Spring frost risk

210 Recently, climate change influence on spring frost risk has been discussed 

211 controversially in the scientific literature (Santos et al., 2020). High temperatures in winter 

212 may be beneficial to grapevine productivity in cold viticulture regions because the risk of 

213 winter frost injury is getting lower (Rigby & Porporato, 2008). Spring frost damage occurs 

214 when the budburst is produced before the date in which the last frost event take place in 

215 the spring (Santos et al., 2020). Spring frost and budburst are projected to occur earlier in 

216 the growing season according to the model predictions of climate change in viticulture 

217 (Santos et al., 2020). Some reports showed that the last frost events will move to earlier 

218 dates at a faster rate than budburst and, hence, reduce spring frost risk in the future 

219 (Molitor, Caffarra, Sinigoj, Pertot, Hoffmann, & Junk, 2014; Santos et al., 2020), while 

220 other reports were inconsistent or predicted increased risks of spring frost damage in 

221 viticulture (Leolini, Moriondo, Fila, Costafreda-Aumedes, Ferrise, & Bindi, 2018; 

222 Molitor & Junk, 2019a; Mosedale, Wilson, & Maclean, 2015; Santos et al., 2020). On the 

223 whole, the global warming may lead to a higher yield but extreme weather conditions 

224 such as heatwaves, continuous drought and spring frost may result in a severe yield 

225 reduction.
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227 2.3. Effects of high temperatures on grape and wine quality 

228 Changes of berry composition evolve during ripening and are affected by cultural 

229 practices, environmental conditions and the grapevine genotype (Keller, 2020). 

230 Considering all the above-mentioned aspects it is necessary to get a good understanding 

231 of how the environmental factors could affect the synthesis of soluble solids, organic 

232 acids, and phenolic, nitrogenous and volatile compounds in grapes to perform a good 

233 choice of viticultural practices, that allow to mitigate the effects of global warming in the 

234 vineyard (Martinez de Toda, Garcia, & Balda, 2019).

235

236 2.3.1. Soluble solids

237 Grape sugar content accounts close to 90 % of soluble solids at harvest of which 

238 between 95 to 99 % of these sugars are present in the form of hexoses, glucose and 

239 fructose (Keller, 2020). Berry sugar accumulation depends on the import of sucrose from 

240 photosynthesizing leaves or woody storage organs via the phloem (Davies, Boss, Gerós, 

241 Lecourieux, & Delrot, 2012). Then, under the action of invertases, hexoses start to 

242 accumulate rapidly in berries at veraison (Gerós, Chaves, & Delrot, 2012; Keller, 2020). 

243 Temperatures play an important role on berry sugar accumulation and the optimum 

244 temperature range for the photosynthesis of grape leaves are between 25 and 35 ºC 

245 (Hochberg, Batushansky, Degu, Rachmilevitch, & Fait, 2015). High temperatures modify 

246 primary and secondary fruit metabolisms, desynchronizing sugar and organic acid 

247 metabolisms and delaying sugar and polyphenol accumulation during ripening 

248 (Torregrosa et al., 2017). Thus, high temperatures usually lead to an acceleration of sugar 

249 accumulation in berries except in extremely hot regions, where temperatures exceed the 

250 photosynthetic optimum during a considerable part of the growing season (Gutiérrez-

251 Gamboa & Moreno-Simunovic, 2019; van Leeuwen & Seguin, 2006). Differently from 
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252 what may seem obvious, despite the fact that high temperatures accelerate grape ripening, 

253 the effects on final sugar content are relatively small (Coombe, Bovio, & Schneider, 

254 1987). In this way, for a given variety, the maximum sugar content has a limit and it is 

255 possible that grape berries not achieve a soluble solids concentration above 25 ºBrix 

256 unless the berry dehydration and shrinkage occur (Keller, 2020). 

257 Cool climate wine regions may benefit from the global warming since grapes 

258 could obtain an optimum technology maturity (Anderson, 2017). Due to the increase of 

259 temperatures, in most of the wine regions across the world, it will be easier to produce 

260 wines with a high alcohol content (Jones et al., 2005). Nowadays, there is a new trend in 

261 which consumers prefer wines with a moderate or low alcohol content due to health 

262 reasons (Palliotti et al., 2014). Due to this, some wine regions have switched from 

263 occasional addition of sugars to the must  to partial sugar or alcohol removal by physical 

264 methods such as reverse osmosis (Gil et al., 2013; Pham, Stockdale, Wollan, Jeffery, & 

265 Wilkinson, 2019; Delrot et al., 2020).  

266 A serious problem in the current viticulture is that the increase in alcoholic level 

267 may alter the inherent style of wines in some winegrowing regions (Santos et al., 2020). 

268 “Txakoli” is characterized as a very fresh white wine in Vizcaya, Guipúzcoa and Álava 

269 (Spain). However, global warming has led to an increase in the amount of alcohol degree 

270 of these wines in the last years close to 13 %, which is totally inadmissible to the initial 

271 concept of “Txakoli” (Hidalgo, 2011). Ice wines are traditional premium wines from 

272 many cool climate regions that are produced when grape berries are exposed in fall or 

273 early winter to a frost event bellow to  °C and are pressed in the frozen status (Molitor 

274 & Junk, 2019b). For this purpose, water in the grapes is in the form of ice crystals and the 

275 juice is then concentrated, leading to the production of these unique dessert wines (Molitor 
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276 & Junk, 2019b). However, these conditions are expected to become increasingly rare in 

277 the future and therefore, the ice wine production is jeopardized (Santos et al., 2020).

278

279 2.3.2. Organic acids

280 Organic acids are involved in the primary metabolic pathways as energy 

281 production and amino acid synthesis and also participate in the response to osmotic stress 

282 and discouraging predation of fruit (Waterhouse, Sacks, & Jeffery, 2016). Organic acids 

283 are the main determinant of pH affecting appearance, microbial and chemical stability in 

284 wines and they have direct effects on taste, mainly sourness and also the mask the sweet 

285 taste (Jackson, 2017; Waterhouse et al., 2016). The major organic acids in grapes are 

286 tartaric and malic acids while others such as acetic, citric, lactic and succinic acids may 

287 be present in the grapes at low concentrations (Mato, Suárez-Luque, & Huidobro, 2005). 

288 Most organic acids are accumulated early in the berry development. Tartaric acid is 

289 mainly synthesized between bloom and veraison in leaves and in the pulp of berries, and 

290 its synthesis in leaves mainly occurs when the leaves are expanding (Cholet et al., 2016). 

291 Deficit irrigation before veraison may limit tartrate accumulation while after veraison, 

292 tartrate content per berry is usually stable due to its insensitiveness to light and 

293 temperature, while the decrease in tartrate concentration is mainly attributed to the 

294 dilution effect caused by berry expansion (Duchêne et al., 2020; Mira de Orduña, 2010). 

295 Malic acid accumulation in grapes mostly occurs before veraison as well, and the 

296 optimum temperature range for the accumulation is between 20-25 ºC; but when 

297 temperatures are more than 38 ºC, the malic acid synthesis declines greatly (Keller, 2020). 

298 Carbon source for respiration in the berries after veraison is changed from glucose to 

299 malate (Keller, 2020). Heating throughout veraison and ripening stages reduced grape 

300 malate content, consistent with effects typically seen in warm seasons (Sweetman, Sadras, 
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301 Hancock, Soole, & Ford, 2014). However, when minimum temperatures raised by 4–6 

302 °C, malate content in grapes was not reduced, suggesting that the regulation of malate 

303 metabolism differs during the day and night (Sweetman et al., 2014). Temperature 

304 desynchronizes sugar and organic acid metabolism in grapevine ripening and remodels 

305 their transcriptome (Rienth, Torregrosa, Sarah, Ardisson, Brillouet, & Romieu, 2016).

306 During the ripening phase, water supply or high temperatures could increase K+

307 concentration in grapes, thus increasing pH (Mira de Orduña, 2010). K+ is the most 

308 abundant cation in grapes and is essential for plant signaling, osmoregulation, maintaining 

309 cation-anion balance, cytoplasmic pH regulation, enzyme activation and protein and 

310 starch synthesis (Rogiers, Coetzee, Walker, Deloire, & Tyerman, 2017). High K+ and pH 

311 may alter wine color, microbiological stability and fermentation process (Keller, 2020). 

312 In warm viticultural regions, the increase of temperatures may result in grapes with low 

313 levels of titratable acid, and high levels of pH and K+. Due to this, the winemaking process 

314 may become more expensive because low-acid grape juice requires the addition of tartaric 

315 acid to balance the high sugar level and to enhance microbial stability (Keller, 2020). 

316

317 2.3.3. Phenolic compounds

318 2.3.3.1. Anthocyanins

319 Anthocyanidins are responsible for the red color in grapes and red wines and 

320 contribute to their astringency and bitterness (Gombau et al., 2019). Anthocyanins are 

321 synthesized in the cytoplasm and accumulate in the vacuoles, where they are stored as 

322 colored coalescences called anthocyanin vacuolar inclusions (Flamini, Mattivi, De Rosso, 

323 Arapitsas, & Bavaresco, 2013). The enzyme UDP-glucose: flavonoid 3-O-glucosyl 

324 transferase (UFGT) catalyzes the glycosylation of both anthocyanidins and flavonols 

325 (Ford, Boss, & Hæj, 1998). In red grapes, anthocyanin accumulation begins at veraison, 
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326 along with the activation of the UFGT enzyme (Downey, Dokoozlian, & Krstic, 2006). 

327 Firstly, only glycosides from dihydric anthocyanins, such as cyanidin and peonidin are 

328 accumulated, followed by trihydroxylated anthocyanins, such as delphinidin, petunidin, 

329 and malvidin (Downey et al., 2006). 

330 Grapevines cultivated in warm sites produce grapes with a high content of soluble 

331 solids and certain phenolic compounds such as anthocyanins and flavonols, while 

332 grapevines cultivated in cooler sites, produce grapes with a high content of flavanols and 

333 hydroxycinnamic acids (Gutiérrez-Gamboa & Moreno-Simunovic, 2019; Martínez-Gil et 

334 al., 2018). The optimum range for anthocyanin accumulation in berries is 17 to 26 ºC and 

335 low temperatures, particularly, low night temperature, enhance coloration in red grapes 

336 (Pirie, 1977; Kliewer & Torres, 1972). Cluster exposure to high temperature and radiation 

337 may increase anthocyanins, flavonols, and flavanols synthesis in grapes due to the rise in 

338 the activity of the phenylalanine ammonium lyase (PAL) enzyme (Flamini et al., 2013). 

339 However, temperatures above 35 ºC produce an increase in respiration rate and a decrease 

340 in photosynthesis in grapevines, which leads to a decrease in the production of sugars and 

341 the degradation and inhibition of the accumulation of certain secondary metabolites, 

342 especially anthocyanins (He et al., 2010). On the other hand, high levels of UV-B 

343 radiation have been shown to increase anthocyanin accumulation, total polyphenol index 

344 and stilbene content in grape skin (Berli, D’Angelo, Cavagnaro, Bottini, Wuilloud, & 

345 Silva, 2008). Likewise, exposure to UV radiation induces the accumulation of stilbenes 

346 in grapes through the induction of the expression of the stilbene synthase (STS) (Petit et 

347 al., 2009).

348 High temperatures could delay the onset of anthocyanin accumulation, leading to 
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351 intense sunlight could cause sunburn in exposed berries, inhibiting the color development, 

352 especially grapevines cultivated in hot viticultural regions (Chorti, Guidoni, Ferrandino, 

353 & Novello, 2010; van Leeuwen & Darriet, 2016). Due to global warming, the sugar 

354 accumulation is more and more rapid and berry ripening takes place during a warmer 

355 period of the season than in the past decades. Therefore, anthocyanins concentration in 

356 grapes not reach its optimum value at the same moment that technological maturity does 

357 it. Moreover, since the extractability of anthocyanins increases along ripening, a shortened 

358 ripening period may cause a reduction in the extractability of anthocyanins at harvest 

359 (Allegro, Pastore, Valentini, Muzzi, & Filippetti, 2016). This phenomena is well known 

360 as “anthocyanin sugars decoupling” (Martínez de Toda & Balda, 2015; Sadras & Monzon, 

361 2006). This decoupling may bring to wine industry two devastating consequences: i) if 

362 grapes are harvested at the conventional technological maturity level, the grape quality 

363 may not be the optimum in terms of phenolic compounds and their related sensory 

364 attributes; ii) if the winegrowers postpone the harvest date in order to reach higher 

365 concentrations of anthocyanins, the berries may become dehydrated, and achieve an 

366 extremely high total soluble solids content and by consequence, to produce wines with 

367 high alcoholic content. Moreover, this decoupling has been reported for other relevant 

368 metabolites, such as organic acids, proanthocyanidins, amino acids and volatile 

369 compounds (Bonada, Jeffery, Petrie, Moran, & Sadras, 2015; Cohen et al., 2012; Delrot 

370 et al., 2020; Etienne, Génard, Lobit, Mbeguié-A-Mbéguié, & Bugaud, 2013; Gutiérrez-

371 Gamboa et al., 2018).

372
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376 responsible for astringency and bitterness and may form copigmentation complexes with 

377 anthocyanins, enhancing wine color (Li & Duan, 2019). Seed flavanols synthesis occurs 

378 after fruiting and reaches its maximum level close to veraison, while the content of the 

379 skin flavanols is high at flowering and its accumulation continues from the fruit set up to 

380 one or two weeks after veraison (Downey et al., 2006). The polymerization of both seed 

381 tannins and skin tannins increases at veraison (Downey, Harvey, & Robinson, 2003). Seed 

382 tannins bind strongly to cell walls, so their extractability declines gradually along ripening 

383 (Cadot, Miñana-Castelló, & Chevalier, 2006). Based on this, “phenolic maturity” 

384 comprises the accumulation and extractability of anthocyanins, the polymerizations of 

385 tannins and the reduction extractability of seed tannins, which occurred at harvest. 

386 Clusters exposed to sunlight may enhance flavanol accumulation in the skin and increase 

387 the length of polymeric flavanols (Downey et al., 2006). Possibly, the biosynthesis of 

388 flavanols in grapes increase in relation to the increase in temperatures  (Keller, 2020). 

389 However, in warm viticultural regions, as berry ripening is occurring under increasingly 

390 hot conditions, the period between veraison and harvest probably becomes shorter thus, 

391 there is less time for the synthesis of flavanols. On the contrary, in cool viticultural 

392 regions, the increasing temperatures may help to enhance the wine quality due to the 

393 increase in the accumulation of flavanols in grapes.

394

395 2.3.3.3. Flavonols

396 Flavonols are mainly synthesized in the skins of berries, where they appear to 

397 function as photoprotectors (Flamini et al., 2013). Grape flavonol concentration is 

398 increased by high exposure to sunlight before the veraison period, which is induced by 

399 the transcription factor genes of the MYB family (Matus et al., 2009). Light modulates 

400 the expression of flavonol synthase (VvFLS), a key flavonol structural gene, and of 
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401 VvMYBF1, a transcriptional regulator of flavonoid synthesis (Koyama, Ikeda, Poudel, & 

402 Goto-Yamamoto, 2012; Teixeira, Eiras-Dias, Castellarin, & Gerós, 2013). In this sense, 

403 flavanols act as natural UV radiation protectors in grape skins because they strongly 

404 absorb UV-A and UV-B wavelengths (Flamini et al., 2013). The lack of expression of the 

405 enzyme flavonoid  in white grapes limits the exclusive presence of 

406 flavonols to quercetin, kaempferol and isorhamnetin derivatives, while red grapes also 

407 contain myricetin, laricitrin and syringetin derivatives (Mattivi, Guzzon, Vrhovsek, 

408 Stefanini, & Velasco, 2006; Castillo-Muñoz, Gómez-Alonso, García-Romero, & 

409 Hermosín-Gutiérrez, 2010; Flamini et al., 2013). The main flavonol of most white 

410 varieties is quercetin, which represents more than 70 % of total flavanols (Castillo-Muñoz 

411 et al., 2010), while, in most of the red varieties, myricetin is the most abundant flavonol 

412 (Mattivi et al., 2006; Flamini et al., 2013). In Chardonnay, water stress increased the 

413 content of flavonols and decreased the expression of genes involved in the biosynthesis 

414 of stilbene precursors (Teixeira, Eiras-Dias, Castellarin, & Gerós, 2013). Higher altitude 

415 cultivation widely promoted the production of anthocyanins and flavonols, particularly 

416 cyanidin-type anthocyanins and quercetin-type flavonols from the flavonoid 3'-

417 hydroxylase (F3'H) branch of the flavonoid biosynthetic pathway (Xing, He, Xiao, Duan, 

418 & Pan, 2015). Notably, the altitude may produce a decline in the vineyard temperature 

419 due to adiabatic cooling of the air which allows a decrease between 0.60 – 0.65 ºC every 

420 100 m of altitude (Pszczólkowski, Villena, & Carbonneau, 2010).

421

422 2.3.4. Nitrogen compounds

423 Proline and arginine are usually the most abundant amino acids synthetized 

424 throughout ripening by the grapevines varieties (Bell & Henschke, 2005; Stines, Grubb, 

425 Gockowiak, Henschke, Hoj, & Heeswijck, 2000). Arginine is one of the most important 
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426 nitrogen sources during the alcoholic fermentations since yeast can easily assimilate it, 

427 while proline is the only amino acid that is not assimilable by yeast under anaerobic 

428 growth conditions (Gobert et al., 2017; Varela, Pizarro, & Agosin, 2004). Based on this, 

429 proline to arginine ratio was reported to determine the proportion of non-assimilable 

430 (proline) to assimilable (arginine) nitrogen, providing a useful index of the likely 

431 nutritional value of the must from a particular variety to yeast metabolism (Bell & 

432 Henschke, 2005). At low nitrogen content in musts, stuck and sluggish fermentations may 

433 occur at the wine cellar, leading to wine spoilage and the production of undesirable 

434 volatile compounds such as hydrogen sulfide, giving to the wines rotten egg and sewage 

435 aromas (Ugliano, Kolouchova, & Henschke, 2011). 

436 Glutamine and glutamate can be converted to many other amino acids in 

437 grapevines by enzymatic reactions (Keller, 2020). Under favorable conditions, grapevines 

438 convert surplus glutamine to arginine, while during drought stress glutamate may be 

439 converted in proline (Gutiérrez-Gamboa, Alañón-Sánchez, Mateluna-Cuadra, & 

440 Verdugo-Vásquez, 2020b; Keller, 2020). Proline accumulation allows grapevines to 

441 lower their hydric water potential while maintaining turgor pressure during periods of 

442 drought (Liang, Zhang, Natarajan, & Becker, 2013). Hydric stress in Cabernet Sauvignon 

443 grapevines resulted in an increase in soluble solids content in grapes and in the proline 

444 levels in grapes and wines (Ju et al., 2018). Significantly high proline levels were 

445 accumulated in grapes in response to drought in Chardonnay and Syrah grapevines 

446 (Canoura, Kelly, & Ojeda, 2018). Differentially expressed genes (DEGs) were 

447 significantly up-regulated functioning in the proline biosynthesis and metabolism 

448 pathway, in a drought treatment compared to control (Haider et al., 2017). Studies have 

449 reported that proline metabolism influences signaling pathways by increasing reactive 

450 oxygen species (ROS) formation in the mitochondria via the electron transport chain 
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451 (Liang et al., 2013). Enhanced ROS production due to proline metabolism has been 

452 implicated in the hypersensitive response in plants (Liang et al., 2013). On the other hand, 

453 a high-water availability and a low reference evapotranspiration in grapevines resulted in 

454 a high content of several amino acids in grapes with the exception of proline which had 

455 an opposite effect (Gutiérrez-Gamboa, Garde-Cerdán, Rubio-Bretón, & Pérez-Álvarez, 

456 2020c). Global warming in the current viticulture provokes a low synthesis of several 

457 amino acids in grapevines, together with a high synthesis of proline due to drought 

458 conditions. This may result in stuck and sluggish fermentations in the winery since proline 

459 is not metabolized by yeast. Therefore, an accurately prevention and diagnostic of stuck 

460 and sluggish fermentations must be carried out at the wine cellar since the resumption of 

461 fermentations is a long and expensive process.

462 Higher alcohols and esters production is mainly related to amino acid metabolism 

463 in the yeast cell and their concentration depends of yeast assimilable content (YAN) of 

464 the must. (Bell & Henschke, 2005). Higher alcohols content shows an initial increase at 

465 low levels of YAN and tends to decrease after a YAN concentration higher than 200-300 

466 mg N/L (Ugliano, Henschke, Herderich, & Pretorius, 2007). The production of ethyl 

467 esters, as well as of acetate esters, including ethyl acetates, is generally increased when 

468 YAN raise up higher than 300 mg N/L (Ugliano et al., 2007). High temperatures may 

469 decrease the synthesis of amino acids in grapes compared to cool temperatures during the 

470 season (Gutiérrez-Gamboa et al., 2018, 2020c). This could result in the production of 

471 wines with high levels of higher alcohols, which can be detrimental to the aromatic quality 

472 of the wines. Certain studies have reported that higher alcohols can significantly suppress 

473 the strawberry, dairy, fruity, coconut, wood and vanilla aroma of wines (de la Fuente-

474 Blanco, Sáenz-Navajas, & Ferreira, 2016). In this sense, a higher alcohol content of 299 

475 mg/L in model wines suppressed the fruity aroma of young red wines, while a higher 
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476 alcohol content of 281 mg/L suppressed the oak aroma of aged wines (de la Fuente-

477 Blanco, Sáenz-Navajas, & Ferreira, 2017). In addition, the presence of high content of 

478 higher alcohols in model wines caused a significant decrease in the preference of wines 

479 by a sensory panel carried out by experts (de la Fuente-Blanco et al., 2017). Therefore, 

480 global warming can also have detrimental effects on the aromatic quality of wine.

481

482 2.3.5. Volatile compounds

483 Grape aroma is composed by a wide range of volatile compounds, belonging to 

484 different chemical groups (González-Barreiro, Rial-Otero, Cancho-Grande, & Simal-

485 Gándara, 2015). Terpenoids, C13 norisoprenoids, ethyl and acetate esters, benzenoid 

486 compounds, thiols, C6 compounds and alcohols make up the varietal wine aroma (Ganss, 

487 Kirsch, Winterhalter, Fischer, & Schmarr, 2011). These compounds are distributed in both 

488 the flesh and the skin of the berry, though mostly in the latter and their concentration 

489 increases through berry maturity (González-Barreiro et al., 2015). Terpenoids and C13

490 norisoprenoids are the most important varietal volatile compounds found in grapes and 

491 contribute to wines with floral and fruity aromas (González-Barreiro et al., 2015). 

492

493 2.3.5.1. Terpenoids

494 Grape volatile terpenoids consist of monoterpenes, sesquiterpenes and triterpenes 

495 and 80-90 % of them are present in glycosylated form in grapes, which can be released 

496 during wine making or wine aging (Bönisch et al., 2014). Grapevine varieties can be 

497 classified by their concentration of terpenes in Muscat varieties, whose free terpenes 

498 concentration reach 6 mg/L; semi-Muscat or non-Muscat varieties whose free terpenes 

499 concentration varies between 1 and 4 mg/L and, neutral varieties, in which the 

500 concentration of free terpenes is less than 1 mg/L (de Torres, Schumacher, Alañón, Pérez-
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501 Coello, & Díaz-Maroto, 2015; Marais, 2017). Certain enzymes such as 1-deoxy-D-

502 xylulose-5-phosphate reductoisomerase (DXR), 1-deoxy-D-xylulose-5-phosphate 

503 synthase (DXS) and terpene synthases (TPS) are the key enzymes for terpenoid 

504 biosynthesis (Schwab, Davidovich-Rikanati, & Lewinsohn, 2008; Zeng et al., 2016). 

505 Optimum temperature range for the synthesis of terpenoids in grapes is close to 10 ºC and 

506 20 ºC (Marais, 2017). Terpenoid content may be negatively correlated with the average 

507 daily maximum temperature during ripening probably because terpenes are loss by 

508 volatilization (Marais, 2017). Contrary to this, it has reported that the optimum 

509 temperature for DXS activity was at 37 °C (Battilana et al., 2011). Constitutive expression 

510 of DXS enzyme increase the expression of alkaloid terpenes and essential oil constituents 

511 such as cineole, linalool and -terpineol (Muñoz-Bertomeu, Arrillaga, Ros, & Segura, 

512 2006; Peebles, Sander, Hughes, Peacock, Shanks, & San, 2011). In this way, 

513 monoterpenes can enhance the resistance of grapevines to heat stress and thus, their 

514 exposure to heat may improve terpenoid emission as defense mechanism (Vickers, 

515 Gershenzon, Lerdau, & Loreto, 2009).

516

517 2.3.5.2. C13 norisoprenoids

518 C13 norisoprenoids derive from the biodegradation of carotenoids such as ß-

519 carotene and lutein and contribute to floral and fruity attributes to wines (Keller, 2020). 

520 The most important C13 norisoprenoids that are present in grapes and wine are ß-

521 damascenone, 1,1,6, -trimethyl-1,2-dihydronaphthalene (TDN), vitispirane and ß-ionone 

522 (Mendes-Pinto, 2009). These compounds contribute significantly to the varietal aroma of 

523 certain grapevine varieties such as Chardonnay, Chenin Blanc, Semillon, Sauvignon 

524 Blanc, Cabernet Sauvignon and Syrah (Bindon, Dry, & Loveys, 2007; González-Barreiro 

525 et al., 2015). VVCCD1 genes are involved in the formation of carotenoid dioxygenases 
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monoterpenes can enhance the resistance of grapevines to heat stress and thus, their 
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temperature for DXS activity was at 37 °C (Battilana et al., 2011). Constitutive expression 

of DXS enzyme increase the expression of alkaloid terpenes and essential oil constituents 

volatilization (Marais, 2017). Contrary to this, it has reported that the optimum 

temperature for DXS activity was at 37 °C (Battilana et al., 2011). Constitutive expression 

daily maximum temperature during ripening probably because terpenes are loss by 

volatilization (Marais, 2017). Contrary to this, it has reported that the optimum 
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daily maximum temperature during ripening probably because terpenes are loss by 
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526 (CCD) (Schwab et al., 2008). These are the key enzymes responsible for the specific 

527 oxidative degradation of a wide range of carotenoids that allow the formation of C13

528 norisoprenoids in grapes (Mendes-Pinto, 2009). High temperatures promote post-veraison 

529 carotenoid degradation, and temperature threshold could be possibly higher than 30 ºC 

530 (Hickey, Kwasniewski, & Wolf, 2018). In addition, both cold (20 ºC) and heat stress (38 

531 ºC) allowed to increase the expression of gene CCD (Scherzinger & Al-Babili, 2008).

532

533 2.3.5.3. C6 compounds

534 C6 compounds also contribute to grape varietal aroma and its content is abundant 

535 in various aromatically neutral varieties (González-Barreiro et al., 2015). Generally, C6 

536 compounds are absent in berries and other intact plant tissues and they are formed after 

537 mechanical damage by enzymatic oxidation of polyunsaturated fatty acids (Waterhouse 

538 et al., 2016). These compounds are responsible for the herbaceous aromas of grapes and 

539 wine, and in general, are in greater concentration in unripe grapes (Waterhouse et al., 

540 2016). C6 compounds derived from cell membrane lipids through the lipoxygenase 

541 (LOX) pathway (Podolyan, White, Jordan, & Winefield, 2010). This pathway allows the 

542 hexanal formation from linoleic acid hydroperoxide, and the synthesis of (Z)-3-hexenal 

543 and (E)-2-hexenal from linolenic acid hydroperoxide, which occurs through the 

544 hydroperoxide lyase (HPL) (Oliveira, Faria, Sá, Barros, & Araújo, 2006). Finally, the 

545 alcohol dehydrogenase (ADH) enzyme reduces the aldehydes to their corresponding 

546 alcohols found in grapes, such as 1-hexanol, (Z)-3-hexenol and (E)-2-hexenol (Oliveira 

547 et al., 2006). Regarding the effects of temperatures on C6 compounds synthesis, it has 

548 reported that the two recombinant LOXs reached the maximum enzymatic activity at 25 

549 °C (Podolyan et al., 2010).

550
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551 2.3.5.4. Methoxypyrazines

552 Methoxypyrazines are a group of heterocyclic aromatic organic compounds that 

553 are present in green plant tissues and contribute to green, vegetal and herbaceous character 

554 of grapes and wines (Gutiérrez Gamboa et al., 2020a). Methoxypyrazines synthesis begin 

555 with the condensation of ammonia with leucine or valine and glyoxal to form a 3-alkyl-

556 2(1H)-pyrazin-2-one and its tautomer 3-alkyl-2-hydroxypyrazine (Harris, Ryona, & 

557 Sacks, 2012). Several environmental factors such as cluster shading, water availability 

558 and nitrogen fertilization can affect the accumulation of IBMP in grapes. Basal leaf 

559 removal performed at 10 to 40 days after anthesis may to reduced IBMP synthesis in 

560 grapes (Scheiner et al., 2010). Cluster shading carried out since veraison, using pieces of 

561 sackcloth, resulted in wines with lower IBPM concentration than the sun exposed clusters 

562 (Sala, Busto, Guasch, & Zamora, 2004). The wines produced from goblet-trained 

563 grapevines contained lower IBMP concentration than the ones from bilateral cordon 

564 trained grapevines (Sala et al., 2004). IBMP concentration analyzed at 2 weeks before 

565 veraison was highly correlated to its levels at harvest, suggesting that light exposure 

566 conditions, mostly influence IBMP accumulation, but not IBMP degradation (Ryona, Pan, 

567 Intrigliolo, Lakso, & Sacks, 2008). Global warming may lead to wines with low content 

568 of IBMP, which could be beneficial for cool viticultural climates since the wines produced 

569 from Sauvignon Blanc or other related cultivars could have less herbaceous character.

570

571 2.3.5.5. Volatile thiols

572 Volatile thiols such as 4-mercapto-4-methylpentan-2-one (4MMP, 1), 3-

573 mercaptohexyl acetate (3MHA, 2), and 3-mercaptohexan-1-ol (3MH, 3) are important 

574 sulfur compounds involved in the aromatic profile of Sauvignon Blanc wines and in other 

575 white and red varieties such as Colombard, Chenin, Gewürztraminer, Semillon, Petit 

2.3.5.5. Volatile thiols
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Sacks, 2012). Several environmental factors such as cluster shading, water availability 

2(1H)-pyrazin-2-one and its tautomer 3-alkyl-2-hydroxypyrazine (Harris, Ryona, & 

Sacks, 2012). Several environmental factors such as cluster shading, water availability 



25

576 Manseng, Arvine, Merlot, and Cabernet Sauvignon (Pons et al., 2017). These compounds 

577 belong to the class of varietal aromas because they result from the cleavage of odorless 

578 precursors present in grapes or musts by yeast during alcoholic fermentation (Roland, 

579 Schneider, Razungles, & Cavelier, 2011). Biosynthesis of volatile thiol precursors has 

580 been related to moderate water deficit since water deficit leading to shoot growth cessation 

581 and the accumulation of secondary metabolites in the berry (Pons et al., 2017). Severe 

582 water deficit affects berry ripening dynamic and leads to a lowering of volatile thiol 

583 precursor levels in grapes (Peyrot des Gachons et al., 2005; Pons et al., 2017). Šuklje et 

584 al. (2014) showed that UV radiation reduction significantly decreased the concentration 

585 of varietal thiols, while defoliation increased its concentration in Sauvignon Blanc wines 

586 produced in South Africa. Wu et al. (2019) reported that thiol 3-sulfanyl hexanol 

587 precursors exhibited lower content in the berries that were exposed by about +1.5°C in 

588 mean value compared to the berries collected from the control.

589

590 3. Viticultural practices techniques to mitigate the effects of global warming 

591 Delaying grape berry ripening to moderate temperatures could be an interesting 

592 strategy to mitigate the effects of global warming in viticulture since the grape can mature 

593 under relatively cool conditions. As was discussed in previous sections, a cool ripening 

594 phase is favorable to keep the acidity, nitrogenous and aroma components of grapes, as 

595 well as their phenolic maturity. To our knowledge, three types of viticultural strategies 

596 could be used to delay the grape ripening (Palliotti et al., 2014). i) To change the 

597 establishment of the vineyards; ii) To change plant material and iii) To adapt different 

598 viticultural techniques (Fig. 1, 2). This strategy is the most interesting since it can be 

599 applied directly into the established vineyards. Certain viticultural techniques can be 

600 applied to delay grape ripening based on three basic principles: 1) Source to sink ratio 

well as their phenolic maturity. To our knowledge, three types of viticultural strategies 

could be used to delay the grape ripening (Palliotti et al., 2014). i) To change the 

phase is favorable to keep the acidity, nitrogenous and aroma components of grapes, as 

well as their phenolic maturity. To our knowledge, three types of viticultural strategies 

under relatively cool conditions. As was discussed in previous sections, a cool ripening 

phase is favorable to keep the acidity, nitrogenous and aroma components of grapes, as 

strategy to mitigate the effects of global warming in viticulture since the grape can mature 

under relatively cool conditions. As was discussed in previous sections, a cool ripening 
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under relatively cool conditions. As was discussed in previous sections, a cool ripening 
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water deficit affects berry ripening dynamic and leads to a lowering of volatile thiol 

precursor levels in grapes (Peyrot des Gachons et al., 2005; Pons et al., 2017). Šuklje et 
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601 limitations; 2) Managing carbon and nutritive competition between vegetative and 

602 reproductive growth; 3) Postponing all the phenological stages thus delaying ripening 

603 phase. 

604

605 3.1. Source to sink ratio limitation techniques

606 During the growing season, leaves are considered the main source of 

607 carbohydrates since perennial organ cease exporting sugar between bunch closure and 

608 veraison (Weyand & Schultz, 2006). After shoot growth stop, ripening berries and 

609 maturing shoots are the main sinks of sugar within the grapevine though the starch is also 

610 accumulated in roots, dormant buds and perennial woods (Pellegrino, Clingeleffer, 

611 Cooley, & Walker, 2014). At veraison, defoliation induced an alteration in carbohydrate 

612 distribution in the whole grapevine, as revealed by decrease of starch content and an 

613 increase in soluble solids content (Vaillant-Gaveau et al., 2014). These modifications 

614 affect the number of inflorescences per clusters in the grapevine in the subsequent season 

615 (Vaillant-Gaveau et al., 2014). By contrast, fruit removal at veraison resulted in a 

616 significant increase of carbohydrate reserves in the grapevine, although the efficiency of 

617 sexual reproduction was not improved in the subsequent season (Vaillant-Gaveau et al., 

618 2014). 

619 Grape quality is mostly determined by grapevine total leaf area and by the 

620 percentage of total leaf surface exposed to sunlight and the initiation primordia (Kliewer 

621 & Dokoozlian, 2005). Optimum leaf to fruit ratio level to obtain a correct maturity in 

622 terms of total soluble solids, berry weight, and berry coloration at harvest, range from 0.6 

623 to 1.2 m2/kg for single canopy (Gutiérrez-Gamboa, Díaz-Galvéz, Verdugo-Vásquez, & 

624 Moreno-Simunovic, 2019c; Kliewer & Dokoozlian, 2005). A leaf to fruit ratio below 0.6 

625 m2/kg may lead to a lower capacity of soluble solids accumulation in grapes and thereby, 

percentage of total leaf surface exposed to sunlight and the initiation primordia (Kliewer 

& Dokoozlian, 2005). Optimum leaf to fruit ratio level to obtain a correct maturity in 
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626 slowing the ripening grape process (Keller, 2020). In the past vintages, the reduction in 

627 leaf to fruit ratios was always unwanted due to the risk of not being able to adequately 

628 ripen the grape. Currently, high temperatures are prolonged during growing season and 

629 even with a low leaf to fruit ratio, the grapes could also reach high levels of soluble solids 

630 (Palliotti et al., 2014). Therefore, grapes could ripen at a relatively cool weather condition 

631 modifying source to sink ratio. Since leaf to fruit ratio is determined by leaf area and crop 

632 load, we can reduce this ratio reducing leaf area through shoot trimming (Santesteban, 

633 Miranda, Urrestarazu, Loidi, & Royo, 2017; Zheng, García, Balda, & Martínez De Toda, 

634 2017b) or performing a post-veraison apical defoliation to the cluster zone (Palliotti et al., 

635 2013a). On the other hand, it is possible to modify this ratio altering yield through minimal 

636 pruning (Zheng et al., 2017a). Source limitation does not merely consist of the reduction 

637 of leaf area, it can be also realized by limiting the photosynthesis of well-functioning 

638 leaves. In this category, it is possible to apply shading nets (Chorti et al., 2010; Palliotti 

639 et al., 2014), as well as antitranspirant sprays (Gatti et al., 2016a).

640

641 3.1.1. Severe shoot trimming

642 Shoot topping (ST) is the cultural practice in which is removing the shoot tip, and 

643 also is called as tipping in the field of viticulture (Keller, 2020). ST involves both the 

644 removal of a major sink for nutrients (shoot tip) and a sharp reduction in active leaf area. 

645 ST stimulates one to several lateral shoots to develop below the cutting point (Wolf et al., 

646 1986). Growth of lateral shoots is highly influenced by the timing of topping and by the 

647 edaphoclimatic conditions of the vineyard (Molitor et al., 2015; Palliotti et al., 2014). 

648 Lateral shoots may also develop even without shoot topping since the influence of apical 

649 dominance is reduced when the main shoot form approximately 18 to 20 leaves (Keller, 

650 2020). Therefore, this competition may not be the main course of the delayed ripening 
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1986). Growth of lateral shoots is highly influenced by the timing of topping and by the 

removal of a major sink for nutrients (shoot tip) and a sharp reduction in active leaf area. 
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651 and the direct reduction in photosynthesis activity also should be taken into account 

652 (Bondada, Covarrubias, Tessarin, Boliani, Marodin, & Rombolà, 2016; Herrera et al., 

653 2015).

654 Conventionally, ST is mainly used for balancing grapevine shoot vigor, improving 

655 the canopy microclimate and providing feasibility for mechanized operation. However, 

656 ST could exert more effects depending on its application timing and intensity degree. ST 

657 leaving at 15 nodes before flowering did not affect the grapevine leaf to fruit ratio, yield 

658 components and must composition compared to untrimmed grapevines, while ST 

659 performed during flowering improved fruit set (Collins & Dry, 2009; Poni, Zamboni, 

660 Vercesi, Garavani, & Gatti, 2014). ST performed one week after bloom over the 9 to 10th 

661 node increased yield and total soluble solids, while reducing acidity for most of the 

662 experimental varieties (Cartechini, Palliotti, & Lungarotti, 2000). 

663 Severe shoot trimming is a cultural technique in which is removing a large part of 

664 the shoot. A severe shoot trimming, cutting the shoot on the node located above the last 

665 bunch after fruit set, delayed the date of veraison about 20 days and at the same date of 

666 harvest, shoot trimming treatment had lower soluble solids (12% to 15 % reduction), pH 

667 (0.1 to 0.3) and total anthocyanin content (10 % reduction), and reduced bunch size and 

668 yield by around 10 % (Martínez de Toda, Sancha, & Balda, 2013). Post-veraison severe 

669 trimming could reduce sugar accumulation without affecting anthocyanin concentration 

670 (Herrera et al., 2015). Similarly, it has been showed that post-veraison (when soluble 

671 solids reached 15 ºBrix) severe trimming (10 nodes) decreased yield, total soluble solids, 

672 pH and cluster compactness without reducing total anthocyanins in grapes (Bondada et 

673 al., 2016).

674 Based on the above mentioned, severe trimming allows a delay in berry ripening, 

675 while early trimming (before fruit set) usually negatively affects the percentage of fruit 

(Herrera et al., 2015). Similarly, it has been showed that post-veraison (when soluble 

solids reached 15 ºBrix) severe trimming (10 nodes) decreased yield, total soluble solids, 

trimming could reduce sugar accumulation without affecting anthocyanin concentration 
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(0.1 to 0.3) and total anthocyanin content (10 % reduction), and reduced bunch size and 
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676 set, impacting grapevine yield at harvested. A late severe trimming performed at post-

677 veraison stages may cause an irreversible reduction in leaf area since fewer laterals could 

678 be produced and their aforementioned effects may occur only on the final stage of grape 

679 ripening. Therefore, we suggest that the optimal moment to perform a severe trimming is 

680 when the diameter of berry is close to 3 and 4 mm approximately, one week after berry 

681 set. If a severe shoot trimming performed at this moment, the development of the berry 

682 will be affected during the whole period of berry growth and thus, it would be maximally 

683 influenced by shoot trimming. It was reported that a severe shoot trimming performed one 

684 week after berry set delayed the harvest date of Grenache by two weeks, reaching similar 

685 total soluble solids and a higher anthocyanin concentration than the grapes harvested from 

686 untrimmed grapevines (Martínez de Toda, Sancha, & Balda, 2014). Mechanical trimming 

687 performed three weeks after fruit set significantly reduced leaf area and yield, resulting in 

688 higher water availability in trimmed plants. The whole ripening process was delayed by 

689 trimming: mid-veraison was delayed by about 5 days, and the delay in sugar accumulation 

690 and acid degradation was longer, while the differences were more marked in malic than 

691 in tartaric acid concentration (Santesteban et al., 2017). It is important to perform the 

692 trimming treatments without reducing the grapevine leaf area to fruit ratio below 0.50 

693 m2/kg to not negatively impact the grapevine capacity in the following season (Martínez 

694 de Toda et al., 2013).

695

696 3.1.2. Leaf removal

697 Leaf removal (LR) is a common viticultural practice used for canopy management 

698 in the vineyard. Generally, LR is carried out on basal leaves to improve cluster 

699 microclimate and the fruit composition and to decrease disease pressure (Mosetti et al., 

700 2016; Smith & Centinari, 2019). After veraison, basal leaves are no longer the main source 
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in tartaric acid concentration (Santesteban et al., 2017). It is important to perform the 

and acid degradation was longer, while the differences were more marked in malic than 

higher water availability in trimmed plants. The whole ripening process was delayed by 

trimming: mid-veraison was delayed by about 5 days, and the delay in sugar accumulation 

and acid degradation was longer, while the differences were more marked in malic than 

performed three weeks after fruit set significantly reduced leaf area and yield, resulting in 

higher water availability in trimmed plants. The whole ripening process was delayed by 

performed three weeks after fruit set significantly reduced leaf area and yield, resulting in 

higher water availability in trimmed plants. The whole ripening process was delayed by 

untrimmed grapevines (Martínez de Toda, Sancha, & Balda, 2014). Mechanical trimming 

total soluble solids and a higher anthocyanin concentration than the grapes harvested from 

untrimmed grapevines (Martínez de Toda, Sancha, & Balda, 2014). Mechanical trimming 

week after berry set delayed the harvest date of Grenache by two weeks, reaching similar 

total soluble solids and a higher anthocyanin concentration than the grapes harvested from 

influenced by shoot trimming. It was reported that a severe shoot trimming performed one 

week after berry set delayed the harvest date of Grenache by two weeks, reaching similar 
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701 of photosynthetic product so the removal of them does not affect the ripening process 

702 (Poni, Intrieri, & Silvestroni, 1994). However, if all the leaves above the bunch zone are 

703 removed at veraison, total photosynthesis activity may decrease considerably because the 

704 leaves on the apical two-third of the canopy are the most functional ones at the moment 

705 and as a result, is produced a ripening delay (Palliotti et al., 2014). 

706 Mechanical LR to the leaves located in the cluster apical zone, performed one 

707 month after veraison leaded to a remotion of 35 % of the total lea area and reduced leaf 

708 to fruit ratio by 36 %. This resulted in a delay in the accumulation of soluble solids in 

709 Sangiovese grapes by 2 weeks (Palliotti et al., 2013a). These authors suggested that leaves 

710 should be removed when the grapes reach a content of soluble solids close to 16–17 °Brix 

711 in order to delay effectively the sugar accumulation in grapes after LR. Similar results 

712 were reported for Sangiovese and Montepulciano grapes when a post-veraison mechanical 

713 LR was performed (Lanari, Lattanzi, Borghesi, Silvestroni, & Palliotti, 2013). Mechanical 

714 LR in the leaves located in apical cluster zone performed to grapevines when the grapes 

715 reached 12 °Brix, delayed technological ripening in Sangiovese grapes by more than one 

716 week than the grapes harvested from no defoliated grapevines, without affecting color and 

717 phenolics content in grapes (Palliotti et al., 2013a). However, a recent study highlighted 

718 that early defoliation reduces bud fertility in rainfed vineyards cultivated under 

719 Mediterranean climate conditions, suggesting that this practice should be avoided under 

720 those conditions (Lopes, Egipto, Zarrouk, & Chaves, 2020).

721 To our knowledge, severe shoot trimming is a simple practice to perform in the 

722 vineyard since it can be easily mechanized and may achieve similar effects to those 

723 exerted by apical leaf removal. The defoliation of the apical zone is very easy to 

724 mechanize, and due to the fact that the leaves to be removed are separated from the cluster 

725 zone, it allows a high-speed work of the machine, since there is no risk of causing damage 

those conditions (Lopes, Egipto, Zarrouk, & Chaves, 2020).
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726 to the exposed clusters. Basal LR will not be discussed in this section since it is not an 

727 interesting technique to delay the ripening of the fruits in grapevines.

728

729 3.1.3. Minimal pruning

730 As early as in the 1930s, Professor Albert Winkler from UC Davis conducted trials 

731 and he found that unpruned grapevines had greater ability to self-regulate. Research over 

732 30 years in Australia showed that traditional severe pruning could be unnecessary in a 

733 wide number of viticultural regions since it may lead to low wine quality, generally 

734 associated with tbe development of shaded, tight bunches with large berries and 

735 difficulties in the pests and diseases management (Clingeleffer, 2010). Minimally pruned 

736 grapevines generally produce must with better organic acid composition, greater wine 

737 color and higher phenolics content than commonly pruned grapevines (Clingeleffer, 

738 2010). In Spain, a long-term study about minimal pruning (MP) on Grenache grapevines 

739 showed that MP always produced higher yield than control grapevines growing under 

740 drought conditions of La Rioja (Spain) (Martínez de Toda & Sancha, 1998). In another 

741 long-term study, it was showed that MP increased yield by 56 % and reduced total soluble 

742 solids by 9 % compared to conventionally hand pruned (CHP) grapevines, delaying fruit 

743 maturity by 17 days (Zheng et al., 2017a). At similar total soluble solids, MP grapevines 

744 leaded to lower berry weight and cluster weight (24 and 57 %, respectively), and higher 

745 yield (51 %) than the grapes harvested from CHP grapevines (Zheng et al., 2017a). In 

746 addition, the musts from MP fruit had higher total anthocyanin concentration (+17 % in 

747 2014 and +21 % in 2015) than CHP fruit (Zheng et al., 2017a). However, in this report, 

748 the improvement of total anthocyanins and wine color was more related to smaller berry 

749 size rather than the higher anthocyanin synthesis per unit area of berry skin. 
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750 Requiring low cost of time and money and producing high yield (Table 2), MP is 

751 a viticultural technique with great application prospect, especially when the climate is 

752 warmer since one of the most conspicuous effects of MP is to delay berry ripening 

753 providing a cooler ripening condition for the grape development, favoring the 

754 accumulation of anthocyanins, as well as keeping grape acidity. The MP basis 

755 fundamental is that the vegetative and reproductive cycles are delayed as a consequence 

756 of the high crop load. Thus, both the shoot and cluster number are considerably high, 

757 while their individual development is small, producing a very drastic change in grapevine 

758 physiology. This change may lead to a high degree of grapevine self-regulation that does 

759 not require a subsequent cluster thinning. This self-regulation capacity depends on the 

760 growing conditions, but if it is not achieved, it would be necessary to thin the clusters in 

761 the case of an excessively high production. This practice may be mechanically performed 

762 with a conventional grape harvester.

763

764 3.1.4. Shading nets 

765 The most important factor for photosynthesis is the light, and the rate of 

766 photosynthesis depends on the quantity and quality of light (Keller, 2020). Shading net 

767 applications over the grapevine reduce the photosynthetic photon flux at the leaf surface 

768 available for photosynthetic process and thus, may to delay berry ripening (Novello & de 

769 Palma, 2013). These implications are probably explained because the shade nets can lower 

770 the temperature of the canopy and the fruit by up to 7 ºC (Lobos et al., 2015).  In this 

771 sense, most of the studies about the effects of shading nets showed that excessive canopy 

772 shading might lead to poor berry quality, which is specifically expressed in high malate 

773 content and poor color in grapes and wines (Chorti et al., 2010; Palliotti et al., 2014). Leaf 

774 and cluster shading produced higher content of malate, potassium, and pH, while 

Palma, 2013). These implications are probably explained because the shade nets can lower 

the temperature of the canopy and the fruit by up to 7 ºC (Lobos et al., 2015).  In this 
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photosynthesis depends on the quantity and quality of light (Keller, 2020). Shading net 
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of the high crop load. Thus, both the shoot and cluster number are considerably high, 

fundamental is that the vegetative and reproductive cycles are delayed as a consequence 

of the high crop load. Thus, both the shoot and cluster number are considerably high, 



33

775 decreased the content of anthocyanins and total soluble phenols in fruits, without affecting 

776 sugar and potassium accumulation (Morrison & Noble, 1990). Cluster shading at veraison 

777 significantly reduced the anthocyanin accumulation due to the inhibition of the VvmybA1 

778 gene, which is involved in anthocyanins synthesis (Jeong, Goto-Yamamoto, Kobayashi, 

779 & Esaka, 2004). In this way, UV-light barriers significantly reduced individual and total 

780 flavonol concentrations, while temperature had little or no effect on their concentrations 

781 (Spayd, Tarara, Mee, & Ferguson, 2002). Partial shading of the grapevine canopy at 

782 different phenological stages reduced yield losses and decreased the concentration of 

783 anthocyanins in grapes, which was related to the excessive radiation (Oliveira, Teles, 

784 Barbosa, Olazabal, & Queiroz, 2014). In another report, it was reported that shade cloths 

785 may efficiently palliate temperature spikes, especially in the last weeks before harvest, 

786 while transmitting enough radiation into the grape zone compared to uncovered grapes 

787 (Martínez-Lüscher, Chen, Brillante, & Kurtural, 2017).

788 Leaf shading may be an interesting strategy to face global warming in viticulture 

789 since it could slow down the ripening process,  however, cluster shading could be an 

790 undesirable tool in viticulture since it may negatively affect the grape color. Despite the 

791 application of shading nets is a viable technique, several issues should be clarified for a 

792 better performance: 1) The relationship between timing/duration of shading and the 

793 degree of ripening delay to be obtained; 2) Better understanding of the shading effects of 

794 different grapevine sides; 3) The technical feasibility of artificial shading nets.

795

796 3.1.5. Mulching strategies

797 Mulch is a type of ground cover that may be made from several materials and it is 

798 placed on the soil vineyard surface for different reasons that include soil amelioration, 

799 improvement of canopy microclimate and weeds control (Ross, 2010; Ferrara et al., 

different grapevine sides; 3) The technical feasibility of artificial shading nets.
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800 2012). Related to global warming, vineyards with mulch tend suffer less thermal and 

801 water stresses (Fraga & Santos, 2018). Three main types of much may be applied in the 

802 vineyard such as organic (grape marc, compost, vine pruning, green waste, animal 

803 manure, mussel shells), living and inorganic (plastic, stones or glass) mulches (Ross, 

804 2010).

805 Organic mulching is a sustainable practice widely used in horticultural crops and 

806 prevents soil erosion, retains soil moisture, improve some physico-chemical soil 

807 properties, regulates soil temperature and reduces evaporation (Medrano et al., 2015; 

808 Fraga & Santos, 2018). Organic mulching modifies soil reserves, minimizes soil 

809 evaporative losses and by consequent improves water filtration affecting directly water 

810 use efficiency (WUEc) (Pinamonti, 1998; Davies et al., 2011; Medrano et al., 2015). 

811 However, water conservation effect of straw mulches is more pronounced in the case of 

812 high-frequency irrigation and the cumulative water losses decreases with an increase in 

813 straw mulch thickness (Myburgh, 2013). In this way, rice-straw mulching combined with 

814 surface irrigation could be an interesting tool for maximizing water use efficiency (Zhang 

815 et al., 2014). On the other hand, it was reported that plastic-straw treatments may decrease 

816 root soil temperature up to 10 ºC compared to plastic treatments carried out in the soil 

817 surface (Holzapfel, Smith, Greer, Dunn, & Hardie, 2014). In this study, the increase in 

818 soil temperature leaded to an elevating root reserve mobilization and a shortening on 

819 grapevine reproductive development. Based on this, these authors suggested that not only 

820 air temperature may alter berry maturation under similar yield levels, but also the root 

821 environment can have important effects on reproductive development. Bavougian and 

822 Read (2018) reported that soil temperatures were mostly higher under mulches and lower 

823 under intra-row groundcovers compared to the use of glyphosate in Marquette grapevines 

824 cultivated in southeast Nebraska (USA). These authors did not report differences in mid-
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825 day photosynthetically active radiation (PAR) reflectance and mid-day grapevine water 

826 potential among the intra-row treatments. Therefore, these authors suggested that in 

827 vineyards where soil fertility and moisture are non-limiting, it is not necessary to maintain 

828 a bare soil strip.

829 Mulches elaborated from inorganic materials have a more physical effects on the 

830 vineyard soil and microclimate and may be used to alter radiation and heat (Ross, 2010). 

831 Reflective mulch utilization in vineyards cultivated under cool climate conditions lead to 

832 an enhancement of microclimate within the canopy, increasing sunlight reflected from the 

833 vineyard floor into the grapevine cluster zone, especially in early stages of the growing 

834 season allowing to improve yield without affecting berry chemical composition 

835 (Coventry, Fisher, Strommer, & Reynolds, 2005; Hostetler, Merwin, Brown, & Padilla-

836 Zakour, 2007; Sandler, Brock, & Vanden Heuvel, 2009;  Karoglan, & Kozina, 

837 2016). In addition, under these conditions, polyethylene sleeves installed for seven weeks 

838 in the spring leaded to an advancement of budbreak by 3 to 6 days, bloom by 

839 approximately 10 days and fruit maturation by 7 to 26 days depending on the vineyard 

840 site (Bowen, Bogdanoff, & Estergaard, 2004). Contrary to this, color plastic mulching 

841 may be used as water stress mitigation strategy in warm climate viticulture, especially in 

842 anisohydric varieties that hold a low capacity for regulating transpiration. In this way, 

843 double color plastic mulch installed with a white color facing up and black on the inside 

844 facing the soil in a Syrah vineyard located in the Colchagua Valley (Chile) resulted in a 

845 50% reduction in irrigation volume compared to the control (Gil et al., 2018). Fraga and 

846 Santos (2018) analyzed the impacts of mulching application under future climates, 

847 reporting that this strategy may indeed mitigate some detrimental climate change impacts 

848 on yield.
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849 Some negative oucomes from the application of mulch in the vineyard exist 

850 because mulches can be expensive, messy, may brack down quackly limiting their 

851 usefulness, and may may obstruct mechanization of the vineyards (Ross, 2010). 

852 Therefore, it is important to choose the correct type of mulch and to match it carefully 

853 depending to the situation and towards the desired outcome (Ross, 2010).

854

855 3.1.6. Antitranspirant sprays

856 Stomata can control gas exchange in the leaf as well as the diffusion of CO2 into 

857 plant, being essential for grapevine photosynthesis (Pou, Medrano, Tomàs, Martorell, 

858 Ribas-Carbó, & Flexas, 2012). Light, soil water deficit and vapor pressure deficit (VPD) 

859 are the most important environmental factors, affecting stomatal closure in crops 

860 cultivated in the Mediterranean area (Klein, 2014). The use of antitranspirants may reduce 

861 transpiration losses, conserving water loss and by consequence, preventing berry 

862 shrinkage (Das & Raghavendra, 1979). As grapevine stomatal conductance decreases, 

863 photosynthetic activity also decreases and the magnitude of this reduction depends on the 

864 isohydric or anisohydric behavior of the variety (Gutiérrez-Gamboa et al., 2019a). This is 

865 the physiological background of the use of antitranspirant sprays since their application 

866 to grapevines may reduce yield and delay grape ripening. In this way, a film forming 

867 anti transpirant applied to grapevines before flowering reduced yield and bunch 

868 compactness through smaller final berry size, improving the berry quality (Gatti et al., 

869 2016a; Palliotti, Poni, Berrios, & Bernizzoni, 2010). Vapor Gard applied after veraison 
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873 technique since the desired effects can be obtained by adjusting dosage and timing and 

874 this operation does not require specific equipment or skills (Palliotti et al., 2014).

875 Particle film technology is a remarkable tool leading to a decrease in the 

876 environmental stress conditions for fruit production (Kok & Bal, 2018). This inexpensive 

877 technology similar in principle to the category of antitranspirants, involves the application 

878 of engineered clays, such as kaolin (an aluminum phyllosilicate, Al2Si2O5(OH)4), to cover 

879 leaves and fruits with thin nanoparticles films (Brillante et al., 2016). During the last 

880 decades, the application of kaolin-based sunscreens has become a common alternative to 

881 reduce sunburn in apple trees, where the color fruit development requires the direct 

882 sunlight exposition (Glenn, Prado, Erez, Mc Ferson, & Puterka, 2002). Recently, the 

883 adoption of this strategy in viticulture is increasing due to the effects of high temperatures 

884 and heat stress on canopy physiological process, sunburn, yield and berry quality (Frioni 

885 et al., 2019a, 2019b). The kaolin sunscreens work by reducing canopy temperature with 

886 an average of about  and up to  and it maintain a high the photosynthetic activity 

887 preventing irreversible photoinhibition phenomena and avoiding physiological damage 

888 with chlorotic and necrotic leaves, dehydrated berries and sunburn damages (Frioni et al., 

889 2019b). Preliminary reports showed that article film applications to grapevines 

890 significantly reduced berry surface temperatures by 0.7 and 1.5 °C without affecting berry 

891 physico-chemical parameters at harvest (Smith, 2005; Lobos et al., 2015). Recent studies 

892 have shown different results on kaolin’s impacts on grapevine physiology. In this way, 

893 Brillante et al. (2016) showed that kaolin treatments increased grapevine intrinsic water 

894 use efficiency (WUEc) without affecting berry and bunch weight and quality. Dinis et al. 

895 (2018a) reported that kaolin-particle film suspension decreased leaf temperature by 18 % 

896 and minimal chlorophyll fluorescence and increased leaf water potential up to 41 % and 

897 maximum photochemical quantum efficiency of PSII compared to non-treated 
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898 grapevines. In another report, Dinis et al. (2018b) showed that plants treated with kaolin 

899 showed higher values of stomatal conductance, net CO2 assimilation rate and intrinsic 

900 water use efficiency probably due to a slight decrease in abscisic acid and an increase in 

901 indole-3-acetic acid. However, the effects of kaolin-based sunscreen on grapevine 

902 physiological responses may be affected by the plant water availability and thermal stress. 

903 Frioni et al. (2019a) reported that kaolin improved leaf cooling and slightly reduced 

904 photosynthetic and water loss rates in grapevines growing in absence of water stress, 

905 whereas kaolin treatments in grapevines growing under water deficit and upon re-watering 

906 leaded to a lack of photo-inhibition and the maintenance of leaf evaporative cooling, 

907 warranting an early recovery of leaf functions upon re-watering. Garrido, Serôdio, De 

908 Vos, Conde and Cunha (2019) reported that kaolin applied to Alvarinho leaves increased 

909 the photosynthetic activity of both exocarps and seed integuments of berries growing 

910 under low light conditions in the canopy probably due to the higher reflection of PAR to 

911 the inner zones.

912 Regarding the effects of kaolin applications to grapevines on grape and wine 

913 quality, some authors reported that foliar kaolin based-reflective films allowed to increase 

914 the content of anthocyanins in grapes improving anthocyanins to soluble solids ratio at 

915 fruit maturity without affecting grape and wine volatile composition  (Ou, Du, Shellie, 

916 Ross, & Qian, 2010; Song, Shellie, Wang, & Qian, 2012; Shellie & King, 2013a, 2013b; 

917 Shellie, 2015; Kok & Bal, 2018). In this way, kaolin-based reflective film applied to 

918 grapevine canopy may decrease leaf and berry surface temperature and reduce heat stress 

919 which allows to avoid anthocyanins to sugar decoupling. Thus, kaolin may behave as an 

920 interesting tool to viticultural sustainability since it could already save water use in 

921 vineyard and its applications to the canopy is inexpensive and does not requires special 

922 devices. 
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923

924 3.2. Management of carbon and nutritive competition between vegetative and 

925 reproductive growth

926

927 3.2.1. Late irrigation

928 At veraison, shoots begin to form a periderm which means the onset of shoot 

929 maturation and along with this process, shoot growth begins to cease (Keller, 2020). 

930 Water irrigation applied at this moment could be a useful strategy to resume shoot growth 

931 and thus, reducing available photosynthates for the clusters (Novello & de Palma, 2013). 

932 Late irrigation (LT) effect is greater if it is combined with shoot trimming because the 

933 latter operation could promote the growth of a number of lateral shoots which could 

934 enhance the photosynthates competition (Palliotti et al., 2014; Santesteban et al., 2017). 

935 However, LT is not very used commercially due to the concern by viticulturists about the 

936 “dilution effect” and diseases pressure (Palliotti et al., 2014). Dense grapevine canopies 

937 that result from abundant water supply may also produce a decrease in wine color due to 

938 the potential shading of clusters (Keller, 2020). Therefore, compared to other viticultural 

939 techniques, LT may not be the best choice if the goal of the viticulturist is only delay 

940 grape ripening. Many viticulturists habitually think that the application of irrigation 

941 during the ripening phase could lead to the dilution of berry composition or even to lead 

942 to an increase in yield however, such fears may be not correct (Gil Cortiella, Úbeda, 

943 Barrio Galán, & Peña Neira, 2020). In fact, after veraison, xylem flow is blocked while 

944 sugar and water increments are linked, and phloem sap is the unique source of 

945 photosynthates (Coombe & McCarthy, 2000). Therefore, the berry enlargement during 

946 ripening depends on the import of photosynthates rather than the water absorption by 

947 roots.
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948

949 3.3. Techniques related to postpone the phenological stages

950 The timing of budburst exerts a great influence on the subsequent vegetative and 

951 reproductive growth (May, 2000). Therefore, it is possible to postpone all the 

952 phenological stages including technological maturity by delaying the budburst date 

953 (Friend & Trought, 2007). Fortunately, this could be performed through different pruning 

954 methods such as late winter pruning or forcing bud regrowth (Frioni et al., 2016; Gu, 

955 Jacobs, McCarthy, & Gohil, 2012).

956

957 3.3.1. Late winter pruning

958 Late winter pruning (LWP) may delay budburst by a few days and it is mainly 

959 performed to avoid the risk of spring frost injury of vegetal tissues (Gatti et al., 2016b). 

960 The action mechanism of this phenomenon is the apical dominance. In this way, grapevine 

961 shoot growth starts in the distal buds of a cane and the development of the basal buds is 

962 often inhibited by the budburst of distal buds (Keller, 2020). Therefore, after a late 

963 pruning, basal buds are forced to break. LWP performed after budburst removes reserves 

964 that have been already mobilized by the plant and located in the vegetative growing 

965 organs, and the plants can probably get weak (Hidalgo, 2011). However, the grapevines 

966 has a greater capacity to recover under global warming, so this weakness is not a big 

967 concern in viticulture (Keller, 2020). 

968 In recent years, several studies about LWP have been published with the particular 

969 goal to delay grape ripening. However, its effects depend largely on the moment of its 

970 application on grapevines (Palliotti et al., 2014). LWP at stage E (leaves unfolded) and F 

971 (inflorescence clearly visible) could delay the budburst date by 17 and 31 days, 

972 respectively (Frioni et al., 2016). However, the losses of yield were significant and LWP 

concern in viticulture (Keller, 2020). 
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973 performed at both stages failed to postpone the subsequent phenological stages in a 

974 vineyard cultivated under the warm conditions (Gatti et al., 2016b). LWP performed at 

975 the stage G (inflorescences separated) delayed fruit ripening and reduced yield, number 

976 of inflorescences in winter buds, and soluble solid in grapes, while it increased titratable 

977 acidity and total anthocyanins concentration in grapes (Frioni et al., 2016). Additionally, 

978 no yield was obtained after LWP performed at stage H-I on grapevines (40% to 50% of 

979 flower caps fallen). LWP performed at the stage C failed to delay the late phenological 

980 stages and did not exert important effects on grapevine yield and berry composition 

981 (Zheng, García, Balda, & Martínez de Toda, 2017c). However, LWP performed at the G 

982 (inflorescences separated) and H (flowers separated) stages delayed all the grape 

983 phenological stages and the grapes ripened in a colder period than the control ones. 

984 Nevertheless, grapevine yield was reduced significantly by these treatments (41 and 67 

985 %, respectively) and LWPH increased the ratio of anthocyanin to sugar and helped to keep 

986 high acidity levels in the berry. In another report, it was reported that LWP delayed berry 

987 maturity by up to 3 weeks in Shiraz and by 2 weeks in Cabernet Sauvignon (Petrie, 

988 Brooke, Moran, & Sadras, 2017). The authors showed that yield response varied between 

989 pruning dates. In this way, Shiraz grapevines pruned at E L 15 phenological stage 

990 recorded a reduction in yield close to 50 %, while the yield of the treatments performed 

991 in other phenological stage ranged from a 24 % reduction to a 55 % increase relative to 

992 the control.

993 The main cause in yield reduction by LWP seems to be the losses of flowers and/or 

994 the reduction in fruit set percentage in the current season, instead of the losses in 

995 inflorescences within buds in the previous season. LWP is a viable approach to delay 

996 berry ripening as long as it is carried out late enough. However, the application of severe 

997 LWP on grapevines may lead to an unacceptable low yield, negatively affecting vineyard 

the control.
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998 economical returns. Therefore, it is of wide importance to find out and study the best 

999 moment to perform LWP on grapevines with the aim to delay fruit sugar accumulation 

1000 without affecting yield. To our knowledge, few studies have focused on this point and 

1001 there is no general agreement. Thus, the prospects of LWP application in vineyards will 

1002 depend mainly on whether a good balance between berry quality and yield that can be 

1003 obtained via this technique. 

1004

1005 3.3.2. Forcing regrowth

1006 Double pruning or forcing bud regrowth is an innovative technique that has been 

1007 proposed for hot viticultural regions to face global warming (Gu et al., 2012). This 

1008 technique consists of cutting growing shoots, leaving several nodes with the aim of 

1009 forcing the development of new buds and thus break the bud paradormancy. Forcing bud 

1010 regrowth have allowed to move berry ripening towards cooler periods of the growing 

1011 season (Martínez-Moreno et al., 2019). Grapevines treated with forcing techniques 

1012 produce smaller berries and lower pH in musts, and higher content of total acidity, 

1013 anthocyanins, tannins, and total phenolics than non-forced grapevines (Gu et al., 2012). 

1014 A recent report showed that forcing bud regrowth on Tempranillo grapevines cultivated 

1015 under semi-arid conditions allowed to delay berry phenology and harvest date at least in 

1016 49 days compared to control (Martínez-Moreno et al., 2019). Berries harvested from 

1017 grapevines treated with the forcing technique showed lower pH and higher titratable 

1018 acidity than the grapes from unforced grapevines at similar soluble solids, and the ratio 

1019 anthocyanin to sugar was significantly higher in the berries collected from the grapevines 

1020 under forced treatments (Lavado et al., 2019; Martínez-Moreno et al., 2019; Martinez de 

1021 Toda, Garcia, & Balda, 2019). While forcing bud regrowth technique improves grape 

1022 potential for wine making, it may drastically reduce yield, both in the season of 
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1023 application and in the subsequent (Martínez-Moreno et al., 2019). By releasing the apical 

1024 dominance after shoot decapitation is promoted a clear and rapid hormonal 

1025 disequilibrium, which would be the key to identify the so-called switches that initiate bud 

1026 growth (Pou, Balda, Albacete, & Martínez de Toda, 2019). Grapevine regrowth from the 

1027 formed latent buds after the application of forcing bud regrowth treatments might be 

1028 upregulated by cytokinin and promoted by the absence of abscisic acid (Pou et al., 2019).

1029 Recently it has been reported an original variant of this technique that is able to 

1030 obtain fruit with different levels of maturity on a same grapevine (Poni et al., 2020). The 

1031 results of this study show that primary clusters in grapevines subjected to forced 

1032 treatments reached target maturity with a delay of 7 to 12 days compared to unforced 

1033 control, whereas forced-crop, picked at the latest available date showed higher total 

1034 soluble solids, anthocyanins and phenolics than the primary crop while retaining higher 

1035 acidity. In this way, forcing regrowth treatments allowed to delay ripening of both crops 

1036 improving fruit quality at harvest (Poni et al., 2020). These results can be explained 

1037 because basal leaves belonging to forcing shoots reached higher assimilation rates than 

1038 the ones from primary shoots and this type of forcing did not compromise fruitfulness of 

1039 the basal primary nodes, which set at about 1.2 inflorescence primordia/shoot (Poni et al., 

1040 2020). The authors of this study suggested that forcing applied in fruit-set was preferable 

1041 to the ones performed in full flowering and in groat-sized berries stages in terms of milder 

1042 ripening delay and by a balanced leaf to fruit ratio.

1043 Some requirements or preconditions should be met to incorporate the application 

1044 of this technique in the vineyard management: i) the formed dormant buds should have 

1045 high fertility levels; ii) the buds should achieve the paradormancy stage which can be very 

1046 time consuming; iii) the released dormant buds should preferably be those located at the 

1047 apical first or second node of each trimmed shoot with the aim to leave the first three basal 

ripening delay and by a balanced leaf to fruit ratio.

to the ones performed in full flowering and in groat-sized berries stages in terms of milder 
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control, whereas forced-crop, picked at the latest available date showed higher total 

results of this study show that primary clusters in grapevines subjected to forced 

treatments reached target maturity with a delay of 7 to 12 days compared to unforced 

obtain fruit with different levels of maturity on a same grapevine (Poni et al., 2020). The 

results of this study show that primary clusters in grapevines subjected to forced 

Recently it has been reported an original variant of this technique that is able to 

obtain fruit with different levels of maturity on a same grapevine (Poni et al., 2020). The 

upregulated by cytokinin and promoted by the absence of abscisic acid (Pou et al., 2019).
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1048 dormant buds that will be retained after winter pruning undisturbed (Poni et al., 2020); iv) 

1049 the basal dormant buds are required to reach a regular bud induction to provide suitable 

1050 pruning wood for the following grape-growing season (Poni et al., 2020); v) the unlock 

1051 dormant buds should be have enough time to undergo induction and differentiation of the 

1052 inflorescence primordia (Poni et al., 2020). Therefore, the stage of grapevine phenology 

1053 in which forcing bud regrowth is performed play a crucial importance on ripening, yield 

1054 and quality of grapes. The cluster formation for the next season begins with the formation 

1055 of leaf primordia within the compound bud, but normally do not break during the current 

1056 growing season due to the latent bud paradormancy. This effect is due to the inhibition 

1057 produced by shoot tips, lateral shoots, and/or basal leaves (Martinez de Toda et al., 2019). 

1058 However, the buds can be forced to break up during the current season since they are not 

1059 fully dormant and do not require chilling. In order to force budbreak and shoot regrowth, 

1060 the source of the inhibition needs to be physically or chemically removed (Pou et al., 

1061 2019).

1062 Dormant buds’ formation usually coincides with the shoot growth period (Keller, 

1063 2020). Therefore, it is possible that the forcing bud regrowth may to break even in early 

1064 phenological stages (i.e. 6-8 leaves separated) of grapevines. Nonetheless, the later the 

1065 operation is carried out, the more budbreak can be obtained. In addition, the forcing bud 

1066 regrowth must be done before veraison, since dormant buds gradually lose the ability to 

1067 break in 2-3 weeks, along with the slowing down of shoot growth. 

1068

1069 4. Conclusions

1070 Several viticultural techniques may be used to face the effects of high temperatures 

1071 and global warming, and this review highlighted those that allows to delay grape ripening. 

1072 Certain adaptations techniques as changes in altitude and exposure of vineyards or the use 

break in 2-3 weeks, along with the slowing down of shoot growth. 
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1073 of late-ripening grapevine varieties, clones and rootstocks may delay the grape ripening 

1074 for a few days, when these are applied separately. However, if they are used more than 

1075 one, its cumulative effect could lead to a delay in berry ripening for a few weeks. Other 

1076 viticultural techniques may delay the grape maturation by 15 to 20 days, each one 

1077 depending on the adopted strategy, such as late or minimal pruning, severe trimming or 

1078 apical leaf removal. Several of them hold independent physiological basis, so more than 

1079 one can be applied to the vineyard, achieving cumulative effects and by consequence, 

1080 achieve a considerable delay in grape ripening. Forcing bud regrowth, is a current trending 

1081 topic in viticulture since it allows to delay all phenological stages, including the grape 

1082 ripening for more than two months. Therefore, we have multiple viticultural techniques 

1083 to adaptation to the current climate situation and we have time to perfect and fine-tune 

1084 these techniques for a better worldwide viticulture.

1085
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1929 Figure captions.

1930 Figure 1. Main viticultural techniques performed against high temperatures and global 

1931 warming. Footnotes: a) Severe shoot trimming performed after fruit set in a Garnacha 

1932 vineyard conducted in Gobelet training system. b) Severe shoot trimming performed after 

1933 fruit set in a Tempranillo vineyard conducted in vertical shoot position (VSP) trellis 

1934 system. c) Severe shoot trimming performed after fruit set in a Maturana Tinta vineyard 

1935 conducted in VSP trellis system. d) Minimal pruning in a vineyard conducted in VSP 

1936 trellis system. e) Minimal pruning during winter dormancy. f) Minimal pruning in the 

1937 herbaceous development stage of the berry.

1938 Figure 2. Forcing regrowth of grapevines. Footnotes: a) Shoot pruning (1, 2) and shoot 

1939 development as a result of the budburst of the formed dormant buds (1A, 1B, 2A, 2B). b) 

1940 Shoot pruning performed in May to provoke forcing bud regrowth. c) Forcing bud 

1941 regrowth into pruned shoots performed in May. d) Delaying of phenological stages; (1) 

1942 the most advancing ripen cluster produced from traditional winter pruning and (2) the 

1943 inflorescence as result of forcing bud regrowth. e) Ripening delay obtained by forcing bud 

1944 regrowth performed after fruit set: the image was taken on October 30 and the 

1945 phenological stage corresponds to veraison.

1946

phenological stage corresponds to veraison.phenological stage corresponds to veraison.

regrowth performed after fruit set: the image was taken on October 30 and the 

inflorescence as result of forcing bud regrowth. e) Ripening delay obtained by forcing bud 

regrowth into pruned shoots performed in May. d) Delaying of phenological stages; (1) 

the most advancing ripen cluster produced from traditional winter pruning and (2) the 

inflorescence as result of forcing bud regrowth. e) Ripening delay obtained by forcing bud 

Shoot pruning performed in May to provoke forcing bud regrowth. c) Forcing bud 

regrowth into pruned shoots performed in May. d) Delaying of phenological stages; (1) 

Shoot pruning performed in May to provoke forcing bud regrowth. c) Forcing bud 

regrowth into pruned shoots performed in May. d) Delaying of phenological stages; (1) 

development as a result of the budburst of the formed dormant buds (1A, 1B, 2A, 2B). b) 

: a) Shoot pruning (1, 2) and shoot 

development as a result of the budburst of the formed dormant buds (1A, 1B, 2A, 2B). b) 

: a) Shoot pruning (1, 2) and shoot 

trellis system. e) Minimal pruning during winter dormancy. f) Minimal pruning in the 

conducted in VSP trellis system. d) Minimal pruning in a vineyard conducted in VSP 

trellis system. e) Minimal pruning during winter dormancy. f) Minimal pruning in the 

system. c) Severe shoot trimming performed after fruit set in a Maturana Tinta vineyard 

conducted in VSP trellis system. d) Minimal pruning in a vineyard conducted in VSP 

system. c) Severe shoot trimming performed after fruit set in a Maturana Tinta vineyard 

conducted in VSP trellis system. d) Minimal pruning in a vineyard conducted in VSP 
















