

Do chemical characteristics affect the potential of biochars to adsorb cations?

Heike Knicker^{1*}

Jose Maria Garcia Castro de Barragan^{1.2}.

Elena Fernandez-Boy². Michael Knicker³. Regina León Ovelar^{1.2.4}

> ¹ Instituto de Recursos Naturales e Agrobiologia de Sevilla (IRNAS-CSIC). Sevilla. Spain

- ² Departamento de Cristalografía. Mineralogía y Química Agrícola.
 Universidad de Sevilla. Sevilla. Spain
- ³ Consult Michael Knicker (CMK). München. Germany

⁴ Laboratorio de Química*. Facultad de Ingeniería. Universidad Nacional de Asunción. San Lorenzo. Paraguay

*knicker@irnase.csic.es

Summary: Reasoning

• Biochar adsorbs cations:

- use as filter for heavy metals
- soil amendment with nutrients storage capacity
- As a paramagnetic lon, Cu^{2+} shortens the Spin-Lattice Relaxation time (T_1) of the ¹³C and its ¹H to which it is adsorbed.
- NMR Relaxometry on Cu²⁺- doted pyrochars allows the determination of C-groups involved in the adsorption of cations
- Revealing relationship between chemical composition and adsorption efficiency Using pyrochars with different aromaticity and chemical composition may contribute to a better understanding of the adsorption mechanism

Summary: Results

- The Adsorption to the three pyrochars used in this study was best fitted with the Freundlich model
- The adsorption efficiency increased with aromaticity of the sample
- We found indications that crystalline domains of weakly charred pyrochars from cellulosic feedstock did not allow Cu²⁺ to access all potential adsorption sites
- Aside from charged functional groups, π-orbitals of aromatic rings contributed to Cu²⁺ adsorption

Porosity is not the main factor determining Cu²⁺ adsorption to pyrochar;

Accessibility of Cu^{2+} to pores and the availability of π -orbitals of aromatic rings seem also to play an important role.

Introduction: Organic Waste - a Valuable Resource

But: Biochar *≠* Biochar!

Table 1: Elemental composition of chitin, peat and Acrocomia endocarp and their chars produced at 400°C, 500°C and 450°C, respectively. the pH (H_2O) and the BET surface area (SA) (CO_2) of the chars.

Material	C	;		н		N	As	sh	О*	H/C _{atm}	C/N	O/C _{atm}	рН (H ₂ O)	S _{BET}
	g k	G-1	g	kg⁻¹	g	kg⁻¹	g k	∢g -1	g kg⁻¹		(w/w)				m²g⁻¹
Ch0	437.7	± 2.0	64.4	± 0.7	63.8	± 0.4				1.8	6.9		6.9	± 0.0	
Ch400	700.1	± 2.2	28.0	± 0.1	86.1	± 1.0	11.8	± 0.1	143.7	0.5	8.1	0.2	6.4	± 0.0	216
Pe0	429.0	± 8.8	49.5	± 2.0	8.7	± 0.3				1.4	49.2		6.2	± 0.1	
Pe500	684.1	± 3.7	26.8	± 0.5	14.3	± 0.3	140.1	± 1.3	134.8	0.5	47.9	0.1	8.4	± 0.1	192
Ac0	487.4	± 1.7	55.8	± 0.4	1.8	± 0.0				1.4	264.4		5.9	± 1.2	
Ac450	564.8	± 2.5	46.7	± 0.2	2.8	± 0.1	16.8	± 0.1	368.8	1.0	202.7	0.5	7.3	± 0.1	178

*Calculated by the sum of ash. C. H. and N contents subtracted from 1000 g of sample material.

Chemical Composition Determined by Solid-state ¹³C NMR Spectroscopy

Bruker Avance III 400 MHz

Cross-polarization: 1 ms Magic angle spinning: 14 kHz

• Difference in aromaticity (160-90 ppm): Pe500 > Ch400 > Ac450• Difference in polarity P: $P = \frac{I(225-140 \text{ ppm}) + I(90 - 45 \text{ ppm})}{I(140-90 \text{ ppm}) + I(45-0 \text{ ppm})}$ Ac450 > Ch400 > Pe500

Hypothesis:

Different chemical compostion, polarity, pH and BET surface (CO₂) may lead to:

Adsorption of Cu²⁺ onto Biochar: Experimental Design

- Shaking for 24 h at 25°C
- Separation of solid and liquid phase
- Determination of Cu²⁺ concentration in the solution (C_e)
- Calculation of Cu²⁺ concentration in solid (Q_e)

n: correction factor constant

Langmuir

$$\frac{C_e}{Q_e} = \frac{1}{K \cdot Q_{max}} + \frac{C_e}{Q_{max}}$$

Freundlich

 $Q_e = K_d C_e^{1/n}$

 $lnQ_e = \ln K_d + \frac{1}{n} lnC_e$

Adsorption Isotherms of Cu²⁺ to Ch400

Adsorption Parameters of Cu²⁺ to Ch400, Pe500, Ac450

	ł	Freundlich	ו	Langmuir				
	R ²	K _d	n	R ²	Q _{max} (mg/g)	K (l/mg)		
Ch400	0.8596	0.1122	2.7480	0.8392	19.63	2.142		
Pe500	0.8854	0.1177	2.4624	0.848	25.73	1.973		
Ac450	0.568	0.0144	1.0618	0.3426	12.84	1.227		

Better R² with Freundlich: n > 1: K_d (Adsorption affinity):

non-ideal adsorption on a heterogeneous surface higher Cu²⁺-concentration decreases relative adsorption Pe500> Ch400 > Ac450 (very low adsorption)

Relation between Adsorption of Cu²⁺ with Surface Area, pH and Aromaticity

Biochar	Single point surface area at P/Po (m²/g)	BET Surface Area (CO ₂)	рН	Aromaticity	Polarity
Quitina (Ch)	163.36	216.13	6.4	74	0.32
Turba (Pe)	158.89	192.41	8.4	88	0.27
Acrocomia (Ac)	140.02	177.62	7.3	26	1.18

- No evident relationschip between K, K_d and surface area or pH
- Adsorption efficiency increases with aromaticity and decreasing polarity

Adsorption to charged groups as main mechanism is unlikely!!!

NMR Relaxometry for the Identification of Cu²⁺ Adsorption Sites: <u>Theoretical Background</u>

- Nuclear spins given into a static magnetic field will align themselves on two different energy levels according to the thermal equilibrium
- 2. A radio frequency-pulse (rf) moves spins from the lower to the higher energy level
- 3. Termination of the pulse allows the spins to return (relax) to their thermal equilibrium with the spin-lattice relaxation time rate, T_1 .

Theoretical Background: T₁ and Molecular Properties

T₁ depends on:

• Molecular size / mobility:

Interaction with paramagnetics at a distance < 1 nm decreases efficiently T₁

Theoretical Background: T₁ and Domaine Size

<u>Spin Diffusion</u>: Spins in close neighborhood "communicate" their relaxation behavior among each other, which results in **one** common T_1 :

Kind and range of T_1 s used in the present study:

Kind of T ₁	Time (ms)	L (nm)
T _{1roh-H}	0.1 – 20	2 - 30
T _{1H}	20-940	30 -160
T _{1C}	2000 -34000	Non*

* The low natural abundance of ¹³C does not allow spindiffusion

Information Obtainable from the Determination of T₁:

- 1. Identification of C groups which are affected by Cu^{2+} adsorption: T_{1C}
- 2. Changes in molecular mobility: T_{1H} , T_{1Hroh}
- 3. Minimal distance between domaines: T_{1H} , T_{1Hroh}
- 4. Chemical composition of fast and slowly relaxing pool
- 5. Selecting an adsorption mechanism according to the results

T_{1Hroh} versus Q_e (Cu²⁺) in Ch400

T_{1Hroh} versus **Q**_e (Cu²⁺) - conclusions

- None or only weak but <u>positive</u> correlations between T_{1Hroh} and Q_e:
 - Decrease of domain mobility after Cu²⁺ Adsorption overcomes shortening due to paramagentic interaction?
- Aromatic C and alkyl C show pools with fast and slow T_{1Hroh} (no spin diffusion among them, thus no interactions)
 - Domains with small and large molecules: Distance: > 7.5 nm
- Carboxyl C and O-alkyl C is only present in the slow fraction with higher molecular weight
 - Located mostly in ether and ester bonds. This makes them unlikely to serve as cationadsorption site
- T_{1Hroh} is comparable for all peaks within one domain
 - Efficient spin ¹H spin diffusion does not allow the identification of a specific adsorption site
- Comparable results for Pe500

T_{1Hroh} versus Q_e (Cu²⁺) – Ac450

15

15

- $T_{1Hroh} Ac450 >> T_{1Hroh} Ch400 = T_{1Hroh} Pe500:$
 - Remaining crystalline cellulose-like units in Ac450
- Carboxyl, O-alkyl and alkyl show two domains
 - Presence of amorphous units (short T_{1Hroh})
 - T_{1Hroh} short (carboxyl, alkyl) increases with Q_e
 ➤ "Stabilization" of amorphous domains?
 - T_{1Hroh} versus Q_e of aromatic C shows no correlation

T_{1H} versus Q_e (Cu²⁺) – Ch400, Pe500

- For all C-groups the "one-pool"-fit works best
- T_{1H} O/N-alkyl (ether, N-alkyl; 90 45 ppm) > T_{1H} aromatic C (160-100 ppm)
- T_{1H} of all C-groups are affected by Cu^{2+}
- Minimum T_{1H} : aromatic C (20-30 ms) < O/N-alkyl C (50 60 ms)

\rightarrow aromatic C as the preferential adsorption site ?

T_{1H} versus Q_e (Cu²⁺) – Ac450

- Without Cu²⁺, there is only one "pool"
- Cu²⁺ (4 mg g⁻¹) \rightarrow 2 pools (T_{1H} \approx 50 ms
 - \rightarrow efficient spin diffusion < 35 nm)
- T_{1H}-slow stays almost constant
- T_{1H}-fast decreases with Q_e
- Minimum T_{1H} for all C groups: 30 ms
- Cu²⁺ adsorbs only on certain surfaces (pores are to small for entrance of Cu²⁺?)
- ¹H spin diffusion affects only C in a radius <
 35 nm
- Core C (T_{1H}-slow) with a distance > 35 nm is not affected by Cu²⁺ adsorption

T_{1C} versus Q_e (Cu²⁺) – ChCu400

- Without Cu²⁺, there is only one "pool"
- Cu²⁺ (4.8 mg g⁻¹) \rightarrow 2 pools
- All aromatic C are affected by Cu²⁺
- O-Alkyl C shows no evidence for adsorption
 - NO evidence for C with preferential sorption

Cation adsorption to π -orbitals of the aromatic rings?

T_{1C} versus Q_e (Cu²⁺) – AcCu450

- O-substituted groups show adsorption
- No evidence for adsorption on alkyl C
- Aromatic C shows 2 pools after Cu²⁺ addition
- Cu²⁺ adsorption is different for
 Ac450 and ChCu400

Conclusions

- Cu²⁺ adsorption correlates best with aromaticity of the char, possibly because in the highly aromatic pyrochars, charged groups such as carboxyl or ether are involved in bridging the aromatic domains or within an crystalline domaine (Ac450) and thus not accessible for Cu²⁺.
- Cu^{2+} did not or only slightly affect T_{1Hroh} :
 - Effect of decreasing mobility due to chelating is more pronounced than the paramagnetic effects?
- Smaller domain size (indicated by smaller T_{1H}) of the highly aromatic chars offer more surface and thus more sites for adsorption than slightly charred material derived from woody residues (showing large T_{1H}).

Conclusions

- In Ac450 containing both polar groups and aromatic structures, both groups are involved in the adsorption.
- We have no evidence that alkyl C or methoxyl C were involved in the adsorption

Low Cu^{2+} adsorption in Ac450 may be best explained by crystalline structures, reducing the accessibility of Cu^{2+} to adsorption sites and the low content of aromatic C offering binding do their π -orbitals

- To the organizers that made this online conference possible

- MINECO (Spain) and FEDER (CGL2012-37041/CGL2015-64811-P)