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Abstract 

Rock mass behaviour model selection, in particular, to represent the post-failure behaviour and time-

dependent behaviour of rock masses, are critical issues in the correct application of tunnelling design 

techniques such as the convergence-confinement method or numerical modelling. This study provides a 

general numerical approach for predicting longitudinal deformation profiles using a coupled ViscoElastic-

ViscoPlastic Strain-Softening (VEVP-SS) model. A viscous dashpot and the strain-softening model are 

coupled to simulate the progressive damage process and creep failure behaviour of rock masses. Different 

failure criteria are considered to simulate the post-failure behaviour. As a verification step, numerical creep 

tests are carried out to analyse the coupled behaviour, and the basic viscoelastic and strain-softening results 

of the VEVP-SS model are compared with analytical solutions and numerical results. The proposed method 

is able to consider the coupling between post-failure behaviour and time-dependent behaviour, thus 

providing a new alternative method for preliminary tunnel design. Parametric analyses are then carried out 

to investigate the influence of different aspects on the longitudinal deformation profiles. The tunnel 

deformation based on the VEVP-SS model is larger than the corresponding elastic-plastic results due to the 

contribution of the creep behaviour, and the excavation rate becomes relevant when considering time-

dependent behaviour. 

Keywords: post-failure behaviour, time-dependent behaviour, creep, tunnelling, longitudinal 

deformation profiles, CODE_BRIGHT 
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1. Introduction 

In a geomechanics framework, accidents are frequently related to fractures. The complexity of different 

geomaterials makes the study of these fractures a critical topic for the understanding of their behaviour; 

such a study constitutes a very important step in the mitigation of accidents that may occur in mining or 

civil engineering works such as tunnel excavation [1, 2]. Rock masses undergo progressive damage and 

long-term viscous behaviour throughout excavation and construction. Some underground structures show 

large delayed displacements that could lead to failure [3]. The effect of time on rock mass deformability 

and strength is a topic of considerable interest in rock mechanics [4, 5]. Therefore, a proper selection of 

rock mass behaviour models and a proper simulation of the entire process of excavation and construction 

are crucial to obtain a reliable tool to achieve the optimal design of tunnels. 

Most tunnel designs are currently based on empirical, analytical or numerical methods [1, 3, 6-44]. Among 

all these methods, the convergence-confinement method (CCM) is an analytical method that was developed 

in the 1930s [45] and later refined by other researchers [7, 26, 29, 32, 36, 37, 46]. It provides an efficient 

way to determine supporting forces by considering the rock-support interactions [26, 36]. The CCM 

consists of three basic components in the form of graphs: 

1. The longitudinal deformation profile (LDP) relates the radial displacements of an unsupported tunnel 

section with its longitudinal distance to the tunnel face. 

2. The ground reaction curve (GRC) establishes the relationship between the decreasing inner pressure and 

the increasing radial displacements of the tunnel wall. 

3. The support characteristic curve (SCC) represents the stress-strain relationship of the support system [26, 

29, 36]. Then, an adequate design of the required support system can be achieved by taking into account the 

distance from the tunnel face at which the support will be installed and the supporting forces to which the 
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support will be subjected, which can be obtained by the intersection of the GRC and the SCC, as shown in 

Figure 1. 

 

 

Figure 1. Main elements of the convergence-confinement method (CCM). Typical graphs obtained for the 

longitudinal deformation profile (LDP) above and for the ground reaction curve (GRC) and the 

supporting characteristic curve (SCC) below. Different lines indicate different rock mass behaviour 

models: elastic-perfectly plastic (EPP) in the solid yellow line and strain-softening (SS) in the 

slashed green line. Based on [36]. 
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The GRC has been studied by various researchers [18, 20, 24, 28, 35, 47-49]. Hoek and Brown initially 

presented the SCC for different types of support structures [50], and then further research on the topic was 

carried out by other researchers [37, 51, 52]. 

However, the main focus of this article also includes the longitudinal deformation profile (LDP). Many 

researchers have derived solutions for the LDP, most of which are based on the elastic [46, 53-55] and 

elastic-perfectly plastic (EPP) behaviour of rock masses [27, 32, 37]. These models, nonetheless, do not 

seem to properly model the behaviour for average-quality rock masses [36, 56]. The response of rock 

masses will differ depending on the selected model. Considering post-failure behaviour, Alejano et al. [36] 

extended the Vlachopoulos and Diederichs [32] approach to the case of strain-softening rock masses, 

representing a wider range of rock masses, which can be used to obtain a more realistic approach to 

calculate the LDP. In fact, the LDP and the GRC heavily depend on the behaviour model chosen for the 

rock mass [36]. 

In Figure 1, the support design of a tunnel is estimated using CCM. If the support system is installed at a 

distance of 1.5 times the tunnel radius from the tunnel face, the support strength is enough to withstand the 

load when considering an EPP approach for the calculation of both the LDP and the GRC. However, at the 

same distance from the tunnel face, the support will collapse if the GRC and the LDP are calculated 

according to a strain-softening approach. Therefore, if the rock mass model cannot reproduce the actual 

behaviour of the rock mass, the resulting design may be unsafe. In the current research, a strain-softening 

model will be adopted to simulate the post-failure behaviour of rock masses. 

Nevertheless, the solutions mentioned above do not consider the ductile properties of rock masses. Most 

types of rock masses exhibit significant ductile characteristics [15, 31, 57], which are known to induce 

gradual deformations over time that occur even after the completion of underground excavations. Some 

researchers presented solutions for tunnels excavated in viscoelastic geomaterials [8, 9, 21, 34], but plastic 
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behaviour cannot be accounted for in viscoelastic models. On the other hand, many researchers proposed 

elastic-viscoplastic models [11, 19, 39, 42, 58-61], three-stage creep (3SC) model [25, 42] or Stress 

Hardening ELastic VIscous Plastic (SHELVIP) model [25, 39] to simulate the creep and damage behaviour 

of geomaterials, but few of these models were used for the estimation of the LDP. 

Moreover, few of these models consider a Mohr-Coulomb/Hoek-Brown strain-softening model, which may 

be important to model tunnel behaviour, especially in average-quality rock masses [35, 36]. Based on the 

Burgers-creep viscoplastic (CVISC) model introduced by Itasca [62], Paraskevopoulou and Diederichs [7, 

23] presented LDP simulations for viscoelastic rock masses. However, in the CVISC model, the plastic 

slider is not coupled with viscous dashpot plastic yielding, which means that the model behaves similarly to 

a viscoelastic body if the stress states are below the yielding threshold [23]. However, in many engineering 

cases, it is essential to consider the coupling between the plastic behaviour and the creep behaviour of the 

rock mass. 

In summary, research on this topic has been mostly concerned with elastic, plastic, viscoelastic, or 

viscoplastic problems. To overcome these limitations, in this paper, we present a new coupled 

ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model, which considers the following: 

1. Time-dependent creep deformation. 

2. Mohr-Coulomb and Hoek-Brown strain-softening models. 

3. Progressive damage coupled with creep behaviour to simulate failure induced by creep and the 

subsequent progressive damage. This is the most significant part of the proposed model. 

4. The existence of the ‘limited stress level’, which will be explained in section 2. Our approach intends to 

be a general numerical approach for obtaining the longitudinal deformation profile (LDP) of tunnels 

excavated in time-dependent strain-softening rock masses. 
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The coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model is first introduced and 

implemented into the finite element software CODE_BRIGHT [63]. Numerical tests are carried out to 

calibrate the numerical implementation and to verify the coupled behaviour of viscous dashpot and strain-

softening models. Then, the CODE_BRIGHT results are compared with analytical solutions and FLAC 

[62, 64] results to verify the viscoelastic and strain-softening behaviour in the VEVP-SS model, 

respectively. Finally, a comprehensive parameter analysis is provided to illustrate the sensitivity of the 

model to the excavation rate and rock mass behaviour model selection. It should be noted that the VEVP-

SS model is currently under development, and further improvements are in progress. For example, a 

primary creep stage may be introduced in the VEVP-SS model in the near future. 

 

2. Theoretical background 

2.1. Rock mass behaviour 

In many practical engineering problems, the actual behaviour of rock masses is governed by plastic and 

viscous effects [65]. Many creep tests on soft rocks show that the time-dependent deformation generally 

accounts for more than 30% of the total deformation, and in some cases, even up to 70% [17, 30, 66, 67]. 

Time dependency (also known as creep) results in deferred deformations and displacements, which must be 

taken into account to design underground projects more accurately and avoid safety issues in the working 

area [23, 41]. Moreover, the post-peak stress-strain behaviour of the rock mass may play a non-negligible 

role when a deep underground excavation is made [36]. Hoek and Brown [56] provided particularly 

relevant post-peak strength guidelines. These guidelines are based on the geotechnical quality of the rock 

mass described by the geotechnical strength index (GSI): 

1. For high-quality rock masses (GSI > 70), the rock mass behaves in a purely brittle manner. 
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2. For average-quality rock masses (25 < GSI < 70), the rock mass presents strain-softening (SS) behaviour, 

i.e. after achieving a maximum stress, the rock mass can still withstand some load. 

3. For very weak rock masses (GSI < 25), perfectly plastic behaviour is assumed [35], as shown in Figure 

2a. 

(a)  (b)  

Figure 2. (a) Different post-failure behaviours of rock masses with different geological strength indexes (GSI); 

and (b) conceptual behaviour for a strain-softening model. Based on [35, 56]. 

 

Strain-softening behaviour can incorporate purely brittle behaviour (strain-softening with an infinite drop 

modulus, M, as shown in Figure 2a) and perfectly plastic behaviour (strain-softening with a drop modulus, 

M, equal to zero, as shown in Figure 2a). M represents the drop modulus of the strain-softening model, as 

shown in Figure 2a. Thus, perfectly plastic and purely brittle behaviours are just two particular cases of 

strain-softening behaviour. 

In this paper, strain-softening models are adopted to simulate the post-failure behaviour of rock masses [26]. 

The yield surfaces ( , )σF   for strain-softening models depend not only on the stress tensor  but also on 
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the plastic or softening parameter η [24, 35], as shown in Figure 2b. Strain-softening behaviour is 

characterized by a gradual transition from the peak failure surface to the residual failure surface, which is 

governed by the plastic or softening parameter η. In a strain-softening model, a softening regime occurs 

whenever 0 <  < *, and the residual regime takes place when  ≥ * [24, 35]. * is the value of the 

softening parameter at which the softening phase ends and the residual phase begins. 

Figures 3a and 3b present the typical creep curves of a rock mass under a constant applied load based on 

experimental data [68] and a conceptual model, respectively. As shown in Figure 3b, the typical creep 

curves can be characterized by three stages: 

1. Elastic stage: the elastic strain appears instantaneously upon loading, and the associated strains are fully 

reversible and transient [42]. 

2. Viscoelastic stage: the displacements are induced with time under a constant stress. In some research, the 

viscoelastic stage can also be divided into the primary creep stage (the strain rate decreases with time) and 

secondary creep stage (a constant strain rate with time). Note that although the load reversal would cause 

the specimen to return to the initial dimensions in the primary creep stage, the associated strain is 

irreversible in the secondary creep stage [42]. In this article, only secondary creep is considered, which is 

reasonable for some cases, such as rock salt [69, 70], rock masses under squeezing conditions [42], tunnels 

excavated in weak or altered rock masses [15] and very deep excavations [42]. 

3. Viscoelastic-viscoplastic stage (accelerated or tertiary creep stage): the strain rate starts to accelerate 

once the material starts to yield (damage). Viscoplastic strain occurs only when the stresses achieve a 

critical state, which can be defined by a yield surface F = 0. Hence, only elastic/viscoelastic deformations 

occur when F < 0, and viscoelastic-viscoplastic strains occur when F ≥ 0 [7]. 
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(a) (b)  

Figure 3. (a) Typical creep curve based on experimental data [68] and (b) the conceptual model of creep 

curves. 

 

Figure 4a presents the typical stress-strain curves of creep tests [7]: after some incremental stress  is 

applied (points A, C or E), the applied load is kept constant for a long period of time. Note that there exists 

a ‘limited stress level’: for stress values below the ‘limited stress level’, no failure occurs, even with 

sufficient time (see line ‘A-B’ in Figure 4a). However, for stress states above the ‘limited stress level’, the 

stress state will result in failure. This failure will occur at different values of accumulated strain. In fact, the 

higher the stress is, the lower the value of the accumulated strain that leads to failure (see lines ‘C-D’ and 

‘E-F’ in Figure 4a) and the faster this failure occurs [5-7]. 

In the present paper, a coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model combined 

with strain-softening failure criteria (Mohr-Coulomb and Hoek-Brown) is proposed. As shown in Figure 5, 

these tentative approaches are needed if, as recommended by Starfield and Cundall [71], we follow 

heuristic approaches to study, analyse and understand rock mechanics problems. 
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(a) (b)  

Figure 4. (a) Schematic representation of the long-term stress-strain response when subjected to constant stress 

conditions, and (b) yield surface evolution for a strain-softening rock mass. 

 

 

Figure 5. Comparison among five mechanical models for rocks. 
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2.2. A coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

In rock mechanics, Hookean elastic springs, Newtonian viscous dashpots, and plastic sliders are used to 

model a variety of rock mass behaviours [33]. The coupled ViscoElastic-ViscoPlastic Strain-Softening 

(VEVP-SS) model consists of an elastic spring and a viscous dashpot in series with the Perzyna 

viscoplastic model. 

Figure 5 shows five common typical mechanical models of a rock mass, where EM (GM) is the elastic (shear) 

modulus of the rock mass; c and vp represent the viscosities of the viscous dashpot and the Perzyna 

model, respectively; and the parameters for the plastic slider depend on the failure criteria chosen. As 

shown in Figure 5, four different models can be considered as particular cases of the VEVP-SS model: the 

viscoelastic model, by assigning a sufficiently large value to vp; the elastic-viscoplastic model, by 

assigning a sufficiently large value to c; the viscoelastic-plastic model, by assigning a sufficiently small 

value to vp; and the elastic-plastic model, by assigning a sufficiently large value to c and a sufficiently 

small value to vp. Note that the concepts of ‘sufficiently large’ and ‘sufficiently small’ denote infinite and 

zero, respectively, for practical numerical reasons that do not significantly affect the results. 

The total strain rate tensor 
εd

dt
 of the proposed VEVP-SS model can be decomposed into components 

describing the rock elasticity ( eεd

dt
) and inelasticity ( iεd

dt
), as shown in Eq. (1). 

       e iε εε d dd

dt dt dt
                                                      (1) 

where e and i represent the elastic and inelastic strain tensors, respectively. The elastic strain rate can be 

expressed in Eq. (2). 
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 represent the volumetric stiffness and deviatoric stiffness, 

respectively; v represents Poisson’s ratio; and  = pm + s, in which  (p) represents the stress (mean stress) 

matrix and m = [1 1 1 0 0 0]T. The inelastic strain is the sum of the viscous (creep) strain c and the 

viscoplastic strain vp, i.e., i = c + vp. As shown in Figure 5, the viscous dashpot is adopted to simulate the 

creep behaviour of rock masses. The Perzyna model, consisting of a viscous dashpot in parallel with a 

plastic slider, can simulate the viscoplastic behaviour of rock masses. Thus, the inelastic strain rate can be 

expressed by Eq. (3), where  v
c  ( d

c ) represents the volumetric (deviatoric) viscosity of the viscous dashpot, 

vp represents the viscosity of the viscoplastic model and F and G represent the overstress function and the 

viscoplastic potential, respectively, of the viscoplastic model. 

 vpci
v d
c c vp

1 1
( ) (F)

3 2

εεε m
σ m

σ

ddd G
p p

dt dt dt   


      


           (3) 

                                                              
0, for 0

( )
( ), for 0

F
F

F F

  
 

         

  
                         (4) 

The form of ( )F  can be defined by experimental data [65]. For simplicity, (F) = Fm (m ≥ 1) is adopted 

in this paper. Overstress theory [22, 65] has been adopted for the Perzyna viscoplastic model and is 

different from purely plastic theory. Overstress theory allows the stress point to exceed the yield surface. 

As shown in Figure 6, the yield surface sets the limits of two different regimes in the stress space: 

1. If the stress point is below the yield surface, the rock mass exhibits non-viscoplastic behaviour, i.e., 

elastic or viscoelastic behaviour in the proposed model. 
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2. If the stress point is between the yield surface and the viscoplastic limit, the rock mass will exhibit 

viscoplastic properties. The viscoplastic limit is related to the viscosity of the Perzyna viscoplastic model, 

i.e., vp in Eq. (3). As the viscosity vp is closer to zero, the viscoplastic limit will be closer to the yield 

surface F. It must be noted again that one can always ensure a viscoplastic solution as close as necessary to 

the ‘true’ purely plastic solution by sufficiently decreasing the viscosity vp of the viscoplastic formulation 

[72]. 

 

 

Figure 6. Overstress theory of the viscoplastic model. 

 

In rock masses, deviatoric stress states cause deviatoric strain rates that may produce significant long-term 

deformations, while the volumetric strain is less significant [30]. Thus, only the deviatoric part of the 

viscosity ( d
c ) has been considered, and the volumetric viscosity ( v

c ) has not been considered. In the 

VEVP-SS model, the overstress function is assumed to be equal to the viscoplastic yield function (failure 

criterion). Thus, the total strain rate can be expressed by Eq. (5). 
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  (5) 

It should be noted that in our proposed VEVP-SS model, only the secondary creep stage is considered in 

the viscoelastic model; hence, the associated creep strain c is irreversible [39, 42]. Then, it is reasonable to 

assume that failure may be reached by accumulated creep deformation (e.g., from point E to point F in 

Figure 4). To make this failure depend on the stress history and the applied stress, the viscoplastic yield 

surface is assumed to evolve from a peak failure criterion to a residual one (which we refer to as softening). 

Furthermore, after failure, both creep strain c and viscoplastic strain vp accumulate in our proposed model 

to account for the strain-softening behaviour (e.g., from point F to the residual stage in Figure 4). This 

coupling constitutes the most important part and the most significant novelty of the VEVP-SS model. 

Hence, the proposed VEVP-SS model can be used to simulate the creep-induced failure shown in Figure 4 

and the coupled behaviour between creep deformation and damage evolution. 

In the VEVP-SS model, as shown in Figure 4b, the peak and residual yield surfaces define 3 different fields 

in the stress space: 

1. The viscoelastic field below the residual yield surface, where the strain rates are e cε εd d

dt dt
  (e.g., stress 

point B in Figure 4b with a stress-strain behaviour represented by the line ‘0-A-B’ in Figure 4a). 

2. The field between the peak and residual yield surfaces, where the deformations are initially viscoelastic 

(e.g., points C and E in Figure 4a) but will then become viscoelastic-viscoplastic when the yield surfaces 

eventually decreases to the stress point (e.g., points D and F in Figure 4a). 
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3. The viscoelastic-viscoplastic field on/above the peak yield surface (e.g., point H in Figure 4a), where the 

deformations can be divided into elastic, creep and viscoplastic parts, vpe c
εε ε dd d

dt dt dt
  . 

In this paper, a linearly decreasing function of the plastic parameters k() is adopted to represent the strain-

softening behaviour [24, 35], as shown in Eq. (6), where kpeak and kres are the peak and residual values of k, 

respectively. If a Mohr-Coulomb failure surface is considered, k represents the cohesion c and friction 

angle , while k represents the mHB and sHB parameters when considering the Hoek-Brown failure surface. 

                                

peak

res peak *
peak *

*
res

k , for 0

k k
k k , for 0

k , for

                                             

         

                                 



   


 

 


 
        
 

                           (6) 

Note that when considering a Mohr-Coulomb failure criterion, the relationship between the friction angle  

and its tangent (tan) can be assumed to be approximately linear for the typical range of friction angle 

values for rock masses (< 30 deg). Nevertheless, we selected a linear decrease in the friction angle to 

represent softening, following the work of other researchers that used a linearly decreasing function for the 

friction angle [20, 24, 35, 36, 49, 73]. 

The softening parameter  is defined as shown in Eq. (7), where p (p) represents the accumulated plastic 

strain and  p p p p
m x y z

1

3
      . 

                                   
2 2 2

2 2 2p p p p p p p p p
x m y m z m xy yz zx

3 1 1 1

2 2 2 2
         

                    
       

              (7) 
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The expression of the Mohr-Coulomb strain-softening failure criterion is shown in Eq. (8), where c() and 

() are the plastic strain-dependent cohesion and the friction angle, respectively. p, J2 (J3) and θ represent 

the mean stress, the second (third) invariable stress, and the Lode angle, respectively. 

                                     MC 2

1
sin cos sin sin cos

3
F p J c               

 
                      (8) 

The expression of the Hoek-Brown strain-softening failure criterion is shown in Eq. (9), where mHB() and 

sHB() are the plastic strain-dependent parameters of the Hoek-Brown failure criterion and ci is the 

uniaxial compressive strength of the intact rock. 

      
 

HB ci2
HB 2 HB 2 HB

ci HB

4 2
cos cos

63

s
F J m J m p

m

    
 

           
    

         (9) 

The Mohr-Coulomb form of the potential has been considered in both the Mohr-Coulomb and Hoek-Brown 

strain-softening models [35, 36], as expressed in Eq. (10), where  is a parameter for the potential (0 ≤  ≤ 

1) and  is the dilatancy angle. 

                                     2

1
sin cos sin sin

3
G p J        

 
                                       (10) 

The total number of constitutive parameters of the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) 

model is 12, as shown in Table 1: 2 classical elastic parameters, 1 viscous (creep) parameter, and 9 

viscoplastic parameters. The only clear disadvantage of the VEVP-SS model is the inability to simulate the 

primary creep stage; thus, the use of the VEVP-SS model should be limited to cases in which large 

deformation occurs due to secondary and accelerated creep and the primary creep-induced deformation is 

negligible, such as tunnelling excavation in weak, altered or hard rock masses or very deep tunnelling 

excavation [15, 42]. 
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Table 1. Constitutive parameters of the VEVP-SS model. 

Elastic EM (GM) Elastic (shear) modulus 

 v Poisson’s ratio 

Viscous c Viscosity of the viscous dashpot 

Viscoplastic vp Viscosity of the Perzyna model 

m Stress power 

* The critical softening parameter 

 Dilatancy angle 

 Associativity parameter 

cpeak, cres, peak, res Parameters for the Mohr-Coulomb strain-softening 

model 

mpeak, mres, speak, sres Parameters for the Hoek-Brown strain-softening model 

 

3. Numerical implementation 

The proposed ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model was implemented into the 

finite element method software CODE_BRIGHT. CODE_BRIGHT [63] was developed at the Department 

of Civil and Environmental Engineering of the Technical University of Catalonia (UPC) and works in 

combination with the pre-/post-processor GID, developed by the International Centre for Numerical 

Methods in Engineering (CIMNE). If another code is adopted, the same constitutive model presented in this 

paper can be utilized. The implementation of the proposed VEVP-SS model should consider the following 

aspects: (1) the existence of corners in the yield (and potential) surfaces at which the gradients are not 

uniquely defined, and thus requiring smoothing methods; (2) the development of strain-softening and 

localization. 
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3.1. Smoothing method of the failure criteria and the potential 

Due to the gradient discontinuities in both the Mohr-Coulomb and Hoek-Brown failure criteria, we found 

that the developed numerical implementations suffered from non-convergence issues as well as excessive 

CPU time consumption. Therefore, to overcome these problems, smoothing methods have been adopted to 

round both yield surfaces and the potential function. Expressions of both the Mohr-Coulomb failure surface 

and the potential function were based on a smoothing method described in the scientific literature [74, 75]. 

On the other hand, it should be noted that the smoothed Hoek-Brown failure surface was derived in this 

paper (Appendix A). 

The smoothed Mohr-Coulomb strain-softening yield surface [75] shown in Eq. (11) was adopted in the 

current research, where a = mmcc()cot(), and a is typically defined as 0.25. 

                                                    2 2 2
MC 2 MC sin sin cosF J K a p c                                   (11) 

As the value of the hyperbolic parameter mMC approaches zero, the yield surface approaches a hyperbolic 

shape [75]. In addition, an alternative form of KMC() in the vicinity of the singularities was defined to 

round the failure surface function F [75], as shown in Eq. (12), where T is a specified transition angle, 

typically defined as 25 deg. 

                                                  
 

MC MC T
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T

sin 3 ,              for 

, 1
cos sin sin ,  for   

3

A B

K

  
 

     

  
 

 


                         (12) 

where: 

   MC T T T T T

1 1
cos 3 tan tan 3 tan 3 3 tan sin

3 3
A              
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 MC T T
T

1 1
sin sin cos

3cos 3 3
B     


     

 

1,   0

1,   0





 

  
 

Since the second derivative of the plastic potential should also be continuous, the C2 method [74] was used 

to smooth the potential function. Following the method of Abbo et al. [74], the smoothed potential was 

adopted, which can be expressed as shown in Eq. (13). The alternative form of KG() in the vicinity of the 

singularities can be expressed as shown in Eq. (14), where T is a specified transition angle, typically 

defined as 25 deg. 

                                                  2
2 GsinG p J K                                                               (13) 

                                           
2

G G G T

G

T

sin 3 sin 3 ,  for 

1
cos sin sin ,           for   

3

D E F

K

   


    

   
 

 


                        (14) 

where 

T T T T T

G 3
T

1 1
cos3 cos sin 3 sin 3 sin sin cos

3 3
18cos 3

F

         



         
   

T T T T T T

G 3
T

1 1
sin 6 cos sin sin 6cos 6 sin sin cos

3 3
18cos 3

E

          



        
     

2
G T T T T

1
sin sin sin 3 sin 3 cos

3
D E F            

These equations were adapted from Abbo et al. [74] and Abbo and Sloan [75]. The reader is referred to the 

original source for a detailed description of the smoothed approximation (C1 and C2) to the Mohr-Coulomb 

failure surface. 
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However, the smoothed approximation to the Hoek-Brown yield surface was derived in the current research 

and is presented in Eq. (15), and the alternative form of KHB(, ) in the vicinity of the singularities can be 

expressed as Eq. (16), where T is a specified transition angle, typically defined as 25 deg. 

      
 

HB ci
HB HB 2 HB

HB

,
s

F K J m p
m

 
  


 

    
 

                  (15) 
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, 4 2
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                 (16) 

where 

  T T
HB HB T T T

2
T T T T

2
ci ci

sin cos 1
cos sin tan 3

33 3 3

4cos 8sin cos tan 3
  

3

A m

J

       

   
 

    
       

    

 
  

 
 T T HB T

HB 2 T
ci T T
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Note that the expressions of AHB and BHB were obtained by matching the zero and first derivatives for the 

rounded surface to those for the Hoek-Brown surface at T and T. Appendix A presents the derivation of 

the smoothed Hoek-Brown failure criterion. 

 

3.2. Strength parameter update and strain localization 

In the proposed VEVP-SS model, the strength parameters are the cohesion and friction angle if the Mohr-

Coulomb failure surface is chosen or mHB and sHB if the Hoek-Brown failure surface is chosen. A specific 

implementation has been developed to compute the accumulated plastic (unrecoverable) strain p, i.e., the 
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sum of the viscous strain c and viscoplastic strain vp, in this model. For the elements in the numerical 

model, the accumulated unrecoverable strain is updated, and then the softening parameter  is updated 

based on Eq. (7). Finally, the strength parameters are updated following the function of Eq. (6), and the 

failure surface is updated. 

As shown in Figure 4b, the peak residual strength surfaces divide the stress space into 3 fields: 

1. For the elements where the stress state is below the residual strength, the accumulated unrecoverable 

strain (p) is equal to the viscous strain c, i.e., p = c. Therefore, the response will be only viscoelastic in 

this case, even if the strength parameters are updated. 

2. For the elements where the stress state is between the peak and residual strength surfaces, the 

accumulated strain is equal to the viscous (creep) strain at the beginning of the simulation, and the strength 

parameters are updated with the increase in the accumulated creep strain (as well as the softening parameter 

). Thus, the failure surface shrinks with increasing , and the stress state could then meet the failure 

surface if  is sufficiently large. After that, the accumulated unrecoverable strain is assumed to be a 

combination of viscous and viscoplastic strains (p = c + vp). 

3. For the elements where the stress state is on/above the peak strength, the accumulated unrecoverable 

strain is assumed to be a combination of viscous and viscoplastic strains, i.e., p = c + vp, and thus, their 

response would be viscoelastic-viscoplastic. The softening parameters can be updated based on Eq. (7), 

when the unrecoverable strain is obtained. 

Nonetheless, softening behaviour may introduce numerical difficulties. In some cases, instability occurs 

because softening concentrates at isolated elements, while other elements in their vicinity experience stress 

relaxation. However, the viscoplastic approach that is adopted for our strain-softening model is capable of 

homogenizing the spatial distribution of softening strain, which benefits the control of the size of the 
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localized zone and thus allows avoidance of the dependency on the employed mesh [22, 72]. In addition, 

from an engineering point of view, strain localization effects are not relevant when considered on an 

appropriately large spatial scale [26], as would be the case of the tunnel excavation model in this article. In 

section 4.2, an analysis of the effect of mesh quality on the resulting tunnel deformation is carried out. 

 

4. Numerical verification  

To verify the numerical implementation, an example of a creep test was first carried out to verify the 

coupled behaviour between the creep model and the strain-softening model. After that, a number of 2D 

axisymmetric numerical models were employed to assess the performance of the viscoplastic model in 

tunnel excavation, including a mesh-independence analysis. Finally, the viscoelastic part and the strain-

softening part of the proposed VEVP-SS model were verified separately by comparison with analytical 

solutions [34, 43] and FLAC numerical results [36], respectively. 

 

4.1 Verification of the coupled behaviour 

As we explained in section 2, the most important novelty of the VEVP-SS model is the coupled behaviour 

between the creep model and the strain-softening model. Hence, a triaxial creep numerical test was carried 

out to analyse the coupled behaviour implemented in CODE_BRIGHT. Note that the analyses made do not 

represent any particular experiment, and the conditions and parameters adopted in the simulation were 

simply chosen to evaluate the key aspects of the coupled behaviour. 

The model used here is 2D axisymmetric with dimensions of 0.014 m  0.1 m. The normal displacements 

along the bottom and left boundaries were restrained, as shown in Figure 7a. In addition, constant stresses 

were applied along the right and top boundaries, with values of Px = 0.2 MPa and Py = 1.0 MPa, 
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respectively. A mesh with 600 quadratic triangle elements was considered for the analysis, as shown in 

Figure 7b. The calculation was stopped at 0.3 hours. In this sub-section, the Mohr-Coulomb strain-

softening model was adopted for this example, and the parameters input into the numerical simulations are 

listed in Table 2.  

In Figure 8, the results of the viscoelastic (VE) model and the ViscoElastic-ViscoPlastic Strain-Softening 

(VEVP-SS) model are compared. At the start of the simulation, stress point A (Figure 7a) is inside the 

viscoelastic domain, as shown in Figure 8a, so only viscoelastic strain occurs. Hence, initially, a steady 

creep takes place under constant stress, with the viscoelastic strain in the x and y directions increasing 

similarly for both the VE and VEVP-SS models, with the chosen point A maintains a constant stress under 

the constant stress condition imposed. 

However, as the accumulated plastic (unrecoverable) strain increases, the yield surface decreases due to 

softening induced by creep (i.e. the softening parameter  develops due to the accumulated viscoelastic 

strain c). Consequently, when the yield surface reaches the point of our analysis, the strain rate accelerates 

due to both the creep and viscoplastic contributions. Figure 8b presents the softening process in terms of 

the cohesion and friction angle. Based on the numerical analysis, it can be concluded that creep behaviour 

is coupled with plastic behaviour in the proposed VEVP-SS model. 

For further calibration, a series of biaxial creep tests were carried out to analyse the relationship between 

the principal strain and the applied stress. The numerical geometry and mesh quality are the same as in the 

former example, as shown in Figure 7. In the biaxial creep tests, Px = 0.0 MPa, and six different stresses 

were considered, Py = 19.6 MPa, 24.5 MPa, 29.4 MPa, 34.3 MPa, 36.0 MPa and 37.0 MPa. The calculation 

was stopped at 20 days. The input parameters are presented in Table 3, and these parameters were estimated 

with the intent of matching experimental data from the scientific literature [42, 76]. Figure 9 shows the 

time-dependent strains of the point (0, 0.1). In Figure 9, it shows that different stresses result in different 
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strains, and a higher applied stress will result in larger deformation, which is consistent with the conclusion 

of laboratory tests [42, 76]. If the input parameters are properly chosen, the proposed VEVP-SS model 

results can match experimental results. 

 

Table 2. Mechanical properties of the rock mass in the numerical triaxial creep tests. 

 

 

Table 3. Mechanical properties of the rock mass in the numerical biaxial creep tests. 

Input parameters for the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

Peak 

cohesion, cpeak 

(MPa) 

Residual 

cohesion, cres 

(MPa) 

Peak friction 

angle, peak 

(deg) 

Residual 

friction angle, 

res (deg) 

Softening 

parameters, 

* 

Stress 

power, m 

Dilatancy angle, 

 (deg) 

7.88 3.5 37.6 20 0.5 5 2.5 

Elastic 

modulus, EM 

(MPa) 

Poisson’s 

ratio, v 

Associativity 

parameter,  

 d
c  (MPa s)  vp (MPams) a T (deg) for F 

and G 

7056.4 0.3 1.0 1.51010 5109 0.25 25 

Input parameters for the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

Peak 

cohesion, 

cpeak (MPa) 

Residual 

cohesion, cres 

(MPa) 

Peak friction 

angle, peak 

(deg) 

Residual 

friction 

angle, res  

(deg) 

The critical 

softening 

parameter, * 

Stress power, 

m 
vp (MPams) 

0.2 0.1 30 15 0.02 3 10 

Associativity 

parameter,   

Dilatancy 

angle,  

(deg) 

Elastic 

modulus, EM 

(MPa) 

Poisson’s 

ratio, v 
 d

c  (MPa s) a in FMC 
T (deg) for 

F and G 

0 0 103 0.3 104 0.25 25 
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Figure 7. Creep numerical test: (a) basic features and boundary conditions (not real scale), and (b) mesh 

quality (real scale). 
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Figure 8. (a) Normal strain in the x and y directions for the viscoelastic (VE) and ViscoElastic-ViscoPlastic 

Strain-Softening (VEVP-SS) models at point A in Figure 7a. (b) Strength parameters (cohesion and 

friction angle in the Mohr-Coulomb strain-softening model) versus the softening parameter () at 

point A in Figure 7a. 
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Figure 9. Numerical examples of creep tests for six different applied stresses. C_B represents 

CODE_BRIGHT numerical results. 

  

4.2 Mesh independency 

As previously mentioned in section 3, numerical analysis involving softening problems may exhibit a 

marked dependency on the finite element mesh employed. In this section, a number of 2D axisymmetric 

models were developed to assess the performance of the viscoplastic approach in the simulation of 

softening problems. In these models, a deeply buried tunnel with a diameter of 5 m is excavated in an 

elastic-viscoplastic (c  ) and low-quality rock mass (GSIpeak = 40, GSIres = 27), exhibiting a strong 

strain-softening behaviour. The rock specific weight is 25 kN/m3 and the rest of the input parameters 

concerning this low-quality rock mass are shown in Table 4. Moreover, two different values of viscosity 

were adopted (vp = 102 MPa5s and vp = 104 MPa5s) to assess the influence of viscoplastic viscosity on 

mesh independency. 

Furthermore, the tunnel is presented as a rectangle with a length of 55 m (Figure 10) so that 22 excavation 

steps of 2.5 m in length can be performed. The tunnel is excavated at a depth of 1500 m, implying a field 
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stress of 37.5 MPa. Hence, the normal displacements are fixed along the axisymmetric axis (x = 0) and on 

the bottom of the model (y = 0), and a pressure of 37.5 MPa is applied to the other boundaries of the model. 

As shown in Figure 11, four meshes with different qualities were adopted to analyse the effect of mesh 

quality on the resulting displacements. The meshes are composed of the following number of quadratic 

triangular elements (i.e., triangles with 6 nodes): (a) 988, (b) 2016, (c) 3719, and (d) 6342. 

Finally, Figure 12 presents the longitudinal (axial) deformation versus the distance to the tunnel face for the 

aforementioned four meshes (mesh_01, mesh_02, mesh_03 and mesh_04) and for two different values of 

the viscoplastic viscosity vp (vp = 102 MPa5s and vp = 104 MPa5s). The good agreement shown among 

the results obtained with different mesh qualities verifies the mesh-independency of the proposed strain-

softening model in tunnel design applications. 

 

 

Figure 10. Basic features and boundary conditions for the 2D axisymmetric excavation model. 
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(a)  (b)  (c)  (d)  

Figure 11. Four different mesh qualities used in the numerical analysis. The meshes are composed of the 

following number of quadratic triangular elements: (a) mesh_01: 988 elements, (b) mesh_02: 2016 

elements, (c) mesh_03: 3719 elements, and (d) mesh_04: 6342 elements. 
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Figure 12. Longitudinal (axial) deformation u versus the distance to the tunnel face xd for (a) vp = 102 MPa5s 

and (b) vp = 104 MPa5s. Four different mesh qualities (mesh_01, mesh_02, mesh_03 and mesh_04) 

are adopted for each case. 
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Table 4. Input parameters of the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model. 

 

 

 

 

Input parameters of the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

Different quality of rock masses  High Medium Low 

GSI 
Peak  60 50 40 

Residual  35 30 27 

Elastic parameters 
Elastic modulus EM (MPa) 15400 8660 4870 

Poisson’s Ratio v 0.25 0.25 0.25 

Viscoelastic parameters Deviatoric viscosity  d
c  (MPa s)    

Viscoplastic 

parameters 

Stress power m 5 5 5 

Viscosity of the Perzyna model vp (MPams) 102 (*) 102 (*) 102 (*) 

T for F and G T (deg) 25 25 25 

Post-failure 

behaviour 

Hoek-

Brown 

Peak values 
mHB 1.68 1.17 0.821 

sHB 0.0110 0.0039 0.0013 

Residual values 
mHB 0.687 0.575 0.516 

sHB 0.0007 0.0004 0.0003 

Mohr-

Coulomb 

Peak values 
c (MPa) 2.67 2.24 1.88 

 (deg) 25.7 23.1 20.6 

Residual values 
c (MPa) 1.71 1.54 1.43 

 (deg) 19.4 18.2 17.5 

Smoothing 

parameter 
a 0.25 0.25 0.25 

Critical softening parameters * 0.0062 0.0288 0.119 

Plastic 

potential 

Associativity parameter  1.0 1.0 1.0 

Dilatancy angle  (deg)  4.49 2.89 1.55 

(*) Sufficiently small value of vp to make the solution comparable to the purely plastic case 
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4.3. Verification of the viscoelastic model 

The VEVP-SS model can be simplified to a viscoelastic model, as shown in Figure 5. To verify the 

viscoelastic model, an example of a circular tunnel excavated in a viscoelastic rock mass is carried out in 

CODE_BRIGHT. The numerical results are compared with the analytical solutions of Wang et al. [34, 43], 

who presented analytical solutions for circular tunnels with a time-dependent boundary [34, 43]. The 

expressions for tunnels excavated in Maxwell viscoelastic geomaterials under isotropic initial stresses are 

shown in Eq. (17), where GM and  d
c  are the deviatoric stiffness (shear modulus) and the deviatoric 

viscosity of the Maxwell viscoelastic model, respectively. R represents the time-dependent radius of the 

tunnel section; t represents time; p0 represents the initial stress; u represents the incremental radial 

displacements that occurred during the excavation along the radial axis; and  represents the radial location 

in polar coordinates (, ), where = 0 represents the location of the tunnel centre. 

      20
d0

M c

1 1

2

tp
u t t R d

G    
 

 
    

 
                                         (17) 

The numerical model developed using CODE_BRIGHT is consistent with the hypothesis made in the 

analytical model, and both of them are calculated under plane-strain conditions with small deformation. 

Only a quarter of the tunnel structure is analysed in the numerical model (Figure 13) because of the double 

symmetry of the geometry and the boundary conditions on both the x and y axes. Moreover, the normal 

displacements along the bottom (y = 0) and the left (x = 0) boundaries are restrained. Figure 14 shows the 

mesh of the numerical model in the vicinity of the tunnel. A mesh of 764 quadratic triangular elements was 

adopted, with finer elements near the excavation. The initial stresses in the model are p0 = 20 MPa. For the 

rock mass, GM = 2000 MPa, and  d
c = 8.64  108 MPa s. The first section of the tunnel was instantaneously 
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excavated at time equal to zero, t = 0 day. The following sections of the tunnel were excavated step by step, 

and the radius of the tunnel cross-section can be expressed by Eq. (18). 

       

2 m, for  0 5 days

4 m, for  5 days 10 days

6 m, for  10 days 15 days

8 m, for  15 days

   

    

    

    

t

t
R t

t

t

 
     
 

                                           (18) 

After the completion of all excavation steps, the calculation was stopped at t = 30 days. 

A comparison of the time-dependent incremental radial displacements that occurred during the excavation 

along the radial axis (u) predicted by the analytical solutions and the numerical simulations is shown in 

Figure 15 for points A, B, and C (see Figure 13). A good agreement between the numerical and analytical 

results is observed, verifying the viscoelastic model in CODE_BRIGHT. 

 

 

Figure 13. Basic features and boundary conditions for the plane-strain excavation model. 
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Figure 14. Mesh and geometry of the plane-strain excavation model. 

 

 

Figure 15. Comparison between analytical solutions [34, 43] and CODE_BRIGHT results for the incremental 

radial displacements u. 
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4.4. Verification of the strain-softening model 

The VEVP-SS model can be simplified to the elastic-plastic strain-softening model by applying a 

sufficiently small vp and a sufficiently large c, as shown in Figure 5. To verify the theory and 

implementation of the strain-softening model, the results of the longitudinal deformation profile (LDP) 

obtained from CODE_BRIGHT are compared with the FLAC results from Alejano et al. [36]. The 

numerical model developed using CODE_BRIGHT is made to be consistent with the one described by 

Alejano et al. [36], and both of the models are solved using the elastic-plastic strain-softening model. 

In the simulation, the geometry, boundary conditions, initial field stress and excavation process are the 

same as those described in section 4.2. The rock masses were weak intact rock, with mi = 7 and ci = 35 

MPa. Three rock masses with different geotechnical qualities (high, medium and low) were adopted in the 

comparison, and Table 4 shows the input parameters for these rock masses [36]. Considering the post-

failure behaviour, simulations are performed using both perfectly plastic (PP) and strain-softening (SS) 

models. Moreover, both the Mohr-Coulomb and Hoek-Brown failure criteria are used. Mesh_02 (in Figure 

11) is adopted in the following numerical analysis. 

The FLAC2D and FLAC3D results from Alejano et al. [36] were used for the comparison with the 

CODE_BRIGHT results. Neumann boundary conditions were adopted in the FLAC2D numerical models, 

and the discretised area was 70 m  100 m [36]. Dirichlet boundary conditions were adopted in the 

FLAC3D numerical models, and the discretised area was 60 m  60 m  60 m [36]. A more detailed 

description of the numerical models was provided by Alejano et al. [36]. In the comparison, the radial 

displacements u were normalized by the maximum radial displacements u max
 , and the distance to the 

tunnel face xd were normalized by the radius of the tunnel R. 
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Figures 16 and 17 show good agreement of the longitudinal deformation profile (LDP) obeying the Mohr-

Coulomb perfectly plastic (MC-PP), Mohr-Coulomb strain-softening (MC-SS), Hoek-Brown perfectly 

plastic (HB-PP), and Hoek-Brown strain-softening (HB-SS) models between CODE_BRIGHT, FLAC2D 

and FLAC3D, verifying the implementation of the strain-softening model. The slight differences in Figure 

17 between the CODE_BRIGHT, FLAC2D and FLAC3D results when using the HB failure criterion may 

be caused by the different smoothing methods of the Hoek-Brown failure criterion (as shown in section 3) 

and the use of different types of boundary conditions (Dirichlet versus Neumann). 
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Figure 16. Comparison between FLAC results [36] and CODE_BRIGHT results for the normalized longitudinal 

deformation profile for three different rock mass qualities, (a) high-quality rock mass (GSIpeak = 60, 

GSIres = 35), (b) medium-quality rock mass (GSIpeak = 50, GSIres = 30), and (c) low-quality rock mass 

(GSIpeak = 40, GSIres = 27), considering the Mohr-Coulomb perfectly plastic (MC-PP) and the Mohr-

Coulomb strain-softening (MC-SS) behaviour models. 
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Figure 17. Comparison between FLAC results [36] and CODE_BRIGHT results for the normalized longitudinal 

deformation profile for three different rock mass qualities: (a) high-quality rock mass (GSIpeak = 60, 

GSIres = 35), (b) medium-quality rock mass (GSIpeak = 50, GSIres = 30), and (c) low-quality rock mass 

(GSIpeak = 40, GSIres = 27), considering the Hoek-Brown perfectly plastic (HB-PP) and the Hoek-

Brown strain-softening (HB-SS) behaviour models. 
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5. The application of the VEVP-SS model in the design of tunnels 

The creep failure behaviour of rock may be relevant for many engineering cases, such as for some tunnels 

that do not fail during the process of tunnel excavation and support construction but ultimately fail after 

long-term operation [3, 77]. This phenomenon may be caused by the coupling between the creep behaviour 

and the strain-softening behaviour of rock masses, which can now be simulated by the proposed 

ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model. 

As shown in Figure 18, if the VEVP-SS model is adopted to simulate the rock mass behaviour, the rock 

mass can be divided into two different zones: (1) viscoelastic zone and (2) viscoelastic-viscoplastic zone. In 

this section, an example is carried out to analyse the tunnelling excavation problems of deeply buried 

tunnels. The influence on the resulting longitudinal deformation profiles (LDPs) of several modelling 

features, such as the rock mass geotechnical quality (GSI), the post-failure behaviour model chosen, the 

viscosity introduced in the model, or the tunnel excavation rate, will be illustrated. Moreover, the examples 

show the potential applicability of the proposed VEVP-SS model. 

 

Figure 18. The longitudinal deformation profile (LDP) in a ViscoElastic-ViscoPlastic Strain-Softening (VEVP-

SS) rock mass. 
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The excavated tunnel is 5 m in diameter and buried approximately 750 m deep. The initial in situ stress is 

assumed to be p0 = 18.75 MPa. The numerical model geometry, boundary conditions, and excavation 

process (see Figure 10) are the same as those described in section 4.2. In the following numerical 

simulations, Mesh_02 with 2016 quadratic triangular elements is adopted, as shown in Figure 11b. Three 

different (high, medium and low quality) rock masses are considered, and the parameters of the rock 

masses, including (1) the elastic parameters, (2) the stress power, (3) the post-failure behaviour and (4) the 

potential, are shown in Table 4. To simplify the analysis, the radial displacements u are normalized by the 

corresponding maximum displacements of the elastic model u max
,elastic , and the distance to the tunnel face xd 

is normalized by the radius of the tunnel R. For the sake of comparison, two special cases that do not 

consider the time-dependent behaviour of the rock mass are presented in all of the following parametric 

analyses: (1) elastic behaviour and (2) elastic-plastic behaviour (EP). 

 

5.1. Influence of the selection of rock mass behaviour models 

The longitudinal deformation profiles (LDPs) of four different post-failure behaviour models are 

investigated: (1) the Mohr-Coulomb perfectly plastic (MC-PP), (2) the Mohr-Coulomb strain-softening 

(MC-SS), (3) the Hoek-Brown perfectly plastic (HB-PP), and (4) the Hoek-Brown strain-softening (HB-SS) 

models. In the example, the viscosities of the viscous and viscoplastic models are  d
c  = 1010 MPa s and vp 

= 104 MPa5s, respectively. The excavation rate is 2.5 m/day. 

Without considering the time-dependent behaviour of rock masses, i.e., for the elastic and elastic-plastic 

(EP) models, Figure 19 shows the normalized longitudinal deformation profile along the normalized 



39 
 

distance to the tunnel face. For time-independent materials, the displacements first increases and then 

reaches a stable value when the distance to the tunnel face is large enough. 

The LDP obeying the Hoek-Brown failure criterion is, from an engineering point of view, similar to the 

LDP obeying the Mohr-Coulomb failure criterion. Furthermore, it should be noted that the difference 

between the LDP calculated for perfectly plastic (PP) rock masses and for strain-softening (SS) rock 

masses increases as the GSI increases [36]. For high-quality rock masses, the LDP obtained is significantly 

different if we consider perfectly plastic or strain-softening behaviour, while this difference can be 

negligible for lower-quality rock masses, as expected, since PP behaviour accurately represents the 

behaviour of low-quality rock masses of GSI < 40 [35]. 

For viscoelastic-viscoplastic (VEVP) models, the displacements are caused not only by elastic and strain-

softening processes but also by the creep behaviour of the rock mass; thus, the displacements keep 

increasing throughout the simulation, even at high xd/R ratios. This can be a reasonable assumption for 

some cases: rock salt [67], rock masses under squeezing conditions [42], tunnels excavated in weak or 

altered rock masses [15] or very deep excavations [42]. 

Figures 20 and 21 present the longitudinal deformation profiles determined by using the elastic, elastic-

plastic (EP) and viscoelastic-viscoplastic (VEVP) models, obeying the Mohr-Coulomb failure criterion and 

the Hoek-Brown failure criterion, respectively. The displacement results of the VEVP model are larger than 

the corresponding EP results, due to the additional contribution of the viscous (creep) behaviour. 

At a great depth, stress redistributions due to tunnel excavation may lead to so-called squeezing conditions, 

both in low- and high-quality rock masses [39]. In this context, large deformations may develop due to 

secondary and tertiary creep, while the primary creep-induced deformation may be considered negligible 

[15]. Thus, the proposed ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model may be useful to 

reproduce the actual behaviour of rock masses under these conditions. 



40 
 

 

(a)

-6 -3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

GSI
peak

=60

GSI
res   

=35

u 
/u

m
ax

,
el

as
ti

c

x
d
/R

 Elastic
 EP, MC-PP    EP, MC-SS
 EP, HB-PP     EP, HB-SS

(b) 

-6 -3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

GSI
peak

=50

GSI
res   

=30

u 
/u

m
ax

,
el

as
ti

c

x
d
/R

 Elastic
 EP, MC-PP    EP, MC-SS
 EP, HB-PP     EP, HB-SS

 

(c) 

-6 -3 0 3 6 9 12 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

GSI
peak

=40

GSI
res   

=27

u 
/u

m
ax

,
el

as
ti

c

x
d
/R

 Elastic
 EP, MC-PP    EP, MC-SS
 EP, HB-PP     EP, HB-SS

 

Figure 19. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face by 

using elastic and elastic-plastic (EP) mechanical models; the Mohr-Coulomb (Hoek-Brown) 

perfectly plastic, i.e., MC-PP (HB-PP), post-failure behaviour model; and the Mohr-Coulomb (Hoek-

Brown) strain-softening, i.e., MC-SS (HB-SS), post-failure behaviour model. Three different rock 

qualities are considered: (a) GSIpeak=60, GSIres=35, (b) GSIpeak=50, GSIres=30, and (c) GSIpeak=40, 

GSIres=27. 
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Figure 20. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face by 

using the elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) mechanical models; the 

Mohr-Coulomb perfectly plastic (MC-PP) post-failure behaviour model; and the Mohr-Coulomb 

strain-softening (MC-SS) post-failure behaviour model. Three different rock qualities are considered: 

(a) GSIpeak=60, GSIres=35, (b) GSIpeak=50, GSIres=30, (c) GSIpeak=40, and GSIres=27. 
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Figure 21. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face by 

using the elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) mechanical models; the 

Hoek-Brown perfectly plastic (HB-PP) post-failure behaviour model; and the Hoek-Brown strain-

softening (HB-SS) post-failure behaviour model. Three different rock qualities are considered: (a) 

GSIpeak=60, GSIres=35, (b) GSIpeak=50, GSIres=30, (c) GSIpeak=40, and GSIres=27. 
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5.2. Influence of the excavation rates 

To analyse the influence of the excavation rates on the resulting longitudinal deformation profiles (LDPs), 

three different excavation rates were considered: V = 0.83 m/day, V = 1.25 m/day and V = 2.5 m/day. The 

elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) models were considered. Both Mohr-

Coulomb perfectly plastic (MC-PP) and Mohr-Coulomb strain-softening (MC-SS) post-failure behaviour 

models were adopted in this example. In the VEVP model, the viscosities of the viscous and viscoplastic 

models were  d
c  = 1010 MPa s and vp = 104 MPa5s, respectively. 

Figures 22 and 23 show the LDP obeying the MC-PP and the MC-SS post-failure behaviour models, 

respectively. For the elastic and elastic-plastic rock masses, the LDP is identical for different excavation 

rates, i.e., the elastic and elastic-plastic LDPs are only related to the distance to the tunnel face xd. However, 

for the viscoelastic-viscoplastic rock masses, the shapes of the LDPs are very different for different 

excavation rates, and the displacements do not achieve a steady state in this case due to the contribution of 

the creep deformation. Lower excavation rates may lead to larger displacements because there is more time 

for creep deformation to develop. The difference between the longitudinal deformation profiles (LDPs) 

calculated for elastic-plastic rock masses and for viscoelastic-viscoplastic rock masses increases with the 

GSI. 
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Figure 22. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face for 

three different excavation rates (0.83 m/day, 1.25 m/day and 2.5 m/day) and for three different rock 

qualities: (a) GSIpeak=60, GSIres=35, (b) GSIpeak=50, GSIres=30, and (c) GSIpeak=40, GSIres=27. Three 

different rock mass behaviour models are adopted: elastic model; the elastic-plastic and Mohr-

Coulomb perfectly plastic (EP, MC-PP) model; and the viscoelastic-viscoplastic and Mohr-Coulomb 

perfectly plastic (VEVP, MC-PP) model. 
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Figure 23. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face for 

three different excavation rates (0.83 m/day, 1.25 m/day and 2.5 m/day) and for three different rock 

qualities: (a) GSIpeak=60, GSIres=35, (b) GSIpeak=50, GSIres=30, (c) GSIpeak=40, GSIres=27. Three 

different rock mass behaviour models are adopted: the elastic model; the elastic-plastic and Mohr-

Coulomb strain-softening (EP, MC-SS) model; and the viscoelastic-viscoplastic and Mohr-Coulomb 

strain-softening (VEVP, MC-SS) model. 
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5.3. Influence of the viscosity 

As shown in Figure 5, the viscoelastic-viscoplastic model can be simplified to an elastic-viscoplastic model 

by assigning a sufficiently large value to c, while it can be simplified to a viscoelastic-plastic model when 

vp is close to zero. To analyse the effect of viscosity, including the viscosity of the viscous (creep) model 

 d
c  and the viscosity of the viscoplastic model vp, on the resulting longitudinal deformation profile (LDP), 

an example is presented herein. In this numerical simulation, three different excavation rates are considered: 

V = 0.83 m/day, V = 1.25 m/day and V = 2.5 m/day. In this sub-section, the proposed VEVP-SS model is 

adopted, and the post-failure behaviour is described by the Mohr-Coulomb strain-softening (MC-SS) model. 

It should be noted that some of the values of  d
c  and vp in this sub-section may be not realistic but are 

useful to perform a sensitivity analysis of viscosity. 

Figure 24 shows a sensitivity analysis of the viscosity on the viscous (creep) part,  d
c . Three different 

viscosities are adopted for the viscous model,  d
c  = 1010 MP s, 51010 MP s, and 1011 MP s, and the 

viscosity of the viscoplastic model is adopted as vp = 102 MPa5s. The larger the value of  d
c  is, the smaller 

the displacement. Figure 25 shows a sensitivity analysis of the viscosity on the viscoplastic part, vp. Three 

different viscosities are considered for the viscoplastic model, vp = 102 MPa5s, 105 MPa5s, and 108 MPa5s,  

and the viscosity of the viscous model is adopted as  d
c  = 1011 MPa s in this case. The smaller the value of 

vp is, the larger the displacement. In both Figures 24 and 25, lower excavation rates produce larger 

displacements, caused by larger creep displacements during the excavation process. 
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Figure 24. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face by 

using the Mohr-Coulomb strain-softening (MC-SS) rock mass behaviour model for three different 

viscosities of the viscous model  d
c , for three different excavation rates: (a) 0.83 m/day, (b) 1.25 

m/day, and (c) 2.5 m/day. 
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Figure 25. Normalized longitudinal deformation profiles along the normalized distance to the tunnel face by 

using the Mohr-Coulomb strain-softening (MC-SS) rock mass behaviour model for three different 

viscosities of the viscoplastic model vp and for three different excavation rates: (a) 0.83 m/day, (b) 

1.25 m/day, and (c) 2.5 m/day. 
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6. Conclusions 

This paper provides a general coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model. This 

VEVP-SS model has been implemented into the finite element method software CODE_BRIGHT. In the 

VEVP-SS model, creep behaviour and strain-softening models are coupled, which can be used to simulate 

the creep-induced failure and subsequent damage of rock masses. 

The viscous dashpot and the Perzyna models are adopted to simulate the creep and viscoplastic behaviours 

of rock masses, respectively. Both the Mohr-Coulomb and Hoek-Brown failure criteria, as well as the 

strain-softening post-failure behaviour of rock masses, are considered. By using a smoothing 

approximation method, the yield surfaces and the potential are smoothed in the numerical implementation. 

The numerical model is verified by a comparison between the CODE_BRIGHT results and other analytical 

or numerical results. 

Finally, an example is carried out to predict the longitudinal deformation profile (LDP) used in the 

convergence-confinement method (CCM). The effects of the rock mass behaviour model selection, the 

geotechnical quality of the rock mass, the viscosity, and the excavation rates on the longitudinal 

deformation profile (LDP) are investigated. The proposed approach can be used in the preliminary design 

of tunnels excavated in time-dependent strain-softening rock masses. Some conclusions can be obtained 

from the parametric analysis: 

(1) Elastic-plastic, elastic-viscoplastic, viscoelastic, viscoelastic-plastic models can be considered special 

cases of the VEVP-SS model, so they can be modelled using the proposed model. In addition, strain-

softening post-failure behaviour or a simpler perfectly plastic or purely brittle post-failure behaviour 

can be selected for any case. 

(2) The LDP varies according to the selected rock mass behaviour model. For instance, the displacement 

results of the VEVP model are larger than the corresponding elastic-plastic results due to the 
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contribution of the viscous (creep) behaviour. In addition, the results of the elastic and elastic-plastic 

models are identical for different excavation rates, while the excavation rate becomes relevant when 

taking into account time-dependent behaviour. 

(3) When using the VEVP model, the obtained LDP obeying the Hoek-Brown failure criterion is, from an 

engineering point of view, similar to the obtained LDP obeying the Mohr-Coulomb failure criterion. 

Moreover, the difference between the LDPs calculated for perfectly plastic rock masses and for strain-

softening rock masses grows as the GSI increases. Furthermore, when choosing the viscoelastic-

viscoplastic rock mass behaviour model, the model is more sensitive to the excavation rate in 

comparison to the sensitivity of the elastic-plastic behaviour model. 

(4) The proposed VEVP model is very sensitive to the input values of viscosity. For the VEVP model, the 

greater the values of c or vp are, the smaller the displacements. 

Even if the proposed model can reproduce many different rock mass behaviours, there are still some 

limitations in the proposed VEVP-SS model. For instance, the strain rate is constant under a constant stress 

in the Maxwell viscoelastic model, which may reproduce only a limited number of practical cases. In future 

research, the Burgers viscoelastic model could be coupled with the Perzyna model to consider the influence 

of primary creep and thus improve the applicability of the numerical approach to real engineering. 
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Appendix A. A smooth approximation of the Hoek-Brown failure criterion 

The smooth approximation of the Hoek-Brown yield surface is derived in this appendix. The expression of 

the smoothed Hoke-Brown yield surface can be expressed in Eq. (19), and an alternative form of KHB() in 

the vicinity of the singularities is defined for smoothing, as shown in Eq. (20). The derivatives of KHB() 

with respect to  are shown in Eq. (21). 
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The expressions of AHB and BHB can be obtained by matching the zero and first derivatives for the 

smoothed surface to those of the Hoek-Brown yield surface at T, providing two linear equations, as shown 

in Eqs. (22) and (23). 
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Finally, the coefficients of AHB and BHB can be determined, and the corresponding expressions are shown 

in Eqs. (24) and (25). 
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Figure A.1 presents the conceptual model of the smoothed Hoek-Brown yield surface in the octahedral 

plane. 

 

 

Figure A.1. The smoothed Hoek-Brown yield surface in the octahedral plane. 
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Appendix B. The gradients of the yield surface and potential 

The gradients of the yield surface and the potential function with respect to the stresses play an essential 

role in the numerical implementation. The derivative of Eq. (1) with respect to the stress tensor can be 

expressed in Eq. (26), where the first derivative of the yield surface with respect to the stress, 
σ

F


, is 

expressed in Eq. (27); the first derivaive of the potential with respect to the stress, 
σ

G


, is expressed in Eq. 

(28); and the second derivative of the potential with respect to the stress, 
2

2σ

G


, is expressed in Eq. (29). 
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Appendix B.1 and appendix B.2 present the first derivative expressions of the failure criteria and the first 

and second derivative expressions of the potential, respectively. 
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Appendix B.1. The first derivative expressions of the Mohr-Coulomb and Hoek-Brown failure criteria 

The first derivative of the failure surface is shown in Eq. (30). 
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For the Hoek-Brown failure criterion, 
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Appendix B.2. The first and second derivative expressions of the potential function 

The first derivative of the potential function is presented in Eq. (42). 
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The second derivative of plastic potential function is presented in Eq. (47). 
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