Title: NON-INVASIVE SALIVA-SAMPLING DEVICE

Título: DISPOSITIVO DE MUESTREO NO INVASIVO DE SALIVA

Abstract: The invention relates to a non-invasive saliva-sampling device which comprises a porous substrate and a layer of an innocuous substance that is pleasing to the taste and which completely or partially surrounds the porous substrate. The device allows the non-invasive collection of saliva samples, with usefulness in areas such as ecology and wildlife management, clinical veterinary science, animal health or human health and physiology.

Resumen: El objeto de la invención es un dispositivo de muestreo no invasivo de saliva que comprende un sustrato poroso y una capa de sustancia inocua y agradable al gusto que envuelve total o parcialmente el sustrato poroso. Permite la colectión no invasiva de muestras de saliva, con utilidad en áreas como la ecología y el manejo de fauna silvestre, la veterinaria clínica, la salud animal o la fisiología y salud humanas.
DESCRIPCIÓN

DISPOSITIVO DE MUESTREO NO INVASIVO DE SALIVA

SECTOR Y OBJETO DE LA INVENCION

La presente invención se enmarca en el sector de los métodos de colección de saliva. Específicamente, el objeto de la invención es un dispositivo de muestreo no invasivo de saliva que comprende un sustrato poroso y una capa de sustancia inocua y agradable al gusto que envuelve total o parcialmente el sustrato poroso.

ESTADO DE LA TECNICA

La saliva es una secreción líquida o viscosa de los animales que contiene hormonas, enzimas y otras proteínas, sustancias lubricantes, anticuerpos, metabolitos e iones. En la cavidad bucal, la saliva recibe distintos tipos de células tanto exógenas (por ejemplo, bacterias y otros microorganismos) como propias (por ejemplo, células epiteliales). En humanos la colección y posterior análisis de muestras de saliva tiene múltiples aplicaciones. Las principales pueden agruparse en cuatro grandes bloques:

1. Detección de sustancias presentes en el organismo. Los compuestos de mayor interés son los biomarcadores para el diagnóstico de enfermedades tan variadas como las mentales, el cáncer, el asma, o el Alzheimer. También se usa en el seguimiento de adicciones y en medicina forense para detectar el consumo de fármacos y drogas.

2. Evaluación del estado de salud y fisiológico. En la saliva se puede medir la concentración de determinados nutrientes, hormonas y metabolitos relacionados con el estado fisiológico del individuo o con la presencia de infecciones. La saliva está infrautilizada como un medio rápido para realizar
seguimientos del estado fisiológico del individuo, o de sus parásitos y patógenos, porque las variaciones en su composición no se conocen con suficiente precisión. Recientemente se han identificado alrededor de mil metabolitos en la saliva humana, lo que da idea de su potencial como fuente no invasiva de marcadores fisiológicos.

3. Seguimiento de las concentraciones de sustancias en otros tejidos. La concentración de medicamentos, toxinas y otros compuestos en la saliva puede predecir los niveles de estas sustancias en determinados tejidos o en biofluidos como el plasma o la leche materna. A partir del análisis de muestras de saliva también se puede establecer la farmacocinética de algunos compuestos.

4. Obtención de perfiles genéticos e identificación de microorganismos por métodos moleculares. La saliva es rica en células del propio organismo y permite extraer concentraciones de ácido desoxirribonucleico (ADN) tan altas como las que se obtienen de la sangre u otros tejidos. Los marcadores moleculares en este material genético de alta calidad permiten determinar la identificación inequívoca del individuo mediante genotipo, con aplicaciones en medicina forense y análisis de paternidad, entre otras. Igualmente la saliva contiene numerosas células de organismos simbiontes, parásitos o patógenos, que permite su identificación mediante análisis genético.

La obtención de saliva en humanos es sencilla. Puesto que la colección de una muestra de saliva suele contar con la colaboración necesaria del sujeto, los métodos habituales de obtención de muestras empleados en humanos consisten en el uso de pipetas, otros instrumentos de succión, o torundas de algodón u otros tejidos absorbentes que se impregnan de saliva al introducirlas directamente en la cavidad bucal.

Cuando no es posible recurrir a la donación voluntaria, como sucede por ejemplo en investigaciones criminológicas, se pueden obtener muestras de saliva a partir de otro tipo de objetos que, al ser utilizados, han estado en contacto con la saliva. Esta última aproximación también se ha utilizado para colectar muestras de saliva de animales silvestres en su medio natural, lo que
normalmente requiere costosos periodos de observación y seguimiento a distancia de los individuos de interés para identificar los alimentos que han mordido, lamido o manipulado con la boca, y buscar restos de saliva en ellos.

Con fines similares a los descritos, las técnicas de colección de saliva usadas en humanos se utilizan en animales domésticos, en el ámbito de la veterinaria clínica y la sanidad animal, por ejemplo en la determinación de la prevalencia de zoonosis en el ganado. También se aplican a animales de laboratorio o a vertebrados silvestres confinados en recintos, en cautiverio o en régimen de semi-libertad, con objeto de determinar el bienestar animal (por ejemplo, el seguimiento veterinario de los animales de acuarios o zoológicos) o realizar estudios científicos.

En animales, el uso de mecanismos de succión o de introducción de tejidos absorbentes en la cavidad bucal requiere la presencia humana y, a menudo, la sujeción y manipulación directa del animal. En particular, en animales silvestres que suelen percibir la proximidad humana como una amenaza, la obtención de saliva usando las mismas técnicas que en humanos y animales domésticos o de laboratorio se convierte en un procedimiento sumamente invasivo, ya que implica capturar al animal e inmovilizarlo por métodos físicos o químicos (sedación o anestesia) para forzar el acceso a la cavidad bucal. La captura y manipulación de vertebrados silvestres produce reacciones fisiológicas de estrés asociadas a la captura y retención que son indeseables desde el punto de vista del bienestar animal. También son indeseables por las alteraciones en la concentración de metabolitos de la saliva que se pueden producir como consecuencia de tal manipulación. Por ejemplo, en un estudio donde el objetivo sea medir niveles de cortisol en muestras de animales, los datos estarán probablemente alterados por la manipulación y no reflejarán fielmente el efecto de los factores de interés.

De lo indicado en los párrafos anteriores, se deduce que sería de interés disponer de un dispositivo o sistema que permita la colección no invasiva de
muestras de saliva, con utilidad en áreas como la ecología y el manejo de fauna silvestre, la veterinaria clínica, la sanidad animal o la fisiología y salud humanas.

5 **EXPLICACION DE LA INVENCION**

Constituye el objeto de la presente invención un dispositivo de muestreo no invasivo de saliva que comprende:
- un sustrato poroso y
- una capa de cebo de una sustancia inocua y agradable al gusto que envuelve total o parcialmente el sustrato poroso.

 Preferentemente, el sustrato es de un material sólido, resistente, de superficie rugosa, insoluble en soluciones acuosas e inerte respecto a compuestos disueltos en la saliva. El término resistente en este contexto significa resistencia a la masticación. En cuanto a la rugosidad de la superficie del sustrato, debe ser lo suficiente para facilitar la adherencia de la capa de cebo, favorecer la captación de células del epitelio bucal y reducir el desprendimiento de la saliva captada en la superficie.

En un modo preferente de realización, el material del sustrato poroso es un material natural que se selecciona entre corcho, yeso, piedra pómez o madera.

En otro modo de realización, el material del sustrato poroso es un material sintético que se selecciona entre resinas o polímeros, agregados de gel de sílice o arcilla expandida. En un modo particular de realización el material del sustrato es poliestireno expandido.

En cuanto a la porosidad, el tamaño de la dimensión principal de los poros del sustrato está comprendido entre 1 nm y 5 mm, según su aplicación.

El sustrato presenta, según su aplicación, una forma irregular o geométrica cuya dimensión principal está comprendida entre 0.1 y 15 cm. En el caso de optar por una forma geométrica, se selecciona entre esférica, elipsoidal o cilíndrica.

En cuanto al cebo, es una sustancia no tóxica ni alergénica, y que no contiene compuestos que reaccionen con los metabolitos de interés, desnaturalicen los
ácidos nucleicos o inhiban las reacciones de polimerización de fragmentos de material genético. Preferentemente, la sustancia del cebo es viscosa, adhesiva o capaz de formar películas finas sobre la superficie del sustrato, agradable al gusto/olfato del sujeto experimental o comestible y capaz de mantener estas propiedades organolépticas durante el tiempo de exposición al sujeto experimental.

El cebo se aplica en una capa que cubre entre el 1% y el 100% del sustrato y con un espesor comprendido entre 0.01 mm y 2 cm. Opcionalmente, el cebo puede incluir una sustancia estimulante de la salivación.

BREVE DESCRIPCION DE LAS FIGURAS

Fig. 1: Dispositivo de muestreo no invasivo de saliva con sustrato de geometría estérica y recubrimiento parcial de cebo.

Fig. 2: Dispositivo de muestreo no invasivo de saliva con sustrato de geometría elipsoidal y recubrimiento parcial de cebo.

Fig. 3: Dispositivo de muestreo no invasivo de saliva con sustrato de geometría cilíndrica y recubrimiento parcial de cebo.

DESCRIPCION DETALLADA DE LA INVENCION

El sistema consiste en un sustrato de un material sólido poroso recubierto total o parcialmente por una capa de cebo, definido como una sustancia inocua cuyo olor y/o gusto resultan atractivos para un individuo o especie diana. El cebo puede ser o no comestible. En aplicaciones de campo, la combinación de sustrato y cebo va acompañada de un sistema de suministro que garantiza la recuperación de la muestra de saliva.

Las funciones esenciales que debe cumplir el material sólido poroso son a) entrar en contacto con la saliva al ser manipulado en el interior de la cavidad bucal, o en el exterior si es lamido, b) almacenar en su superficie y en sus
poros una cantidad de saliva suficiente para el análisis que proceda, y c) no ser ingerido, sino expulsado para su colección y posterior análisis.

Las funciones del cebo son a) incitar a los sujetos a que introduzcan el sustrato en su cavidad bucal, o lo manipulen dentro o fuera de ella, durante un tiempo suficiente para que el sustrato capture un volumen de saliva suficiente para satisfacer el objetivo de los análisis de laboratorio, b) estimular la salivación, c) competir lo menos posible con la saliva por la ocupación de los poros del sustrato, d) tener una composición que minimice la probabilidad de desnaturalizar, inmovilizar, alterar o provocar cualquier otro tipo de reacción química que modifique los compuestos cuya presencia, concentración o propiedades han de examinarse en la muestra, y e) tener una composición que interfiera lo menos posible con los procedimientos utilizados en el laboratorio para detectar o medir los niveles de las moléculas diana.

La solución óptima en el diseño de las propiedades del sustrato y del cebo es específica de cada combinación de especie, sustancia de interés buscada en la saliva, y condiciones de muestreo. Los principales criterios que guían el diseño de dichas propiedades son los siguientes.

Propiedades del sustrato

Material

- sólido para mantener su estructura, en particular la rigidez de los poros; la presencia de un objeto sólido en la cavidad bucal también estimula la secreción de saliva

- insoluble en solución acuosa para que conserve su estructura y no aporte sustancias a la saliva

- resistente para prevenir la rotura por masticación y para permitir su fijación a dispositivos dispensadores que permitan la manipulación pero no la remoción del sustrato por los animales
• inerte para minimizar las reacciones con los compuestos de interés disueltos o suspendidos en la saliva y para minimizar los efectos toxicológicos de una ingestión accidental. En aplicaciones destinadas a análisis genéticos deben evitarse materiales naturales de origen vegetal, por ejemplo, maderas o cortezas, que contengan polifenoles u otras sustancias inhibidoras de la reacción en cadena de la polimerasa (PCR).

• en aplicaciones que requieren muestreos de saliva en poblaciones de especies silvestres que habitan áreas extensas, puede ser suficiente que el sustrato esté fabricado con un material común y de bajo coste, sea natural (por ejemplo, corcho, yeso, piedra pómez, madera) o sintético (por ejemplo, poliestireno expandido o arcilla expandida). En determinadas aplicaciones, no obstante, los sustratos pueden necesitar satisfacer valores específicos de porosidad y reactividad de su superficie que pueden lograrse diseñando materiales sintéticos más costosos como, por ejemplo, cerámicas o resinas y otros polímeros.

Tamaño

• debe caber holgadamente en la cavidad bucal de la especie diana para que el sujeto pueda manipularlo en su interior de modo que se maximice el tiempo de exposición en contacto con la saliva.

• el tamaño determina el tiempo de manipulación, de tal manera que sustratos demasiado grandes son difíciles de rotar dentro de la cavidad bucal y el sujeto puede optar por expulsarlos y manipularlos fuera, con el consiguiente riesgo de captura de otras sustancias y de contaminación; por el contrario, sustratos demasiado pequeños capturan un menor volumen de saliva y admiten una cantidad limitada de cebo, de modo que el sujeto puede perder el interés en el sustrato y expulsarlo prematuramente.

Forma
• aunque la forma no es un factor esencial, formas geométricas facilitan la homogeneidad de los sustratos y la estandarización de la superficie expuesta a la saliva en distintos sujetos y condiciones

• una vez consumido el cebo, una forma esférica (Figura 1) maximiza la superficie porosa expuesta para un volumen dado

• formas elipsoidales (Figura 2) o cilíndicas (Figura 3) facilitan la delimitación de una región del sustrato en la que se aplica el cebo y una región libre de cebo donde los poros están completamente vacíos y es más probable la captación de saliva

Textura

• una textura levemente rugosa facilita la remoción de células del epitelio bucal antes de que se transfieran a la saliva y suele ser deseable en aplicaciones donde se busca material genético

• una textura rugosa también tiende a retener mejor muestras de saliva de consistencia viscosa una vez expulsado el sustrato de la cavidad bucal, aumentando el tiempo de contacto de la secreción con los poros y aumentando la probabilidad de adsorción y penetración; por el contrario, salivas de consistencia líquida tienden a deslizarse y desprenderse con facilidad del sustrato una vez expulsado, antes de su colección

Porosidad

• Los poros facilitan el almacenamiento de la saliva en el sustrato, en cuyo interior penetra por capilaridad. El almacenamiento de la saliva en los poros es esencial cuando la muestra debe permanecer cierto tiempo en el sustrato antes de su colección. Por ejemplo, quedando almacenada dentro de los poros la saliva tarda más en secarse y queda protegida de la radiación ultravioleta que puede dañar, por ejemplo, el ADN de las células que contiene en suspensión
• La porosidad idónea del sustrato depende de la aplicación. Un sustrato heterogéneo en su porosidad o con predominio de poros relativamente grandes, del orden de $10^{-4} - 10^{-3}$ m, son adecuados para capturar volúmenes moderados a altos de saliva por unidad de superficie, y son útiles en la extracción de material genético. Poros de menor tamaño pueden ser más adecuados para detectar la presencia o medir la concentración de otros biomarcadores. Una porosidad homogénea con diámetros de poro adaptados al tamaño de determinados metabolitos diana, que pueden acompañarse con reactivos químicamente afines cuya función es capturar y retener dichas moléculas, pueden ser eficaces en sustratos específicamente diseñados para optimizar la detección de una especie molecular determinada.

Si se trata de animales, la combinación de un material duro resistente a la fractura y tamaño grande que dificulte su deglución permite lograr que el sujeto expulse el sustrato impregnado en saliva una vez consumido el cebo.

Propiedades del cebo

• no debe ser tóxico ni provocar reacciones alérgicas u otro tipo de reacción fisiológica perjudicial para la salud o bienestar del sujeto

• en sistemas aplicados a la obtención de saliva en animales, el cebo es una sustancia comestible, o una sustancia de olor y sabor agradable para la especie de interés, que la incita a manipular el sustrato en su cavidad bucal o a lamer su superficie durante un periodo suficientemente largo para que una cantidad adecuada de saliva, según el propósito que se persigue, quede atrapada en los poros del sustrato

• en sistemas aplicados a la obtención de saliva en humanos, el cebo no es tal porque el sustrato se acepta voluntariamente. En su defecto puede ser reemplazado por una sustancia estimulante de la salivación para maximizar la probabilidad de saturación del sustrato
- debe mantener sus propiedades atractivas durante el tiempo de exposición del sistema sustrato-cebo, a menudo durante periodos prolongados si se trata de colectar muestras de saliva de vertebrados silvestres en su medio natural

- salvo en combinaciones sustrato-cebo diseñadas para humanos, su consistencia ha de ser viscosa o debe tener propiedades adhesivas para que no se desprenda del sustrato y cumpla eficazmente su función

- su composición debe ser tal que no se produzcan reacciones con los biomarcadores de interés o altere su concentración

- no debe contener sustancias que desnaturalicen o degraden los ácidos nucleicos o que inhiban las reacciones de amplificación de fragmentos de material genético

Ventajas del método sobre técnicas tradicionales de colección de saliva en vertebrados

El sistema descrito introduce las siguientes mejoras en la colección de saliva en animales silvestres libres o cautivos, animales domésticos y humanos:

- El sistema permite a los *vertebrados silvestres* encontrar en su medio natural un objeto atractivo que introducir voluntariamente en su cavidad bucal y manipularlo durante suficiente tiempo para después dejarlo en el mismo lugar con una muestra de saliva. El animal no puede ingerir el sustrato poroso porque está sujeto a un dispositivo fijo, o porque las propiedades del sustrato se diseñan para ser descartado después de tomar contacto con la saliva. De este modo a) se accede a individuos inaccesibles por la dificultad de su captura y por tanto a una representación más equilibrada de la población a la que pertenecen en la muestra, b) se amplía la fracción de individuos de los que se obtienen muestras de manera más eficiente, ya que es necesaria una menor inversión en recursos económicos y humanos y se simplifica notablemente la logística necesaria para acceder a los animales o las
muestras que depositan en objetos o en restos de alimentos, y c) se reducen los inconvenientes de la manipulación en lo que atañe al bienestar animal y a los sesgos en los valores de parámetros fisiológicos derivados del estrés de la captura y manipulación del sujeto.

- El sistema permite a los vertebrados acostumbrados a la presencia humana (animales de compañía, especies de producción animal, animales confinados en zoológicos o instalaciones similares) depositar espontáneamente una muestra de saliva no contaminada sin necesidad de ser inmovilizados. De este modo se pueden descartar los posibles efectos de la manipulación, y los de los sedantes administrados para facilitar la obtención de la muestra, sobre los valores de parámetros fisiológicos medidos en biomarcadores presentes en la saliva.

- Introducido en la cavidad bucal de humanos, el sistema permite aumentar la especificidad en la captación de células o moléculas de interés para el uso o diagnóstico que se busque, adecuando las características del sustrato (material, porosidad, y adición de sustancias químicamente afines) a las características físico-químicas de las moléculas diana. Además, como otros objetos inertes, la mera presencia de un objeto sólido en la boca estimula la salivación. Este efecto puede potenciarse recubriendo el sustrato con una película rica en una sustancia estimulante de la salivación (por ejemplo, ácido cítrico).

MODO DE REALIZACION DE LA INVENCIÓN

Los sujetos experimentales son animales domésticos, en concreto perros confinados en una instalación de acogida. Cada individuo está alojado en una celda y separado del resto. El objetivo del experimento es estimar el éxito en la determinación de especie y de identidad individual por métodos moleculares, a partir de ADN de procedencia desconocida extraído de muestras de saliva obtenidas mediante una de las variantes del procedimiento descrito en el presente documento. Para ello se utilizan métodos estándar de extracción, amplificación e identificación de ADN mitocondrial y nuclear, utilizando marcadores de la región control y de microsatélites, respectivamente, diseñados para cánidos y disponibles en la literatura. El éxito de identificación se evalúa por comparación con los perfiles genéticos individuales generados a partir de células de la raíz del pelo de los animales.

Se utilizaron seis combinaciones de sustrato cebo, producto de tres materiales utilizados como sustrato y dos tipos de cebo.

Sustrato

Considerando las posibles aplicaciones de los resultados del ensayo a la estima de tendencias poblacionales en cánidos silvestres, se seleccionaron tres sustratos que se encuentran con facilidad y cuyo coste económico es muy reducido: madera, corcho y espuma de poliestireno expandido. Los dos primeros son naturales y el tercero es sintético. Estos sustratos varían en propiedades físicas como dureza, flexibilidad y la distribución de tamaños de poro. También difieren en propiedades químicas relevantes, como su contenido en polifenoles, que pueden alterar el proceso de amplificación de ADN en el laboratorio. Todos los sustratos se esterilizan por exposición a luz ultravioleta antes de ser empleados en el ensayo.

Considerando el tamaño de los sujetos experimentales (peso en el rango 8-29 kg) se elige el tamaño y la forma del sustrato de manera que favorezcan su manipulación en la cavidad bucal y fuera de ella pero dificulten la ingestión
accidental. La forma es cilíndrica en todos los sustratos y su volumen es similar, aunque las dimensiones varían de un sustrato a otro. El diámetro y la altura son 35 mm y 55 mm, respectivamente, para la madera, 60 mm y 35 mm para el corcho, y 40 mm y 55 mm para el poliestireno.

5

Cebo

Los sustratos se cubren con una capa de una sustancia viscosa y comestible de 5 mm de espesor. En este ensayo, por las razones indicadas más arriba, los cebos también se eligen por su bajo precio y facilidad de obtención. Los dos cebos que se usan son una pasta homogeneizada de conserva de carne para perros y una pasta homogeneizada de conserva de sardinas en aceite vegetal. Los cebos también difieren, entre otras muchas propiedades, en su contenido en polifenoles.

15

Suministro y colección

La combinación de sustrato y cebo se entrega a los sujetos experimentales, depositándola en el suelo de la celda. Los perros consumen el cebo y lamén el sustrato, que se retira una vez que el sujeto experimental deja de manipularlo. La cantidad de saliva adherida a la superficie del sustrato se evalúa en una escala semicuantitativa, y el sustrato impregnado en saliva se conserva en etanol hasta la extracción de ADN.

Principales resultados

En promedio, los sustratos retienen un volumen sustancial de saliva, en el rango 2-5 ml. La concentración media (±SD) de ADN en los extractos es de 14.0 ± 34.4 ng/µl, y esta concentración no está relacionada con el volumen de saliva colectado, pero sí depende de determinadas combinaciones de sustrato y cebo. El éxito de identificación de especie es del 85%, y esta tasa varía poco con el tipo de sustrato y el tipo de cebo empleados. La tasa de identificación individual es del 78%, y alcanza el 90% tras excluir una sesión experimental en la que se detectaron anomalías. El volumen de saliva estimado macroscópicamente en el sustrato y la concentración de ADN en el extracto
son predictores positivos de la tasa de éxito en la identificación individual. Esta varía relativamente poco a concentraciones superiores a 1 ng/μl, usando distintas combinaciones de sustrato y cebo. Considerados globalmente, estos resultados son satisfactorios, y sugieren la utilidad del sistema sustrato-cebo para la identificación de especie y genotipado de perros en las condiciones del experimento.
REIVINDICACIONES

1.- Dispositivo de muestreo no invasivo de saliva que comprende:
 - un sustrato poroso y
 - una capa de cebo de una sustancia inocua y agradable al gusto que
 envuelve total o parcialmente el sustrato poroso.

2.- Dispositivo de muestreo no invasivo de saliva según la reivindicación 1,
 donde el sustrato es de un material sólido, resistente, de superficie rugosa,
 insoluble en soluciones acuosas e inerte respecto a compuestos disueltos en la
 saliva.

3.- Dispositivo de muestreo no invasivo de saliva según las reivindicaciones 1 y
 2, donde el material del sustrato poroso es un material natural.

4.- Dispositivo de muestreo no invasivo de saliva según la reivindicación 3,
 donde el material se selecciona entre corcho, yeso, piedra pómez o madera.

5.- Dispositivo de muestreo no invasivo de saliva según las reivindicaciones 1 y
 2, donde el material del sustrato poroso es un material sintético.

6.- Dispositivo de muestreo no invasivo de saliva según la reivindicación 5 ,
 donde el material sintético se selecciona entre resinas o polímeros, agregados
 de gel de sílice o arcilla expandida.

7.- Dispositivo de muestreo no invasivo según una cualquiera de las
 reivindicaciones 1 a 6, donde el tamaño de la dimensión principal de los poros
 del sustrato está comprendido entre 1 nm y 5 mm, según su aplicación.

8.- Dispositivo de muestreo no invasivo de saliva según una cualquiera de las
 reivindicaciones 1 a 7, donde el sustrato presenta, según su aplicación, una
forma irregular o geométrica que se selecciona entre esférica, elipsoidal o cilíndrica, cuya dimensión principal está comprendida entre 0.1 y 15 cm.

9.- Dispositivo de muestreo no invasivo de saliva según una cualquiera de las reivindicaciones 1 a 8, donde el cebo es una sustancia no tóxica ni alergénica, y que no contiene compuestos que reaccionen con los metabolitos de interés, desnaturalicen los ácidos nucleicos o inhiban las reacciones de polimerización de fragmentos de material genético.

10.- Dispositivo de muestreo no invasivo de saliva según la reivindicación 9, donde el cebo se aplica en una capa que cubre entre el 1% y el 100% del sustrato y con un espesor comprendido entre 0.01 mm y 2 cm.

11.- Dispositivo de muestreo no invasivo de saliva según la reivindicaciones 9 y 10 donde el cebo comprende adicionalmente una sustancia estimulante de la salivación.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

A61D7/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPDOC, INVENES, WPI, XPESP

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Khomenko, S. et al. "Opciones para una toma no invasiva de muestras de saliva de los ungulados silvestres para la vigilancia de enfermedades". Empres-salud animal 360. N° 42/2013</td>
<td>1,2,3,7-11</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance.
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure use, exhibition, or other means.
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search: 26/01/2017

Date of mailing of the international search report: 03/02/2017

Name and mailing address of the ISA/

OFFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: 91 349 53 04

Authorized officer
B. Aragón Urueña
Telephone No. 91 3493277

Form PCT/ISA/210 (second sheet) (January 2015)
A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
A61D7/00 (2006.01)
De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRIENDIDOS POR LA BÚSQUEDA
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
A61D

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
EPDOC, INVENES, WPI, XPESP

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Khomenko, S. et al. "Opciones para una toma no invasiva de muestras de saliva de los ungulados silvestres para la vigilancia de enfermedades". Empres-salud animal 360. Nº 42/2013</td>
<td>1,2,3,7-11</td>
</tr>
</tbody>
</table>

□ En la continuación del recuadro C se relacionan otros documentos
□ Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.
 "T" documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
 "X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
 "Y" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
 "&" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional. 26/01/2017
Fecha de expedición del informe de búsqueda internacional. 03 de febrero de 2017 (03/02/2017)

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
OFFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Nº de fax: 91 349 53 04

Funcionario autorizado
B. Aragón Urueña
Nº de teléfono 91 3493277