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Abstract: Despite the existence of differences in gene expression across numerous genes between
males and females having been known for a long time, these have been mostly ignored in many studies,
including drug development and its therapeutic use. In fact, the consequences of such differences over
the disease mechanisms or the drug action mechanisms are completely unknown. Here we applied
mechanistic mathematical models of signaling activity to reveal the ultimate functional consequences
that gender-specific gene expression activities have over cell functionality and fate. Moreover, we also
used the mechanistic modeling framework to simulate the drug interventions and unravel how drug
action mechanisms are affected by gender-specific differential gene expression. Interestingly, some
cancers have many biological processes significantly affected by these gender-specific differences
(e.g., bladder or head and neck carcinomas), while others (e.g., glioblastoma or rectum cancer)
are almost insensitive to them. We found that many of these gender-specific differences affect
cancer-specific pathways or in physiological signaling pathways, also involved in cancer origin
and development. Finally, mechanistic models have the potential to be used for finding alternative
therapeutic interventions on the pathways targeted by the drug, which lead to similar results
compensating the downstream consequences of gender-specific differences in gene expression.

Keywords: mechanistic models; gene expression; signaling pathways; signal transduction; cancer
therapies; drug mechanism of action; gender bias

1. Introduction

It has long been known that males and females present important differences that may influence
the interpretation of traits, such as disease phenotypes [1,2] and their treatment [3]. In fact, since
the introduction of microarrays, which allowed a systematic screening of the molecular differences
between sexes, the existence of a large degree of sex-biased gene expression that could explain the
molecular basis of such phenotypic differences became apparent [4]. However, in most studies, sex is
ignored or is not properly taken into account despite a vast majority of common diseases displaying
clear sex differences in symptoms or prevalence [5]. Reviews of studies based on animal models reveal
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an over-representation of experiments based exclusively on males [6]. Moreover, in many experiments
including male and female animals, the results were not analyzed by sex [7,8]. In spite of this, it has
been suggested that just adding sex as a variable could lead to conceptual and empirical errors in
research unless differences between human men and women are properly modeled [9].

Thus, understanding the molecular basis of these differences is of utmost importance to identify
the functional mechanisms behind them and being able to distinguish real sex-dependent cell activities
from those ones due to confounding variables. Accordingly, in a recent study that revealed a strong
gender-specific bias gene expression in osteoarthritis, conventional pathway enrichment analysis
showed that female specific miRNAs were estrogen responsive and targeted genes in toll-like receptor
signaling pathways, suggesting mechanistic links between inflammation and osteoarthritis [10].
In addition, recently, the discovery of differences in a brain signaling pathway involved in reward
learning and motivation that make male mice more vulnerable to autism seems to provide a mechanistic
explanation on why autism spectrum disorders are more common in males [11].

Therefore, a proper interpretation of the effect that differences in gene expression have over
phenotypes, such as drug response or disease progression, involves understanding the mechanisms of
the disease or the mode of action of drugs, which can be interpreted through mechanistic models of
cell signaling [12] or cell metabolism [13]. Mechanistic models have helped to understand the disease
mechanisms behind different cancers [14,15], including neuroblastoma [16,17], breast cancer [18], rare
diseases [19], complex diseases [20], the mechanisms of action of drugs [21,22], and other biologically
interesting scenarios such as the molecular mechanisms that explain how stress-induced activation of
brown adipose tissue prevents obesity [23] or the molecular mechanisms of death and the post-mortem
ischemia of a tissue [24]. Among the few available proposals of mechanistic modeling algorithms that
model different aspects of signaling pathway activity, Hipathia has demonstrated having superior
sensitivity and specificity [12].

Here, we propose the use of mechanistic models [13,14] of signaling activity related with cancer
hallmarks [25], other cancer-related signaling pathways, and some extra relevant cellular functions
to understand the functional consequences of the gender bias in gene expression. Such mechanistic
models use gene expression data to produce an estimation of profiles of signaling or metabolic circuit
activity within pathways [13,14]. An interesting property of mechanistic models is that they can be
used not only to understand molecular mechanisms of disease or of drug action but also to predict
the potential consequences of gene perturbations over the circuit activity in a given condition [26].
Actually, in a recent work, our group has successfully predicted therapeutic targets in cancer cell lines
with a precision over 60% [15]. Therefore, we will use this mechanistic framework to understand what
is the molecular basis of the different effects of cancer drugs by directly simulating their effect in the
patients. This approach has recently been used by us to understand the generation of resistances in
cancer at the single cell level in glioblastoma [27].

Therefore, circuit activity, which can easily be linked to specific cell functionalities, has been used
here to discover the different molecular mechanisms triggered by the biased gene expression between
human males and females in cancers and, what is even more interesting, in their differential response
to treatments.

2. Materials and Methods

2.1. Data Source, Selection Criteria, and Data Preprocessing

Gene expression data from patients belonging to The Cancer Anatomy Genome Project (TCGA)
were downloaded from the International Cancer Genome Consortium (ICGC) data portal (https:
//dcc.icgc.org/).

To create datasets containing males and females with features as homogeneous and unbiased
as possible, the Propensity Score Matching (PSM) technique [28] (Matchlt R package) was used.
This methodology allows selecting samples that are different in gender but as similar as possible in the
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rest of the relevant features. To achieve so, first, a logistic regression model of gender (male/female)
was created and regressed on the following covariates: age at initial pathologic diagnosis, histological
type, pathologic stage, neoplasm histologic grade, race, tobacco smoking history, and tumor purity.
All the covariates were taken from the ICGC data portal, except the tumor purity that was available at
Synapse (https://www.synapse.org/#!Synapse:syn3242754). Next, the unbiased samples which have
matching covariate weight profiles were selected.

The trimmed mean of M-values (TMM) method (18) was used for the normalization of gene
expression data originally obtained as gene read counts of samples. Normalized samples were
log-transformed and truncation by quantile 0.99 was applied. Batch effect was corrected with
COMBAT [29]. Finally, the values were normalized between 0 and 1, as required by the signaling
circuit activity mechanistic model [14].

2.2. Differential Gene Expression

To obtain differentially expressed genes (DEG) between conditions compared (normal versus
cancer or male versus female), a negative binomial generalized log-linear model was used after
gene expression normalization. The p-values were adjusted using the False Discovery Rate (FDR)
method [30]. The edgeR package [31] was used for this purpose.

2.3. Rationale of the Signaling Circuit Activity Mechanistic Model

Circuit activities are modelled as described in [14]. Pathways in the Kyoto Encyclopedia of genes
and Genomes (KEGG) repository [32] are used to define circuits that connect any possible receptor
protein to specific effector proteins that are ultimately responsible for triggering cell activities. A total
of 98 KEGG pathways involving a total of 3057 genes that form part of 4726 protein nodes were used
to define a total of 1287 signaling circuits. Normalized gene expression values are used as proxies of
protein activity [33-35]. The intensity value of signal transduced to the effector is estimated by starting
with an initial signal with an arbitrary value of 1 in the receptor, which is propagated along the nodes
of the signaling circuits according to the following recursive equation:

Sy = vn-[l - H(l —sﬂ)] : H(l —s;) )

Sa€A siel

where S, is the signal intensity for the current node #, v, is its normalized gene expression value, A is
the set of activation signals (s,), arriving to the current node from activation edges, and I is the set of
inhibitory signals (s;) arriving to the node from inhibition edges [14].

Here the Hipathia R/Bioconductor package (https://doi.org/doi:10.18129/B9.bioc.hipathia), which
implements the Hipathia model, is used. Additionally, a web server implementation is also freely
available at: http://hipathia.babelomics.orgy/.

2.4. Cell Functional Output Triggered by the Signaling Circuit

The effector nodes at the end of the circuits trigger cell functionalities. The functionality of the
circuit has been annotated as the function that the effector performs. Such functionalities have been
taken from the Uniprot [36] annotations. In the case of ambiguity (e.g., the general term of apoptosis
can refer to its activation or repression), the Uniprot annotations were refined by manual curation using
more detailed Gene Ontology [37] annotations or Gene Cards [38] information on gene functionality.

2.5. Association of Signaling Circuits Activities to Cancer Hallmarks

As explained below, each effector is known to be associated with one or several cell functions.
Since these effector genes have been related specifically with one or several cancer hallmarks [25] in
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the scientific literature, the CHAT tool [39], a text mining based application to organize and evaluate
scientific literature on cancer, has been used to link gene names with cancer hallmarks.

2.6. Estimation of the Differential Signaling Activity

The Hipathia R/Bioconductor package was used to test for differential signaling activity between
male and female samples. Gene expression profiles are normalized as described above in Section 2.1
and uploaded in the Hipathia package. Then, these are transformed into the corresponding signaling
circuit activity profiles, as explained above in Section 2.2. Finally, Hipathia applies a Wilcoxon test to
check for significant differences in the activity of the circuits. The p-values are corrected for multiple
testing using FDR [30].

2.7. Drug Effect Simulation

The effect that a drug with known targets has over the different signaling circuits is simulated
using the PathAct [26] strategy. Briefly, the original gene expression profiles of the patients are taken as
reference set and a simulated set of pseudo-treated patient gene expression profiles is generated by
substituting the gene expression value(s) of the gene(s) targeted by the drug by a very low value (0.001)
that simulates the inhibition of the drug. That is, the gene, even if it is expressed, is substituted by
an “almost no expressed” gene (equivalent to an inhibited gene product. The reason for simulating the
inhibition with an arbitrarily low value and not with a 0 is because in this way the simulation is more
realistic (probably it is never an absolute inhibition) and, on the other hand, it preserves some basal
low activity value in the circuit contributed by the rest of the genes, that it is useful for testing purposes
(see [26] for details). Then, the HiPahtia R/Bioconductor package is used to generate the corresponding
signaling profiles for the reference patient set and the pseudo-treated patient set, that are further
compared and tested for differences with a Wilcoxon test. The p-values are corrected for multiple
testing using FDR [30]. Table S1 contains the drugs that are used for each cancer in the simulation [40].

2.8. Differential Drug Effect between Male and Female Patients

In this case, for each cancer type and each drug, we will have two paired datasets of male and
female patients untreated and with the simulation of the treatment. For each paired dataset, we can
test whether the effect of the drug significantly affects any signaling circuit or not. However, we are
looking for differences at circuit level when we compare the male versus the female datasets. Then,
each paired comparison untreated versus simulated drug treatment produces a distribution of fold
changes for each circuit in each patient. To check for gender-specific differences in drug treatments,
we simply compare the mean fold change values obtained for male and female patients.

3. Results

3.1. Data Processing

Gene expression matrices were downloaded from the ICGC data portal (https://dcc.icgc.org/) and
processed as described in Methods. After the application of the PSM method to these data, a total of
3327 tumor samples corresponding to 13 different cancer types, containing samples of both genders
with males and females with similar covariates, were used in the study (see Table 1).

Profiles of normalized values of gene expression were then transformed into the corresponding
profiles of signaling circuit activities upon the application of the Hipathia method [14] that can be used
to detect Gender-Specific Differential Signaling Activity (GS-DSA) by testing significant differential
signaling activity between males and females in each cancer type. DEG between cancer and normal
samples were also estimated for the cancers as described in Methods.
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Table 1. Cancer types used in this study.

Cancer Code Cancer Type Female @ Male  Sample Size (I\/Il):;)el;g:r;lle)
BLCA Bladder urothelial carcinoma 57 202 259 3.54
COAD Colon adenocarcinoma 113 207 320 1.83

GBM Brain Glioblastoma Multiforme 37 89 126 241
HNSC Head and Neck squamous cell carcinoma 97 328 425 3.38
KIRC Kidney renal clear cell carcinoma 124 314 438 2.53
KIRP Kidney renal papillary cell carcinoma 38 108 146 2.84
LGG Brain Lower Grade Glioma 104 205 309 1.97
LIHC Liver hepatocellular carcinoma 44 118 162 2.68
LUAD Lung adenocarcinoma 131 213 344 1.63
LUSC Lung squamous cell carcinoma 81 299 380 3.69
PAAD Pancreatic Cancer 30 77 107 2.57
READ Rectum adenocarcinoma 41 77 118 1.88
THCA Thyroid Carcinoma 66 127 193 1.92
Total 963 2364 3327

3.2. Gender-Specific Functional Differences in Cancer

While all cancer types contain signaling circuits with gender-specific differential behavior,
the distribution in the number of these circuits is remarkably asymmetric (Figure 1). Specifically, READ,
THCA, COAD, and GBM with 22, 52, 42, and 43 circuits, respectively, are cancers with a relatively
small number of circuits with differential gender-specific activity, whereas, on the other extreme of
the range, cancers like LUSC, KIRC, or HNSC with 224, 239, and 202 circuits, respectively (Table 2).
Although for most cancers the number of circuits displaying a significant G5-DSA is similar among
males and females, in three cancers HNSC, LUAD, and LIHC, and to a lesser extent also in THCA and
KIRP, the number of circuits displaying significant signal activity differences is much higher in females
than in males when the effect of the drug is simulated.

While the number of signaling circuits showing differential gender-specific activity is proportional
to the number of genes showing gender-specific differential expression (Figure 2A), this gender-specific
differential signaling activity seems to be only slightly related to the level of differential expression
between cancer and the normal tissue (Figure 2B) but completely unrelated to other relevant cancer
parameters such as the mutational burden (Figure 2C).

300 [Male > Female 300 Male > Female
[Female > Male Female > Male
SDA Drug
200 200
< a Q < o 3} %) o < o g Q < a o Q 3}
3 3 2 e 2 3 5 1 2 ¢ 3 ¢ g ¢ 2 5 35 z 38 ¢
a E x £ @ = | = = X E o x £ @ = = o x

g
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Figure 1. Number of signaling circuits with significant gender-specific differential signaling activity
(GS-DSA) in the different cancer types studied. (A) the number of circuits with significant G5-DSA in
each cancer, decomposed into those in which the activity of the signaling circuit is higher in males than
in females and vice versa. (B) after simulation of the drug treatment the number of circuits showing
significant GS-DSA increases.
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Table 2. Gender-specific differential gene expression and signaling circuit activation across cancers.

Cancer Type Cancer CancerM >F)  Cancer (F>M) Drug Simulation Drug (M > F) Drug (F>M)  Drug Diff. Cancer

GBM 43 21 22 50 24 26 14
READ 22 5 17 34 13 21 19
PAAD 31 15 16 48 24 24 22
LGG 59 22 37 75 31 44 26
THCA 52 12 40 61 21 40 26
COAD 42 18 24 61 13 48 34
KIRP 145 57 88 180 78 102 77
HNSC 202 66 136 242 78 164 80
BLCA 104 56 48 161 92 69 89
LUAD 203 50 153 242 53 189 96
LIHC 168 36 132 212 35 177 100
LUSC 224 105 119 238 112 126 105
KIRC 239 98 141 301 141 160 107
- »
. ®e CancerType
. BLCA
o 100 ° = COAD
100 GBM
sol ® HNSC
< < < . ® KIRC
2 a 2 ® KIRP
N @ o ® LGG
o o O ® LHC
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Figure 2. Relationships between. (A) gender-specific differential expressed genes (GS-DEG) and
gender-specific differential signaling activity (GS-DSA); (B) differentially expressed genes between
cancer and normal (DEG) and GS-DSA, and (C) average mutations (mutation burden) and GS-DSA.

3.3. Potential Differences in Drug Effects Due to Gender-Specific Functional Differences

In order to understand the molecular mechanisms behind gender-specific differential effect of
drugs, their effect was simulated individually in each patient as described in Methods. Each cancer
type studied (Table 1) was treated in the simulation with the specific drug(s) indicated (see Table S1).
The simulation produced a new set of profiles of signaling activity corresponding to the simulated
treatment for the patients. For both male and female patients, the simulated treatment sets were
compared to the corresponding reference patient sets. Table S2 contains the circuits affected by
the action of the different indicated drugs used in each cancer, both in male and female patients.
Then, we were interested in circuits showing a significantly different effect of the drug between
both sexes. The signaling circuits showing gender-specific differential behavior most pervasively
across cancers occur only in a maximum of six cancer types simultaneously, which suggests a high
heterogeneity in signaling programs across cancers. The cell functionalities triggered by the most
pervasive gender-specific signaling circuits (presenting GS-DSA in at least four cancer types) are
summarized in Table 3. Most of the affected circuits belong to cancer-specific pathways, such as renal cell
carcinoma, pancreatic cancer, prostate cancer, glioma, etc. There are also some physiological pathways
such as ErbB (KEGG: hsa04012), p53 (KEGG: hsa04115), Apoptosis (KEGG: hsa04210), or VEGF
(KEGG: hsa04370) signaling pathways. The functionalities affected can easily be mapped to cancer
hallmarks [25], such as angiogenesis, DNA recombination, Cell cycle, apoptosis, etc. Figure 3 depicts
the distribution of the most pervasive GS-DSA circuits across cancer types. Figure 4 shows the
cancer hallmarks most affected by the gender differences in gene expression and their consequences
on signaling and ultimately in cell functionality. Table S2 contains a comprehensive list of all the
circuits, with details on the cancer hallmarks affected. The distribution of circuits showing GS-DSA is
uneven across cancer types, with cancers with many circuits affected, such as BCLA, HNSC of KIRP,
and others with only a few circuits affected by the gender activity bias, such as GMB or READ. Finally,
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Figure 5 depicts a comprehensive map of relationships among cancers, signaling circuits, functions,

and cancer hallmarks.
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Table 3. Circuits showing gender-specific differential signaling circuit activation in four or more

cancers simultaneously.

Effector Circuit

Uniprot Annotation of Effector Circuits

Cancers with GS-DSA

Renal cell carcinoma: VEGFA *
Fanconi anemia pathway: RAD51
Fanconi anemia pathway: RAD51C
Fanconi anemia pathway: BRCA1
Pathways in cancer: PTCH1 *
Pancreatic cancer: E2F1
Prostate cancer: RB1
ErbB signaling pathway: RPS6KB1
ErbB signaling pathway: ELK1
ErbB signaling pathway: STAT5A *
ErbB signaling pathway: ELK1 *
ErbB signaling pathway: CBLC
ErbB signaling pathway: ERBB3 ERBB3
p53 signaling pathway: IGFBP3
Apoptosis: BBC3
Axon guidance: ILK
VEGF signaling pathway: PTK2
Oxytocin signaling pathway: CDKN1A
Pathways in cancer: FIGF
Pathways in cancer: FIGF *
Proteoglycans in cancer: CCND1
Proteoglycans in cancer: CDKN1A
Proteoglycans in cancer: VEGFA *
Proteoglycans in cancer: KDR **
Colorectal cancer: MAPK8
Pancreatic cancer: MAPK8
Glioma: E2F1
Glioma: E2F1 *

Bladder cancer: RB1
Acute myeloid leukemia: PIM1
Small cell lung cancer: RB1

Angiogenesis
DNA recombination
DNA recombination
DNA recombination;
Tumor suppressor
Apoptosis; Cell cycle
Cell cycle
Translation regulation
Transcription; Transcription regulation
Transcription; Transcription regulation
Transcription; Transcription regulation
Ubl conjugation pathway
Cell differentiation
Apoptosis
Apoptosis
Cell growth, Metastasis
Angiogenesis
Cell cycle
Angiogenesis
Angiogenesis
Cell division; DNA damage
Cell cycle
Angiogenesis
Angiogenesis
Biological rhythms
Biological rhythms
Apoptosis; Cell cycle
Apoptosis; Cell cycle
Cell cycle
Apoptosis; Cell cycle
Cell cycle

BLCA, COAD, HNSC, KIRP, LIHC, LUAD
BLCA, HNSC, KIRP, LUAD, LUSC
BLCA, HNSC, KIRP, LUAD, LUSC
COAD, HNSC, KIRP, LUAD, LUSC
BLCA, HNSC, KIRC, LUAD, LUSC

BLCA, KIRP, LIHC, LUAD, LUSC
BLCA, COAD, HNSC, KIRP, LUSC
HNSC, KIRC, LUSC, THCA
BLCA, KIRC, KIRP, LIHC
KIRP, LIHC, LUAD, LUSC
BLCA, HNSC, LUAD, LUSC
BLCA, LIHC, LUAD, LUSC
BLCA, KIRC, KIRP, LUSC
KIRC, LGG, LIHC, THCA
LGG, LIHC, PAAD, THCA
KIRC, KIRP, LUAD, READ
KIRP, LGG, LUAD, LUSC
BLCA, KIRC, LUSC, THCA
BLCA, KIRP, LIHC, LUAD
BLCA, KIRC, LIHC, LUSC
KIRC, LIHC, LUAD, PAAD
COAD, HNSC, KIRC, LUAD
HNSC, KIRP, LUAD, PAAD
BLCA, HNSC, KIRP, LUAD
GBM, KIRC, LIHC, LUSC
BLCA, COAD, LIHC, READ
BLCA, KIRP, LIHC, LUSC
BLCA, HNSC, KIRP, LUSC
BLCA, HNSC, KIRP, LUSC
BLCA, LUAD, LUSC, THCA
BLCA, HNSC, KIRP, THCA

*and ** are used for disambiguation, it refers to effector genes occurring more than once in the same KEGG pathway.

KIRP
LUAD
LUSC

Glioma: E2F1

Glioma: E2F1*

Prostate cancer: RB1

Fanconi anemia pathway: BRCA1
Fanconi anemia pathway: RAD51C
Fanconi anemia pathway: RAD51
ErbB signaling pathway: ELK1*
Pathways in cancer: PTCH1*
Acute myeloid leukemia: PIM1
Small cell lung cancer: RB1

VEGF signaling pathway: PTK2
Axon guidance: ILK

Proteoglycans in cancer: VEGFA*
ErbB signaling pathway: ERBB3 ERBB3
ErbB signaling pathway: ELK1
Pathways in cancer: FIGF*

Pancreatic cancer: E2F1
ErbB signaling pathway: STAT5A*
ErbB signaling pathway: CBLC

Renal cell carcinoma: VEGFA*
Pathways in cancer: FIGF
Proteoglycans in cancer: KDR**
Bladder cancer: RB1

COAD .
KIRC
THCA

LGG

““HENEE B HEN
PAAD

READ .

GBM

Epstein-Barr virus infection: CDKN1A
Oxytocin signaling pathway: CDKN1A
ErbB signaling pathway: RPS6KB1
Colorectal cancer: MAPK8
Proteoglycans in cancer: CDKN1A
Apoptosis: BBC3

p53 signaling pathway: IGFBP3
Proteoglycans in cancer: CCND1
Pancreatic cancer: MAPK8

Figure 3. Distribution of the most pervasive GS-DSA circuits across cancer types. * and ** are used for
disambiguation, it refers to effector genes occurring more than once in the same KEGG pathway:.
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Figure 4. Cancer hallmarks affected by GS-DSA circuits across cancer types.
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Figure 5. Relationships among cancers, signaling circuits, functions, and cancer hallmarks. * is used
for disambiguation, it refers to effector genes occurring more than once in the same KEGG pathway:.

3.4. Validation

So far, the results depict the effects caused in signaling activity by the observed gender-biased
differences in gene expression. However, the phenotypic consequences of these changes can be diverse
in relevance and nature. In order to detect changes associated with drug effect, an exhaustive search in
the literature has been done and for the following drugs a different activity in males and females was
experimentally demonstrated: bevacizumab [41], cabozantinib [42], gefitinib [43], lapatinib [44],
nilotinib [45], ruxolitinib [46], sorafenib [47], sunitinib [48], and trametinib [49]. In addition,
for vemurafenib [50] and sonidegib [51], a low gender effect was also demonstrated, although
not enough for different dose indications (see Table S1). Table 4 lists the circuits that display GS-DSA
when the effect of the drug has been simulated. The simulation has been made with drugs known
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to have a different effect for males and females, and it is important to note that Table 4 only reports
those circuits that were only differentially regulated in a drug with different activity between males
and females and never in drugs which do not show this differential activity (see the whole list of drugs
tested in Table S3). Figure S1 presents a comprehensive picture of the number of circuits affected and
those that are relevant in the context of drug action. It is interesting to see how some drugs have
an extensive gender-specific effect across many pathways, and, within them, across many signaling
circuits, like ruxolitinib, while others seem to be circuit-specific, like bevacizumab or sorafenib. It is
interesting to note that cancer-related pathways seem to be more pervasively affected by gender-specific
differential activity in the drug simulation than physiologic pathways.



Cells 2020, 9, 1579

10 of 19

Table 4. Simulation of the effect that drugs, with described gender bias, have over signaling circuits (described as pathway and the final effector of the circuit).

Circuits for which a GS-DSA is detected after the simulation of the drug are marked with “Y”.

Pathway Effector Bevacizumab  Cabozantinib  Gefitinib  Lapatinib  Nilotinib  Ruxolitinib Sorafenib  Sunitinib  Trametinib = Vemurafenib Sonidegib
Ras signaling pathway BRAP Y
c¢GMP-PKG signaling pathway MAPK1 Y
MYL9, PTCH1, HHIP,
ACOX1, F2R AMH, ORAI1,
BAD, NFKBIA NFKBI1,
RYR2, GRIN3A, GRIA1,
cAMP signaling pathway CFTR, SLC9A1, ATP2B1, Y
CACNAIC, PDE3A, ATP1B4
FXYD1, RHOA, C00165,
C01245, PAK1, MLLT4,
C00416, MAPK8, HCN4
Chemokine signaling pathway STAT1 Y
Wnt signaling pathway JUN Y
PTCH1, SMO, PTCH1, GLI1,
Hedgehog signaling pathway HHIP, CCND1, BCL2, Y
PRKACA, GLI1 SUFU,
Axon guidance ILK Y
VEGF signaling pathway: NOS3 Y
Osteoclast differentiation: MAPK1 Y
Osteoclast differentiation: NFKB1 Y
Signali.ng pathways regulating HNFIA Y
pluripotency of stem cells
. . BCL2, BCL2L1, MYC, AOX1,
Jak-STAT signaling pathway GFAP, MCL1, PIM1, CCND1 Y
Natural killer cell
mediated cytotoxicity TNF Y
TNF signaling pathway CASP7, JUN, CEBPB Y
Leukocyte Fransendothehal MAPK14 Y
migration
Inflammatory mediator regulation
of TRP channels: TRPMS, TRPV4 Y
STAR, HSD3B1, PLA2G4B,
Ovarian steroidogenesis ACOT2, CYP19A1, Y
HSD17B2, CYP19A1
Melanogenesis MITF Y
Thyroid hormone synthesis TG Y
Thyroid hormone STAT1, ESR1, THRB Y

signaling pathway
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Table 4. Cont.

11 of 19

Pathway Effector Bevacizumab  Cabozantinib  Gefitinib  Lapatinib  Nilotinib  Ruxolitinib Sorafenib Sunitinib  Trametinib  Vemurafenib Sonidegib
Adipocytokine signaling pathway PAPilliIé é\llrg’ lf"l"oljl\ﬁgi Y
Regulation of lipolysis in adipocytes PLIN1, LIPE Y
Aldosterone synthesis and secretion CYP11B2 Y
AGE'ESS&?EZ‘{?}SE pathwayin - FoXO1, CONDI, NFATC1 Y
Pathways in cancer CCND1 Y
Pathways in cancer FIGF Y
Pathways in cancer gg,\zlgi’ %ZI;?E’
Pathways in cancer CSFIR Y
Pathways in cancer BMP2, GLI1, HHIP, PTCH1 Y
Proteoglycans in cancer HSPB2 Y
Proteoglycans in cancer: AKT3 Y Y
Proteoglycans in cancer: PRKCA Y
Colorectal cancer: MAPKS8 Y
Renal cell carcinoma VEGFA Y
Renal cell carcinoma RAP1A Y
Renal cell carcinoma AKT3 Y Y
Pancreatic cancer RAC1 Y
Pancreatic cancer C00416 Y
Basal cell carcinoma PTCH1 Y
Acute myeloid leukemia CCNA1, SPI1
Non-small cell lung cancer FOXO03 Y
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4. Discussion

The differences associated with gender have been previously assessed in pan-cancer studies, most
of them using TCGA cancer datasets, resulting in divergent patterns for sex bias in gene expression or
immune features across multiple cancer types have been revealed [40,52]. Nevertheless, the functional
consequences at the level of cell behavior or fate of gender bias in gene expression have remained
mainly unknown. To our knowledge, this is the first time that such gender specific differences in
gene expression are evaluated in the context of perturbation response, taking into consideration cell
mechanisms as a whole, an approach that has successfully been used to explain different cancer
molecular mechanisms [14,15,17,20,53].

Differences in cancer epidemiology, susceptibility, and prognostics have been widely described,
but exactly why this occurs at a molecular level has been poorly understood. Many cancers show
dissimilarities in incidence and mortality rates associated to sex-specific disparities; some can be the
result of different hormone levels, especially estrogen, or sexual chromosome dose [54,55]. However,
other differences, such as chemotherapy [56] or targeted therapy response [57,58], are the result of
more complex cell processes that need to be evaluated in its cell mechanism context in order to be able
to detect patterns.

When evaluating individual circuits and pathways, most of them are indeed related with several
cancer processes, apoptosis, and proliferation. Signaling circuits of the Fanconi Anemia pathway,
involved in DNA repair [59], and therefore the genome instability and mutation cancer hallmark, show
the highest values of GS-DSA. Other relevant signaling circuits belong to the proteoglycans in cancer
pathways. Proteoglycans abundance, their metabolism and their relationship with genomic instability
is clearly gender-related [60,61]. The ErbB signaling pathway, whose regulation is highly associated
with estrogen and androgen levels [62,63] and Oxytocin signaling pathway, associated with vasopressin,
a known sex dependent pathway [64], also contain signaling circuits showing significant GS-DSA.

In order to assess the gender-specific differences in global mechanisms across cancers, we grouped
the circuits by cancer hallmark (Figure 4). Most of the hallmarks showed a gender-specific perturbation
response pattern, but above all we find sustaining proliferative signaling, resisting cell death and
evading growth suppressors hallmarks, mainly composed of circuits belonging to cell proliferation
and apoptosis pathways. Indeed, gender-related differences in cell proliferation and differentiation
pathways have already been described for several tissues in humans [65-68].

Genome instability hallmark shows a considerable number of GS-DSA circuits across cancers as
well, which is concordant with previous studies, showing gender-associated differences in expression
of genes involved in the aforementioned DNA repair [69,70], a different pattern of copy-number
aberrations [71] or oxidative stress [72]. Moreover, available data suggest that sex influences measures
of age-associated genomic instability, which increases in both males and females with age. However,
how sex affects genome instability is less clear, as tissue studied, genetic background, and the
method selected can influence results immensely, as well as environmental factors that are difficult to
address [73].

Another cell process showing GS-DSA is lipid metabolism. It is well known that fat pad shows
a different pattern in females and males, and these differences are the result of differences in metabolism
at a molecular level [74-76]. Since some cancers present a high involvement of lipid metabolism in
tumor initiation and progression, considering the intrinsic gender differences seems logical [77-79].

Besides the general deregulation of hallmarks, some of them are of special relevance in
certain cancers. Particularly important is the role of angiogenesis, tumor promoting inflammation,
and metastasis, which shows a clear pattern of GS-DSA in PAAD, KIRC, and LUAD, where some
gender-specific events have already been described, as mutations [80,81], and in general, risk [82,83].
KIRC, together with HSNC and LUSC, are the cancers with the highest number of gender-specific
signaling circuits, all of them showing sex-dependent differences in prognosis, mortality, and treatment
response, as well as in molecular characteristics associated with them [71,84-86]. It is interesting to
note that some cancers, such as PAAD, LUAD, and LUSC, are highly influenced by environmental
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factors, and therefore the gender differences might not be of physiological origin but rather could be
determined by gender-specific lifestyles.

In order to evaluate the implications of gender in cancer, there are many factors that need
to be addressed beyond the scope of this work, such as the possible implication of sex-biased
transcription factors, miRNAs expression [87], methylation pattern [88,89], or even innate immune
response [90,91]. However, no one can argue that biological intrinsic differences between females and
males exist, and these differences are influencing all kind of cell behavior, thus the identification of the
processes underlying these differences will facilitate the exploration of sex-biased disease susceptibility
and therapy.

Many of the proliferation-related circuits targeted by drugs presenting sex-bias are indeed
regulated by estrogen in a direct or indirect manner, such as Ras, cGMP-PKG, or cAMP signaling and
all the circuits related to MAPK proteins, as osteoclast differentiation [92,93]. Therefore, these circuits
can show a different response depending on estrogen and other hormones levels, which are highly
variable between sexes. Moreover, as aforementioned, lipid metabolism and proteoglycans may be
influenced by hormone levels and by sex. Interestingly, melanogenesis, the synthesis of melanin and
responsible of pigmentation, has been demonstrated to be regulated by hormones in a sex-specific
manner in model organisms [94], and some studies suggest that these gender-associated pigmentation
differences also occur in humans [95-97]. Moreover, skin hyperpigmentation is indeed more frequent
in women and may be linked to sexual hormones [98,99].

The results presented here highlight the fact that gender needs to be considered when choosing
the appropriate treatment in cancer. The approach presented here, based on mechanistic modeling of
cell signaling pathways, shows its potential in evaluating the gender-specific differences in certain
mechanisms of action of several drugs, and, therefore, in predicting potential non-responders and
resistances [58,100]. It has also been shown that mechanistic models can be an excellent tool for the
simulation of the effect of drugs, as we have recently demonstrated in cancer [27]. In particular, Table 4
shows circuits that display GS-DSA after the simulation of drugs for which a gender-specific activity
has been reported, but never display GS-DSA in simulations of drugs with similar activity in both
genders. In this way, the modeling framework used here provides the mechanistic link between the
effect of the drug at a molecular level and at a phenotypic level.

Like in any other study based on gene expression, it must be considered that any
port-transcriptional modification, which can be relevant in cancer, is not primarily captured in
the data. However, if such modification has an effect on the behavior of the neoplastic cell, it will be
better detected, even indirectly, by its impact in the global signaling pattern of the cell, rather than
by a conventional gene-centric analysis. In any case, mechanistic modeling can also be applied to
proteomic or phosphoproteomic data, which would better account for the effect of post-transcriptional
modifications in protein activity. However, given the difficulty of obtaining direct measurements of
protein levels, an extensively used proxy for protein presence is the observation of the corresponding
mRNA within the context of the module [34,53,101,102].

5. Conclusions

The wuse of mechanistic models that quantify cell behavioral outcomes provides
a unique opportunity to understand the molecular mechanisms of cancer development and
progression [103], and ultimately paves the way to suggest highly specific, individualized therapeutic
interventions [26,104]. Here we demonstrate how mechanistic models are suitable for uncovering
the functional consequences that the gender-biased gene expression triggers downstream signaling
circuits. Mechanistic models offer an opportunity to reconsider alternative targets on the pathways
relevant for the therapeutic interventions that lead to similar results compensating the downstream
consequences of the gender-specific differences in gene expression.
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Figure S1: Heatmap with the simulation of the effect of the drug on the circuits, Table S1: Drugs that are used for
each cancer in the simulation; Table S2: Circuits affected by the action of the different indicated drugs used in each
cancer. Table S3: Results of the simulations of drug effects over any individual circuit for the drugs with targets
within the corresponding circuit.
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Abbreviations (Cancer Abbreviations are Listed in Table 1):

Abbreviation Meaning

CHAT Cancer Hallmarks Analytics Tool

DEG Differentially Expressed Genes

FDR False Discovery Rate

GS-DEG Gender-Specific Differential Expressed Genes
GS-DSA Gender-Specific Differential Signaling Activity
ICGC International Cancer Genome Consortium
KEGG Kyoto Encyclopedia of Genes and Genomes
PSM Propensity Score Matching

TMM Trimmed Mean of M-values

References

1.  Flanagan, K.L. Sexual dimorphism in biomedical research: A call to analyse by sex. Trans. R. Soc. Trop.
Med. Hyg. 2014, 108, 385-387. [CrossRef] [PubMed]

2. Woodruff, T. Sex, equity, and science. Proc. Natl. Acad. Sci. USA 2014, 111, 5063-5064. [CrossRef] [PubMed]

3. Klein, S.L.; Schiebinger, L.; Stefanick, M.L.; Cahill, L.; Danska, J.; De Vries, G.J.; Kibbe, M.R.; McCarthy, M.M.;
Mogil, ].S.; Woodruff, T.; et al. Opinion: Sex inclusion in basic research drives discovery. Proc. Natl. Acad.
Sci. USA 2015, 112, 5257-5258. [CrossRef] [PubMed]

4. Rinn, J.L.; Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 2005, 21, 298-305.
[CrossRef]

5. Ober, C.; Loisel, D.A.; Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 2008,
9, 911-922. [CrossRef]

6. Karp, N.A.; Mason, J.; Beaudet, A.L.; Benjamini, Y.; Bower, L.; Braun, R.E.; Brown, S.D.; Chesler, E.J.;
Dickinson, M.E.; Flenniken, A.M.; et al. Prevalence of sexual dimorphism in mammalian phenotypic traits.
Nat. Commun. 2017, 8, 15475. [CrossRef]

7. Yoon, D.Y.; Mansukhani, N.A.; Stubbs, V.C.; Helenowski, I.B.; Woodruff, T.; Kibbe, M.R. Sex bias exists in
basic science and translational surgical research. Surgery 2014, 156, 508-516. [CrossRef]

8. Beery, AK.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2010,
35, 565-572. [CrossRef]

9.  Richardson, S.S.; Reiches, M.; Shattuck-Heidorn, H.; LaBonte, M.L.; Consoli, T. Opinion: Focus on preclinical
sex differences will not address women’s and men’s health disparities. Proc. Natl. Acad. Sci. USA 2015,
112, 13419-13420. [CrossRef]


http://www.mdpi.com/2073-4409/9/7/1579/s1
http://dx.doi.org/10.1093/trstmh/tru079
http://www.ncbi.nlm.nih.gov/pubmed/24934286
http://dx.doi.org/10.1073/pnas.1404203111
http://www.ncbi.nlm.nih.gov/pubmed/24715722
http://dx.doi.org/10.1073/pnas.1502843112
http://www.ncbi.nlm.nih.gov/pubmed/25902532
http://dx.doi.org/10.1016/j.tig.2005.03.005
http://dx.doi.org/10.1038/nrg2415
http://dx.doi.org/10.1038/ncomms15475
http://dx.doi.org/10.1016/j.surg.2014.07.001
http://dx.doi.org/10.1016/j.neubiorev.2010.07.002
http://dx.doi.org/10.1073/pnas.1516958112

Cells 2020, 9, 1579 15 0f 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Kolhe, R.; Hunter, M,; Liu, S.; Jadeja, R.N.; Pundkar, C.; Mondal, A K.; Mendhe, B.; Drewry, M.; Rojiani, M.V,;
Liu, Y.; et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with
osteoarthritis. Sci. Rep. 2017, 7, 2029. [CrossRef]

Grissom, N.M.; E McKee, S.; Schoch, H.; Bowman, N.; Havekes, R.; O’Brien, W.T.; Mahrt, E.; Siegel, S.;
Commons, K.G.; Portfors, C.; et al. Male-specific deficits in natural reward learning in a mouse model of
neurodevelopmental disorders. Mol. Psychiatry 2017, 23, 544-555. [CrossRef] [PubMed]

Amadoz, A.; Hidalgo, M.; Cubuk, C.; Caballero, J.C.; Dopazo, J. A comparison of mechanistic signaling
pathway activity analysis methods. Briefings Bioinform. 2019, 20, 1655-1668. [CrossRef]

Cubuk, C.; Hidalgo, M.R,; Amadoz, A.; Rian, K.; Salavert, F; Pujana, M.A.; Mateo, F.; Herranz, C,;
Caballero, ].C.; Dopazo, J. Differential metabolic activity and discovery of therapeutic targets using
summarized metabolic pathway models. bioRxiv 2018, 367334.

Hidalgo, M.R.; Cubuk, C.; Amadoz, A.; Salavert, E; Caballero, ].C.; Dopazo, J. High throughput estimation
of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget
2016, 8, 5160-5178. [CrossRef] [PubMed]

Cubuk, C; Hidalgo, M.; Amadoz, A.; Pujana, M.A.; Mateo, F.; Herranz, C.; Caballero, J.C.; Dopazo, . Gene
Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape. Cancer Res. 2018,
78, 6059-6072. [CrossRef] [PubMed]

Fey, D.; Halasz, M.; Dreidax, D.; Kennedy, S.P.; Hastings, J.F; Rauch, N.; Munoz, A.G.; Pilkington, R.;
Fischer, M.; Westermann, F.; et al. Signaling pathway models as biomarkers: Patient-specific simulations of
JNK activity predict the survival of neuroblastoma patients. Sci. Signal. 2015, 8, ral30. [CrossRef] [PubMed]
Hidalgo, M.R.; Amadoz, A.; Cubuk, C.; Carbonell-Caballero, J.; Dopazo, J. Models of cell signaling uncover
molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol. Direct 2018, 13, 16.
[CrossRef]

Jiao, Y.; Hidalgo, M.; Cubuk, C.; Amadoz, A.; Caballero, ]J.C.; Vert, J.-P.; Dopazo, J. Signaling Pathway
Activities Improve Prognosis for Breast Cancer. bioRxiv 2017, 132357. [CrossRef]

Chacoén-Solano, E.; Leén, C.; Diaz, E; Garcia-Garcia, F; Garcia, M.; Escamez, M.; Guerrero-Aspizua, S.;
Conti, C.; Mencia, A.; Martinez-Santamaria, L.; et al. Fibroblast activation and abnormal extracellular matrix
remodelling as common hallmarks in three cancer-prone genodermatoses. Br. |. Dermatol. 2019, 181, 512-522.
[CrossRef]

Pefia-Chilet, M.; Esteban-Medina, M.; Falco, M.M.; Rian, K.; Hidalgo, M.R,; Loucera, C.; Dopazo, J.
Using mechanistic models for the clinical interpretation of complex genomic variation. Sci. Rep. 2019, 9, 1-12.
[CrossRef]

Amadoz, A.; Sebastian-Leon, P.; Vidal, E.; Salavert, F.; Dopazo, J. Using activation status of signaling
pathways as mechanism-based biomarkers to predict drug sensitivity. Sci. Rep. 2015, 5, 18494. [CrossRef]
Esteban-Medina, M.; Pefia-Chilet, M.; Loucera, C.; Dopazo, J. Exploring the druggable space around the
Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinform. 2019, 20, 370.
[CrossRef]

Razzoli, M.; Frontini, A.; Gurney, A.; Mondini, E.; Cubuk, C.; Katz, L.S.; Cero, C.; Bolan, PJ.; Dopazo, J.;
Vidal-Puig, A.; et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low
adaptive thermogenesis. Mol. Metab. 2015, 5, 19-33. [CrossRef] [PubMed]

Ferreira, P.; Mufioz-Aguirre, M.; Reverter, F.; Godinho, C.P.S.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R;
Pervouchine, D.; Carbonell-Caballero, J.; et al. The effects of death and post-mortem cold ischemia on human
tissue transcriptomes. Nat. Commun. 2018, 9, 490. [CrossRef] [PubMed]

Hanahan, D.; A Weinberg, R. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646-674. [CrossRef]
[PubMed]

Salavert, F; Hidago, M.R.; Amadoz, A.; Cubuk, C.; Medina, I.; Crespo, D.; Carbonell-Caballero, J.;
Dopazo, ]J. Actionable pathways: Interactive discovery of therapeutic targets using signaling pathway
models. Nucleic Acids Res. 2016, 44, W212-W216. [CrossRef] [PubMed]

Falco, M.M.; Pena-Chilet, M.; Loucera, C.; Hidalgo, M.; Dopazo, J. Mechanistic models of signaling pathways
deconvolute the functional landscape of glioblastoma at single cell resolution. bioRxiv 2019, 858811. [CrossRef]
Ho, D.E,; Imai, K; King, G.; Stuart, E.A. Matching as Nonparametric Preprocessing for Reducing Model
Dependence in Parametric Causal Inference. Polit. Anal. 2007, 15, 199-236. [CrossRef]


http://dx.doi.org/10.1038/s41598-017-01905-y
http://dx.doi.org/10.1038/mp.2017.184
http://www.ncbi.nlm.nih.gov/pubmed/29038598
http://dx.doi.org/10.1093/bib/bby040
http://dx.doi.org/10.18632/oncotarget.14107
http://www.ncbi.nlm.nih.gov/pubmed/28042959
http://dx.doi.org/10.1158/0008-5472.CAN-17-2705
http://www.ncbi.nlm.nih.gov/pubmed/30135189
http://dx.doi.org/10.1126/scisignal.aab0990
http://www.ncbi.nlm.nih.gov/pubmed/26696630
http://dx.doi.org/10.1186/s13062-018-0219-4
http://dx.doi.org/10.1101/132357
http://dx.doi.org/10.1111/bjd.17698
http://dx.doi.org/10.1038/s41598-019-55454-7
http://dx.doi.org/10.1038/srep18494
http://dx.doi.org/10.1186/s12859-019-2969-0
http://dx.doi.org/10.1016/j.molmet.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26844204
http://dx.doi.org/10.1038/s41467-017-02772-x
http://www.ncbi.nlm.nih.gov/pubmed/29440659
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1093/nar/gkw369
http://www.ncbi.nlm.nih.gov/pubmed/27137885
http://dx.doi.org/10.1101/858811
http://dx.doi.org/10.1093/pan/mpl013

Cells 2020, 9, 1579 16 of 19

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical
Bayes methods. Biostatistics 2006, 8, 118-127. [CrossRef]

Benjamini, Y.; Yekutieli, D. The control of false discovery rate in multiple testing under dependency. Ann. Stat.
2001, 29, 1165-1188.

Robinson, M.D.; McCarthy, D.]J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 2009, 26, 139-140. [CrossRef] [PubMed]

Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge
and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2013, 42, D199-D205. [CrossRef] [PubMed]
Sebastian-Leon, P; Vidal, E.; Minguez, P.; Conesa, A.; Tarazona, S.; Amadoz, A.; Armero, C.; Salavert, F.;
Vidal-Puig, A.; Montaner, D.; et al. Understanding disease mechanisms with models of signaling pathway
activities. BMC Syst. Biol. 2014, 8, 121. [CrossRef]

Efroni, S.; Schaefer, C.E; Buetow, K.H. Identification of Key Processes Underlying Cancer Phenotypes Using
Biologic Pathway Analysis. PLoS ONE 2007, 2, e425. [CrossRef]

Montaner, D.; Minguez, P.; Al-Shahrour, F.; Dopazo, J. Gene set internal coherence in the context of functional
profiling. BMC Genom. 2009, 10, 197. [CrossRef]

UniProt Consortium. The UniProt Consortium UniProt: A hub for protein information. Nucleic Acids Res.
2014, 43, D204-D212. [CrossRef]

The Gene Ontology Consortium; Carbon, S.; Douglass, E.; Dunn, N.; Good, B.; Harris, N.L.; Lewis, S.E.;
Mungall, C.J.; Basu, S.; Chisholm, R.L.; et al. The Gene Ontology Resource: 20 years and still GOing strong.
Nucleic Acids Res. 2018, 47, D330-D338. [CrossRef]

Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I;
Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.
Curr. Protoc. Bioinform. 2016, 54, 1-33. [CrossRef]

Baker, S.; Ali, L; Silins, I.; Pyysalo, S.; Guo, Y.; Hogberg, J.; Stenius, U.; Korhonen, A. Cancer Hallmarks
Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer.
Bioinformatics 2017, 33, 3973-3981. [CrossRef]

Yuan, Y;; Liu, L; Chen, H; Wang, Y., Xu, Y., Mao, H,; Li, J.; Mills, G.B.; Shu, Y,; Li, L; et al.
Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients.
Cancer Cell 2016, 29, 711-722. [CrossRef]

Assessment Report MVASI. Available online: https://www.ema.europa.eu/en/documents/assessment-report/
mvasi-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).

CHPM Assessment Report Cabometyx. Available online: https://www.ema.europa.eu/en/documents/
assessment-report/cabometyx-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).
Assessment Report for Iressa. Available online: https://www.ema.europa.eu/en/documents/assessment-
report/iressa-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).

Assessment Report for Tyverb. Available online: https://www.ema.europa.eu/en/documents/assessment-
report/tyverb-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).

Flagg, P]J. Scientific Discussions. Anesthesiology 1942, 3, 336-337. [CrossRef]

CHMP Assessment Report Ruxolitinib. Available online: https://www.ema.europa.eu/en/documents/
assessment-report/jakavi-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).

CHMP Extension of Indication Variation Assessment Report. Available online: https://www.ema.europa.eu/
en/documents/variation-report/nexavar-h-c-690-ii-35-epar-assessment-report-variation_en.pdf (accessed on
20 June 2020).

Segarra, I.; Modamio, P.; Fernandez, C.; Marifio, E.L. Sex-Divergent Clinical Outcomes and Precision Medicine:
An Important New Role for Institutional Review Boards and Research Ethics Committees. Front. Pharmacol.
2017, 8, 488. [CrossRef] [PubMed]

CHMP Assessment Report Trametinib. Available online: https://www.ema.europa.eu/en/documents/
assessment-report/mekinist-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).
Assessment Report Zelboraf. Available online: https://www.ema.europa.eu/en/documents/assessment-
report/zelboraf-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).

Assessment Report Odomzo. Available online: https://www.ema.europa.eu/en/documents/assessment-
report/odomzo-epar-public-assessment-report_en.pdf (accessed on 20 June 2020).


http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/nar/gkt1076
http://www.ncbi.nlm.nih.gov/pubmed/24214961
http://dx.doi.org/10.1186/s12918-014-0121-3
http://dx.doi.org/10.1371/journal.pone.0000425
http://dx.doi.org/10.1186/1471-2164-10-197
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gky1055
http://dx.doi.org/10.1002/cpbi.5
http://dx.doi.org/10.1093/bioinformatics/btx454
http://dx.doi.org/10.1016/j.ccell.2016.04.001
https://www.ema.europa.eu/en/documents/assessment-report/mvasi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/mvasi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/cabometyx-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/cabometyx-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/iressa-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/iressa-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/tyverb-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/tyverb-epar-public-assessment-report_en.pdf
http://dx.doi.org/10.1097/00000542-194205000-00012
https://www.ema.europa.eu/en/documents/assessment-report/jakavi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/jakavi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/variation-report/nexavar-h-c-690-ii-35-epar-assessment-report-variation_en.pdf
https://www.ema.europa.eu/en/documents/variation-report/nexavar-h-c-690-ii-35-epar-assessment-report-variation_en.pdf
http://dx.doi.org/10.3389/fphar.2017.00488
http://www.ncbi.nlm.nih.gov/pubmed/28785221
https://www.ema.europa.eu/en/documents/assessment-report/mekinist-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/mekinist-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/zelboraf-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/zelboraf-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/odomzo-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/odomzo-epar-public-assessment-report_en.pdf

Cells 2020, 9, 1579 17 of 19

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Ye, Y; Jing, Y.; Li, L.; Mills, G.B.; Diao, L.; Liu, H.; Han, L. Sex-associated molecular differences for cancer
immunotherapy. Nat. Commun. 2020, 11, 1-8. [CrossRef]

Cubuk, C.; Hidalgo, M.R.; Amadoz, A.; Rian, K.; Salavert, F; Pujana, M.A.; Mateo, F.; Herranz, C,;
Carbonell-Caballero, ].; Dopazo, ]. Differential metabolic activity and discovery of therapeutic targets using
summarized metabolic pathway models. NPJ Syst. Biol. Appl. 2019, 5, 7. [CrossRef]

Kim, H.-I; Lim, H.; Moon, A. Sex Differences in Cancer: Epidemiology, Genetics and Therapy. Biomol. Ther.
2018, 26, 335-342. [CrossRef] [PubMed]

Dorak, M.T.; Karpuzoglu, E. Gender Differences in Cancer Susceptibility: An Inadequately Addressed Issue.
Front. Genet. 2012, 3, 268. [CrossRef]

Ozdemir, B.C.; Csajka, C.; Dotto, G.-P.; Wagner, A.D. Sex Differences in Efficacy and Toxicity of Systemic
Treatments: An Undervalued Issue in the Era of Precision Oncology. J. Clin. Oncol. 2018, 36, 2680-2683.
[CrossRef]

A Pinto, J.; Vallejos, C.S.; E Raez, L.; A Mas, L.; Ruiz, R.; Torres-Roman, J.S.; Morante, Z.; Araujo, ].M.;
Gomez, H.L.; Aguilar, A.; et al. Gender and outcomes in non-small cell lung cancer: An old prognostic
variable comes back for targeted therapy and immunotherapy? ESMO Open 2018, 3, e000344. [CrossRef]
Wang, S.; Cowley, L.A.; Liu, X.-S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and
Therapeutic Strategy. Molecules 2019, 24, 3214. [CrossRef] [PubMed]

Niedernhofer, L.J.; Lalai, A.S.; Hoeijmakers, ].H. Fanconi Anemia (Cross)linked to DNA Repair. Cell 2005,
123,1191-1198. [CrossRef]

Gupta, V,; Barzilla, ].E.; Mendez, ].S.; Stephens, E.H.; Lee, E.L.; Collard, C.D.; Laucirica, R.; Weigel, PH.;
Grande-Allen, K.J. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous
mitral valves. Cardiovasc. Pathol. 2008, 18, 191-197. [CrossRef]

Oh, J.-H.; Kim, Y.K,; Jung, J.-Y;; Shin, J.-E.; Chung, ].H. Changes in glycosaminoglycans and related
proteoglycans in intrinsically aged human skin in vivo. Exp. Dermatol. 2011, 20, 454—456. [CrossRef]

Levin, E.R. Bidirectional Signaling between the Estrogen Receptor and the Epidermal Growth Factor Receptor.
Mol. Endocrinol. 2003, 17, 309-317. [CrossRef]

Bonaccorsi, L. The androgen receptor associates with the epidermal growth factor receptor in
androgen-sensitive prostate cancer cells. Steroids 2004, 69, 549-552. [CrossRef]

Carter, C.S. The Oxytocin—Vasopressin Pathway in the Context of Love and Fear. Front. Endocrinol. 2017,
8, 356. [CrossRef] [PubMed]

A Fitzpatrick, L.; Ruan, M.; Anderson, J.; Moraghan, T.; Miller, V. Gender-related differences in vascular
smooth muscle cell proliferation: Implications for prevention of arteriosclerosis. Lupus 1999, 8, 397-401.
[CrossRef] [PubMed]

Kerksick, C.M.; Taylor, L.; Harvey, A.; Willoughby, D. Gender-Related Differences in Muscle Injury, Oxidative
Stress, and Apoptosis. Med. Sci. Sports Exerc. 2008, 40, 1772-1780. [CrossRef] [PubMed]

Fossett, E.; Khan, W.S; Longo, U.G.; Smitham, P. Effect of age and gender on cell proliferation and cell surface
characterization of synovial fat pad derived mesenchymal stem cells. . Orthop. Res. 2012, 30, 1013-1018.
[CrossRef] [PubMed]

Mallat, Z.; Fornes, P.; Costagliola, R.; Esposito, B.; Belmin, J.; LeComte, D.; Tedgui, A. Age and gender
effects on cardiomyocyte apoptosis in the normal human heart. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001,
56, M719-M723. [CrossRef] [PubMed]

Zhang, ].; Yan, S.; Liu, X.; Gan, L.; Wu, Z.; Gong, Y.; Huang, M.; Zhang, X.; Guo, W. Gender-related prognostic
value and genomic pattern of intra-tumor heterogeneity in colorectal cancer. Carcinogenesis 2017, 38, 837-846.
[CrossRef]

Koglsberger, S.; Cordero-Maldonado, M.L.; Antony, P.; Forster, J.I.; Garcia, P.; Buttini, M.; Crawford, A.;
Glaab, E. Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and
Phosphorylation: Possible Implications for Tauopathies. Mol. Neurobiol. 2016, 54, 7979-7993. [CrossRef]
Li, C.H.; Haider, S.; Shiah, Y.-J.; Thai, K.; Boutros, P.C. Sex Differences in Cancer Driver Genes and Biomarkers.
Cancer Res. 2018, 78, 5527-5537. [CrossRef] [PubMed]

Ali, I; Hogberg, J.; Hsieh, ].-H.; Auerbach, S.; Korhonen, A; Stenius, U; Silins, I. Gender differences in cancer
susceptibility: Role of oxidative stress. Carcinogenesis 2016, 37, 985-992. [CrossRef] [PubMed]

Fischer, K.E.; Riddle, N.C. Sex Differences in Aging: Genomic Instability. ]. Gerontol. Ser. A Biol. Sci. Med. Sci.
2018, 73, 166-174. [CrossRef]


http://dx.doi.org/10.1038/s41467-020-15679-x
http://dx.doi.org/10.1038/s41540-019-0087-2
http://dx.doi.org/10.4062/biomolther.2018.103
http://www.ncbi.nlm.nih.gov/pubmed/29949843
http://dx.doi.org/10.3389/fgene.2012.00268
http://dx.doi.org/10.1200/JCO.2018.78.3290
http://dx.doi.org/10.1136/esmoopen-2018-000344
http://dx.doi.org/10.3390/molecules24183214
http://www.ncbi.nlm.nih.gov/pubmed/31487832
http://dx.doi.org/10.1016/j.cell.2005.12.009
http://dx.doi.org/10.1016/j.carpath.2008.05.001
http://dx.doi.org/10.1111/j.1600-0625.2011.01258.x
http://dx.doi.org/10.1210/me.2002-0368
http://dx.doi.org/10.1016/j.steroids.2004.05.011
http://dx.doi.org/10.3389/fendo.2017.00356
http://www.ncbi.nlm.nih.gov/pubmed/29312146
http://dx.doi.org/10.1177/096120339900800514
http://www.ncbi.nlm.nih.gov/pubmed/10455521
http://dx.doi.org/10.1249/MSS.0b013e31817d1cce
http://www.ncbi.nlm.nih.gov/pubmed/18799987
http://dx.doi.org/10.1002/jor.22057
http://www.ncbi.nlm.nih.gov/pubmed/22228598
http://dx.doi.org/10.1093/gerona/56.11.M719
http://www.ncbi.nlm.nih.gov/pubmed/11682581
http://dx.doi.org/10.1093/carcin/bgx046
http://dx.doi.org/10.1007/s12035-016-0299-z
http://dx.doi.org/10.1158/0008-5472.CAN-18-0362
http://www.ncbi.nlm.nih.gov/pubmed/30275052
http://dx.doi.org/10.1093/carcin/bgw076
http://www.ncbi.nlm.nih.gov/pubmed/27481070
http://dx.doi.org/10.1093/gerona/glx105

Cells 2020, 9, 1579 18 of 19

74.

75.

76.

77.
78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Jensen, M.D. Gender differences in regional fatty acid metabolism before and after meal ingestion.
J. Clin. Investig. 1995, 96, 2297-2303. [CrossRef]

Childs, C.E.; Romeu-Nadal, M.; Burdge, G.C.; Calder, P.C. Gender differences in the n-3 fatty acid content of
tissues. Proc. Nutr. Soc. 2008, 67, 19-27. [CrossRef] [PubMed]

Mittendorfer, B. Sexual Dimorphism in Human Lipid Metabolism. J. Nutr. 2005, 135, 681-686. [CrossRef]
[PubMed]

Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS |. 2012, 279, 2610-2623. [CrossRef] [PubMed]
Long, J.; Zhang, C.-J.; Zhu, N.; Du, K,; Yin, Y.-F; Tan, X.; Liao, D.-F; Qin, L. Lipid metabolism and
carcinogenesis, cancer development. Am. J. Cancer Res. 2018, 8, 778-791.

Munir, R.; Lisec, J.; Swinnen, J.V.; Zaidi, N. Lipid metabolism in cancer cells under metabolic stress.
Br. ]. Cancer 2019, 120, 1090-1098. [CrossRef]

Ricketts, C.J.; Linehan, W.M. Gender Specific Mutation Incidence and Survival Associations in Clear Cell
Renal Cell Carcinoma (CCRCC). PLoS ONE 2015, 10, e0140257. [CrossRef]

Tseng, C.-H.; Chiang, C.-].; Tseng, J.-S.; Yang, T.-Y.; Hsu, K.-H.; Chen, K.-C.; Wang, C.-L.; Chen, C.-Y,;
Yen, S.-H.; Tsai, C.-M.; et al. EGFR mutation, smoking, and gender in advanced lung adenocarcinoma.
Oncotarget 2017, 8, 98384-98393. [CrossRef]

Andersson, G.; Wennersten, C.; Borgquist, S.; Jirstrom, K. Pancreatic cancer risk in relation to sex, lifestyle
factors, and pre-diagnostic anthropometry in the Malmo Diet and Cancer Study. Biol. Sex. Differ. 2016, 7, 66.
[CrossRef] [PubMed]

Rawla, P; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk
Factors. World ]. Oncol. 2019, 10, 10-27. [CrossRef] [PubMed]

Haake, S.M.; Brannon, A.R.; Hacker, K.; Pruthi, R.; Wallen, E.; Nielsen, M.E.; Rathmell, K. Use of meta-analysis
of clear cell renal cell carcinoma gene expression to define a variant subgroup and identify gender influences
on tumor biology. . Clin. Oncol. 2012, 30, 412. [CrossRef]

Lee, S.H.; Oh, S.-Y,; I Do, S.; Lee, H.].; Kang, H.].; Rho, Y.S.; Bae, W.J.; Lim, Y.C. SOX2 regulates self-renewal
and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br. ]. Cancer 2014,
111, 2122-2130. [CrossRef]

Hu, Z.; Wu, ]; Lai, S.; Xu, Y.; Zhan, J.; Li, R.; Liu, X.; Wang, N.; Wei, X,; Jiang, X.; et al. Clear cell renal cell
carcinoma: The value of sex-specific abdominal visceral fat measured on CT for prediction of Fuhrman
nuclear grade. Eur. Radiol. 2020, 1-10. [CrossRef]

Cui, C.; Yang, W,; Shi, ].; Zhou, Y,; Yang, J.; Cui, Q.; Zhou, Y. Identification and Analysis of Human Sex-biased
MicroRNAs. Genom. Proteom. Bioinform. 2018, 16, 200-211. [CrossRef] [PubMed]

Liu, J.; Morgan, M.; Hutchison, K.; Calhoun, V.D. A Study of the Influence of Sex on Genome Wide
Methylation. PLoS ONE 2010, 5, €10028. [CrossRef] [PubMed]

Boks, M.P.M.; Derks, EM.; Weisenberger, D.J.; Strengman, E.; Janson, E.; Sommer, LE.C.; Kahn, R.S;;
Ophoff, R.A. The Relationship of DNA Methylation with Age, Gender and Genotype in Twins and Healthy
Controls. PLoS ONE 2009, 4, e6767. [CrossRef]

O’Brown, Z.K.; Van Nostrand, E.; Higgins, ]J.P.; Kim, S.K. The Inflammatory Transcription Factors NF«kB,
STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet. 2015,
11, €1005734. [CrossRef] [PubMed]

Fan, H.; Dong, G.; Zhao, G.; Liu, Z.; Yao, G.; Zhu, Y.; Hou, Y. Gender Differences of B Cell Signature in
Healthy Subjects Underlie Disparities in Incidence and Course of SLE Related to Estrogen. |. [mmunol. Res.
2014, 2014, 1-17. [CrossRef]

Atanaskova, N.; Keshamouni, V.; Krueger, ].S.; A Schwartz, J.; Miller, F.; Reddy, K. MAP kinase/estrogen
receptor cross-talk enhances estrogen-mediated signaling and tumor growth but does not confer tamoxifen
resistance. Oncogene 2002, 21, 4000-4008. [CrossRef]

Driggers, PH.; Segars, J. Estrogen action and cytoplasmic signaling pathways. Part II: The role of growth
factors and phosphorylation in estrogen signaling. Trends Endocrinol. Metab. 2002, 13, 422—-427. [CrossRef]
Guillot, R.; Muriach, B.; Rocha, A.; Rotllant, J.; Kelsh, R.N.; Cerda-Reverter, ].M. Thyroid Hormones Regulate
Zebrafish Melanogenesis in a Gender-Specific Manner. PLoS ONE 2016, 11, e0166152. [CrossRef] [PubMed]
Martinez-Cadenas, C.; Pefia-Chilet, M.; Ibarrola-Villava, M.; Ribas, G. Gender is a major factor explaining
discrepancies in eye colour prediction based on HERC2/OCA2 genotype and the IrisPlex model. Forensic Sci.
Int. Genet. 2013, 7, 453—-460. [CrossRef]


http://dx.doi.org/10.1172/JCI118285
http://dx.doi.org/10.1017/S0029665108005983
http://www.ncbi.nlm.nih.gov/pubmed/18234128
http://dx.doi.org/10.1093/jn/135.4.681
http://www.ncbi.nlm.nih.gov/pubmed/15795418
http://dx.doi.org/10.1111/j.1742-4658.2012.08644.x
http://www.ncbi.nlm.nih.gov/pubmed/22621751
http://dx.doi.org/10.1038/s41416-019-0451-4
http://dx.doi.org/10.1371/journal.pone.0140257
http://dx.doi.org/10.18632/oncotarget.21842
http://dx.doi.org/10.1186/s13293-016-0120-8
http://www.ncbi.nlm.nih.gov/pubmed/27980714
http://dx.doi.org/10.14740/wjon1166
http://www.ncbi.nlm.nih.gov/pubmed/30834048
http://dx.doi.org/10.1200/jco.2012.30.5_suppl.412
http://dx.doi.org/10.1038/bjc.2014.528
http://dx.doi.org/10.1007/s00330-020-06747-3
http://dx.doi.org/10.1016/j.gpb.2018.03.004
http://www.ncbi.nlm.nih.gov/pubmed/30005964
http://dx.doi.org/10.1371/journal.pone.0010028
http://www.ncbi.nlm.nih.gov/pubmed/20386599
http://dx.doi.org/10.1371/journal.pone.0006767
http://dx.doi.org/10.1371/journal.pgen.1005734
http://www.ncbi.nlm.nih.gov/pubmed/26678048
http://dx.doi.org/10.1155/2014/814598
http://dx.doi.org/10.1038/sj.onc.1205506
http://dx.doi.org/10.1016/S1043-2760(02)00634-3
http://dx.doi.org/10.1371/journal.pone.0166152
http://www.ncbi.nlm.nih.gov/pubmed/27832141
http://dx.doi.org/10.1016/j.fsigen.2013.03.007

Cells 2020, 9, 1579 19 of 19

96.

97.

98.
99.

100.

101.

102.

103.

104.

Pietroni, C.; Andersen, M.M.; Johansen, P.; Andersen, M.M.; Harder, S.; Paulsen, R.R.; Borsting, C.; Morling, N.
The effect of gender on eye colour variation in European populations and an evaluation of the IrisPlex
prediction model. Forensic Sci. Int. Genet. 2014, 11, 1-6. [CrossRef] [PubMed]

Hernando, B.; Ibarrola-Villava, M.; Fernandez, L.P.,; Pena-Chilet, M.; Llorca-Cardeniosa, M.; Oltra, S.S.;
Alonso, S.; Boyano, M.D.; Cadenas, C.M.; Ribas, G. Sex-specific genetic effects associated with pigmentation,
sensitivity to sunlight, and melanoma in a population of Spanish origin. Biol. Sex. Differ. 2016, 7, 17.
[CrossRef] [PubMed]

Thornton, M.]. The biological actions of estrogens on skin. Exp. Dermatol. 2002, 11, 487-502. [CrossRef]
Lee, A.-Y. Recent progress in melasma pathogenesis. Pigment. Cell Melanoma Res. 2015, 28, 648-660.
[CrossRef]

Hohla, E; Hopfinger, G.; Romeder, E; Rinnerthaler, G.; Bezan, A.; Stéttner, S.; Hauser-Kronberger, C.;
Ulmer, H.; Greil, R. Female gender may predict response to FOLFIRINOX in patients with unresectable
pancreatic cancer: A single institution retrospective review. Int. J. Oncol. 2013, 44, 319-326. [CrossRef]
[PubMed]

Sebastian-Leon, P; Carbonell, J.; Salavert, F.; Sanchez, R.; Medina, I.; Dopazo, J. Inferring the functional effect
of gene expression changes in signaling pathways. Nucleic Acids Res. 2013, 41, W213-W217. [CrossRef]
[PubMed]

Mitsos, A.; Melas, I.; Siminelakis, P.; Chairakaki, A.D.; Saez-Rodriguez, J.; Alexopoulos, L.G. Identifying Drug
Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on
Phosphoproteomic Data. PLoS Comput. Biol. 2009, 5, e1000591. [CrossRef]

Fryburg, D.A ; Song, D.H.; Laifenfeld, D.; De Graaf, D. Systems diagnostics: Anticipating the next generation
of diagnostic tests based on mechanistic insight into disease. Drug Discov. Today 2014, 19, 108-112. [CrossRef]
[PubMed]

Dopazo, ]. Genomics and transcriptomics in drug discovery. Drug Discov. Today 2014, 19, 126-132. [CrossRef]
[PubMed]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.fsigen.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24631691
http://dx.doi.org/10.1186/s13293-016-0070-1
http://www.ncbi.nlm.nih.gov/pubmed/26998216
http://dx.doi.org/10.1034/j.1600-0625.2002.110601.x
http://dx.doi.org/10.1111/pcmr.12404
http://dx.doi.org/10.3892/ijo.2013.2176
http://www.ncbi.nlm.nih.gov/pubmed/24247204
http://dx.doi.org/10.1093/nar/gkt451
http://www.ncbi.nlm.nih.gov/pubmed/23748960
http://dx.doi.org/10.1371/journal.pcbi.1000591
http://dx.doi.org/10.1016/j.drudis.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/23872468
http://dx.doi.org/10.1016/j.drudis.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23773860
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Source, Selection Criteria, and Data Preprocessing 
	Differential Gene Expression 
	Rationale of the Signaling Circuit Activity Mechanistic Model 
	Cell Functional Output Triggered by the Signaling Circuit 
	Association of Signaling Circuits Activities to Cancer Hallmarks 
	Estimation of the Differential Signaling Activity 
	Drug Effect Simulation 
	Differential Drug Effect between Male and Female Patients 

	Results 
	Data Processing 
	Gender-Specific Functional Differences in Cancer 
	Potential Differences in Drug Effects Due to Gender-Specific Functional Differences 
	Validation 

	Discussion 
	Conclusions 
	References

