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Abstract: In this work, we present an overview of uniqueness results derived in recent years for the
quantization of Gowdy cosmological models and for (test) Klein-Gordon fields minimally coupled
to Friedmann-Lemaître-Robertson-Walker, de Sitter, and Bianchi I spacetimes. These results are
attained by imposing the criteria of symmetry invariance and of unitary implementability of the
dynamics. This powerful combination of criteria allows not only to address the ambiguity in the
representation of the canonical commutation relations, but also to single out a preferred set of
fundamental variables. For the sake of clarity and completeness in the presentation (essentially as
a background and complementary material), we first review the classical and quantum theories of
a scalar field in globally hyperbolic spacetimes. Special emphasis is made on complex structures and
the unitary implementability of symplectic transformations.

Keywords: quantum fields in curved spacetimes; quantum cosmology; Fock quantization; quantum
fields in nonstationary settings; uniqueness criteria; unitarity in cosmological backgrounds

1. Introduction

As it is well known, the quantization of systems with field-like degrees of freedom involves
choices that generically lead to inequivalent theories within the standard Hilbert space approach [1].
In contrast with the situation found for mechanical systems with a finite number of degrees of
freedom, where the Stone-von Neumann theorem guarantees the unitary equivalence between strongly
continuous, irreducible, and unitary representations of the Weyl relations [2], in quantum field
theory no general uniqueness theorem exists and “physical results” depend on the representation
adopted, a fact that brings into question their significance. So, in order to regain robustness in
the quantum predictions, one has to look for physically plausible additional criteria, usually based
on the classical symmetries of the system, to warrant uniqueness. For instance, in background
independent quantum gravity [3–7] the requirement of spatial diffeomorphism invariance provides
a unique representation of the kinematical holonomy-flux algebra [8]. For field theories in Minkowski
spacetime, the criterion of Poincaré invariance is employed to arrive at a unique representation.
For example, if the field theory corresponds to a Klein-Gordon (KG) field, Poincaré invariance, adapted
to the dynamics of the considered theory, selects a complex structure, which is the mathematical
object encoding the ambiguity in the representation of the canonical commutation relations (CCRs),
and determines the vacuum state of the Fock representation. In more general but still stationary
spacetimes, the time translation symmetry is exploited to formulate the so-called energy criterion and
then single out a preferred complex structure [9,10], determining a unique (up to unitary equivalence)
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Fock representation. However, when the symmetries are severely restricted, as it is the case for generic
spacetimes or manifestly non-stationary systems, new requirements must be imposed to complete the
quantization process.

In addition, let us remark that the issue of uniqueness not only concerns the choice of a privileged
representation of the CCRs, but also the choice of a preferred set of classical fundamental variables.
Indeed, since classical canonical transformations will not all become into unitary transformations,
there are different fundamental variables giving rise to inequivalent quantum theories [11].

An interesting system, with applications in cosmology, is that of a scalar field with time dependent
mass (or, equivalently, subject to a time dependent quadratic potential) propagating in a spatially
compact, static spacetime. More precisely, let us consider a scalar field ψ obeying an equation of
the form

∂2
t ψ− ∆ ψ + s(t)ψ = 0, (1)

in a static spacetime manifold with topology I× Σ, where I is an interval of the real line, Σ is a compact
Riemannian surface of dimension d ≤ 3, ∆ is the Laplace-Beltrami (LB) operator on Σ, and s(t) is
a sufficiently regular function of the time t. Since this system is manifestly non-stationary, given the
time dependence of s(t), neither the Poincaré nor the energy criteria can be used to specify a unique
favored quantization, and it is then necessary to seek for extra requirements in order to complete the
quantization. Remarkably, as it has been shown in Refs. [12–17], one can demand that

1. the vacuum state be invariant under the isometries of the spatial manifold Σ,
2. the dynamics dictated by the field Equation (1) be unitarily implementable,

In order to single out a unique preferred Fock representation for the system. Notably, these
combined criteria of symmetry invariance and of unitary dynamics select a unique preferred field
description as well, specifying (in a certain context) a canonical pair of field variables, so that they
actually remove the two kinds of ambiguities present in the quantization of the field system. To attain
this uniqueness result, it suffices that s(t) be twice differentiable and with a second derivative that is
integrable over each compact subinterval of the time domain I.

It is worth remarking that there is a variety of interesting situations where the study of scalar
fields with time dependent mass finds application in cosmology. For instance, in the framework of
symmetry reduced models in gravity, one can see that in (linearly polarized) Gowdy cosmological
spacetimes [18], which are the simplest inhomogeneous, empty, spatially closed cosmological models,
the local degrees of freedom characterizing the inhomogeneities can be described in terms of scalar
fields obeying equations of the form (1) [12]. Specifically, for Gowdy cosmologies with the topology of
a three-torus, the wave equation corresponds to a scalar field with time dependent mass propagating in
a static (1 + 1)-dimensional fictitious spacetime, for which the spatial manifold Σ is a circle [12,19–23].
For the three-sphere and the three-handle, which are the remaining two possible spatial topologies
in the Gowdy models, the local gravitational degrees of freedom are described by an axisymmetric
KG field with time dependent mass in a static (2 + 1)-dimensional auxiliary spacetime, such that the
spatial slices are two-spheres [24–26]. Let us recall, in addition, that in non-stationary scenarios
like those encountered in cosmology, it is customary to scale the field configurations by time
varying functions when one allows that part of its evolution be assigned to the time dependent
spacetime in which the propagation takes place. This is the situation found for free fields in (e.g.)
Friedmann-Lemaître-Robertson-Walker (FLRW) universes, and in de Sitter spacetime, where the use
of conformal time combined with a scaling (by the time dependent conformal factor) of the original
field variable transforms the original free field equation into an equation of the form (1). This type of
scaling and field equation are found in the treatment of quantum perturbations in cosmology, with
the homogeneous background kept as a classical scenario (see, for instance, Refs. [27–31]), as well
as in the full quantization of inhomogeneous models via the hybrid approach [32], where a loop
representation is adopted for the homogeneous gravitational sector and a Fock quantization is used
for the inhomogeneities. (See also Refs. [33,34] for more applications of these type of techniques, in
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cosmology and in multidimensional gravity.) Thus, apart from the general interest that the quantization
of KG systems (1) may have within the formal and mathematical physics apparatus of quantum field
theory in curved spacetime, the exploration of this mathematically rigorous approach and the possible
quantum outcomes have an important impact in the arena of modern cosmology.

Let us emphasize that the specification of a complex structure (compatible with the symplectic
form) is a key ingredient in order to attain a Fock quantization; in fact, it is from a complex structure
that a Fock space representation of the CCRs is constructed [1,35,36], since the relevant information
on the choice of annihilation and creation-like variables is encoded in the complex structure. In
turn, a choice of annihilation and creation operators selects a specific vacuum, which is typically the
particle physics perspective on how to select a specific Fock representation of the CCRs (or, strictly
speaking, of the corresponding Weyl relations). In general, distinct complex structures will define
different (i.e., not unitarily equivalent) Fock representations. Recall that the choice of a complex
structure with physical content is by no means a straightforward process, and for a general spacetime,
or a manifestly non-stationary system, there is a priori no criteria to select one. In the absence of
stationarity, and specifically in the case of a scalar field with generic time varying mass (1), a natural
strategy is to look for compatible complex structures allowing for a unitary implementation of the
spatial symmetries. The simplest choice is the compatible complex structure j0 associated with the free
massless field representation, which in the space of Cauchy data for the field and its momentum, (ϕ, π),
reads explicitly as j0(ϕ, π) = (−[−h∆]−1/2π, [−h∆]1/2 ϕ), where h is the determinant of the induced
metric hab (a, b = 1, 2, 3) on the (Cauchy) spatial section Σ. This compatible complex structure, while
constructed from the LB operator (and h), commutes with the isometries of the spatial manifold Σ
and, consequently, defines a Fock representation that is invariant under these symmetries. (Invariance
of the Fock representation refers to the invariance of the vacuum state.) Though the invariance
requirement reduces the set of admissible Fock quantizations, it should be stressed that (in general)
there is still a plethora of invariant Fock representations that are not unitarily equivalent, and additional
criteria must then be imposed in order to specify the quantization. A natural extra requirement is to
demand that the symplectomorphisms that dictate time evolution be mapped into unitary operators in
the quantum theory. Indeed, although time translation symmetry is broken, it seems quite reasonable
to retain unitary time evolution, by minimally relaxing the requirement of invariance under the
evolution and replace it with the weaker condition that the dynamics be unitarily implementable.
The aim of this requirement is to grant a privileged role to those representations (if there exist)
preserving the standard probabilistic interpretation of the quantum theory, including the evolution of
the observables, and thus ensuring the availability of the Schrödinger picture. Notably, as mentioned
earlier, the unitarity requirement suffices to single out a unique (up to unitary transformations)
preferred invariant Fock representation for the scalar field (1), namely the j0-Fock representation.
Moreover, the criteria of symmetry invariance and of unitary dynamics pick up a unique (modulo
irrelevant constant scalings) preferred field description for the system. In total, the uniqueness result
reads as follows. Up to irrelevant constant scalings and unitary transformations, there is a unique
field description, the ψ-description, that admits a family of invariant Fock representations with unitary
dynamics. This family is formed by representations that are all equivalent among them, and the j0-Fock
quantization is a member of this family.

The combined criteria of invariance under spatial symmetries and of unitary dynamics were
introduced for the first time in the quantization of Gowdy cosmological models [19,20,22,23,26], just
after the reasons for the failure of unitarity in the Gowdy T3 model reported in Refs. [37,38] were
understood [39]. The criteria were then successively applied to KG fields with time dependent mass
defined on the circle [12], on the three-sphere [13–15], and, after a notable generalization, on spatial
manifolds of arbitrary compact topology in three or less dimensions [16,17]. This comprises the
relevant cosmological case (inasmuch as spatial flatness is favored by current observations [40–42])
of compact sections with three-torus topology [43–45]. Apart from addressing the uniqueness of the
quantization of free real scalar fields in FLRW spacetimes [13–15,43–45], the criteria were successfully
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employed to remove the ambiguities in the quantization of free (test) KG fields minimally coupled to
a de Sitter background [46], as well as in anisotropic Bianchi I spacetimes [47]. It is worth remarking
that the criteria of invariance and of unitarity have also been fruitfully exploited to single out a unique
preferred quantum description for fermion fields in cosmological scenarios [48–55].

In this work, we overview the uniqueness results obtained by us and our collaborators for the
quantization of Gowdy cosmological models and free scalar fields minimally coupled to cosmological
backgrounds, more concretely for KG fields propagating in FLRW, de Sitter, and Bianchi I spacetimes.
The presentation follows the historical timeline in which these results were deduced, so that a posteriori
generalizations will not be included nor discussed. For the sake of clarity and completeness, we first
provide a brief introduction to the classical and quantum theories of a scalar field in a globally
hyperbolic spacetime. More specifically, the paper is divided in two parts. The first one, which
comprises Sections 2 and 3, contains a general discussion of the classical theory of a real scalar field
(Section 2) and its quantization (Section 3). These Sections pay a special attention to the definition of
a complex structure on phase space, the specification of basic observables, the analysis of classical and
quantum time evolution, and the role that complex structures have in the construction of a quantum
theory on a Hilbert space (both from the covariant and the canonical perspectives). The j0-Fock
representation for a scalar field with time dependent mass is summarized at the end of the first part.
The second part of the work is entirely dedicated to an overview of the uniqueness results obtained
by imposing the criteria of invariance under spatial symmetries and of unitary implementability of
the dynamics, applied to the quantization of Gowdy models and (test) KG fields in cosmological
spacetimes. The quantization of Gowdy models is discussed in Section 4. The quantization of (test)
scalar fields propagating in FLRW, de Sitter, and Bianchi I spacetimes is presented, respectively, in
Sections 5–7. We will end with a summary of our results in Section 8. In what follows, we consider
c = h̄ = 1.

2. The Classical Setting

This Section contains some background material. The Section has three parts. In the first one, we
review some key aspects about complex structures. Complex structures play a central role not only in
the quantization of scalar field theories, but also in the quantization of other linear field theories (like
e.g., the Maxwell and Dirac fields [48–52,56]), as well as finite dimensional mechanical systems. In fact,
complex structures have been employed in mechanical systems to specify (in an appropriate limit)
a polymer quantum mechanics [57], which is a non-standard representation of the finite dimensional
CCRs where the Stone-von Neumann uniqueness theorem is simply not valid because of the lack
of strong continuity. In the second part of this Section, we outline the classical theory of a KG
field propagating in a globally hyperbolic spacetime. In particular, we introduce the canonical and
covariant phase space descriptions, the basic observables, and the symplectomorphisms that dictate
time evolution. We discuss the role played by compatible complex structures on phase space, their
evolution in time, and how complex structures on the covariant and canonical phase spaces are related.
In the third and final part of this Section, we consider the case of a (test) massive scalar field in FLRW
spacetimes and the scaling of the field with respect to the scale factor of the metric. Complex structures
for the original and the scaled field are provided explicitly.

2.1. Complex Structure: Definition and Some Key Results

Let us start by defining the notion of complex structure [58,59]. Let V be a real vector space.
A complex structure on V is a linear isomorphism J : V → V such that J2 = −I, with I being the
identity map on V.

Consider first a real, finite dimensional vector space V. Since det
(

J2) = (−1)dimV > 0,
we conclude that a complex structure can be specified on V only if it is even dimensional. In addition,
we notice that a complex structure on a vector space V (not necessarily finite dimensional) splits it
into two complementary vector subspaces. For definiteness, let us take dimV = 2m. Then, it can be
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shown that there exists m linearly independent vectors ei (i = 1, . . . , m) such that ei and em+i = Jei
form a basis set for V; that is, there exist m-dimensional vector subspaces V1 and V2 of V spanned by ei
and by em+i = Jei, respectively, and such that V = V1 ⊕V2 with v2 = Jv1 for all v1 ∈ V1 and v2 ∈ V2.
The set of the m linearly independent vectors ei used to construct a basis of V with J is by no means
unique, so the splitting is not canonical. For instance, the m-dimensional vector subspaces V′1 spanned
by e′i = (e1, e2, ..., Jem) and V′2 spanned by e′m+i = Je′i provide a distinct splitting V = V′1 ⊕V′2.

A key feature of complex structures is that they allow to specify “multiplication by i” on V, and
hence endow the space with a structure of complex vector space. Explicitly, the real linear operation
(a + ib)v = av + bJv defines multiplication by complex numbers (a + ib) on V. It is a simple matter to
check that this multiplication rule transforms V into a complex vector space. In addition, it is worth
pointing out the close relationship between the introduction of the mapping J and the complexification
of V, VC = V ⊕ iV. From V and J, we construct the complex linear spaces

V±J =
{

v±
∣∣ v± = 1

2 (v∓ i Jv) , v ∈ V
}

. (2)

By taking the direct sum of these two spaces, we get the complex vector space V+
J ⊕ V−J ,

the elements of which can be written as (x+ + y−), with x+ in V+
J and y− in V−J . A direct inspection

shows that V+
J ⊕ V−J turns out to be the same as VC, so that the complex vector spaces defined in

Equation (2) provide a splitting for the complexification of V. Besides, notice that every v in V can be
decomposed as v = v+ + v−, with v± ∈ V±J . Clearly, different complex structures will lead to distinct
splittings for VC and, consequently, to different decompositions for v ∈ V. By extending the action of J
from V to VC by complex linearity, we obtain that v+ and v− are eigenvectors of J with eigenvalues i
and −i,

Jv+ = iv+, Jv− = −iv−. (3)

Given another complex structure, say J̃, its eigenvectors will satisfy relationships (3) with J
replaced with J̃. The eigenvectors of J̃ and J are related by ṽ± = v± ± i

2 (J − J̃)v.
Let us equip now the vector space V with a symplectic form. That is, a two-form Ω which is

(i) closed (i.e., dΩ = 0) and (ii) non-degenerate [i.e., if Ω(v, w) = 0 for all vectors v ∈ V, then w = 0].
The space V equipped with a symplectic form Ω is called a symplectic vector space (V, Ω). Suppose
that V can be identified with R2m, with coordinates {(x1, . . . , xm, y1, . . . , ym)}. The standard (also
called canonical) symplectic form is then given by Ω = ∑m

i=1 dxi ∧ dyi [58]. Equivalently, the standard
symplectic form defines a skew-symmetric bilinear function on V [1],

Ω : V ×V → R, (v1, v2) 7→ Ω(v1, v2) =
m

∑
i=1

(y1ix2i − y2ix1i), (4)

where (xK1, . . . , xKm, yK1, . . . , yKm) are the coordinates of vK ∈ V, and K = 1, 2.
For a typical mechanical system, the space of classical states corresponds to the cotangent bundle

Γc = T∗C, with the configuration space C being described, say, by variables {(q1, . . . , qm)}, whereas
the fibers T∗q at q ∈ C are coordinatized by the momentum variables {(p1, . . . , pm)}. The phase space
of the theory corresponds to the symplectic space (Γc, Ω), where Ω is the canonical symplectic form
on Γc, Ω = ∑m

i=1 dqi ∧ dpi. In the special case that C be itself a vector space, it follows that the phase
space Γc is a linear space that can be isomorphically identified with Γ = R2m, as we did above.

Let us now abandon the restriction of finite dimensionality, and consider infinite dimensional
symplectic linear spaces (V, Ω) as well. For instance, the phase space of a free KG field in a globally
hyperbolic spacetime can be described (in the canonical approach) by the symplectic vector space
(Γ, Ω), where Γ is the (infinite-dimensional) linear space coordinatized by the configurations and
momenta of the field, {(ϕ(y), π(y))} where y ∈ Σ, and Ω is the canonical symplectic structure thereon,

Ω( (ϕ, π)1, (ϕ, π)2 ) =
∫

Σ
(π1 ϕ2 − π2 ϕ1) d3y. (5)
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A particularly important class of complex structures, establishing a relation between complex
manifolds and symplectic geometry, is the class of the so-called Ω-compatible complex structures. Let
(V, Ω) be a real symplectic vector space. A complex structure J on (V, Ω) is said to be compatible with
Ω if it is a symplectic map (i.e., J∗Ω = Ω) and Ω(Jv, v) > 0 for all non-zero v ∈ V (see, for instance,
Ref. [58]). We denote the set of complex structures on V compatible with Ω by J (Ω, V).

Let J be a complex structure on the real symplectic vector space (V, Ω), and suppose that J is
a symplectic map thereon. Let us consider the complexification of V. By extending the actions of J and
Ω from V to VC by complex linearity, it is not difficult to verify that

Ω(v+, w+) = 0, Ω(v−, w−) = 0, Ω(v−, w+) = i
2 [Ω(Jv, w)− iΩ(v, w)] (6)

for all v±, w± ∈ V±J . Obviously, relationships (6) hold for every J ∈ J (Ω, V).
For each J ∈ J (Ω, V), it can be easily seen that the real-valued, symmetric bilinear mapping

µJ : V ×V → R, (v, w) 7→ µJ(v, w) = Ω(Jv, w), (7)

defines an inner product on the symplectic space. Since J is, in particular, a symplectic map, we have
that µJ(v, w) = µJ(Jv, Jw) (i.e., µJ is a J-invariant mapping) and that µJ(Jv, w) = µJ(v,−Jw) (i.e., J is
skew-adjoint with respect to the inner product µJ). We define now the complex-valued mapping

〈 · , · 〉J : V ×V → C, (v, w) 7→ 〈v, w〉J = 1
2 µJ(v, w)− i

2 Ω(v, w). (8)

By using the antisymmetry of Ω, the properties defining Ω-compatible complex structures,
as well as the multiplication by complex numbers defined by J on V (V is understood here as
a complex vector space, with the structure provided precisely by J), it is not difficult to check that
the mapping (8) is a Hermitian inner product on (V, Ω). From Equations (6) and (8), it follows that
〈v, w〉J = Ω(Jv+, w+), where the bar denotes complex conjugation on C, and where we have used that
Jv− = Jv+. A straightforward inspection shows that 〈v, w〉J defines a Hermitian inner product on V+

J ;
that is,

〈 · , · 〉V+
J

: V+
J ×V+

J → C, (v+, w+) 7→ 〈v+, w+〉V+
J
= Ω(Jv+, w+) (9)

is a Hermitian inner product. This, together with the fact that any element of V+
J is uniquely

represented by an element of V (and vice versa), implies that the complex vector space V,
with Hermitian inner product (8), and the complex vector space V+

J , with Hermitian inner product (9),
are (essentially) the same inner product spaces.

2.2. The Scalar Field: Classical Theory

Let us consider a free, massive real scalar field φ propagating in a four-dimensional globally
hyperbolic spacetime (M, gαβ) (α, β = 0, 1, 2, 3). Here, M has topology I× Σ for some I ⊂ R, and
can be foliated by a one-parameter family of Cauchy surfaces that are diffeomorphic to Σ. The phase
space of the system is the symplectic linear space (Γ, Ωij), where Γ is the real vector space Γ =

{(ϕ, π) | ϕ, π ∈ C∞
0 (Σ)} [C∞

0 (Σ) denotes the space of smooth real functions with compact support on
Σ] and Ωij =

∫
Σ(dπ)i ∧ (dϕ)j is the canonical symplectic form. This form defines a unique symplectic

structure [1], given by Equation (5), which is known as the canonical (or standard) symplectic structure.
The phase space of the theory can be alternatively described as the symplectic vector space (Γ, Ω).

The symplectic structure (5) defines natural coordinate functionals of configuration and
momentum type, namely ϕ[ f ] = Ω((0, f ), · ) and π[g] = Ω((−g, 0), · ) with (−g, f ) ∈ Γ. On the other
hand, the symplectic form defines the Poisson brackets (PB) on the real vector space of observables O
(i.e., the linear space of smooth, real-valued functionals on phase space) {F, G} = Ωij(dF)i(dG)j, where
Ωij is the inverse of the symplectic form Ωij. Thus, a direct calculation shows that the PB between the
configuration and momentum observables are given by {ϕ[ f ], π[g]} = −Ω((0, f ), (−g, 0)). Explicitly,
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{
∫

f ϕ,
∫

gπ} =
∫

f g, that is the smeared version of the well-known but mathematically ill-defined
expression {ϕ(x), π(x′)} = δ(x − x′), where δ(x) is the Dirac delta on Σ. By linearity, we get that
generic linear observables are given by Ω((g, f ), · ) = ϕ[ f ]− π[g], for all (g, f ) ∈ Γ. From the PB
between the basic configuration and momentum observables, the linearity of Ω, as well as the bilinear
and skew-symmetric properties of { · , · }, it immediately follows that

{Ω((g, f )1, · ) , Ω((g, f )2, · ) } = −Ω((g, f )1, (g, f )2). (10)

A foliation of spacetime (M, gαβ) by Cauchy surfaces Σt parametrized by a global time function
t defines a one-parameter family of embeddings Et of Σ as Cauchy surfaces in M, Σ 7→ Et(Σ) = Σt.
Let t = t0 be a fixed (but arbitrary) initial reference time. Let S be the linear space of smooth solutions
to the KG equation (gαβ∇α∇β −m2)φ = 0 which arises from initial data (ϕ, π)t0 in Γ, ϕ = E∗t0

φ and
π = E∗t0

(
√

hLnφ). Here, Ln stands for the Lie derivative along the normal to the initial Cauchy surface
Σt0 , whereas we recall that h is the determinant of the induced metric hab on such a surface. Every set
of Cauchy data gives rise to a solution, and different initial Cauchy data indeed give rise to distinct
solutions. Thus, by construction, solutions in S are in a one-to-one and onto correspondence with initial
data in Γ; i.e., It0 : S → Γ, It0(φ) = (E∗t0

φ, E∗t0
[
√

hLnφ]) is a bijection. In fact, associated with every
embedding Et, there is a bijection It : S→ Γ relating solutions with their corresponding Cauchy data at
time t, ϕ = E∗t φ and π = E∗t (

√
hLnφ). Given a solution φ ∈ S, we see that the associated dynamical

trajectory in Γ is formed by the family of data (ϕ, π)t = It(φ) with t ∈ I ⊂ R. Since t = t0 is the
initial reference time, we have that (ϕ, π)t = τ(t,t0)

(ϕ, π)t0 , where τ(t,t0)
= It ◦ I−1

t0
is a two-parameter

family of linear symplectomorphisms , with τ(t0,t0)
the identity map on Γ. (The family of mappings

τ(t,t0)
will form a one-parameter group of symplectomorphisms whenever the Hamiltonian does not

depend explicitly on time, so that the system is invariant under time reparametrizations, and hence
τ(t,t0)

= τt−t0 . Otherwise, the family τ(t,t0)
is a two-parameter family of symplectomorphisms [59].)

In view of the isomorphic relation between S and Γ, the canonical symplectic structure (5) induces
a symplectic structure Ω′ on S, namely Ω′ = I∗t0

Ω. Since τ(t,t0)
is a symplectomorphism, it follows

that I∗t0
Ω = I∗t Ω (i.e., Ω′ is time independent). Alternatively to (Γ, Ω), we can consider the symplectic

vector space (S, Ω′) as the phase space of the theory. The time evolution in the phase space (S, Ω′)
is given by the two-parameter family of linear symplectomorphisms T(t,t0)

= I−1
t0
◦ τ(t,t0)

◦ It0 , with
t ∈ I ⊂ R, which can be rewritten simply as T(t,t0)

= I−1
t0
◦ It. In order to simplify the notation, we will

denote Ω′ also by Ω from now on. The symplectic vector spaces (S, Ω) and (Γ, Ω) will be referred to
as the covariant and the canonical phase space, respectively. The symplectic structure on S is explicitly
given by

Ω(φ1, φ2 ) =
∫

Σt0

(φ2Lnφ1 − φ1Lnφ2)
√

h d3x. (11)

The time independence of Ω guarantees that the integration in Equation (11) is independent of
the choice of Cauchy surface to perform it.

The covariant counterpart of the natural observables in Γ are the real-valued linear functionals
Ω(φ, · ) : S → R, ∀φ ∈ S. Given a bijection, say It0 , there is a one-to-one, onto correspondence
between linear observables in the canonical and the covariant approaches: the observable Ω(φ, · )
on S corresponds to (and it is the corresponding observable of) the observable Ω((g, f ), · ) on Γ for
(g, f ) = It0 φ.

The PB between any pair of observables F and G on the phase space (S, Ω) are given by {F, G} =
Ωij(dF)i(dG)j, where Ωij is the inverse of the symplectic form on S induced by the canonical symplectic
form on Γ. The PB between natural observables Ω(φ, · )—i.e., the analogue of Equation (10)—are
given by

{Ω(φ, · ) , Ω(φ̃, · ) } = −Ω(φ, φ̃). (12)

Let us introduce a compatible complex structure j on (Γ, Ω) [i.e., j ∈ J (Ω, Γ)]. According to our
previous discussion (Section 2.1), we know that j will equip the linear symplectic space (Γ, Ω) with
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a real inner product µj( · , · ) = Ω(j · , · ) [see Equation (7)]. Let R be a linear symplectomorphism on Γ.
From j and R we then construct the compatible complex structure jR = R j R−1, and hence the real
inner product µjR( · , · ) = Ω(jR · , · ). The inner products µjR and µj (which are in general distinct) are
related by µjR(Ru, Rũ) = µj(u, ũ), for all u, ũ ∈ Γ. In particular, given a reference time t0, the evolution
map τ(t,t0)

(which is a linear symplectomorphism on Γ) provides a family of compatible complex
structures jt = τ(t,t0)

j τ−1
(t,t0)

and inner products µjt , with µjt(τ(t,t0)
u, τ(t,t0)

ũ) = µj(u, ũ). The complex
structure jt is the complex structure generated by the time evolution, from time t0 to time t, of the
initial complex structure j, that we will rename jt0 from now on in order to emphasize the choice of
initial time in the canonical formulation.

Alternatively, we can consider the covariant perspective. Just as in the canonical phase space
description, a complex structure J will equip the covariant phase space (S, Ω) with a real inner product
space µJ( · , · ) = Ω(J · , · ). Linear symplectomorphisms on S will define other compatible complex
structures and, consequently, other real inner products as well. In particular, we have that time
evolution in S will induce a family of compatible complex structures, Jt = T(t,t0)

J T−1
(t,t0)

, and a family of
real inner products µJt . Now, according to the discussion in Section 2.1, a complex structure J on S (not
necessarily compatible) endows the symplectic linear space (S, Ω) with a structure of complex vector
space, and defines a field decomposition φ = φ+ + φ−, where φ+ is in the space of “positive frequency”
solutions S+

J , whereas φ− is in the (complex conjugate) space of “negative frequency” solutions S−J [see
Equation (2)]. By requiring that J be compatible with Ω, we will get, apart from the real inner product
µJ , the Hermitian inner products (8) on (S, Ω) and (9) on S+

J . The Cauchy completion of S+
J with

respect to the norm associated with the Hermitian inner product (9) yields the so-called “one-particle
Hilbert space”HJ . By repeating this construction for each compatible complex structure Jt, we will
obtain a family of (in general) distinct Hilbert spacesHJt .

Let us briefly discuss how complex structures in Γ and S are related [60]. Let J be a complex
structure on S, and consider the isomorphisms It defined by the spacetime foliation. The complex
structure on Γ induced by J at time t, via It, is jt = It J I−1

t . From this relation it immediately follows
that jt2 = τ(t2,t1)

jt1 τ−1
(t2,t1)

. Once we have obtained the set of complex structures jt on Γ, we fix a bijection
to identify S with Γ; i.e., we chose a particular but arbitrary time and declare it as the initial reference
time t0. Thus, the complex structure

jt = τ(t,t0)
jt0 τ−1

(t,t0)
(13)

is the complex structure generated by dynamical evolution of jt0 = It0 J I−1
t0

from the initial time t0 to
time t. Now, since It0 establishes a bijection between complex structures on Γ and S, the family jt will
provide a one-parameter family of complex structures on S, namely Jt = I−1

t0
jt It0 . Using that jt is the

evolved complex structure of jt0 , we then get

Jt = T(t,t0)
J T−1

(t,t0)
. (14)

That is, Jt is the complex structure obtained by evolving J in time.
Note that, although the introduction of a complex structure is a simple matter, the choice

of a complex structure with physical content is not. For instance, Poincaré invariance and time
translation symmetry are exploited to select favored complex structures in Minkowski and stationary
backgrounds, respectively. However, in the absence of stationarity the issue becomes more involved
and extra requirements are needed in order to select a preferred family of complex structures. In the
next subsection we will consider precisely a non-stationary system, concretely a scalar field propagating
in an FLRW spacetime. Actually, the arguments that we will present apply equally well to more general,
conformally ultrastatic spacetimes.
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2.3. Complex Structures in FLRW Spacetimes

Let φ be a real scalar field with mass m propagating in an FLRW spacetime. As it is well known,
the FLRW cosmological models of homogeneous and isotropic universes can be described by the
line element

ds2 = a2(t)
[
−dt2 + h̃abdxadxb

]
, (15)

where h̃ab (a, b = 1, 2, 3) is the standard Riemannian metric of either a three-sphere, a three-dimensional
Euclidean space, or a three-dimensional hyperboloid. The KG equation in this FLRW spacetime reads

φ̈ + 2
ȧ
a

φ̇− ∆ φ + m2a2φ = 0. (16)

Here, the dot stands for the derivative with respect to the conformal time t, and ∆ denotes the LB
operator associated with the spatial metric h̃ab.

The dynamics on phase space Γ is dictated by the Hamiltonian

H =
1
2

∫
Σ

d3x a
√

h
(

h−1π2 + habDa ϕDa ϕ + m2 ϕ2
)

, (17)

where h stands for the determinant of hab = a2h̃ab and Da is the derivative operator on Σ associated
with hab. A straightforward calculation shows that the equations of motion are given by(

ϕ̇

π̇

)
= T

(
ϕ

π

)
, T =

(
0 ah−1/2

ah1/2(DaDa −m2) 0

)
. (18)

By performing the polar decomposition of T , one gets that the partial isometry |T |−1T provides
a family of compatible complex structures on the space of Cauchy data [36]. Specifically, the complex
structure jt = |T |−1T associated with the Cauchy surface Σt is

jt =

(
0 −h−1/2(−DaDa + m2)−1/2

h1/2(−DaDa + m2)1/2 0

)
. (19)

It is not difficult to check that µjt((ϕ, π), (ϕ̇, π̇)) = 0, with µjt( · , · ) = Ω(jt · , · ), so that, for given
t, jt can be considered unique [9]. In spite of this, it is worth remarking that for any two distinct times
t1 and t2, jt1 and jt2 give rise in general to inequivalent representations of the CCRs, implying that the
time evolution cannot be represented by a unitary operator and, therefore, that we do not have at our
disposal a Schrödinger picture with an evolution that preserves the standard notion of probability.
In an attempt to fix this drawback, we can use the freedom available in the choice of basic variables
and, by applying a time dependent canonical transformation, redistribute the time dependence in
an implicit part (with evolution generated by the corresponding Hamiltonian) and an explicit part
(the factor of the transformation) which varies in a way that is not necessarily unitary. Let us hence
introduce the time dependent scaling ψ = aφ. By substituting φ = ψ/a in Equation (16), we get that
the dynamics in the new field description is dictated by

ψ̈− ∆ ψ + s(t)ψ = 0, (20)

where s(t) = m2a2 − (ä/a). Thus, the system can be treated as a scalar field propagating in a fictitious
static spacetime ds2 = −dt2 + h̃abdxadxb, though now subject to a time varying potential V(ψ) =

s(t)ψ2/2 [or, equivalently, as a free scalar field with time dependent mass
√

s(t) in a static background,
provided that s(t) is a non-negative function]. The canonical equations of motion now are given by

˙̃ϕ =
1√
h̃

π̃, ˙̃π =
√

h̃ [∆ ϕ̃− s(t)ϕ̃] . (21)
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Once an initial reference time t0 is chosen, we introduce an initial complex structure on
Γ̃ = {(ϕ̃, π̃)}. The simplest complex structure guaranteeing an invariant Fock representation under
the spatial symmetries is

j0 =

(
0 −(−h̃∆)−1/2

(−h̃∆)1/2 0

)
. (22)

Note that j0 ignores the existence of the time varying potential (so, in particular, the existence of
the mass) in the system. Thus, the Fock representation defined by the complex structure (22) can be
referred to as the free massless field representation. As we will see in Section 5, the j0-Fock quantization
is, up to unitary equivalence, the unique invariant Fock representation under spatial isometries that
admits a unitary implementation of the dynamics, both for closed [13–15] and (compact) flat [43–45]
FLRW spacetimes.

Before we proceed to present our uniqueness results about the quantization of the KG field with
time varying mass in cosmological scenarios, it may be helpful to analyze in some detail the quantum
theory of scalar fields in globally hyperbolic spacetimes. This is the purpose of the next Section.

3. Quantization

We now focus our discussion on the quantization of real scalar fields in spacetimes that admit
a foliation by Cauchy surfaces. We will first overview the program of canonical quantization on
a Hilbert space for linear systems, along the lines of Refs. [61,62]. Next, we will apply the program to the
case of scalar fields, and we will discuss Bogoliubov transformations and the unitary implementation
of the time evolution. We will close this Section with the presentation of the j0-Fock quantization for
scalar fields with time dependent mass. Throughout the Section, special attention will be paid to the
role of complex structures in the quantum theory.

3.1. Canonical Quantization on a Hilbert Space

Consider a linear classical system (with a finite or infinite number of degrees of freedom),
described by a symplectic vector space, that we will call (X, Ω). The set of classical observables
will hereby be denoted by O. Roughly speaking, by quantization we will understand the passage from
a classical description of a system to a quantum mechanical description. In contrast to the situation
in the classical theory, where states live in the phase space (X, Ω) and observables are real-valued
functions on (X, Ω), in the quantum theory states belong to a Hilbert space H, whereas observables
are self-adjoint operators on H. The basic PB, that equip the space of classical observables with
an algebraic structure, are replaced at the quantum level with the canonical commutation relations
(CCRs), that define an algebraic structure on the space of quantum observables. Thus, in very broad
terms, the output of the quantization should be a Hilbert space H of quantum states, and quantum
observables represented onH as self-adjoint operators, obeying the algebraic structure arising from
the CCRs. For linear systems, the process of canonical quantization on a Hilbert space consists of (and
it is accomplished by) three main steps:

(i) A selection of basic (elementary, or fundamental) classical observables O0 ⊂ O.
(ii) The construction of an abstract quantum algebra A of observables from O0, with the following

two properties: (iia) for each basic observable F ∈ O0 there must be one, and only one, abstract
quantum basic operator (observable) F̂ ∈ A, and (iib) basic operators must satisfy the Dirac
quantization condition, relating their commutators with the corresponding PBs.

(iii) The specification of a Hilbert space H and a representation of the abstract basic observables as
self-adjoint operators onH.

For more details, we refer the reader, e.g., to Ref. [61].
These rules are far from determining a unique quantum description. Indeed, the process entails

ambiguities at different stages, and a series of choices must be made in order to accomplish the
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quantization and arrive to a, hopefully, well specified description. In fact, one has to face ambiguities
from the very beginning of the process by making “a judicious selection” of fundamental observables
O0. This set of basic observablesO0 is typically required to be a vector subspace ofO, closed under PB,
and such that every regular function on phase space can be obtained by (possibly a limit of) sums of
products of its elements [61,62]. These requirements are intended to achieve that observables inO0 will
be appropriately promoted to quantum operators satisfying the CCRs, allowing to avoid ambiguities
like e.g., the well-known problem of factor ordering. However, it is not uncommon that various distinct
basic sets can be found for the same system. So, in general there is not a unique canonical choice
of elementary observables O0, a fact which can give rise to non-equivalent quantum descriptions.
This ambiguity is usually addressed by arguing “naturalness and simplicity” in favor of a particular
classical canonical representation.

Once the set of fundamental observables is specified, the next step in the quantization is to
construct an abstract quantum algebra A of observables from the vector space O0. The algebra is
constructed as follows. Let A0 be the free associative algebra over the complex numbers generated by
O0, i.e., the free associative complex algebra corresponding to O0C = O0 ⊕ iO0. Thus, every Fc ∈ O0C
has a representative λ(Fc) in A0, where λ is a linear mapping. Next, the algebra A0 is equipped with
an involution operation ∗ which captures the complex conjugation; so, the representative λ(F) ∈ A∗0
of the real, basic observable F ∈ O0 is invariant under the involution operation, [λ(F)]∗ = λ(F). More
generally, [λ(Fc)]∗ = λ(Gc) if and only if F̄c = Gc, where Fc, Gc ∈ O0C. Then, the algebraic structure
on the space of classical observables, provided by the PB, is carried to an analogous algebraic structure
on quantum observables. For this, one takes the ∗-ideal ID of A∗0 generated by elements of the form
λ(−i{Fc, Gc}) + [λ(Fc), λ(Gc)] ∈ A∗0 . This is precisely the Dirac quantization condition. The algebra of
abstract quantum observables A is the quotient algebra of A∗0 by the ideal ID. The associative algebras
A∗0 andA are related by the homomorphism σ(w) = w + ID, w ∈ A∗0 . Let ∧ be the mapping ∧ = σ ◦ λ,
and let us define F̂c = ∧(Fc). Thus, in particular, we have that for each F ∈ O0, there is one and
only one ∗-invariant operator F̂ ∈ A. Given F, G, and {F, G} in O0, their (abstract) ∗-invariant, basic

operator counterparts F̂, Ĝ, and {̂F, G} in A satisfy the CCRs [F̂, Ĝ] = i{̂F, G}. By construction, any
Â ∈ A can be expressed as a sum of products of elementary operators.

The third and final step in the process is to find a Hilbert space H supporting a representation
of the (abstract) fundamental quantum observables as self-adjoint operators. This representation,
however, turns out to be not unique in general. There exist, typically, different (i.e., not unitarily
equivalent) Hilbert space representations of the CCRs. So, one generally has to deal with the problem
of determining a preferred representation. It should be noted that, in contrast with the ambiguity in
the choice of basic observables, which affects both linear mechanical and linear field theory systems,
the lack of uniqueness of the representation is mainly an issue for field (i.e., infinite dimensional)
systems. In fact, for linear, finite dimensional systems (i.e., linear mechanical systems), the specification
of a unique preferred representation of the CCRs can be consistently and unambiguously established
under certain requirements. Indeed, in view of the Stone-von Neumann uniqueness theorem, we can
restrict our attention just to a single representation of the CCRs, namely the ordinary Schrödinger
representation of quantum mechanics. However, the situation is quite different for linear field theories.
There are infinitely many inequivalent Hilbert space representations of the basic quantum observables
as self-adjoint operators, and no analogue of the Stone-von Neumann theorem exists to confront the
uniqueness issue. To handle this ambiguity in the representation of the CCRs, the usual procedure is to
appeal to the spacetime symmetries of the field system and look for symmetry invariant representations.
Though this strategy leads to a unique quantum theory for a certain class of field systems (for instance,
linear field theories in both Minkowski and stationary spacetimes), it should be stressed that in more
general cases (like e.g., non-stationary settings) symmetries will simply not be enough to pick out
a preferred representation and, therefore, extra criteria must be imposed in order to set a unique
quantum theory.
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3.2. Linear Scalar Field Theory: Quantization

Let us now review the quantization of the scalar field theory introduced in Section 2.2. We first
consider the covariant phase space approach. As we have seen, linear functionals Ω(φ, · ) provide
a natural set of observables on (S, Ω) with non-trivial PB that are proportional to the unit function [see
Equation (12)]. Since observables on (S, Ω) can be obtained by taking linear combinations of products
of natural observables Ω(φ, · ) and the unit function I (which provides the constant functions on S),
the subspace {I, Ω(φ, · ) | φ ∈ S}R of O qualifies as an admissible set of basic observables. (Here, {X}F
denotes the vector space given by the set {X} over the field F.) This, together with the “naturalness
and simplicity” of our choice, leads us to select the commented subspace as the set O0 of fundamental
(basic, or elementary) classical observables.

By equipping the phase space (S, Ω) with a compatible complex structure J, the field φ can be
decomposed into the “positive and negative frequency” parts, φ+ and φ−, defined by J. In addition,
the completion of the inner product space ( S+

J , 〈 · , · 〉S+
J
= Ω( J · , · )) in the norm ‖ · ‖S+

J
defines the

“one-particle” Hilbert space HJ . Notice that Ω( J · , · ) is an inner product not only for S+
J , but also

for SJ = S+
J ⊕ S−J ; in fact, S+

J and S−J are orthogonal subspaces with respect to this product. Thus,
the Cauchy completion of SJ gives a complex Hilbert space H, which decomposes into the orthogonal
(± i)-eigenspaces of J, with the (+i)-eigenspace being precisely the so-called one-particle Hilbert
space HJ , whereas the (−i)-eigenspace is the complex conjugate of HJ , HJ . Let KJ : H → HJ and
K̄J : H → HJ be the orthogonal projections arising from the inner product Ω( J · , · ). The restrictions of
KJ and K̄J to S are nothing but the real-linear bijections from S to S+

J ⊂ HJ and S−J ⊂ HJ , respectively.
In terms of the restrictions of KJ and K̄J to S, the field decomposition defined by J reads φ = KJφ + K̄Jφ.
Thus, basic observables can be written in the form Ω(φ, · ) = ia(K̄Jφ)− iā(KJφ), where

a(K̄Jφ) = Ω(JK̄Jφ, · ), ā(KJφ) = Ω(JKJφ, · ) (23)

are, respectively, the annihilation and creation-like variables associated with the complex structure J.
By using complex linearity and continuity, we get that

Ω(Φ, · ) = ia(χ̄)− iā(ξ), (24)

where χ, ξ ∈ HJ and Φ ∈ H, with Φ = ξ + χ̄.
The next step in the process of quantization is to specify A, the algebra of abstract quantum

observables. According to the discussion in Section 3.1, this algebra is constructed from the
complexification of O0, O0C. However, notice that we have an enlarged vector space S =

{I, Ω(Φ, · ) |Φ ∈ H}C ⊃ O0C, perfectly valid to construct the algebra. So, we will take S to specify
A. Since every (complex) elementary variable Ω(Φ, · ), with Φ ∈ H, can be uniquely expressed in the
form (24), the vector space S can be naturally rewritten as

S = {I, a(χ̄), ā(ξ) | χ, ξ ∈ HJ }C. (25)

The only non-zero PB between the complex elementary variables (25) are

{a(χ̄), ā(ξ)} = −i
〈
χ, ξ
〉
HJ

, (26)

where 〈 · , · 〉HJ = Ω( J · , · ) [i.e., the Hermitian inner product (9)]. The quantum algebra A is defined
starting with the complex vector space S (25), exactly as we have explained in Section 3.1 (with
O0C replaced by S ). As a result of the construction, we get operators â(χ̄) and â∗(ξ), satisfying
[â(χ̄)]∗ = â∗(χ) and obeying the commutation relations

[â(χ̄), â∗(ξ)] = Î
〈
χ, ξ
〉
HJ

, [â(χ̄), â(ξ̄)] = 0, [â∗(χ), â∗(ξ)] = 0, (27)
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for all χ, ξ ∈ HJ . The abstract quantum counterparts of the basic observables Ω(φ, · ) ∈ O0 are given
by the ∗-invariant elementary operators

Ω̂(φ, · ) = iâ(K̄Jφ)− iâ∗(KJφ), (28)

that fulfill the CCRs
[ Ω̂(φ, · ), Ω̂(φ̃, · ) ] = −iΩ(φ, φ̃) Î. (29)

In order to accomplish the quantization, we need to specify a Hilbert space supporting
a representation of the fundamental quantum observables Ω̂(φ, · ) as self-adjoint operators. Note,
however, that a Hilbert space structure has been already chosen from the introduction of a complex
structure: the one-particle Hilbert spaceHJ . It is fromHJ that the Hilbert space of the quantum theory
is constructed. Concretely, the one-particle Hilbert space defines the symmetric Fock space

FJ = ⊕∞
n=0

(
⊗n

(s)HJ

)
, (30)

that is the desired Hilbert space. The structure of FJ allows for a natural representation of â(χ̄)
and â∗(ξ), subject to the commutation relations (27), as the annihilation and creation operators â(χ̄)
and â†(ξ) on FJ . Thus, the fundamental observables Ω̂(φ, · ) are represented on the Fock space by
the self-adjoint operators defined by Equation (28), obeying the CCRs (29). This is the standard
procedure, in the covariant approach, for the Fock quantization of a linear scalar field given a complex
structure J. Since J can be any compatible complex structure, what we really have is a family of
Fock representations of the CCRs parameterized by the set J (Ω, S). This set splits naturally into
equivalence classes [J] of complex structures that lead to unitarily equivalent Fock representations,
and it is well known that J (Ω, S) is formed by an infinite number of them. That is, there are infinitely
many inequivalent Fock representations of the CCRs. Therefore, in order to specify a unique quantum
description, up to unitarity, a preferred complex structure jp (or, more generally, an equivalence class
[jp]) must be chosen.

Let us recall that, in general, there are no representations of the CCRs by bounded operators [1,63].
For the KG field, the quantum fundamental observables Ω̂(φ, · ) turn out to be all unbounded
operators [except Ω̂(0, · )]. So, questions concerning the domains of definition should be treated
carefully. For instance, a proper definition of the elements of the quantum algebra on the Hilbert space
becomes an intricate task, because A contains polynomials. In order to avoid this unwieldy situation,
the usual procedure is to consider the exponentiated version of Ω̂(φ, · ), namely W(φ) = exp[ iΩ̂(φ, · ) ].
Formally, the CCRs are replaced with the Weyl relations

W(φ)W(φ̃) = e
i
2 Ω(φ,φ̃)W(φ + φ̃), (31)

together with the adjoint relations
W∗(φ) = W(−φ). (32)

By equipping the vector space spanned by all finite, complex linear combinations of the W(φ)’s
with the product (31)—extended by linearity to the vector space—and the involution operation (32), we
get a complex associative ∗-algebra [with unit element I = W(0)]. Given a Hilbert space representation
of the CCRs (29), the ∗-algebra generated by the W(φ)’s becomes a subalgebra,W0, of the C∗-algebra of
all bounded linear operators on the Hilbert space. The closure ofW0 thus leads to a C∗-(sub)algebraW ,
which is known as the Weyl algebra. Although one might think that the Weyl algebra defined in this
way would be a representation-dependent algebra, actually this is not the case: W is fully independent
of the particular representation used [64,65]. Thus, in order to avoid domain problems, one can
consider the Weyl algebra W and look for a unique preferred representation of the relations (31)
and (32).
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From the definition of W(φ) and Equation (28), we can write the Weyl generators in terms of the
annihilation and creation operators on FJ ,

W(φ) = exp
[

â†(KJφ)− â(K̄Jφ)
]
. (33)

By using the commutation relations (27), the relationship [â(K̄Jφ)]
† = â†(KJφ), and the

Baker-Campbell-Hausdorff (BCH) formula, it is not difficult to see that the generators in Equation (33)
satisfy indeed the relations (31) and (32). In this way, we can construct the (concrete) Weyl algebraWJ ,
which is a subalgebra of L(FJ), the C∗-algebra of all bounded linear operators on FJ . Let us now
consider the vacuum state |0〉 ∈ FJ , i.e., the unique normalized state |0〉 that is annihilated by all the
annihilation operators â(χ̄). By using the BCH formula and Equation (27), a direct calculation shows
that the vacuum expectation value of W(φ) in FJ is given by

〈W(φ)〉vac = e−
1
4 ‖φ‖

2
J . (34)

Here, ‖φ‖J is the norm of φ ∈ S with the real inner product µJ defined by J ∈ J (Ω, S) [see
Equation (7)].

The relationship (34) defines a quasi-free algebraic state ωJ [W(φ)] = exp(− 1
4‖φ‖2

J ). The triple
(FJ ,WJ , |0〉) is, in fact, the same that would be obtained by employing ωJ on the (abstract) Weyl
algebraW in the so-called Gelfand-Naimark-Segal (GNS) construction [66,67]. The representation
WJ of the Weyl algebra W , defined by the complex structure J, is moreover irreducible, which
is tantamount to saying that the state ωJ is pure. Conversely, pure quasi-free states of the Weyl
algebra are associated with complex structures, and give rise to Fock representations as above [1,68].

Let us consider now the quantization in the canonical phase space approach. Our choice of
a natural set of elementary classical observables on (Γ, Ω) leads to the real vector space O0 =

{I, Ω((g, f ), · ) | (g, f ) ∈ Γ}R = {I, ϕ[ f ], π[g] | (g, f ) ∈ Γ}R equipped with the PB (10). In addition,
let us introduce a complex structure j ∈ J (Ω, Γ). The abstract algebra A is constructed from the
complex vector space S = {I, ϕ[F], π[G] | (G, F) ∈ γj}C, where γj is the Cauchy completion of Γ⊕ iΓ
with respect to µj( · , · ) = Ω(j · , · ). The fundamental quantum operators ϕ̂[ f ] and π̂[g] inA satisfy the
CCRs: [ϕ̂, π̂] = iΩ((0, f ), (g, 0)) Î. Schrödinger-like representations of the CCRs are naturally available
in the canonical approach, as follows. The CCRs are represented on a Hilbert space Hj = L2(C̄, d$) of
wave functionals on a quantum configuration space C̄, with the basic operators of configuration and
momentum, ϕ̂[ f ] and π̂[g], acting on the wave functionals by multiplication and by derivation plus
multiplication, respectively. The measure $, that is of Gaussian type, is determined by the complex
structure j. However, it does not encode the full information about the complex structure, in general.
Apart from a derivative, the momentum operator π̂[g] contains, in general, two multiplicative terms,
namely a factor associated with the Gaussian character of $, and possibly another (non-trivial)
multiplicative term that contains further information about the complex structure j. To be more specific,
the general form of a complex structure j ∈ J (Ω, Γ) is given by −j(ϕ, π) = (aϕ + bπ, cπ + dϕ), where
a, b, c, and d are linear operators satisfying

a2 + bd = −I, c2 + db = −I, ab+ bc = 0, da+ cd = 0, (35)

and ∫
Σ

fb f ′ =
∫

Σ
f ′b f ,

∫
Σ

gdg′ =
∫

Σ
g′dg,

∫
Σ

fag = −
∫

Σ
gc f ,∫

Σ
fb f ′ > 0,

∫
Σ

gdg′ < 0, (36)

for all unit weight scalar densities f , f ′ ∈ C∞
0 (Σ) and scalars g, g′ ∈ C∞

0 (Σ). Relationships (35) come
from the condition j2 = −I, whereas restrictions (36) follow from requiring that µj( · , · ) = Ω(j · , · ) be
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a symmetric and positive definite bilinear form. The measure and the basic operators of configuration
and momentum are [36,69]

d$ = exp
(
−
∫

Σ
ϕb−1 ϕ

)
Dϕ, (37)

ϕ̂[ f ]Ψ = ϕ[ f ]Ψ, π̂[g]Ψ = −i
∫ (

g
δ

δ ϕ
− ϕ(b−1 − icb−1)g

)
Ψ. (38)

Note that the representation defined by Equation (38), in the Hilbert space Hj, is a representation
of the Fock type, i.e., corresponds to a pure quasi-free state of the Weyl algebra.To see this explicitly,
let us introduce the Weyl operators W(g, f ) = exp[iΩ̂((g, f ), · )]. For an initial reference time t0,
the map It0 , where (g, f ) = It0 φ, naturally induces a bijection between the algebra generated by
the objects W(φ) and the corresponding one generated by the operators W(g, f ), that we will call
Wj. Consider now the unit constant functional ψ0 ∈ Hj. It can again be shown that the expectation
values of the Weyl generators read 〈ψ0, W(g, f )ψ0〉 = exp(− 1

4‖(g, f )‖2
j ),where ‖ · ‖j is the norm

associated with the real inner product µj( · , · ) = Ω(j · , · ) on the phase space (Γ, Ω). Using the
bijection It0 , one concludes that ωJ [W(φ)] = exp(− 1

4‖φ‖2
J ) indeed defines a pure quasi-free state of

the Weyl algebra, associated with the complex structure J = I−1
t0

jIt0 ∈ J (Ω, S). Since a state (in fact
the evaluation of a state on the generators) uniquely characterizes a unitary equivalence class of
the Weyl algebra, it follows that (FJ ,WJ , |0〉) and (Hj,Wj, ψ0) are just different realizations of the
same representation of the Weyl relations, i.e., there is a unitary map U : FJ → Hj, with U|0〉 = ψ0,
that intertwinesWJ withWj. To make this relationship fully explicit, let us display the form of the
annihilation and creation operators on Hj, that are readily seen to be

â(γ+) = 1
2 (ϕ̂[σ̄] + π̂[ρ̄]) , â†(γ+) = 1

2 (ϕ̂[σ] + π̂[ρ]) , (39)

where σ = dg− c f + i f , ρ = b f − ag + ig and γ+ = (−g, f )+ ∈ γj is the “positive frequency” part of
the Cauchy data γ = (−g, f ) ∈ Γ, that is to say γ+ = (γ − ijγ)/2. (For a comprehensive discussion
on the Schrödinger representation for a linear scalar field in flat and curved spacetime, including the
relationship between the covariant and the canonical approaches to quantization, as well as measure
theoretical aspects, see Refs. [36,69,70]).

Representations of the type (FJ ,WJ , |0〉), determined by a complex structure J in the
covariant phase space, will hereafter be called J-Fock representations, whereas the corresponding
representations of the form (Hj,Wj, ψ0), constructed from the canonical perspective, will be called
j-Fock representations.

In the rest of our discussion, the domain of definition of the different quantum observables will
not play a relevant role. Hence, in what follows we will consider representations of the CCRs only.

3.3. Bogoliubov Transformations and Unitary Implementability

Let us take two compatible complex structures on the phase space (S, Ω), say J1 and J2, and
assume that their associated inner products, µi( · , · ) = Ω(Ji · , · ) for i = 1, 2, define equivalent
norms on (S, Ω). Then, the corresponding Hilbert spaces H1 = H1 ⊕H1 and H2 = H2 ⊕H2 may be
identified, and can be viewed as two distinct splittings of the same Hilbert space H [1]. Consider also
the orthogonal projections KJi : H → Hi and K̄Ji : H → Hi defined by the inner product Ω(Ji · , · ) on
H. Then, let A : H2 → H1 and B : H2 → H1 be the restrictions of KJ1 and K̄J1 , respectively, to H2.
Similarly, let C : H1 → H2 and D : H1 → H2 be the respective restrictions of KJ2 and K̄J2 toH1. In this
setting, it can be shown that [1]

A† A− B†B = I, A† B̄ = B† Ā, (40)

C†C− D†D = I, C†D̄ = D†C̄, (41)
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and
C = A†, D = −B̄†. (42)

For an element ς of H, let ψ ∈ H1 and ξ̄ ∈ H1 be the components of ς with respect to the
splitting H1 of H, and χ ∈ H2 and η̄ ∈ H2 their components with respect to the splitting H2 of
H. In short, ς = (ψ, ξ̄)H1 ∈ H1 ⊕H1 and ς = (χ, η̄)H2 ∈ H2 ⊕H2. We know, in particular, that
(ψ, ξ̄)H1 = (ψ, 0)H1 + (0, ξ̄)H1 . Since the orthogonal projections of (ψ, 0)H1 and (0, ξ̄)H1 onto H2 are
(Cψ, 0)H2 and (D̄ξ̄, 0)H2 , we get that (Cψ + D̄ξ̄, 0)H2 is the orthogonal projection of (ψ, ξ̄)H1 onto
H2. A similar calculation shows that the orthogonal projection of (ψ, ξ̄)H1 onto H̄2 is given by
(0, Dψ + C̄ξ̄)H2 . So, we have

χ = Cψ + D̄ξ̄, η̄ = Dψ + C̄ξ̄. (43)

This transformation, with C and D satisfying relationships (41), is known as a Bogoliubov
transformation. Note that, from Equations (41) and (42), the inverse of (43) is

ψ = Aχ + B̄η̄, ξ̄ = Āη̄ + Bχ. (44)

Associated to each of the complex structures J1 and J2, there is a set of elementary variables [see
Equation (25)],

S1 = {I, a1(ξ), ā1(ψ) | ξ, ψ ∈ H1 }C, S2 = {I, a2(η), ā2(χ) | η, χ ∈ H2 }C. (45)

Nonetheless, the vector spaces S1 and S2 are, in fact, the same vector space S [recall that S =

{I, Ω(Φ, · ) |Φ ∈ H}C, so that S1 and S2 are simply two different decompositions of the linear space
S ]. Let us be more precise. It follows from Equation (24) that the linear space L0 = {Ω(Φ, · ) |Φ ∈
H}C is decomposed by a complex structure J into the direct sum of A+

J = {ā(ρ) | ρ ∈ HJ}C and
A−J = {a(σ̄) | σ ∈ HJ}C. Hence, the complex structures J1 and J2 decompose the vector space L0 as
A+

1 ⊕ A−1 and A+
2 ⊕ A−2 , respectively. Since S = C⊕ L0, we get that S1 and S2 are nothing but

two different decompositions of S , as we had commented. The explicit relationship between the
annihilation and creation-like variables associated with J1 and J2 are

a2(η̄) = a1
(

Āη̄
)
− ā1

(
B̄η̄
)
, ā2(χ) = ā1

(
Aχ
)
− a1

(
Bχ). (46)

In order to get these identities, we have used the definition of the annihilation and creation-like
variables (23), the action of the complex structures J1 and J2 on their corresponding eigenvectors, and
the linearity of Ω, as well as the decomposition of χ ∈ H2 and η̄ ∈ H2 with respect to H1, namely
χ = Aχ + Bχ and η̄ = Āη̄ + B̄η̄. Relationships (46) give the form in S1 of the annihilation-like
variables a2 and the creation-like variables ā2, defined by the complex structure J2. It is not difficult
to see that the PB between the variables a2(η̄) and ā2(χ), given in Equation (46), satisfy indeed
Equation (26).

We emphasize that different complex structures (compatible with Ω and that give rise to
equivalent norms on S) provide different generators for the (same) abstract quantum algebra A
(this is so because different complex structures just introduce different splittings in S , the space
from which A is constructed). Let us denote the abstract algebra A by Ai in the basis provided
by the annihilation and creation-like variables defined by the complex structure Ji; i.e., S = Si
with Si = {I, ai(σi), āi(ρi) | σi, ρi ∈ Hi }C, where ai(σi) = Ω(Jiσi, · ) and āi(ρi) = Ω(Jiρi, · ). The
abstract quantum counterparts of ai(σ̄i) and āi(ρi) are the operators âi(σ̄i) and â∗i (ρi), satisfying
[âi(σ̄i)]

∗ = â∗i (σi) and the CCRs (27). When ai and āi are replaced, respectively, with âi and â∗i
(for i = 1, 2) in Equation (46) we get expressions for â2 and â∗2 in A1. According to the discussion
in Section 3.2, the algebra Ai (for i = 1, 2) is then represented on the Fock space Fi (constructed
from the one-particle Hilbert spaceHi) by declaring (representing) âi and â∗i as the annihilation and
creation operators on Fi, renaming then âi and â†

i . Thus, in spite of the J-independence of H and A,
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the representation of the algebra on the Hilbert space turns out to be a decomposition-dependent
process: every complex structure (or, equivalently, decomposition) gives rise to a different Fock space
representation of A. The annihilation and creation operators on the Fock space F2, â2 and â†

2, are
represented on F1 as

â′2(η̄) = â1
(

Aη
)
− â†

1
(

Bη
)
, â′ †2 (χ) = â†

1
(

Aχ
)
− â1

(
Bχ). (47)

Hence, in general, â′2(η̄) does not annihilate the F1-vacuum state |0〉1. A direct calculation shows
that the F2-number operator â†

2(χ) â2(η̄), represented on F1 , has the following expectation value in
the vacuum state |0〉1 ∈ F1: 〈

â′ †2 (χ) â′2(η̄)
〉

vac = 〈η , B†Bχ〉H2 . (48)

The vacuum state |0〉2 ∈ F2 in the Fock representation F1 corresponds to a state |0′〉2 satisfying

â1(Āη̄) |0′〉2 = â†
1(B̄η̄) |0′〉2. (49)

Actually, provided that µ1 and µ2 define equivalent norms, it can be shown [1] that the necessary
and sufficient condition for the unitary equivalence of the Fock representations (F1, â1, â†

1) and
(F2, â2, â†

2) is that B fulfills the Hilbert-Schmidt condition

tr(B†B) < ∞. (50)

In that case, there exists a unitary map U : F1 → F2 such that

U−1 â2(η̄)U = â′2(η̄), U−1 â†
2(χ)U = â′ †2 (χ), |0′〉2 = U−1|0〉2, (51)

with â′2(η̄) and â′ †2 (χ) given by relationships (47), and |0′〉2 solving Equation (49). We also note
that the requirement (50) on B is equivalent to impose the Hilbert-Schmidt condition on (J2 − J1).
Indeed, since χ = Aχ + Bχ, it follows that (J2 − J1)χ = 2iBχ for all χ ∈ H2. Similarly, we have
that (J2 − J1)ψ = 2iB̄†ψ for all ψ ∈ H1. Thus, the two complex structures lead to unitary equivalent
representations of the CCRs if and only if (J2 − J1) defines a Hilbert-Schmidt operator, either onH1 or
onH2.

Let us now discuss the issue of dynamics. Consider a compatible complex structure J on
phase space (S, Ω). As we have seen in Section 2.2, J evolves according to Jt = T(t,t0)

J T−1
(t,t0)

[see
Equation (14)], where T(t,t0)

: S → S is the linear symplectic transformation corresponding to the
time evolution from t0 to t. (Here, J plays the role of an initial complex structure. Accordingly,
all objects defined by J, such as the annihilation and creation operators or the associated Hilbert
space, will be labelled with a subscript, or superscript, t0.) Thus, every Jt belongs to J (S, Ω) and,
consequently, we get a family of real inner products, µt = Ω(Jt · , · ), on S. Assume that, for each time
t, the linear symplectic bijections T(t,t0)

and T−1
(t,t0)

are both continuous mappings on Sµ (the Hilbert
completion of S with respect to the norm ‖ · ‖J defined by the inner product µt0 = µJ). Then, µt0 and
µt define equivalent norms for all t ∈ I ⊂ R. (Let Sµ be the Cauchy completion of S with respect to
‖ · ‖J . Suppose that the linear symplectomorphism R : Sµ → Sµ and (its inverse) R−1 : Sµ → Sµ are
continuous. Then, R and R−1 are bounded in the norm ‖ · ‖J . Hence, using that µR(Rφ, Rφ) = µ(φ, φ),
it follows that µJ = Ω(J · , · ) and µJR = Ω(JR · , · ), with JR = RJR−1, define equivalent norms.) The
annihilation and creation operators induced by time evolution T(t,t0)

on Ft0 = FJ , namely â′t and â′ †t ,
are given by Bogoliubov transformations of the form (47),

â′t(η̄t) = ât0

(
A(t,t0)

ηt
)
− â†

t0

(
B(t,t0)

ηt
)
, â′ †t (χt) = â†

t0

(
A(t,t0)

χt
)
− ât0

(
B(t,t0)

χt), (52)

for each t ∈ I ⊂ R. Here, both ηt and χt are in Ht, whereas the orthogonal projections (with respect
to the Ht0-decomposition) A(t,t0)

: Ht → Ht0 and B(t,t0)
: Ht → Ht0 satisfy relationships (40). So,
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â′t(η̄t) and â′ †t (χt) fulfill the CCRs (27). Clearly, A(t0,t0)
and B(t0,t0)

are the identity and the zero
maps, respectively.

Since classical observables evolve according to Ω(φ, · ) 7→ Ω(T−1
(t,t0)

φ, · ), we have that a′t(η̄t) =

Ω(T−1
(t,t0)

Jη̄t0 , · ) and ā′t(χt) = Ω(T−1
(t,t0)

Jχt0 , · ). On the other hand, the symplectic transformations T(t,t0)

induce a two-parameter family of ∗-automorphisms on A, Ω̂(φ, · ) 7→ ζ (t,t0)
· Ω̂(φ, · ) = Ω̂(T(t,t0)

φ, · ).
Thus, the time evolution of the (abstract) elementary quantum observables is given by Ω̂(φ, · ) 7→
ζ−1
(t,t0)
· Ω̂(φ, · ). In particular, we have that â′t(η̄t) = ζ−1

(t,t0)
· ât0(η̄t0) and â′ †t (χt) = ζ−1

(t,t0)
· â†

t0
(χt0),

on At0 .
The question of unitary implementability of the dynamics in the J-Fock representation is whether

or not there exist unitary operators U(t,t0)
: Ft0 → Ft0 such that

ζ (t,t0)
· Ω̂(φ, · ) = U†

(t,t0)
Ω̂(φ, · )U(t,t0)

. (53)

If such operators exist, it also means that, within the Heisenberg picture, the evolution expressed
by Equations (52) is unitary, i.e.,

U(t,t0)
ât0(η̄t0)U†

(t,t0)
= ât0

(
A(t,t0)

ηt
)
− â†

t0

(
B(t,t0)

ηt
)
, (54)

U(t,t0)
â†

t0
(χt0)U†

(t,t0)
= â†

t0

(
A(t,t0)

χt
)
− ât0

(
B(t,t0)

χt). (55)

It follows from the discussion above that the unitary operators U(t,t0)
exist, i.e., the classical

dynamics dictated by T(t,t0)
is unitarily implementable in the J-Fock representation, if and only if

B(t,t0)
satisfies the Hilbert-Schmidt condition (50) for all t. This is tantamount to requiring that (J − Jt)

be Hilbert-Schmidt on Ht0 for all t, as we have seen. Another way to formulate this condition is to
say that the antilinear part of T(t,t0)

must be Hilbert-Schmidt on Ht0 for all t (indeed, a symplectic
transformation R is unitarily implementable on a Fock space FJ if and only if its antilinear part with
respect to the complex structure J, namely RJ = (R + JRJ)/2, is Hilbert-Schmidt on the one-particle
spaceH defined by J [71,72]).

Turning to the more algebraic perspective, the ∗-automorphisms ζ (t,t0)
of the algebra A define

∗-automorphisms ζ ′(t,t0)
of the Weyl algebraW via ζ ′ ·W(φ) = exp[iζ · Ω̂(φ, · )], i.e., ζ ′(t,t0)

·W(φ) =

W(T(t,t0)
φ). A simple calculation shows that ωJt [W(φ)] = ωJ [ζ

′ −1
(t,t0)
·W(φ)]; that is to say, the time

evolution of observables in the Heisenberg picture is represented by the inverse of the automorphisms
ζ ′(t,t0)

, related to the inverse of ζ (t,t0)
, of course (for details about symplectic transformations and

automorphisms in the Weyl algebra see, for instance, Ref. [73]). Again, the family of automorphisms
ζ ′(t,t0)

of the abstract Weyl algebra corresponds to unitary transformations in the J-Fock representation

if and only if B(t,t0)
is Hilbert-Schmidt for all t. Note also that the relation ωJt = ωJ ◦ ζ ′ −1

(t,t0)
between

the algebraic states can be interpreted as the time evolution of the “initial” algebraic state ωJ . So, in the
Schrödinger picture, the issue of a unitary quantum dynamics becomes the question of whether or not
the family of algebraic states ωJ ◦ ζ ′ −1

(t,t0)
provide unitary equivalent representations of the (adjoint and)

Weyl relations (31) and (32) [or, equivalently, of the CCRs (29)].
Let us now focus in particular on the case of a free scalar field propagating in a spatially compact

spacetime. Because of spatial compactness, every ψ ∈ Ht and ξ̄ ∈ Ht can be written as

ψ = ∑
k

ckut
k, ξ̄ = ∑

k
dkūt

k. (56)

Here, {ut
k} and {ūt

k} are orthonormal bases with respect to the Hermitian inner product
µ(H,Jt)( · , · ) = Ω(Jt · , · ) for, respectively, Ht and Ht, whereas ck and dk are complex constant
numbers. Clearly, {(ut

k, ūt
k)} is an orthonormal basis for the Jt-decomposition of H, namelyHt ⊕Ht.

As before, let us denote by 〈 · , · 〉Ht and 〈 · , · 〉Ht
the restriction of the Hermitian inner product µ(H,Jt)



Mathematics 2020, 8, 115 19 of 49

to, respectively,Ht andHt. The projection of ut
m ∈ Ht onto ut0

k ∈ Ht0 gives the vector 〈ut0
k , ut

m〉Ht0
ut0

k .

Similarly, the projection of ut
m onto ūt0

k ∈ Ht0 , gives the vector 〈ūt0
k , ut

m〉Ht0
ūt0

k . Hence, we have that

A(t,t0)
ut

m = ∑
k

Akm(t, t0)u
t0
k , B(t,t0)

ut
m = ∑

k
B̄km(t, t0)ū

t0
k , (57)

with
Akm(t, t0) = 〈ut0

k , ut
m〉Ht0

, B̄km(t, t0) = 〈ūt0
k , ut

m〉Ht0
. (58)

By performing an analogous calculation, one gets C(t,t0)
ut0

m and D(t,t0)
ut0

m [in fact, we can obtain
them by simply switching the t and t0 parameters in Equations (57) and (58)]. Since C(t,t0)

= A†
(t,t0)

and D(t,t0)
= −B̄†

(t,t0)
[see Equation (42)], we thus get that

A†
(t,t0)

ut0
m = ∑

k
Āmk(t, t0)ut

k, B†
(t,t0)

ūt0
m = ∑

k
Bmk(t, t0)ut

k (59)

where we have used

〈ut
k, ut0

m〉Ht = 〈u
t0
m, ut

k〉Ht0
= Āmk(t, t0), −〈ut

k, ūt0
m〉Ht = 〈ū

t0
m, ut

k〉Ht0
= Bmk(t, t0). (60)

The first relation in Equation (40), together with Equations (57) and (59), implies that the
Bogoliubov coefficients Akm(t, t0) and B̄km(t, t0) satisfy

∑
k
(Akm Ākn − B̄kmBkn) = δnm. (61)

From ut
m = A(t,t0)

ut
m + B(t,t0)

ut
m and Equation (57), it follows that the bases {(ut0

m, ūt0
m)} and

{(ut
m, ūt

m)} of H are related by

ut
m = ∑

k

(
Akm(t, t0)u

t0
k + B̄km(t, t0)ū

t0
k

)
, (62)

ūt
m = ∑

k

(
Ākm(t, t0)ū

t0
k + Bkm(t, t0)u

t0
k

)
, (63)

where Akm(t, t0) and B̄km(t, t0) are given by Equation (58), and satisfy the relation (61). Equations (62)
and (63) are the Bogoliubov transformations between basis vectors.

Let us consider the expansion of the field in terms of the basis modes {(ut0
k , ūt0

k )} associated with
the initial complex structure J,

φ = ∑
k
(a0

kut0
k + ā0

k ūt0
k ). (64)

It is straightforward to check that the annihilation and creation-like observables at0(ū
t0
k ) and

āt0(u
t0
k ) evaluated at φ ∈ S give at0(ū

t0
k )[φ] = a0

k and āt0(u
t0
k )[φ] = ā0

k . That is, at0(ū
t0
k ) and āt0(u

t0
k )

can be viewed as coordinate functions on S (which can be identified with the space of coefficients
{(a0

k , ā0
k)}), so that we can write ât0(ū

t0
k ) = â0

k and â†
t0
(ut0

k ) = â0 †
k . From Equation (27) we get that â0

k
and â0 †

k satisfy the standard CCRs [â0
k , â0 †

m ] = Îδkm. The Fock space of quantum states Ft0 is generated
by repeatedly applying the creation operators â0 †

m on |0〉, the state annihilated by all â0
k . Employing

Equation (54) on the basis modes ut
m (i.e., ηt = ut

m) and using Equation (57), we get that —if it turns
out to be unitary—the “evolution” of â0

m from t to t0 would be given by

U(t,t0)
â0

m U†
(t,t0)

= ∑
k

(
Ākm(t, t0) â0

k − Bkm(t, t0) â0 †
k

)
. (65)
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The time evolution from the initial time t0 to an arbitrary final time t is obtained simply by
interchanging t with t0 in the above equation. Note that Ākm(t0, t) = Amk(t, t0) and that Bkm(t0, t) =
−Bmk(t, t0). Thus, the evolution of the annihilation operator â0

m associated with ut0
k , from t0 to t, would

be given by
U†
(t,t0)

â0
m U(t,t0)

= ∑
k

(
Amk(t, t0) â0

k + Bmk(t, t0) â0 †
k

)
. (66)

Analogously, we obtain that the evolution of the creation operator â†
m, from t0 to t, would be

dictated by the unitary transformation

U†
(t,t0)

â0 †
m U(t,t0)

= ∑
k

(
Āmk(t, t0) â0 †

k + B̄mk(t, t0) â0
k

)
. (67)

A direct calculation shows that the unitarity condition, i.e., the Hilbert-Schimdt condition on
B(t,t0)

, turns out to be the requirement that the Bogoliubov coefficients Bkm(t, t0) be square summable,

∑
km
|Bkm(t, t0)|2 < ∞, ∀t. (68)

It is worth remarking that unitarity (or not) of U(t,t0)
is a basis-independent issue. Indeed, given

any other orthonormal basis {ũt
k} in Ht, it is not difficult to see that ∑km |B̃km(t, t0)|2 is equal to

∑km |Bkm(t, t0)|2, i.e., the result of tr
(

B†
(t,t0)

B(t,t0)

)
does not depend on the specific choice of basis

considered to perform the calculation.
By using the isomorphism It0 between the linear spaces S and Γ, one can obtain the counterpart

of the above quantization in the canonical approach. The configuration and momentum of the field φ,
expanded in the positive and negative frequency mode solutions associated with J [see Equation (64)],
are given by

ϕ = ∑
k
(a0

k gk + ā0
k ḡk), π = ∑

k
(a0

k fk + ā0
k f̄k), (69)

where gk = ut0
k |t0 and fk =

√
hLnut0

k |t0 . In terms of the complex structure induced on Γ,
i.e., jt0 = It0 J I−1

t0
, the annihilation and creation-like variables read a0

k = Ω(jt0(ḡk, f̄k), (ϕ, π)) and
ā0

k = Ω(jt0(gk, fk), (ϕ, π)), respectively. The promotion of these variables to quantum operators
corresponds to the annihilation and creation operators (39) in the Schrödinger representation, with
label γ+

k = (gk, fk). The time evolved operators of annihilation and creation, âk(t) = U †
(t,t0)

â0
kU(t,t0)

and â†
k(t) = U †

(t,t0)
â0 †

k U(t,t0)
, are respectively given by the right-hand side of Equations (66) and (67),

that define the mapping U(t,t0)
in the current representation.

Let us conclude with the following remark concerning unitarity. It follows from Equations (51),
(52), (54) and (55) that if U is a unitary map, then so is U (and vice versa). For unitary U, we have in
particular that

U
(

â†
t0
(ηt0)− ât0(η̄t0)

)
U−1 = U−1

(
â†

t (ηt)− ât(η̄t)
)
U . (70)

Let us now suppose, without any further assumptions, that Equation (70) is satisfied. Then,
a calculation along the lines of Ref. [74] shows that

− 2i U ât0(η̄t0)U−1 = U−1
(

â†
t [(Jt − TJT−1)ηt] + ât[(Jt + TJT−1)η̄t]

)
U . (71)

Let Ũ be the composition UU : Ft0 → Ft. Thus, we obtain from Equation (71) that

− 2i ât0(η̄t0) = Ũ−1
(

â†
t [(Jt − TJT−1)ηt] + ât[(Jt + TJT−1)η̄t]

)
Ũ. (72)
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By applying Equation (72) to the vacuum state |0〉 of Ft0 , we get that the state |Ψt〉 = Ũ|0〉 in Ft

must satisfy the relationship

ât

[
(Jt + TJT−1)η̄t

]
|Ψt〉 = â†

t

[
(TJT−1 − Jt)ηt

]
|Ψt〉. (73)

Therefore, the maps Ũ are unitary mappings if and only if (TJT−1 − Jt) is Hilbert-Schimdt onHt.
However, since Jt is precisely the complex structure resulting from evolving J in time, we have that the
Hilbert-Schimdt condition is trivially satisfied and, therefore, Ũ is always a unitary map for all t0 and t.
Note, nonetheless, that unitarity of Ũ does not imply that U (nor U ) must be necessarily unitary.

Let us consider the above condition (73) with Jt replaced with some J′t 6= TJT−1. Then, unitarity of
Ũ means that complex structures J′t differing from TJT−1 can be consistently considered at time t only
if (J′t − TJT−1) is a Hilbert-Schmidt operator. More specifically, from the unitarity of Ũ, it follows that
〈0|W(φ)|0〉J = 〈Ψ′t|W ′(Tφ)|Ψ′t〉J′t , where W ′(Tφ) = ŨW(φ)Ũ−1 and |Ψ′t〉 = Ũ|0〉 is a normalizable
state satisfying Equation (73). Since the expectation value of W(φ) at final time is given by
〈W(φ)〉TJT−1 = 〈W(T−1φ)〉J (see for instance Ref. [73]), we have that 〈W(φ)〉TJT−1 = 〈Ψ′t|W ′(φ)|Ψ′t〉J′t ,
which certainly holds only if (J′t − TJT−1) is Hilbert-Schmidt either on HJ′t

or on HTJT−1 . (The
consistency condition that (J′t − TJT−1) be Hilbert-Schmidt was introduced and considered in
Refs. [74,75], within the canonical space approach, as a general condition of unitary evolution.)
For a thorough discussion on quantum unitary dynamics in cosmological scenarios see Ref. [60].

3.4. The Scalar Field with Time Dependent Mass

As we pointed out in Section 2.3, the 0-spin boson field φ propagating in a spatially compact
FLRW spacetime can be treated, after the time dependent scaling ψ = aφ, as a free scalar field with time
dependent mass (or, equivalently, as a scalar field subject to a time dependent potential) propagating
in a static background, obeying the equation of motion (20). Here, we will consider the same class
of system, but adding also the case of a background with one-dimensional spatial sections with the
topology of a circle. Besides, the time dependent function s(t) in the potential V(ψ) = s(t)ψ2/2 will be
considered (except for very mild conditions that will be specified below) as a general real function. Let
us remark that for non-negative s(t), the function can be interpreted as a squared time dependent mass.

More concretely, we consider here a real scalar field ψ governed by the equation

ψ̈− ∆ ψ + s(t)ψ = 0, (74)

in a static background
gαβdxαdxβ = −dt2 + habdxa dxb, (75)

where hab is the standard Riemannian metric of a spatial manifold Σ that we will allow to be either
a circle S1, a three-sphere S3, or a three-dimensional torus T3. Besides, ∆ is the LB operator associated
to hab. According to our general discussion in Section 2.2, the canonical phase space is the real
linear space Γ = {(ϕ, π)|ϕ, π ∈ C∞(Σ)} equipped with the standard symplectic structure (5). (With
respect to Equation (21), we now rename ϕ̃→ ϕ and π̃ → π to simplify our notation). The covariant
phase space is the linear space S of smooth solutions to Equation (74) arising from initial data on
Γ, ϕ = ψ|t0 and π =

√
hψ̇|t0 , equipped with the symplectic structure (11) (with the identification

Σt0 ≈ S1, Σt0 ≈ S3, or Σt0 ≈ T3). We recall that t0 stands for the fixed (but) arbitrary initial reference
time. The PB between the canonically conjugate variables of configuration and momentum are given
by {ϕ(x), π(x′)} = δ(x− x′), where x denotes abstractly the coordinates of a point on Σ.

Scalar functions on Σ can be expanded in terms of harmonics, i.e., in terms of solutions of the
eigenvalue equation for the LB operator on Σ: −∆ Xn = ω2

nXn, where (1) ω2
n = n2 for S1, with

n ∈ Z, (2) ω2
n = n(n + 2) for S3, with n ∈ N, and (3) ω2

n = ~n ·~n for T3, with ~n = (n1, n2, n3) and
ni ∈ Z (i = 1, 2, 3). The eigenfunctions Xn can be chosen as the complex exponential functions
exp(inx)/(2π)1/2 and exp(i~n · ~x)/(2π)3/2 for the S1 and the T3 cases [n denotes the integer n and
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the triple ~n = (n1, n2, n3), respectively], whereas for the S3 case Xn stands for the (hyper)spherical
harmonics Qn`m(x) on S3 [here n denotes collectively the set of indices (n, `, m), with n ∈ N, 0 ≤ ` ≤ n,
and −` ≤ m ≤ `]. (For a description of the harmonics in non-vanishing spatial curvature see, for
instance, Ref. [76].) The functions Xn are orthonormal with respect to the L2-product on Σ, namely
(Xn, Xm) = δnm, where (Xn, Xm) =

∫
X̄nXm

√
hd3x. The configuration and momentum of the field

can be expressed as
ϕ(x) = ∑

n
ϕnXn(x), π(x) =

√
h ∑

n
πnXn(x), (76)

where ϕn and πn are the complex Fourier coefficients of the expansion in the complete set {Xn(x)}.
Since the field is a real one, these Fourier coefficients satisfy the following reality conditions: η̄k = η−k
for the circle case, η̄~k = η−~k for the three-torus case, and η̄n`m = (−1)mηn`−m for the three-sphere

case, where ηn = (ϕn, πn). The reality conditions are obtained by using that ϕn =
∫

Σ

√
hϕX̄n and

πn =
∫

Σ πX̄n, that the configuration ϕ and the momentum π of the field are real functions, and
by employing the specific relationship between Xn and its complex conjugate X̄n: X̄k = X−k on S1,
X̄~k = X−~k on T3, and X̄n`m = (−1)mXn`−m on S3.

Incorporating the time dependence in our field, and recalling that it is real, we can decompose it
in a Fourier expansion of the form

ψ(t, x) = ∑
n
(ξn(t)Xn(x) + c.c.) , (77)

where the functions of time ξn are solutions to the second-order differential equations

f̈ = −(ω2
n + s) f . (78)

This equation follows from the field Equation (74) when the spatial part is evaluated in the
harmonic Xn. We note that the Equation (78) is real. Therefore if ξn provides a solution, so does its
complex conjugate ξ̄n. The relation between the functions ξn and the coefficients ηn above depend on
the complex conjugation properties of the eigenfunctions Xn of the LB operator. For instance, in the S3

case we get that the Fourier coefficients of the configuration field are given by ϕn = ξn(t0) + ξ̄−n(t0),
where t0 is the initial time. On the other hand, it is worth remarking that the dynamical Equation
(78) depends exclusively on the eigenvalue of the LB operator, −ω2

n, rather than on the label of the
harmonic, n. As a consequence, except for the dependence on n that the initial conditions determined
by ηn may impose at t0, the functions ξn(t) vary only with the value of ω2

n. Indicating the dependence
on this eigenvalue with a subscript n, we can then rewrite the field (77) in the following manner:

ψ(t, x) = ∑
n
(anTn(t)Xn(x) + c.c.) . (79)

This field decomposition respects the symmetries of the field equations. Here, an is a set
of arbitrary complex constants, and the functions Tn are conveniently normalized solutions to
Equation (78) (as we explain below). The subscript n can be chosen to correspond to the absolute value
of the harmonic label n for the case of the circle, to the Euclidean norm of~n for the three-torus, and to
the first index in the set n ≡ {n, `, m} for the three-sphere.

Most important for the quantization it is the fact that, given that Equation (78) is real and
of second-order, as we have commented, we can choose the complex solution Tn so that T̄n is
an independent solution. In this way, we obtain a splitting of the space of solutions between “positive
and negative” frequency modes, namely ψn(t, x) = Tn(t)Xn(x) and ψ̄n(t, x) = T̄n(t)X̄n(x). According
to the discussion in Section 3.2, there is an associated complex structure J, with corresponding
annihilation-like variables given by an = Ω(Jψ̄n, ψ) and creation-like variables provided by their
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complex conjugates. From the orthonormality of the field solutions ψn with respect to the Hermitian
inner product Ω(J · , · ), and of the eigenfunctions Xn with respect to the L2-product on Σ, it follows that

Tn
˙̄Tn − T̄nṪn = i, ∀n. (80)

In this perspective, J is ultimately defined by the functions Tn, and thus the choice of a complex
structure is equivalent to the choice of a set of complex solutions Tn to Equation (78) for every of
the LB eigenspaces, satisfying Equation (80) (see Ref. [77] for details). The field decomposition (79)
is fully adapted to this perspective, and immediately gives an expression for the field operator in
the Heisenberg picture, when the constants an and ān are replaced with annihilation and creation
operators, acting on the Hilbert space constructed from J, as described in Section 3.2.

Making contact with the canonical perspective, and since the solutions Tn are determined by
the initial conditions, we have that, in terms of the Cauchy data at the initial reference time t0,
the annihilation-like variables are given by

an = Ω
(

jt0(ḡn, f̄n
)
, (ϕ, π)); gn(x) = Tn(t0)Xn(x), fn =

√
hṪn(t0)Xn(x), (81)

where jt0 is the initial complex structure on Γ induced by J, namely jt0 = It0 J I−1
t0

.
Clearly, the group of spatial symmetries of the metric hab, say Gh, is a group of symmetries of ∆

and, consequently, of the equation of motion (74). In the same spirit of demanding invariance under
such symmetries that we adopted above, we note that a Gh-invariant complex structure does not only
allow for a unitary implementation of the spatial isometries corresponding to hab, but furthermore for
a Gh-invariant representation of the CCRs. A simple obvious choice, that ensures a Gh-invariant Fock
representation, is the massless free field representation provided by the complex structure (22),

j0(ϕ, π) =
(
− [−h∆]−1/2π, [−h∆]1/2 ϕ

)
. (82)

This complex structure defines the annihilation-like variables a0
n = [ωn ϕn + iπn]/

√
2ωn. (We

exclude in principle the zero mode. This does not affect the field properties of the system. Besides, the
zero mode can be quantized separately as a mechanical system.) Notice that j0 is determined by the
initial conditions Tn(t0) = 1/

√
2ωn and Ṫn(t0) = −i

√
ωn/2 for Equation (78) (these can be checked

to provide valid initial conditions; see, for instance, Refs. [12,13]). Indeed, substituting the complex
structure (82) into Equation (81) we get

Ω
(

j0(ḡn, f̄n), (ϕ, π)
)
= ωnT̄n(t0)ϕn + ω−1

n
˙̄Tn(t0)πn, (83)

where we have used that (−∆)±1/2Xn = ω±1
n Xn, as well as the orthonormality of the eigenfunctions

Xn with respect to the L2-product on Σ. Hence, for Tn(t0) = 1/
√

2ωn and Ṫn(t0) = −i
√

ωn/2,
the annihilation-like variables an reproduce in fact the massless free annihilation-like variables a0

n.
By constructing the j0-Fock representation, we get the annihilation and creation operators â0(γ+)

and â0 †(γ+) defined by j0 [see Equation (39)], where γ+ = (γ− ij0γ)/2 and γ ∈ Γ. Then, introducing
a Fourier decomposition, we obtain â0

n and â0 †
n , that are nothing but the result of promoting the

observables (81) and their complex conjugates [with jt0 = j0, Tn(t0) = 1/
√

2ωn, and Ṫn(t0) =

−i
√

ωn/2] to quantum operators. Explicitly, â0
n and â0 †

n are given by

â0
n =

1√
2ωn

(ωn ϕ̂n + iπ̂n), â0 †
n =

1√
2ωn

(ωn ϕ̂†
n − iπ̂†

n), (84)

where the action of ϕ̂n and π̂n on the Hilbert space is obtained from the Fourier decomposition of
Equations (37) and (38), for the complex structure characterized by a = c = 0, b = [−h∆]−1/2, and
d = −[−h∆]1/2.
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The time evolution of â0
n is dictated by a Bogoliubov transformation of the form (66), namely

âm(t) = ∑
n

(
Amn(t, t0) â0

n + Bmn(t, t0) â0 †
m

)
, (85)

with Bogoliubov coefficients

Amn(t, t0) = αn(t, t0)δmn, Bmn(t, t0) = βn(t, t0) (Xm, X̄n), (86)

where (Xm, X̄n) corresponds to (Xm, X̄n) = δ−mn for the circle case, (X~m, X̄~n) = δ−~m~n for the
three-torus, and (Xn`m, X̄n′`′m′) = (−1)mδnn′δ``′δ−mm′ for the three-sphere. The coefficients αn(t, t0)

and βn(t, t0) are given by

αn(t, t0) = i[T̄n(t0)Ṫn(t)− Tn(t) ˙̄Tn(t0)], βn(t, t0) = i[T̄n(t0) ˙̄Tn(t)− T̄n(t) ˙̄Tn(t0)]. (87)

A straightforward calculation shows that |αn(t, t0)|2 − |βn(t, t0)|2 = 1.
Notice that, instead of considering a Fourier decomposition with respect to the set of complex

functions {Xn}, one can decide to perform the expansion of the configuration and momentum of the
field in terms of explicitly real functions. In that case, the Fourier coefficients become real as well, and
no reality conditions need be imposed. Then, the corresponding Bogoliubov coefficients turn out to be
of the form

Amn(t, t0) = αn(t, t0)δmn, Bmn(t, t0) = βn(t, t0)δmn. (88)

For instance, in the S1 case, the non-zero modes of the system can be described in terms of
real canonically conjugate variables (qn, q̃n, pn, p̃n) related to the complex variables (ϕn, πn) by qn =√

2Re(ϕn), q̃n =
√

2Im(ϕn), pn =
√

2Re(πn), and p̃n =
√

2Im(πn), restricting now n to be a positive
integer, n ∈ N+. Since η̄n = η−n, for η = ϕ, π, the operators associated with

√
2Re(ηn) and

√
2Im(ηn)

are respectively given by the self-adjoint operators (η̂n + η̂−n)/
√

2 and (η̂n − η̂−n)/(i
√

2). We use this
canonical transformation to recast the Schrödinger representation, with fundamental operators ϕ̂n and
π̂n, in terms of the self-adjoint operators q̂n, p̂n, ˆ̃qn, and ˆ̃pn. The j0-annihilation operators are given by

b̂n =
1√
2n

(nq̂n + i p̂n), ˆ̃bn =
1√
2n

(n ˆ̃qn + i ˆ̃pn), (89)

and the creation operators are provided by their adjoints, b̂†
n and ˆ̃b†

n.
According to Equations (85) and (86), the time evolution of â0

m = (ωm ϕ̂m + iπ̂m)/
√

2ωm (for all
m ∈ Z and with ωm = |m|) is given by the Bogoliubov transformation

âm(t) = αm(t, t0)â0
m + βm(t, t0)â0 †

−m. (90)

The expression for â†
m(t) is obtained by taking the adjoint of Equation (90). It is not difficult to see

that â0
m and â0 †

−m are related to the annihilation and creation operators (b̂m, ˆ̃bm) and (b̂†
m, ˆ̃b†

m) by

â0
m =

1√
2
(b̂m + i ˆ̃bm), â0 †

−m =
1√
2
(b̂†

m + i ˆ̃b†
m), (91)

for all positive integers m (for negative m, â0
m and â0 †

−m can be found from the adjoint of the above

relations). The time evolution of b̂m and ˆ̃bm can be determined by substituting Equation (91) into
Equation (90),

b̂m(t) = αm(t, t0)b̂m + βm(t, t0)b̂†
m, ˆ̃bm(t) = αm(t, t0)

ˆ̃bm + βm(t, t0)
ˆ̃b†

m. (92)
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Thus, in contrast with the expression (90), where the modes m and −m are coupled, the evolution
of the annihilation operators b̂m and ˆ̃bm is fully decoupled from the rest. Although the Bogoliubov
coefficients Amn(t, t0) are the same ones as for âm(t), the coefficients of the antilinear part are now
given by

Bmn(t, t0) = βn(t, t0)δmn. (93)

The j0-Fock representation is, by construction, invariant under the isometries of the spatial
manifold Σ (S1, S3, or T3, depending on the case). This property, however, turns out not to be enough
to guarantee the uniqueness of the representation. Indeed, there are infinitely many complex structures
which do not belong to the equivalence class of j0 but are symmetry invariant. Thus, one has to look for
extra requirements in order to select a unique preferred Fock representation. A natural requirement is
to demand that the classical symplectic transformations associated with the time evolution are properly
quantized as unitary operators (note that it is pointless to ask for time invariance, since time-translation
symmetry is broken by the non-stationarity of the system). So, we restrict our attention to invariant
Fock representations that admit, in addition, a unitary implementation of the dynamics.

In summary, we require that (1) the vacuum state be invariant under the (spatial) isometries of the
manifold Σ, and that (2) the dynamics dictated by the field Equation (74) be unitarily implementable.
Remarkably, the j0-Fock representation is the unique (up to unitary equivalence) symmetry invariant
representation of the CCRs where a unitary implementation of the time evolution is available (i.e., it is
the unique Fock representation satisfying the criteria of invariance and of unitarity). Furthermore,
no canonical transformations (except for trivial ones) can lead to a field description from which
an invariant Fock representation admitting a unitary implementation of the dynamics could be defined;
i.e., the ψ-description is unique, up to trivial canonical transformations. The removal of the ambiguities
in the quantization of scalar fields with time dependent mass is discussed in Ref. [12] for the case of
the circle topology, in Refs. [13–15] for the case of the three-sphere topology, and in Refs. [43–45] for
the case of the three-torus topology. In all of these cases, it is sufficient (but not necessary) that the
function s(t) possesses a second derivative which is integrable in every compact subinterval of the
time domain.

The rest of this work is an overview of these uniqueness results obtained within the context
of cosmology; the arena in which the studies were motivated and developed. We will present
a compilation of the uniqueness results attained for the quantization of Gowdy models, and of (test)
scalar fields propagating in FLRW spacetimes, de Sitter spacetimes, and anisotropic Bianchi I universes.

4. Uniqueness of the Description for Quantum Gowdy Cosmologies

Symmetry reduced models in general relativity have received great attention, as a suitable
arena where one can study issues that may play a central role in a future quantum theory of
gravity. On the one hand, this allows us to discuss with specific examples conceptual and technical
problems that arise when one tries to conciliate gravity and quantum mechanics. On the other
hand, these reduced models are usually of physical relevance in cosmology or in astrophysical
situations. The so-called midisuperspace models [78,79], coming from reductions that keep an infinite
number of degrees of freedom, are especially relevant from the technical point of view, since they
capture at least some of the field complexity of general relativity. Among this kind of models,
the simplest model with applications in cosmology is the family of Gowdy spacetimes [18] with
linear polarization and with the spatial topology of a three-torus, T3. This is the model on which
we will focus our discussion in this Section, in order to illustrate the results obtained in recent
years about the uniqueness of the quantization of fields in cosmological scenarios. The removal of
quantization ambiguities for the rest of Gowdy spacetimes, namely the S1 × S2 and S3 models, can be
addressed in a very similar manner. After gauge fixing, the Gowdy T3 model is classically equivalent
to 2 + 1 gravity coupled to an axially symmetric scalar field [80]. So, by quantizing this field in the
fictitious (2 + 1) background, one obtains a quantum description of the Gowdy cosmology. It is
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precisely in this way that a quantization for the polarized Gowdy model was introduced in Ref. [80].
However, the proposed quantization suffered from a serious drawback: the classical dynamics was not
implementable as unitary transformations [37]. By a convenient scaling of the basic field, rendering
the fictitious spacetime as a static background, an alternate quantization that solves the commented
problem was constructed in Refs. [19,20], providing in this way a consistent quantum description
of an inhomogeneous cosmological model. It has been shown that the attained quantization is,
in fact, the unique Fock representation of the CCRs which is invariant under the gauge group that
remains in the model after gauge fixing, and such that it admits a unitary implementation of the
time evolution [21,22]. Remarkably, these criteria of invariance and of unitarity proved successful not
only to handle the issue of the uniqueness of the representation of the CCRs, but in addition singled
out in a unique way the field parametrization that must be adopted for the consistent description
of the model [22]. Let us briefly discuss this Gowdy model, its quantization, and the mentioned
uniqueness result.

After a partial gauge fixing, which removes all but a homogeneous constraint, the line element of
the linearly polarized Gowdy T3 cosmological spacetimes can be written as [39]

ds2 = eγ̃−φ/
√

p
(
−dt2 + dθ2

)
+ e−φ/

√
pt2 p2dσ2 + eφ/

√
pdδ2. (94)

Here, (∂/∂σ)a and (∂/∂δ)a are the two Killing vector fields of the model, p denotes a strictly
positive homogeneous constant of motion that is present in the system, and the function φ depends on
the time coordinate t > 0 and the angle θ ∈ S1. Except for its zero mode, containing a degree of freedom
Q that is conjugate to P = ln p, the field γ̃ is totally determined by p, φ, and its canonical momentum
Pφ [39]. The phase space Γ̃ of the midisuperspace model is coordinatized by the canonical pairs (Q, P)
and (φ, Pφ). As we have said, there is still a global constraint on the system, C0 =

∮
dθ Pφφ′/

√
2π,

that generates translations in S1, so that physical states are restricted to lie in a submanifold of Γ̃.
Here, the prime denotes the derivative with respect to θ. The time evolution is dictated by the
(explicitly time dependent) reduced Hamiltonian H =

∮
dθ [P2

φ + t2φ′ 2]/(2t). The independence of
the Hamiltonian on the “point particle” degrees of freedom (Q, P) implies that these are constants
of motion (in consonance with our previous comment about the constancy of p). Thus, a non-trivial
evolution may only take place in the field sector Γ = {(φ, Pφ)}. Since the homogeneous degrees of
freedom (Q, P) are non-dynamical and can be separately quantized by using standard methods of
quantum mechanics, we will obviate them in what follows and concentrate our discussion on the
field sector.

The reduced Hamiltonian gives the field equations Pφ = tφ̇ and Ṗφ = tφ′′. So, the dynamics of φ

is governed by

φ̈ +
1
t

φ̇− φ′′ = 0. (95)

Hence, the field sector of the model can be viewed as that of an axisymmetric, massless, free scalar
field φ propagating in a (2 + 1)-dimensional flat background ds2

0 = −dt2 + dθ2 + t2dσ2. The smooth
real solutions to Equation (95) have the form φ(t, θ) = ∑n∈Z[bn fn(t) exp(inθ) + c.c.], where bn are
(complex) constants and

fn(t) =
H0(|n|t)√

8
n 6= 0, f0(t) =

1− i ln t√
4π

. (96)

In this formula, H0 is the zeroth-order Hankel functions of the second kind [81]. Neglecting
the zero mode, the time evolution from initial time t0 to the final time t is dictated by a Bogoliubov
transformation bk(t) = α̃k(t, t0)bk + β̃k(t, t0)b̄−k, the antilinear part of which is given by

β̃k(t, t0) =
iπ|k|

4
[t0H̄1(|k|t0)H̄0(|k|t)− tH̄0(|k|t0)H̄1(|k|t)] , (97)
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where H1 is the first-order Hankel function of the second kind [81]. Since the sequence {β̃k(t, t0)}
fails to be square summable for all t and t0 [37], the time evolution is not implementable as a unitary
transformation on the kinematical Fock space constructed from the complex structure J̃, defined by the
families of positive and negative frequency modes ũ+

n (t, θ) = fn(t) exp(inθ) and ũ−n (t, θ) = u+
n (t, θ).

Moreover, the failure of a unitary implementation of the time evolution persists on the physical Hilbert
space of quantum states [38], defined by the kernel of Ĉ0, the quantum counterpart of the remaining
constraint C0.

Note that, by scaling the field by
√

t, one gets scaled solutions u+
n (t, θ) =

√
t fn(t) exp(inθ).

From the asymptotic behavior of the Hankel function H0(|n|t) in the regime of large wave numbers
|n|, it follows that u+

n (t, θ) behaves in the ultraviolet limit as the standard modes of a free scalar
field in a two-dimensional flat background (equivalent to a three-dimensional formulation with
axial symmetry), namely exp(−iπ/4)u+

n (t, θ) ≈ exp(−i|n|t + inθ)/
√

4π|n|t. This, together with
the freedom available to redefine the classical phase space through time dependent canonical
transformations, motivates the consideration of the canonical transformation

ψ =
√

tφ, Pψ =
1√

t

(
Pφ +

φ

2

)
, (98)

in order to arrive at a unitary theory. (The change ψ =
√

tφ was discussed for the first time in
Ref. [82], but just within the study of the WKB regime.) The contribution to Pψ that is linear in φ is
chosen so that the new Hamiltonian does not contain products of the field with its momentum [19]:
Hψ =

∮
dθ[P2

ψ + ψ′ 2 + ψ2/(4t2)]/2. Note that Hψ corresponds to the Hamiltonian of an axially
symmetric massless scalar field, subject to a time varying potential V(ψ) = ψ2/8t2, propagating in
a fictitious, (2+ 1)-dimensional static background ds̄2

0 = −dt2 + dθ2 + dσ2. By introducing the complex
structure j0 [see Equation (82)] on phase space Γ = {(ψ, Pψ)}, it can be shown that the resulting j0-Fock
representation admits a unitary implementation of the dynamics [19,20]. Specifically, as we have seen
in Section 3.4, the annihilation and creation-like variables defined by j0 at an arbitrary (but fixed) initial
reference time t0 are

an =
1√
2|n|

(|n|ψn + iPn
ψ) and ā−n =

1√
2|n|

(|n|ψn − iPn
ψ), (99)

where ψn and Pn
ψ are the Fourier coefficients of the field ψ and its momentum, respectively,

i.e., ψ = ∑n∈Z ψn exp(inθ)/
√

2π and Pψ = ∑n∈Z Pn
ψ exp(inθ)/

√
2π, that satisfy the canonical relations

{ψn, P−m
ψ } = δm

n . The variables (99) evolve in time according to ak(t) = αk(t, t0)ak + βk(t, t0)ā−k. Since
the time dependent mass function is s(t) = 1/(4t2) here, the Bogoliubov coefficients turn out to be
given by [19,20]

αn(t, t0) = c(xn)c̄(x0
n)− d(xn)d̄(x0

n), βn(t, t0) = d(xn)c(x0
n)− d(x0

n)c(xn), (100)

with xn = |n|t, x0
n = |n|t0, and

d(x) =
√

πx
8

[(
1 +

i
2x

)
H̄0(x)− iH̄1(x)

]
, c(x) =

√
πx
2

H0(x)− d∗(x). (101)

It is not difficult to see that |c(x)|2− |d(x)|2 = 1. Note also that βn = β−n, so that we can consider
just the sequence {βn(t, t0)} with n ∈ N+. From the asymptotic expansions of the Hankel functions for
large arguments [81], one gets [19] |d(xn)|2 = 1/(4xn)4 + o(1/x5

n). Then we see that, given any fixed
T > 0, the sequence {d(|n|T)} is square summable. The square summability of {d(xn)} and {d(x0

n)},
together with the relationship |c|2 = 1 + |d|2, imply that {βn(t, t0)} is square summable for all positive
t0 and t [19,20]. Hence, the time evolution turns out to be unitarily implementable on the kinematical
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Hilbert space F0 of the j0-Fock representation. Moreover, a direct calculation shows that the evolution
leaves invariant the constraint that remains on the system,

Ĉ0 =
∞

∑
n=1

n(â†
n ân − â†

−n â−n), (102)

that implements quantum mechanically the condition that the total (θ-)momentum of the field ψ vanish.
This invariance ensures that the dynamics is unitarily implementable not just on F0, but also on the
physical Hilbert space Fphys, defined as the kernel of the constraint (102).

Although we have specified a Fock representation that satisfies the requirements of invariance
and of unitary implementability of the dynamics, namely the j0-Fock representation, it might exist
another invariant complex structure j that admits a unitary dynamics but, however, is not equivalent
to j0. Remarkably, this cannot be the case, as it is shown in Ref. [21]. Let us emphasize this result: any
other compatible invariant complex structure j that allows for a unitary implementation of the time
evolution turns out to be in the equivalence class of j0. Indeed, a thorough analysis [21] establishes
that every compatible invariant complex structure j is related to j0 by a symplectic transformation Kj
(i.e., j = Kj j0K−1

j ) that is block diagonal, with 4× 4 blocks of the form

(Kj)n =

(
(Kj)n 0

0 (Kj)n

)
, (Kj)n =

(
κn λn

λ̄n κ̄n

)
, (103)

where |κn|2 − |λn|2 = 1. Recall then that, given a symplectic transformation S and two complex
structures, j and j0, related by another symplectic transformation Kj, namely j = Kj j0K−1

j , the antilinear
part (S + jSj)/2 is Hilbert-Schmidt with respect to the inner product 〈 · , · 〉j [see Equation (8)]
if and only if the j0-antilinear part of K−1

j SKj is Hilbert-Schmidt with respect to 〈 · , · 〉j0 (see, for
instance, Ref. [21]). By applying this result, with the relation between complex structures provided
by the symplectic transformation (103)] and by the symplectic transformation that corresponds to
time evolution,

(U)n(t, t0) =

(
Un(t, t0) 0

0 Un(t, t0)

)
, Un(t, t0) =

(
αn(t, t0) βn(t, t0)

β̄n(t, t0) ᾱn(t, t0)

)
, (104)

one arrives at the conclusion that the existence of a unitary implementation of the dynamics with
respect to j amounts to the unitary implementation of U(j)(t, t0) = K−1

j U(t, t0)Kj with respect to j0
for all possible values of t0 and t. From Equations (103) and (104), it is straightforward to see that the
antilinear part of U(j)(t, t0) is

β
(j)
n (t, t0) = κ̄2

nβn(t, t0)− λ2
n β̄n(t, t0) + 2iκ̄nλnIm[αn(t, t0)]. (105)

A rigorous analysis on the behavior of β
(j)
n (t, t0) in the asymptotic regime demonstrates that the

sequence {β(j)
n (t, t0)} is square summable (i.e., the S1-invariant j-Fock quantization admits a unitary

implementation of the time evolution) if and only if the sequence {|λn|2} is summable [21]. Since
the summability of this sequence is the condition for unitary equivalence of the Fock representations
determined by j0 and j, we then conclude that (modulo unitary equivalence) there is just a unique
compatible, invariant complex structure that permits the unitary implementation of the dynamics. That
is, the j0-Fock representation is the unique (up to unitary mappings) S1-invariant representation which
admits a unitary implementation of the dynamical transformations. By employing the algebraic state
defined by this j0-Fock representation, one can specify a S1-invariant, unitary functional representation
of the model [23].

In the previous discussion, the statement of uniqueness was circumscribed to the canonical
description of phase space in terms of the fundamental field variables (ψ, Pψ). However, one is
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certainly allowed to consider other different variables, related e.g., by means of linear canonical
transformations. In fact, it is precisely this freedom what we have used to reformulate the system in
terms of the (ψ, Pψ)-variables [see Equation (98)]. Since time dependent canonical transformations
modify the dynamics, there is still then the possibility that invariant, unitary Fock representations can
exist for a different set of basic, canonically conjugate field variables, valid as well for parameterizing
the phase space. That is to say, it could happen that the requirements of invariance and of unitarity
will not suffice to remove the ambiguity in the choice of basic field variables (at least of a certain type,
e.g., linear with respect to the original ones), forcing us to seek for additional “judicious” extra criteria in
order to select a preferred set of fundamental variables. Fortunately, this is not the case. Indeed, the
unique field description for which a S1-invariant, unitary Fock representation can be specified is
precisely the ψ-description [22].

An analysis similar to the one that we have presented above has also been performed to
achieve a unique quantum description of the linearly-polarized Gowdy S1 × S2 and S3 cosmological
models [25,26]. For that purpose, the result of uniqueness has been extended to axisymmetric fields
with a time dependent mass equal to (1 + csc2 t)/4 on S2, case which describes the field sector
(after a suitable scaling) of the Gowdy models with the spatial topology of a three-handle and
a three-sphere [24–26]. The uniqueness proven for the Gowdy models has also been generalized
to scalar fields with fairly arbitrary mass terms on S1 (and naturally continued to axisymmetric
fields on the two-sphere) [12]. Moreover, the criteria of invariance and of unitarity have been
successfully extended as well so as to remove the ambiguities in the quantization of scalar fields
with time dependent mass propagating in static backgrounds with the spatial topology of either
a three-sphere [13–15] or a three-torus [43,45], thus providing a unique preferred Fock representation
for test KG fields in FLRW and de Sitter spacetimes, as we will see in the following two Sections.

5. Scalar Fields in FLRW Spacetimes: Invariance, Unitarity, and Uniqueness

For a free scalar field φ with mass m propagating in an expanding FLRW universe, the number
density of created particles diverges, so that the Bogoliubov transformation dictating the time evolution
turns out to be non-unitary on the Hilbert space of the quantum theory (see, for instance, Refs. [83–87]).
However, for spatially compact FLRW spacetimes, with slices Σ = S3 (closed FLRW universes) or
Σ = T3 (flat FLRW universes), a Fock representation with the properties of (i) invariance under
the isometries of the spatial manifold Σ, and (ii) a unitary implementation of the dynamics, can be
specified in the scaled field description, ψ = aφ. The Fock quantization is, in fact, the unique (up to
unitary mappings) representation of the CCRs that satisfies our criteria of invariance and of unitarity.
Moreover, the (scaled) field description ψ is the unique one (up to trivial canonical transformations)
for which an invariant Fock representation with unitary dynamics can be specified. In this Section,
we will overview these results about the uniqueness of the quantization of (test) KG fields in closed
and (spatially compact) flat FLRW spacetimes.

5.1. Closed FLRW Spacetimes

Let us first consider the case of closed universes. As we have mentioned, after rescaling the field
with the conformal factor we get a KG-field ψ, subject to a time varying potential V(ψ) = s(t)ψ2/2,
propagating in a globally hyperbolic, static (3 + 1)-dimensional background (M ≈ I× S3, gαβ), where
gαβ is given by Equation (75) with t ∈ I = R+ and

habdxa dxb = dχ2 + sin2(χ)dθ2 + sin2(χ) sin2(θ)dσ2. (106)

Here, σ ∈ S1 and χ, θ ∈ (0, π). The field ψ satisfies the linear wave Equation (74), with ∆ being
the LB operator on S3 [here, we will assume that s(t) is a sufficiently regular function, with the specific
conditions on it given below]. Since the metric is SO(4)-invariant, so is the LB operator, and we thus
have that the group of rotations SO(4) is a group of symmetries of the field dynamics. Hence, we
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will look for a complex structure that determines a representation where both the dynamics and the
group of SO(4) symmetries can be unitarily implemented. For this purpose, we consider the complex
structure (82) with h = sin2(θ) sin4(χ) (and ∆ the LB operator on S3). Since this complex structure
provides a SO(4)-invariant representation, we just need to check whether or not the time evolution
is unitarily implementable. Indeed, the dynamics turns out to admit a unitary implementation in
the massless free field representation defined by j0, as we will now show (for a detailed proof, see
Ref. [13]).

Following our discussion in Section 3.4, let us adopt a description of the field in terms of harmonics.
As it is known, the (hyper)spherical harmonics Xn = Qn`m of order (n, `, m) on S3 are eigenfunctions of
∆, with eigenvalues −n(n + 2). They form an orthonormal basis for the expansion of scalar functions
on the three-sphere (see, for instance, Refs. [30,88–91]). Here, n ∈ N, 0 ≤ ` ≤ n, and −` ≤ m ≤ `.
The harmonics Qn`m, normalized with respect to the L2-product on S3, read

Qn`m(χ, θ, σ) = 2`(`!)

√
2(n− `)!(n + 1)

π(n + `+ 1)!
sin`(χ)C(`+1)

n−` [cos(χ)]Y`m(θ, σ), (107)

where Y`m are the spherical harmonics on S2 and C(`+1)
n−` [cos(χ)] are the Gegenbauer

polynomials [81,92]. The scalar harmonics Qn`m span an irreducible (n + 1)2-dimensional
representation of SO(4) for each fixed n. The behavior of the spherical harmonics under complex
conjugation, Ȳ`m = (−1)mY`−m, is inherited by the scalar harmonics on S3, Q̄n`m = (−1)mQn`−m.
In terms of the real basis of scalar harmonics, the field ψ can be written as

ψ(t, x) = ∑
n,`

qn`0Qn`0 +
√

2 ∑
n,`,m>0

qn`mRe[Qn`m] +
√

2 ∑
n,`,m>0

qn`−mIm[Qn`m], (108)

where the coefficients qn`m are real functions of time only, because ψ is a real field. From the field
Equation (74), using complex conjugation and the orthogonality properties of Qn`m, it follows that all
modes qn`m with the same n satisfy the same equation of motion, namely

q̈n`m + (ω2
n + s)qn`m = 0; ω2

n = n(n + 2). (109)

Thus, the modes qn`m obey completely decoupled equations of motion, that depend only on n.
Clearly, the configuration space of the theory is in one-to-one correspondence with the space of all real
coefficients {qn`m}. We will denote it asQ = ⊕nQn, whereQn is the (n + 1)2-dimensional linear space
spanned by the configuration modes qn`m with the same label n. The variables canonically conjugate
to the configurations qn`m are the momenta pn`m = q̇n`m. From the basic PB {ϕ(x), π(x′)} = δ(x− x′)
and the orthogonality of the scalar harmonics, one can see that

{qn`m, pn′`′m′} = δnn′δ``′δmm′ , {qn`m, qn′`′m′} = 0, {pn`m, pn′`′m′} = 0. (110)

So, in the canonically conjugate variables qn`m and pn`m, the phase space Γ can be decomposed
as the direct sum Γ = ⊕nΓn, with Γn = Qn ⊕Pn, where Pn is the linear space of dimension (n + 1)2

spanned by the momentum modes pn`m. Both the configuration and momentum spaces Qn and Pn

carry an irreducible representation of SO(4) of dimension (n + 1)2 which, in fact, is the same for the
two spaces.

Let us introduce now the complex structure (82). For all modes with n 6= 0, the real variables of
configuration and momentum, qn`m and pn`m, are related to the annihilation and creation-like variables
defined by j0 as follows:

an`m =
1√
2ωn

(ωnqn`m + ipn`m), ān`m =
1√
2ωn

(ωnqn`m − ipn`m). (111)
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For the sake of simplicity in the presentation, we will drop the n = 0 mode in the rest of our
discussion. As a single decoupled mode from the rest of degrees of freedom, it can be quantized [at
least for non-negative functions s(t)] by using the Schrödinger representation of ordinary quantum
mechanics on the Hilbert space L2(R, dq000).

We now construct the j0-Fock representation of the CCRs. As discussed in Section 3.2, the relevant
Hilbert space is Hj0 ; that is, the space of square integrable complex functions with respect to
the Gaussian measure (37), with b−1 = (−h∆)1/2, on the infinite dimensional linear space Q.
The configuration and momentum are represented as in Equation (38), with c = 0. By performing the
expansion in modes, one gets that the measure and the representation of the fundamental operators are

d$ = ∏
n,`,m

√
ωn

π
exp(−ωnq2

n`m)dqn`m, (112)

q̂n`mΨ = qn`mΨ, p̂n`m = −i
∂

∂qn`m
Ψ + iωnqn`mΨ, (113)

with Ψ ∈ Hj0 . The annihilation and creation operators are given in terms of the self-adjoint
operators q̂n`m and p̂n`m by ân`m = (ωn q̂n`m + i p̂n`m)/

√
2ωn and the adjoint of this definition for

â†
n`m. The vacuum state Ψ0 is the state annihilated by all the operators ân`m, namely the state satisfying

the condition ωn q̂n`mΨ0 = −i p̂n`mΨ0, which in turn implies that ∂Ψ0/∂qn`m = 0 (i.e., up to a constant
phase, Ψ0 is the unit constant function, since dρ is a probabilistic measure and Ψ0 is normalized). Fock
states are generated by repeatedly applying â†

n`m on Ψ0. The Hilbert space Hj0 , together with the
action (113) of the operators q̂n`m and p̂n`m, or equivalently with the action of the set of annihilation
and creation operators {ân`m, â†

n`m}, constitute the j0-Fock representation.
In view of the decoupling between degrees of freedom, and since the dynamical equations are

independent of ` and m, one can check (see Equation (88)) that the time evolution of the annihilation
and creation operators is given by a Bogoliubov transformation of the form

ân`m(t) = αn(t, t0)ân`m + βn(t, t0)â†
n`m, â†

n`m(t) = ᾱn(t, t0)â†
n`m + β̄n(t, t0)ân`m. (114)

The Bogoliubov coefficients αn and βn are determined by Equation (87), where Tn is related to the
solutions of the differential equation

q̈n + (ω2
n + s)qn = 0 (115)

by qn(t) = AnTn(t) + ĀnT̄n(t). Since Tn(t0) = 1/
√

2ωn and Ṫn(t0) = −i
√

ωn/2, we have that
qn(t0) = (An + Ān)/

√
2ωn and q̇n(t0) = i

√
ωn/2(Ān − An).

On the other hand, writing Tn(t) = exp[ωnΘ(t)]/
√

2ωn, we get from Equation (78) that Θn must
obey the equation

ωnΘ̈n + ω2
nΘ̇2

n + ω2
n + s = 0. (116)

The initial conditions now read Θn(t0) = 0 and Θ̇n(t0) = −i. The Bogoliubov coefficients αn

and βn are obtained by substituting Tn(t) = exp[ωnΘ(t)]/
√

2ωn into Equation (87). In particular, we
get that

βn(t, t0) =
1
2

eωnΘ̄n(t)
[
1 + i ˙̄Θn(t)

]
. (117)

The time evolution will be implemented as a unitary transformation on the Hilbert space if and
only if {|βn|2} is summable, i.e.,

∞

∑
n=1

n

∑
`=0

`

∑
m=−`

|βn(t, t0)|2 =
1
4

∞

∑
n=1

gne2ωnRe[Θ̄n(t)]|1 + i ˙̄Θn(t)|2 < ∞, (118)
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where gn = (n + 1)2 is the degeneracy factor counting the number of degrees of freedom with
the same dynamics. Introducing the function Rn(t) = iωn[1− iΘ̇n(t)] and using that Θn(t0) = 0,
condition (118) can be rewritten as follows:

∞

∑
n=1

(
gn

ω2
n

)
e2
∫ t

t0
Re[Rn ]|Rn(t)|2 < ∞. (119)

From Equation (116) and the mentioned initial condition on Θ̇n, it follows that the functions Rn

satisfy the first order differential equations

Ṙn − 2iωnRn + R2
n + s = 0, (120)

with initial condition Rn(t0) = 0. Let us consider the functions

R̄n(t) = −e2iωnt
∫ t

t0

e−2iωnτs(τ) dτ. (121)

By assuming that the derivative of s(t) exists and is integrable in every closed interval [t0, t],
one can integrate by parts Equation (121) and check that there is a function C(t), independent of n,
such that |R̄n(t)| ≤ C(t)/ωn. Thus, in the asymptotic regime (i.e., for asymptotically large n), R̄2

n is
negligible compared with ωnR̄n. Besides, since R̄n(t) is a solution to the equation Ṙn − 2iωnRn + s = 0
with R̄n(t0) = 0, we then conclude that the functions R̄n(t) can be taken (up to higher order corrections)
as asymptotic solutions to Equation (120). Hence, apart from subdominant terms, condition (119)
amounts to requiring that the sequence {C(t)/ωn} be square summable, something that certainly
holds. So, the time evolution admits a unitary implementation in the j0-Fock representation.

So far, we have seen that there is a representation that satisfies the requirements of symmetry
invariance [SO(4)-invariance] and of unitary implementability of the dynamics, namely the j0-Fock
representation. The next question to answer is whether these two properties are enough to remove
completely the inherent ambiguity in the representation of the CCRs or not. Are there distinct (i.e., not
unitarily equivalent) representations with the same properties of invariance and unitarity? Remarkably,
the answer is in the negative. Though there are infinitely many inequivalent SO(4)-invariant
Fock representations, the requirement of a unitary implementability of the field dynamics singles
out a unique family of unitarily equivalent representations (specifically, equivalent to the j0-Fock
representation). Indeed, as it is shown in Ref. [13], the annihilation operators â(j)

n`m defined by
an arbitrary SO(4)-invariant complex structure j are related to the j0-annihilation and creation
operators, ân`m and â†

n`m, by a Bogoliubov transformation â(j)
n`m = κn ân`m + λn â†

n`m, where κn and
λn are time independent complex coefficients satisfying |κn|2 − |λn|2 = 1. The antilinear part of the
time evolved operator â(j)

n`m is given by

β
(j)
n (t, t0) = κ2

nβn(t.t0)− λ2
n β̄n(t, t0) + 2iκnλnIm[ᾱn(t, t0)], (122)

where, as we have already seen,
√

gnβn(t, t0) is square summable. Then, performing an analysis along

the lines of Ref. [13], one can show that
√

gnβ
(j)
n (t, t0) is square summable if and only if the sequence

{√gnλn} is square summable, assuming that the second derivative of the mass function s(t) exists and
is integrable in every compact subinterval of I [13]. Hence, the Fock representation constructed from
the SO(4)-invariant complex structure j will allow to implement the dynamics as a unitary mapping
if and only if j is equivalent to j0. Thus, up to unitary transformations, the j0-Fock representation is
unique: the criteria of symmetry invariance and of unitary implementability of the time evolution
select a unique preferred representation of the CCRs.

Two remarks about the j0-Fock quantization are in order.
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(1) Let us recall that given a free scalar field φ propagating in a globally hyperbolic spacetime,
a Hadamard representation of the CCRs can be specified [1] by looking for a vacuum state with
a two-point function 〈φ(x)φ(y) + φ(y)φ(x)〉 that has a short-distance behavior of the Hadamard
type [93]. Although the Hadamard criterion does not suffice to pick out a unique preferred
quantization in general, it has been shown that, for the case of free scalar fields in spacetimes
with compact Cauchy slices, all Hadamard vacua belong to the same class of unitarily equivalent
states [1]. Since this result applies to a free scalar field propagating in a closed FLRW spacetime,
we have at our disposal two different criteria (the Hadamard approach, on the one hand, and
the discussed requirements of invariance and unitarity, on the other hand) in order to select
a unique preferred quantization of the scalar field. One may be wonder whether the unitary and
the Hadamard quantizations are in conflict or not. The answer, as it is shown in Ref. [17], is that no
conflict arises between the two approaches. In fact, since Hadamard states are unitarily equivalent
to adiabatic vacuum states [94,95], one can proceed to translate the form of adiabatic states from
the original φ-description to the scaled ψ-description (ψ = aφ) and then realize the equivalence
of the resulting quantization with the j0-Fock representation [17]. That is, when the Hadamard
quantization is reformulated in the scaled field description, the resulting representation of the
CCRs is related to the j0-Fock representation by means of a unitary transformation. So, in the
framework of the scaled ψ-description, the Hadamard and the unitary quantizations allow for
equivalent physical predictions. It is in this sense that one can assure that there is no tension
between the invariant, unitary j0-Fock representation and the Hadamard quantization.

(2) As we have mentioned in Section 3.1, the choice of fundamental classical variables involves an
inherent ambiguity in the quantization of both mechanical and field systems. On account of this
ambiguity, it is natural to ask whether a quantization with SO(4) invariance and unitary dynamics
can be achieved for a distinct pair of fundamental canonically conjugate variables, say (ζ, Pζ),
related to (ϕ, π) by a time dependent canonical transformation, compatible with the symmetries
of the field equations and with all linear structures on phase space, namely

ζ = F(t)ϕ, Pζ =
π

F(t)
+ G(t)

√
hϕ. (123)

Here, F and G are restricted to be smooth real functions of time, with F(t) different from zero
everywhere. Without loss of generality, one can set F(t0) = 1 and G(t0) = 0. (In fact, the initial
values F(t0) and G(t0) define an irrelevant time independent linear canonical transformation,
which does not modify the spatial symmetries, nor the dynamics. The quantum representation
for the transformed and the original fields is actually the same [22].)

In this way, relationships (123) carry all the time dependence of the possible change of variables.
By analyzing the new dynamics obtained with the transformation (123), it has been demonstrated
in Refs. [14,15] that no transformation of this type (apart for the identity) can lead to a classical
evolution that admits a unitary implementation with respect to any of the Fock representations
defined by a SO(4) invariant complex structure. Hence, the criteria of invariance and of unitarity
fix not only the representation of the CCRs (up to unitary transformations) but, remarkably, the
choice of field description as well. In this sense, the ambiguities in the quantization process are
fully removed.

5.2. Flat FLRW Spacetimes

Let us now consider a real scalar field φ propagating in a flat FLRW background with the spatial
topology of a three-torus. By scaling the field with the conformal factor, the system can be described
as a KG-field ψ, subject to a time dependent potential V(ψ) = s(t)ψ2/2, propagating in a fictitious
(3 + 1)-dimensional static spacetime (M, gαβ), with M ≈ I × T3 and gαβ given by Equation (75),
with t ∈ I = R+ and an induced spatial metric hab equal to the standard metric of the three-torus.
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The canonical phase space can be described as in the discussion below Equation (75) of Section 3.4.
The field dynamics, that is governed by Equation (74) with ∆ being the LB operator on T3, is invariant
under the group of isometries of the three-torus formed by rigid rotations in each of the periodic spatial
directions that diagonalize the spatial metric, Rθi : xi → xi + θi, with θi ∈ S1, and i = 1, 2, 3. We will
denote the composition Rθ1 ◦ Rθ2 ◦ Rθ3 by R~θ , with~θ = (θ1, θ2, θ3).

The configuration and momentum can be decomposed as in Equation (76), taking as the basis
{Xn(x)} of the space of square integrable functions on T3 the eigenfunctions of the LB operator
exp(i~n ·~x)/(2π)3/2, where~n = (n1, n2, n3), ni ∈ Z (i = 1, 2, 3), and the corresponding eigenvalues are
equal to −ω2

n = −~n ·~n. Since the field is real, we have that the associated complex Fourier coefficients
ϕ~n and π~n satisfy ϕ̄~n = ϕ−~n and π̄~n = π−~n. To avoid having to deal with these reality conditions,
we will expand the configuration and momentum in the alternative basis of real eigenfunctions
{cos(~n ·~x), sin(~n ·~x)}. Furthermore, since the ultraviolet obstructions to the unitary implementation
of the time evolution do not depend on the removal of a finite number of degrees of freedom from the
system, we will ignore the zero mode~n = (0, 0, 0) from now on. The exclusion of this mode does not
alter the field properties of the system and it can be quantized separately. In terms of Fourier modes
corresponding to sines and cosines, the configuration and momentum are given by [43–45]

ϕ(t,~x) =
1

π3/2 ∑
~n
[q~n(t) cos(~n ·~x) + q̃~n(t) sin(~n ·~x)] , (124)

π(t,~x) =

√
h

π3/2 ∑
~n
[p~n(t) cos(~n ·~x) + p̃~n(t) sin(~n ·~x)] . (125)

Only triples ~n of integers in which the first non-zero component is positive are contained in
the sum. All different triples satisfying this restriction are to be summed over (once each of them).
Since π =

√
hϕ̇, we have that p~n = q̇~n and p̃~n = ˙̃q~n. From the basic PB {ϕ(x), π(x′)} = δ(x− x′) and

Equations (124) and (125), one can check that the only non-vanishing PB are {q~n, p~n′} = {q̃~n, p̃~n′} = δ~n~n′ .
The equations of motion for the field modes coincide in each eigenspace of the LB operator, with

eigenvalue −ω2
n [see (78)],

q̈~n = −(ω2
n + s)q~n, ¨̃q~n = −(ω2

n + s)q̃~n. (126)

It is worth noticing that, in contrast with the situation encountered for closed universes, where
the number of independent eigenfunctions with the same eigenvalue is simple to derive in an exact
form, in flat universes the degeneracy gn of each eigenspace of the LB operator presents a complicated
dependence on the label n because of the existence of accidental degeneracy. Indeed, apart from the
triples related by permutations of the components, or by a flip of sign in one of the components, one
can find triples which lead to the same eigenvalue. Nonetheless, even though the exact dependence
of the degeneracy with n cannot be given explicitly, an inspection of the asymptotic behavior of gn

allows us to conclude that the sequence formed by gn/ω4
n is, in fact, summable [45] (see also Ref. [43]).

The argument is as follows. Recall that the triples are restricted to have a positive integer as their first
non-vanishing component. However, since there exist two modes for each value of ~n, namely the
cosine and sine modes, we can assign these two modes to the pair of vectors (~n,−~n). So, in spite of the
existing restriction, we can make correspond modes to all vectors with integer components, with the
zero excluded. Let DN be the number of modes for which the eigenvalue function ωn is in the interval
(N, N + 1], with N a natural number. Geometrically, DN is nothing but the number of vertices of the
cubic lattice with step equal to one that are contained between the sphere of radius N and the sphere
of radius N + 1 (including the surface of this latter sphere). Therefore, DN increases with N like N2

and, consequently, the sum ∑N(DN/N4) is finite. Since 1/ωn is strictly decreasing with n, we have
that ∑n(gn/ω4

n) ≤ ∑N(DN/N4), inequality from which the result follows.
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As in our previous discussions, let us call t0 ∈ I the initial reference time. At t = t0 we introduce
the complex structure j0 defined in Equation (82). Since this complex structure is totally determined by
the spatial metric, it is invariant under the three-torus isometries. The j0 annihilation-like variables are

a~n =
1√
2ωn

(ωnq~n + ip~n), ã~n =
1√
2ωn

(ωn q̃~n + i p̃~n). (127)

The corresponding creation-like variables are given by the complex conjugates ā~n and ¯̃a~n.
The annihilation and creation-like variables provide a complete set of coordinates on phase space.
The action of j0 is diagonal in these variables; namely, j0(a~n) = ia~n, j0(ā~n) = −iā~n, and likewise for ã~n
and ¯̃a~n. Given that the different Fourier modes decouple in the dynamics and, in addition, the equations
of motion for them depend only on the LB operator, we get that the Bogoliubov coefficients of the time
evolution transformation from t0 to t have the form (88), namely

a~n(t) = αn(t, t0)a~n + βn(t, t0)ā~n, ā~n(t) = ᾱn(t, t0)ā~n + β̄n(t, t0)a~n, (128)

and similarly for ã~n and ¯̃a~n. The Bogoliubov coefficients αn and βn are given as in Equation (87), with T
being replaced with q, when time evolution is that of the pair (a~n, ā~n), and with q̃ when the considered
evolved pair is (ã~n, ¯̃a~n).

Taking into account the degeneracy gn of the eigenspaces of the LB operator, we have that
the time evolution is unitary implementable in the Fock representation defined by j0 if and only
if the sequence {gn|βn(t, t0)|2} is summable for all possible values of t ∈ I. From the analysis
performed in Section 5.1, it follows that, in the ultraviolet regime and provided that the function
s(t) has an integrable first derivative in every closed time subinterval, the antilinear coefficients
βn(t, t0) behave as βn(t, t0) = O(ω−2

n ), where the symbol O indicates the asymptotic order. Therefore,
the unitarity of the dynamics depends upon the asymptotic behavior of the sequence {gn/ω4

n}. Since
this sequence is certainly summable, as we have seen above, we conclude that the time evolution is
unitarily implementable with respect to the complex structure j0.

In this way, we have at hand a Fock representation which is invariant under the isometries of the
three-torus consisting of the transformations R~θ , and which allows for a unitary implementation of the
dynamics. In order to know whether or not this representation is unique, we need to examine how
many classes of unitarily equivalent representations have elements in the whole family of invariant and
unitary Fock representations. Remarkably, the answer is that this family consists of representations in
one and only one equivalence class. The sketch of the proof is as follows (see Refs. [43,45] for details).

The first step is to characterize the compatible complex structures that are invariant under the
group of transformations R~θ . A careful analysis shows that, for every invariant complex structure j
(compatible with the symplectic structure), the annihilation and creation-like variables defined by j are
related to the corresponding variables for j0 by a Bogoliubov transformation which only mixes modes
with the same labels~n (and the mixing depends only on this label) [43,45]. Specifically,(

a(j)
~n

ā(j)
~n

)
=

(
κ~n λ~n
λ̄~n κ̄~n

)(
a~n
ā~n

)
,

(
ã(j)
~n

¯̃a(j)
~n

)
=

(
κ~n λ~n
λ̄~n κ̄~n

)(
ã~n
¯̃a~n

)
, (129)

where the coefficients κ~n and λ~n satisfy that |κ~n|2 − |λ~n|2 = 1 for all~n. Thus, the antilinear part of the
time evolved annihilation-like variables a(j)

~n and ã(j)
~n is given by

β
(j)
~n (t, t0) = κ2

~nβn(t, t0)− λ2
~n β̄n(t, t0) + 2iκ~nλ~nIm[ᾱn(t, t0)]. (130)

The next step in the proof is to suppose that β
(j)
~n (t, t0) in Equation (130) is square summable

(i.e., we suppose that the j-Fock representation allows, indeed, for a unitary implementation of the
dynamics). It is a simple matter to see that the square summability of β

(j)
~n (t, t0) and that of βn(t, t0),
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that we have already proven, imply that {(λ~n/κ~n)Im[ᾱn(t, t0)]} is square summable. By using the
ultraviolet behavior of alpha, αn(t, t0) = exp[−iωn(t, t0)] + O(ω−1

n ), and assuming that the mass
function s(t) possesses a second derivative which is integrable in every closed subinterval of I,
an average in time together with a suitable application of Luzin’s theorem [96] shows then that
{|λ~n/κ~n|2} is summable [43,45]. Employing that |κ~n|2 − |λ~n|2 = 1, one can see that {λ~n} must be
square summable as well. But this summability is precisely the necessary and sufficient condition
for the representations given by j and j0 to be unitarily equivalent. Therefore, the family of invariant
and dynamically unitary Fock representations contains representations in only one equivalence class,
namely that of j0.

The requirements of invariance under spatial symmetries and of unitary implementability of the
time evolution select, apart from a unique family of unitarily equivalent Fock representations, a unique
preferred canonical pair of field variables. Indeed, consider the most general form of a time dependent,
linear canonical transformation scaling the field,

ξ = F(t)ϕ, Pξ =
π

F(t)
+ G(t)

√
hϕ, (131)

where F(t) and G(t) are assumed to be twice differentiable real functions, with initial values set
(without loss of generality) to F(t0) = 1 and G(t0) = 0, and such that F(t) is non-vanishing. Then,
one can show [43,45] that a unitary evolution with respect to a complex structure that is R~θ -invariant
is only possible when F(t) and G(t) are the unit and the zero constant functions, respectively. That is
to say, no time dependent scaling or redefinition of the field momentum is allowed. In total, we have
that the ambiguities in the Fock quantization coming from the scaling of the field and from the choice
of representation are fully removed.

6. Uniqueness for Scalar Fields in de Sitter Spacetime

Let us now consider the propagation of a minimally coupled, massless, and real scalar field φ in
de Sitter spacetime, the maximally symmetric spacetime of positive constant curvature. In conformal
time, the metric can be written in the form

gαβdxαdxβ = a2(t)
[
−dt2 + habdxadxb

]
, (132)

where the conformal factor is a2(t) = 12R−1 sin−2(t), with R denoting the constant spacetime
curvature. Besides, hab is the standard metric of the three-sphere, given in Equation (106). Scaling
the field with a(t), one gets that the dynamics of the new field ψ = aφ is dictated by Equation (74),
namely ψ̈− ∆ψ + s(t)ψ = 0. Here, s(t) = 1− Ra2/6 and ∆ is the LB operator on S3, the eigenfunctions
of which are the harmonics Qn`m given in Equation (107), ∆ Qn`m = −ω2

nQn`m with ω2
n = n(n + 2).

Owing to the complete analogy of the system with that of a (re-scaled) KG field propagating in a closed
FLRW spacetime, discussed in Section 5.1, for which a unique preferred Fock representation was
specified for quite generic mass terms s(t), we could already claim that the criteria of unitary dynamics
and of invariance of the vacuum under the spatial symmetries single out a unique quantization for the
scalar field in de Sitter spacetime. For the sake of completeness, however, we will briefly discuss the
quantization in a slightly different way, by considering complex modes and (see below) a frequency
that differs from ωn in the introduction of annihilation and creation-like variables.

Since the harmonics provide a complete and orthonormal set for the expansion of functions on
the three-sphere, we can write the field ψ as

ψ(t, x) = ∑
n,`,m

ϕn`m(t)Qn`m(x). (133)

Since ψ is a real field and Q̄n`m = (−1)mQn`−m, we have that the time dependent coefficients
ϕn`m must satisfy the reality conditions ϕ̄n`m = (−1)m ϕn`−m. Introducing the decomposition (133)
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into the field equation, we get that the time depending complex coefficients ϕn`m obey the equation of
motion (78) which, after substituting a(t) = 12R−1 sin−2(t) and ω2

n = n(n + 2), reads

ϕ̈n +
[
ω̃2

n − 2 sin−2 t
]

ϕn = 0, (134)

where n collectively denotes the triple of indices (n, `, m) and ω̃2
n = (ω2

n + 1) = (n + 1)2. The general
solution to Equation (134) is [46]

ϕn(t) = An
√

sin tPµ
ν (− cos t) + Bn

√
sin tQµ

ν (− cos t), (135)

where Pµ
ν and Qµ

ν are the associated Legendre functions [81,92] with ν = n+ 1/2 and µ = 3/2, whereas
An and Bn are arbitrary complex constants. Given that the field momentum is π =

√
hψ̇, we have that

its Fourier coefficients πn =
∫

πQ̄nd3x, that satisfy the reality conditions π̄n`m = (−1)mπn`−m, are
related to ϕn by πn = ϕ̇n. From this relationship and Equation (135), one gets that the time evolution
from an arbitrary initial reference time t0 to a final time t takes the form [46](

ϕn(t)
πn(t)

)
= Tn(t, t0)

(
ϕn(t0)

πn(t0)

)
, Tn(t, t0) = Wn(t)W−1

n (t0), (136)

with

Wn(t) =

(
Rµ

ν (− cos t) Sµ
ν (− cos t)

Ṙµ
ν (− cos t) Ṡµ

ν (− cos t)

)
, (137)

where Rµ
ν (− cos t), Sµ

ν (− cos t), and their time derivatives are

Rµ
ν (− cos t) =

√
sin tPµ

ν (− cos t), Sµ
ν (− cos t) =

√
sin tQµ

ν (− cos t),

Ṙµ
ν (− cos t) =

1√
sin η

[
(ν + 1/2) cos tPµ

ν (− cos t) + (ν + µ)Pµ
ν−1(− cos t)

]
,

Ṡµ
ν (− cos t) =

1√
sin η

[
(ν + 1/2) cos tQµ

ν (− cos t) + (ν + µ)Qµ
ν−1(− cos t)

]
. (138)

Let us now introduce the annihilation and creation-like variables

an =
1√
2ω̃n

(ω̃n ϕn + iπn), ān =
1√
2ω̃n

(ω̃n ϕ̄n − iπ̄n). (139)

The relation between the variables (139) and the corresponding ones associated to the frequency
ωn, i.e., bn = (ωn ϕn + iπn)/

√
2ωn and b̄n = (ωn ϕ̄n − iπ̄n)/

√
2ωn (where we exclude the zero

mode), is given by a Bogoliubov transformation bn = α̃nan + β̃n ān characterized by α̃n = (ω̃n +

ωn)/2
√

ω̃nωn and β̃n = (ω̃n − ωn)/2
√

ω̃nωn. A direct calculation shows that the square of the
antilinear part, which is given by |β̃n|2 = 1/(2yn) + (yn/2)− 1, where yn = (1− ω̃−2

n )1/2, behaves
as O(ω̃−4

n ) in the asymptotic regime, so that {(n + 1)2|β̃n|2} is summable [recall that the degeneracy
factor is gn = (n + 1)2]. Hence, the complex structures defined by the choice of annihilation and
creation-like variables (an, ān) and (bn, b̄n) give rise to unitary equivalent Fock representations. Since
the variables (bn, b̄n) are nothing but those associated with the complex structure j0, they define
an O(4)-invariant Fock representation. On the other hand, since the variables (an, ān) are defined by
a complex structure j0̃ (equivalent to j0) which also depends on the LB operator only, we conclude that
the j0̃-Fock representation is O(4)-invariant as well.
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From Equations (136) and (139), and using the reality conditions for the Fourier coefficients ϕn

and πn, we get that the annihilation and creation-like variables evolve according to(
an`m(t)

(−1)m ān`−m(t)

)
= Un(t, t0)

(
an`m(t)

(−1)m ān`−m(t)

)
, (140)

where

Un(t, t0) =MnTn(t, t0)M−1
n =

(
αn(t, t0) βn(t, t0)

β̄n(t, t0) ᾱn(t, t0)

)
; Mn =

1√
2ω̃n

(
ω̃n i
ω̃n −i

)
. (141)

The coefficients αn and βn can be explicitly obtained from the matrices Wn, relations (138), and the
matrices Tn andMn. Taking into account the asymptotic behavior of the functions Pν and Qν at large
values of the degree ν = n + 1/2 (see for instance Ref. [92]), a lengthy but direct calculation shows that
βn(t, t0) is of order O(n−2) in the ultraviolet regime [46]. Hence, we have that

√
gnβn(t, t0) is of order

O(n−1), and consequently

∞

∑
n=0

n

∑
`=0

`

∑
m=−`

|βn(t, t0)|2 =
∞

∑
n=0

(n + 1)2|βn(t, t0)|2 < ∞, (142)

for all values of t0 and t. Thus, the dynamics is unitarily implementable in the j0̃-Fock representation.
This conclusion corrects the claims of Ref. [97], where it is argued that one cannot attain quantum
unitarity of the evolution for the massless field in de Sitter spacetime, independent of the field
redefinition φ→ f (t)φ. We have seen that it is perfectly possible to find suitable canonical variables
and construct for them a well-defined Fock quantization such that the dynamics admits a unitary
implementation.

It it worth pointing out that our unitarity result holds as well for any massive free field.
The Fock representation defined by the choice (139) of annihilation and creation-like variables
provides a quantum description where the time evolution of a free massive field admits a unitary
implementation. Indeed, it can be verified from the asymptotic behavior of Pµ

ν and Qµ
ν that,

for any constant value of the parameter µ, including complex numbers and the massive case
µ = (9/4 − 12m2/R)1/2, the corresponding beta coefficient in the Bogoliubov transformation of
the time evolution satisfies that βn(t, t0) = O(n−2) when n → ∞ for all t and t0 [46]. Hence, given
a scalar field with m ≥ 0, there exists at least one Fock representation where the time evolution is
implementable as a unitary operator. Moreover, in view of the uniqueness of the j0-Fock representation
for scalar fields with time dependent mass on S3 [see Section 5.1], and that j0̃ is equivalent to j0,
one can conclude that the j0̃-Fock representation provides the unique (up to unitary equivalence) Fock
representation of the CCRs that satisfies the criteria of invariance and of unitarity for KG fields (massive
or not) in de Sitter spacetime. Furthermore, the unique field description from which an invariant Fock
representation with unitary dynamics can be specified is the ψ-description.

Finally, let us discuss briefly the connection between this quantization and the choice of (translated)
Hadamard states (in the ψ-description). For massive free fields in de Sitter spacetime, the standard
Fock representation is accomplished by using mode solutions of the form (135), with µ = (9/4−
12m2/R)1/2 and

An =

√
π

4
Γ(n− µ + 3/2)
Γ(n + µ + 3/2)

eiπµ/2, Bn = −2i
π

An, (143)

that provide a unique invariant solution under the full O(1, 4) symmetry group, satisfying the
Hadamard condition [98,99]. Explicitly, this solution is defined by the modes

χn(t) = An

[
Rµ

ν (− cos t)− 2i
π

Sµ
ν (− cos t)

]
. (144)
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The vacuum of the corresponding Fock representation is known as the Bunch-Davies
vacuum [100]. The question naturally arises of whether or not the j0̃-Fock quantization is unitarily
equivalent to the representation based on the Bunch-Davies vacuum, that follows from the requirement
of full de Sitter invariance and the Hadamard condition in the massive field case. The answer, as it is
shown in Ref. [46], is that these two quantizations turn out to be unitarily equivalent. So, no tension
arises between the j0̃-Fock representation (specified by imposing the requirements of invariance and of
unitarity of the dynamics) and the standard Fock representation defined by the Bunch-Davies vacuum.

For the massless case, the definition of the Bunch-Davies vacuum breaks down and there is no de
Sitter-invariant Hadamard vacuum [98]. However, since this is due to the dynamics of the zero mode
only [98,99], we have that proper solutions for the zero mode (or a proper independent quantization of
that single mode) together with the n 6= 0 solutions (144) still provide a complete set of well-defined
solutions, and hence a well-defined quantization. Thus, as it is shown in Ref. [99], one can arrive at
a one-parameter family of solutions for the zero mode such that, together with the solutions (144)
for n 6= 0, one obtains O(4)-invariant Hadamard vacua. A direct calculation then shows that the
j0̃-Fock representation for the massless KG field is, in fact, unitarily equivalent to the representation
defined by these O(4)-invariant Hadamard vacua [46] (let us remark that the particular quantization
used for the zero mode is irrelevant, except perhaps in what concerns whether it satisfies or not the
Stone-von Neumann conditions, because unitary equivalence depends on the behavior of states in the
ultraviolet regime). In this way, the complex structures jH characterizing the O(4)-invariant Hadamard
vacua belong to the equivalence class of the complex structure j0̃, which in turn is the equivalence class
of j0.

7. Uniqueness for Scalar Fields in Bianchi I Universes

The criteria of symmetry invariance and of a unitary dynamics have been successfully imposed
not only in homogeneous and isotropic backgrounds, but also in anisotropic spacetimes with shear,
which are then not conformally symmetric. Specifically, the criteria have been employed to remove the
ambiguities in the quantization of scalar fields propagating in Bianchi I spacetimes [47]. This Section
gives an overview of the result of uniqueness for these anisotropic scenarios.

Let us consider a free real scalar field φ with mass m propagating in a Bianchi I spacetime with
spatial sections of three-torus topology. In a diagonal system of coordinates, and with t ∈ I, where I is
a connected interval of the real line, the metric of the Bianchi I universes can be written in the form

gαβdxαdxβ = −N2(t)dt2 +
3

∑
i=1

a2
i (t)(dxi)2, (145)

where N(t) is the lapse function and ai(t) are the scale factors of the three diagonal directions, with
i = 1, 2, 3. The LB operator ∆ is essentially self-adjoint on the space of square integrable functions with
respect to the measure

√
hd3x = ∏i aidxi and, owing to the compactness of the spatial sections, it has

a discrete spectrum. A complete set of eigenfunctions of the LB operator is provided by the set of plane
waves exp(i~k ·~x) in T3, where~k = (k1, k2, k3) ∈ Z3. The corresponding eigenvalue is

∆k = −
3

∑
i=1

(
ki
ai

)2
. (146)

Note that there are different wave vectors~k with the same eigenvalue ∆k (i.e., the spectrum is
degenerate). The eigenspaces of ∆ provide irreducible representations of the group formed by the
composition of rigid rotations in the three principal spatial directions of the tori, which are the Killing
symmetries of the Bianchi I universes.
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Since the field φ is real, we will consider its Fourier expansion in terms of the real basis of
cosine and sine functions obtained from the real and imaginary parts of the plane waves. Thus,
the configuration and momenta of the field at time t are (ignoring again the zero mode in our discussion)

ϕ(t,~x) =
1√
4π3 ∑

~k∈L

[
q(1)~k

(t) cos(~k ·~x) + q(2)~k
(t) sin(~k ·~x)

]
, (147)

π(t,~x) =
1√
4π3 ∑

~k∈L

[
p(1)~k

(t) cos(~k ·~x) + p(2)~k
(t) sin(~k ·~x)

]
, (148)

where L stands for the lattice

L = {~k|k1 > 0} ∪ {~k|k1 = 0, k2 > 0} ∪ {~k|k1 = 0 = k2, k3 > 0}, (149)

introduced to avoid duplication of the real modes in the Fourier expansion. From the basic brackets at
equal time {ϕ(~x), π(~x′)} = δ(~x−~x′) and Equations (147) and (148), it follows that the only non-zero
PB are

{q(l)~k
, p(l

′)
~k′
} = δll′δ~k~k′ , (150)

where l, l′ = 1, 2. To simplify the notation, in what follows we will denote any of the canonical pairs
(q(1)~k

, p(1)~k
) and (q(2)~k

, p(2)~k
) by (q~k, p~k), unless otherwise stated.

In order to achieve a quantum description that satisfies the requirements of invariance under the
spatial symmetries and of a unitary dynamics, and inspired by the case of free scalar fields propagating
in FLRW spacetimes, we introduce a time dependent transformation of the field canonical pairs,
regarded as variables that change with the considered section of constant time t. However, in contrast
to the isotropic case, where the transformation is just a time dependent scaling of the configuration
field variable, we now consider a transformation that, on account of the lack of isotropy, is also mode
dependent (for a discussion on time and mode dependent canonical transformations see Ref. [101]).
Specifically, we introduce the canonical change [47]

q̃~k =
√

b(τ, k̂) q~k, p̃~k =
1

2
√

b(τ, k̂)

[
2p~k + q~k

d
dτ

ln b(τ, k̂)
]

. (151)

Here, k̂ stands for the unit vector~k/k, τ is the harmonic time, defined by N(t)dt = a3(τ)dτ with
a3(τ) = a1(τ)a2(τ)a3(τ), and

b(τ, k̂) = a3

√√√√ 3

∑
i=1

(
k̂i
ai

)2

, (152)

where k̂i denotes the components of the unit vector k̂. In the following, we will denote the function
b(τ, k̂) just by bk̂, in order to shorten the notation. Notice that, in the limit of isotropy (a = a1 =

a2 = a3), bk̂ becomes just bk̂ = a2, and we recover the scaling employed in isotropic scenarios (see
Section 5). The transformation (151) respects the symmetries of the LB operator ∆ (i.e., the spatial
Killing symmetries). By setting N = a3, one can see that the dynamics of the new canonical pairs
(q̃(l)~k

, p̃(l)~k
) is governed by the respective Hamiltonians [47]

H(l) =
1
2 ∑
~k∈L

bk̂

[(
p̃(l)~k

)2
+ [k2 + sk̂(τ)]

(
q̃(l)~k

)2
]

, l = 1, 2, (153)

with

sk̂(τ) = m2
(

a3

bk̂

)2

+
3
4

(
ḃk̂
b2

k̂

)2

− 1
2

b̈k̂
b3

k̂

. (154)
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Here, the dot stands for the derivative with respect to the harmonic time τ. Note that, up to the
factor bk̂, H(l) is a sum of Hamiltonians of harmonic oscillator type, one for each mode, with masses
that depend on time as well as on k̂. From Equation (153) one gets that the Hamiltonian equations
of motion for the modes are ˙̃q~k = bk̂ p̃~k and ˙̃p~k = −bk̂(k

2 + sk̂)q̃~k. By writing their real solutions in
the form

q̃~k(τ) = Q~keiΘq
~k
(τ)

+ Q̄~ke−iΘ̄q
~k
(τ), p̃~k(τ) = k

(
P~keiΘp

~k
(τ)

+ P̄~ke−iΘ̄p
~k
(τ)
)

, (155)

where Q~k and P~k are complex constants, and Θε
~k
(τ) are complex functions (ε = q, p), it can be shown [47]

that the solutions with initial conditions Θε
~k
(τ0) = 0 and Θ̇ε

~k
(τ0) = kbk̂(τ0) have an asymptotic

(ultraviolet) behavior given by

Θε
~k
(τ) = kη~k(τ) + O(k−1), η~k(τ) =

∫ τ

τ0

dτ′bk̂(τ
′), (156)

provided that the function sk̂(τ) possesses a first derivative which is integrable in every closed interval
of the time domain I. From Equation (155) and the above initial conditions, it is not difficult to see that

(
q̃~k
p̃~k

)
τ

= T~k(τ, τ0)

(
q̃~k
p̃~k

)
τ0

; T~k(τ, τ0) =

 Re
[

eiΘq
~k
(τ)
]

1
k Im

[
eiΘq

~k
(τ)
]

−[k2+sk̂(τ0)]
k Im

[
eiΘp

~k
(τ)
]

Re
[

eiΘp
~k
(τ)
]
 . (157)

Symmetry invariant complex structures on phase space (and hence symmetry invariant Fock
representations) for the Bianchi I universes are totally characterized by definitions of annihilation and
creation-like variables of the linear form [47]a(l)~k

ā(l)~k

 =M~k

 q̃(l)~k
p̃(l)~k

 , M~k =

(
f~k g~k
f̄~k ḡ~k.

)
, (158)

with
f~k ḡ~k − g~k f̄~k = −i. (159)

This latter restriction ensures the standard PB relationship {a(l)~k
, ā(l

′)
~k′
} = −iδll′δ~k~k′ .

Let us now consider families of representations that are connected by a unitary implementable
dynamics. Given the Cauchy initial section Στ0 , we specify an invariant Fock representation for the

KG system by adopting as annihilation and creation-like variables the set formed by a(l)~k
(τ0) and

ā(l)~k
(τ0), regarded as coefficients in an expansion of the field in an appropriate basis of solutions.

Recall that the initial variables are related to their evolved ones, a(l)~k
(τ) and ā(l)~k

(τ), by a Bogoliubov

transformation. The linearity of this transformation and of the space of solutions imply that a(l)~k
(τ)

and ā(l)~k
(τ) can be used as a new set of annihilation and creation-like coefficients on the initial time

section Στ0 . This new set defines a distinct Fock representation of the system that, by construction, is
obtained from the previous one by dynamical evolution. The different representations specified in this
way will be equivalent if and only if the introduced dynamics is implementable as a unitary operator
on the Fock space associated to any of them. Let us present an explicit construction of these families
of representations.

From Equations (157) and (158), it follows that(
a~k(τ)
ā~k(τ)

)
= U~k(τ, τ0)

(
a~k(τ0)

ā~k(τ0)

)
, (160)



Mathematics 2020, 8, 115 42 of 49

where

U~k(τ, τ0) =M~k(τ)T~k(τ, τ0)M−1
~k

(τ0) =

(
α~k(τ, τ0) β~k(τ, τ0)

β̄~k(τ, τ0) ᾱ~k(τ, τ0).

)
. (161)

We have ignored the superscript l in Equation (160) sinceM~k and the evolution transformation T~k
are independent of it. The Bogoliubov coefficients alpha and beta of the time evolution can be directly
read off from Equation (161). In particular, we have

iβ~k(τ, τ0) = f~k(τ)g~k(τ0)Re
[

eiΘq
~k
(τ)
]
− g~k(τ) f~k(τ0)Re

[
eiΘp

~k
(τ)
]

− 1
k

f~k(τ) f~k(τ0)Im
[

eiΘq
~k
(τ)
]
−

k2 + sk̂(τ0)

k
g~k(τ)g~k(τ0)Im

[
eiΘp

~k
(τ)
]

. (162)

We now impose the condition of unitary implementability of the time evolution, namely
∑~k∈L |β~k(τ, τ0)|2 < ∞ for all times τ. From Equations (156) and (162), a rigorous analysis shows [47]
that the necessary and sufficient conditions to attain a square summable sequence {β~k(τ, τ0)} in
a consistent and non-trivial way [that is, satisfying the restriction (159) and avoiding a trivialization of
the dynamics] are

1. There exists a subset L′ of L, differing from the latter set in a finite number of elements at most,
such that

f~k(τ) =

√
k
2

eiF~k(τ) + kθ
f
~k
(τ), g~k(τ) =

i√
2k

eiF~k(τ) + θ
g
~k
(τ), (163)

for all~k ∈ L′. Here, F~k is an undetermined phase, whereas kθ
f
~k
(τ) and θ

g
~k
(τ) are subdominant

terms in the asymptotic limit k→ ∞.

2. The subdominant terms kθ
f
~k
(τ) and θ

g
~k
(τ) must satisfy for all τ the square summability condition

∑
~k∈L′

k|θ f
~k
(τ) + iθg

~k
(τ)|2 < ∞. (164)

3. To satisfy restriction (159), the subdominant terms must be related by

Re
[
i
(

e−iF~k +
√

2kθ̄
f
~k

)
θ

g
~k

]
= Re

[
θ

f
~k

e−iF~k
]

. (165)

In short, the elements of a time dependent family of invariant Fock representations that satisfy
the above three (necessary and sufficient) conditions will be related by a dynamical evolution that can
be implemented as a unitary endomorphism in Fock space. Among all possible Fock representations
that verify conditions (163), (164), and (165), we find the analogue of the j0-Fock representation, which
is given by

f̊~k =

√
k
2

, g̊~k =
i√
2k

. (166)

From Equations (156), (162), and (166), one can check that |β~k| = |sk̂(τ0)O(k−2)|, so that {β~k} is
a square summable sequence. Remarkably, the representations of any of the possible quantizations with
a unitary dynamics are all equivalent among them [47] (i.e., there is just one family of unitary equivalent
invariant Fock representations allowing the dynamics to be unitarily implementable). In particular,
all of them are unitarily equivalent to the analogue of the j0-Fock representation, at any value of the
time parameter. More explicitly, let us consider any Fock representation belonging to a family that
is connected by a unitarily implementable dynamics, with annihilation and creation-like variables
(a~k, ā~k). From Equation (158), it is straightforward to see that these annihilation and creation-like
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variables at generic time τ are related to those of the (analogue of the) j0-Fock representation, (å~k, ¯̊a~k),
by means of the Bogoliubov transformation(

a~k
ā~k

)
τ

= K~k(τ)
(

å~k
¯̊a~k

)
τ

; K~k =M~kM̊
−1
~k

=

(
κ~k λ~k
λ̄~k κ̄~k.

)
. (167)

The Bogoliubov coefficients kappa and lambda are

κ~k(τ) =
1√
2k

[
f~k(τ)− ikg~k(τ)

]
, λ~k(τ) =

1√
2k

[
f~k(τ) + ikg~k(τ)

]
. (168)

Taking into account the asymptotic behavior of f~k and g~k, given by Equation (163), we get from
Equation (168) that

∑
~k∈L′
|λ~k(τ)|

2 =
1
2 ∑
~k∈L′

k|θ f
~k
(τ) + iθg

~k
(τ)|2. (169)

The finiteness of this sum is just the necessary and sufficient condition (164) for the unitary
implementability of the dynamics, unitarity that indeed we are assuming for the quantization
determined by (a~k(τ), ā~k(τ)). Since this finiteness implies that the sum of |λ~k(τ)|

2 over all~k ∈ L also
converges, we conclude that the considered quantizations are unitarily equivalent. Hence, the invariant
Fock quantization defined by (å~k, ¯̊a~k) is, up to unitary transformations, the unique one that allows for
a unitary implementation of the dynamics.

8. Conclusions

In this work, we have presented an overview of the uniqueness results attained in recent years for
the Fock quantization of Gowdy cosmological models, and of (test) real KG fields minimally coupled to
FLRW, de Sitter, and Bianchi I spacetimes, accomplished by imposing the requirements of (i) invariance
under the isometries of the spatial sections and (ii) unitary implementability of the Heisenberg
dynamics. For the cases of Gowdy models and (test) KG fields in FLRW and de Sitter backgrounds,
the uniqueness of the quantum representation follows from the removal of the ambiguities in the
quantization of scalar fields with time dependent mass in spatially compact ultrastatic spacetimes,
as a consequence of the fact that Gowdy models and KG fields in conformally ultrastatic spacetimes can
be mapped, after a suitable transformation, to a system of the aforementioned type. Let us emphasize
that this transformation is itself completely determined by the requirements of invariance and unitarity.
So, no ambiguities are left in the process. The proposed criteria single out a preferred description of
the system, by means of a preferred choice of the set of variables that are to be quantized, and fixes
a unique family of equivalent Fock representations. For the case of test KG fields in Bianchi I universes,
the performed analysis is slightly different because of the lack of isotropy. This requires a non-local time
dependent canonical transformation (more specifically, a time dependent canonical transformation
such that the change of the configuration and momentum variables is mode dependent) that defines
a new set of canonical variables supporting a family of symmetry invariant Fock representations that
allow for a unitary implementation of the dynamics. Remarkably, this family is contained just in
one equivalence class of unitarily equivalent Fock representations, with the analogue of the j0-Fock
quantization in it. Although the ambiguity in the representation of the CCRs is fully removed in this
manner, it is worth mentioning that the ambiguity concerning the parametrization of the phase space
for Bianchi I universes remains to be elucidated.

For the sake of clarity and completeness of the presentation, we have discussed in some detail
the classical and quantum theories of scalar fields in globally hyperbolic spacetimes. In particular,
we have commented the two kinds of ambiguities that arise in the canonical quantization program,
namely (i) the choice of fundamental observables (at least among a family of candidates related by
linear transformations) and (ii) the selection of a Hilbert space representation of the CCRs. Special
attention has been given to the introduction of complex structures on phase space, and to the role
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that they play in the quantum theory (both in the construction of a Hilbert space representation
and in the ambiguity for the parameterization of the CCRs). The Bogoliubov transformations that
encode the classical time evolution and the unitary implementability of the dynamics have also been
discussed. For non-stationay systems, or more specifically for scalar fields with a time dependent
mass in ultrastatic spacetimes I× Σ, we have introduced the complex structure j0, that is the simplest
complex structure which gives rise to an invariant Fock quantization (j0 commutes with the isometries
of the spatial manifold Σ). We sketched the j0-Fock representation for KG fields with time dependent
mass in ultrastatic backgrounds with the spatial topology of a circle, a three-sphere, and a three-torus.
That is, we explicitly displayed the j0-Fock representation for cases that describe the local degrees
of freedom of linearly polarized Gowdy models, and KG fields in FLRW and de Sitter spacetimes.
(We obviated the case of axisymmetric KG fields with time dependent mass on S2, that describes
the Gowdy S1 × S2 and S3 cosmological models, because this can be done by simply replacing in
Section 3.4 the harmonics Xn = Qn`m on Σ = S3 with the spherical harmonics Xn = Y`m on Σ = S2.)

Although we have exploited the uniqueness of the j0-Fock representation in very specific
ultrastatic backgrounds (namely, Σ = T3 and Σ = Sn, with n = 1, 2, 3), it is worth emphasizing
that the discussed uniqueness result, attained by imposing the criteria of symmetry invariance
and of a unitary dynamics, is not restricted to these spatial topologies, but has been extended to
ultrastatic spacetimes with arbitrary compact Riemannian sections Σ of dimension d ≤ 3 [16,17].
In particular, the j0-Fock representation for a KG field with mass m in (1 + 1) Minkowski spacetime
M ∼= S1 × R, is the unique Fock representation satisfying the requirements of invariance and
unitarity. This is of course not in conflict with the standard Fock representation specified by
imposing Poincaré invariance. Indeed, the complex structure j0 and the standard complex structure
jm(ϕ, π) = (−(−∆ + m2)−1/2π, (−∆ + m2)−1/2 ϕ) belong to the same equivalence class. (These
complex structures are related via a Bogoliubov transformation with βk = (ωk − k)/(2

√
kωk), where

ωk =
√

k2 + m2. In the ultraviolet regime β2
k ≈ m4/(16k4) + O(m6/k6), behavior from which our

statement follows.) Apart from this simple example, it is worth remarking that, more generally,
no conflict arises between the Hadamard approach (reformulated in terms of the scaled field of the
ψ-description) and the criteria of invariance and of dynamical unitarity, at least for the cases of scalar
fields in closed FLRW [17] and de Sitter spacetimes [46].

As we mentioned in the Introduction, the criteria of symmetry invariance and of unitary
implementability of the quantum evolution have been successfully extended to select a unique
preferred Fock representation for fermion fields in cosmological scenarios [48–55]. This and the
uniqueness results here reviewed have been fruitfully exploited e.g., within the Hybrid Quantization
Approach [32] in order to deal with (both scalar and fermionic) perturbations in quantum cosmology
(see, for instance, Refs. [102–109]).

Finally, notwithstanding the repeatedly verified effectiveness and robustness of these criteria of
invariance and of unitarity, there are still many interesting questions, applications, and extensions to be
addressed. Some of them are the following. (It might also be interesting to explore the applications of
these proposals in the context of de Sitter Projective Cosmology, comparing results with the discussion
presented in other recent works in the literature ( see e.g., [110]). We thank one of the anonymous
reviewers for calling our attention to this point.)

• Generalizations to other dimensions: As we pointed out, the uniqueness of the j0-Fock representation
extends to spacetimes with arbitrary compact Riemannian sections Σ of dimension d ≤ 3.
The proof of this result is based on the behavior of the time evolution in the ultraviolet regime.
Using this behavior, the satisfaction of the condition that guarantees the unitary implementability
of the dynamics depends critically on the dimension of Σ and, though the condition is fulfilled for
d ≤ 3 [16], in general it is not satisfied in dimensions greater or equal than four. In such cases,
an open issue is whether one can still find a different Fock representation that leads to a unitary
evolution and analyze whether its equivalence class is singled out uniquely by our criteria of
invariance and of unitarity.
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• Other backgrounds: Other interesting backgrounds where the criteria of invariance and of unitarity
can be tested are shear free anisotropic spacetimes, like Bianchi III cosmologies.

• Other fields: Even though the discussion has been focused primarily on the uniqueness of scalar
and fermionic fields, there seems to be no obstacles (neither conceptual nor technical) to extend
the analysis to other kind of fields, for example Maxwell fields, applying to them the proposed
criteria to pick out a unique preferred Fock quantization.
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