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ABSTRACT

A pipeline for the analysis of 1D 1H NMR metabolomics data is proposed, consisting in the blind 

resolution and integration of all resonances of the spectral dataset by Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS) and followed by the analysis of the resulting matrix of 

concentrations with chemometric methods such as Principal Component Analysis (PCA), ANOVA –

Simultaneous Component Analysis (ASCA) and Partial Least Squares – Discriminant Analysis (PLS-

DA). Since MCR-ALS does not require the use of spectral templates, concentrations for all resonances 

are obtained before being assigned without neglecting any resonance relevant for the metabolomics 

study in the analysis of these concentrations. In this work, the proposed pipeline performance was 

validated with 1D 1H NMR spectra from a metabolomics study of zebra fish upon acrylamide (ACR) 

exposure. As a conclusion, this pipeline represents a framework for the high-throughput analysis of 

NMR metabolomics data that opens the path for truly untargeted NMR metabolomics analyses.
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INTRODUCTION

Nuclear magnetic Resonance (NMR) spectroscopy is one of the most important analytical techniques 

used for metabolite discovery.1-2 In the biological field, NMR is also employed in metabolomics studies 

to characterize the metabolites in cell extracts, tissues and living organisms for disease diagnosis and 

biomarker discovery.3 The interpretation of NMR spectra from biological samples is not easy due to 

their complex composition. In a typical metabolomics NMR spectrum, hundreds of resonances from 

several dozens of metabolites are obtained.4

Since resonances cannot be directly assigned because of their strong overlap, the NMR spectra are 

usually investigated using multivariate data analysis approaches5-10, such as Principal Component 

Analysis (PCA)11, ANOVA – Simultaneous Component Analysis (ASCA)12 or Partial Least Squares –

Discriminant Analysis (PLS-DA)13. When these approaches are used for the analysis of NMR spectra, 

the chemical shifts of the resonances from the altered metabolites can be identified. However, the other 

spectroscopic parameters (J, multiplicity, proton number) are not directly retrieved from these analyses 

and further work needs to be done by the NMR spectroscopist to successfully characterize the 

metabolites of interest. Moreover, to obtain quantitative information, these chemometric analyses should 

be followed by the integration of the relevant resonances on the original NMR spectra using 

deconvolution approaches.

To improve the spectroscopic interpretation of these chemometric analyses of NMR data and to avoid 

the integration and deconvolution steps, we have designed a new metabolomic workflow that introduces 

as a preliminary step the application of the Multivariate Curve Resolution – Alternating Least Squares 

(MCR-ALS)14 method. MCR-ALS allows resolving, for every metabolite, their resonances and their 

corresponding integrals (or relative concentrations) 15. Thus, after obtaining the relative concentrations 
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from this step, chemometric (e.g., PCA, PLS-DA) and statistical (e.g., t-test) analysis can be performed 

on them.

MCR-ALS performance to resolve all the pure spectral resonances (and pure integrals) of the 

metabolites in the analyzed sample depends on the variance of its associated dataset.14-17 As a matter of 

fact, the resolved components obtained in the MCR-ALS analysis of 1D 1H NMR metabolomics 

datasets usually contain mixed contributions of several metabolites and they are descriptive of metabolic 

or physiologic processes.18-20 Having said that, it is possible to achieve an improved performance and 

get the pure resonance profiles of the metabolites in the analyzed samples by using the DTC-MCR-ALS 

methodology, which constrains the search and resolution of resonances in the narrow spectral region 

where they are located.18 The DTC-MCR-ALS approach works in two steps. In the first step, the NMR 

data is split into smaller datasets (or segments) comprising each one a spectral segment of the original 

dataset and then each one is analyzed by MCR-ALS. In a second step, the original full-length NMR data 

is analyzed with MCR-ALS in combination with a selectivity constraint built after examining the data 

from the first step using a decision tree approach.18 Since the smaller segments analysed in the first step 

of the DTC-MCR-ALS contain resonances from a lower number of metabolites, the complexity of each 

data segment would be substantially lower than in the original raw data, and therefore a better MCR-

ALS resolution of the pure resonances using a lower number of components is feasible.

In this work, we have investigated the use of the first step of the DTC-MCR-ALS as an independent 

data pre-processing method to retrieve the concentration and clean spectral profiles of the resonances 

present in the analysed 1H NMR dataset. The principle of using MCR-ALS as a pre-processing tool for 

1H NMR data was first introduced by Ebrahimi et al. in 2016.15 In this paper, MCR-ALS was applied on 

7 segments from a 1D 1H NMR dataset comprising 1,632 samples to obtain the resonance integrals from 

7 known metabolites. This study can be regarded as targeted, although it showed it is possible to obtain 
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the concentration profiles of NMR resonances without needing to assume their peak shape as with 

deconvolution methods,7,21-24 revealing a high potential for being applied in untargeted studies.

Contemporary to our work, Khakimov showed that MCR-ALS analysis on the NMR segments can be 

used to examine metabolomics data from urine samples.25 By using this approach, they were able to 

recover the concentration profiles from 209 resonances. In addition, due to the complexity or urine 

samples, 94 NMR segments containing the most shifted resonances were analysed with binning instead 

of MCR-ALS. Their analyses revealed that the pre-processing based on MCR-ALS produced the lowest 

variability within group and the largest between groups if compared to other NMR pre-processing 

methods. However, due to the methodological purpose of the study, the differences between groups at a 

metabolic level were not examined.

In this regard, in the present study, we have investigated a 1H NMR dataset of metabolic extracts by 

windowing and MCR-ALS analysis. Specifically, we have evaluated the metabolic alterations in zebra 

fish muscle and brain upon acrylamide (ACR) exposure. ACR is a neurotoxic, mutagenic, and 

reprotoxic compound that can be formed in cooking at elevated temperatures.26-27 Due to its public 

health risk, ACR consumption levels are regulated in some countries.28-29 Samples included in the 

dataset comprised an experimental design of 2 factors and 2 levels, which were investigated by PCA, 

ASCA and PLS-DA. Opposed to Khakimov’s study25, we were able to analyze all the spectral segments

with MCR-ALS since they do not contain strong peak shifts as in the urine samples. Moreover, the PLS-

DA analyses revealed metabolomics differences between groups that could be linked to the system of 

study.

EXPERIMENTAL SECTION

Biological experiment and dissection. Wild-type zebrafish were obtained from Piscicultura Superior 

(Barcelona, Spain) and maintained in fish water (reverse-osmosis purified water containing 90 mg mL/ 
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Instant Ocean® (Aquarium Systems, Sarrebourg, France), 0.58 mM CaSO4·2H2O) at 28 ± 1°C under a 

12L:12D photoperiod. Adult zebrafish (≈50:50 male:female ratio) were exposed for 72 h to 0.75 mM 

ACR (Sigma-Aldrich, St. Louis, MO) in fish water. Control fish were maintained in fish water under 

identical conditions. Experimental solutions were renewed after 48 h of exposure.

For sample collection fish were euthanized by inducing hypothermic shock in ice-chilled water (2° to 

4°C). Brain and muscle tissue were immediately excised and pooled (4 brains or muscle/sample) and 

stored at -80°C for further analyses. All procedures were approved by the Institutional Animal Care and 

Use Committees at the CID-CSIC and conducted in accordance with the institutional guidelines under a 

license from the local government (agreement number 9027).

Metabolite extraction and sample preparation. Tissue samples were freeze-dried and homogenized 

in 1500 μl of a solution of cold CHCl3:MeOH (2:1) using a TissueLyser (Qiagen, 2 stainless steel beads, 

50 Hz, 2 min for brain, 4 min for muscle). Next, 350 μl of cold milliQ water were added and the 

biphasic system was mixed at 4ºC for 20 min by orbital shaking. After centrifugation (13,000 rpm, 4°C, 

20 min), the aqueous phase was collected and transferred to a 2-ml eppendorf tube. The extraction 

process was repeated once. The two supernatants were combined and freeze-dried, and the resulting 

dried residue was stored at -80°C until analyzed.

The extracts were dissolved in 700 μl of deuterated phosphate buffer (Na2DPO4 25 mM, pH 7.0 in 

D2O) with DSS 0.2 mM as internal standard. After centrifugation at 13,000 rpm for 5 min at 4ºC, 650 μl

of the supernatant were collected and used for the NMR analysis. In total, 20 samples were prepared (5 

per every individual condition).

NMR spectroscopy. 1D NOESY-presat NMR spectra (Bruker library - noesygppr1d) were recorded 

at 298 K on a Bruker Avance III console (Bruker Biospin, Germany) combined with a 9.7 T Oxford 
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Instruments magnet (1H 500 MHz), equipped with a 5 mm inverse cryogenically cooled triple-resonance 

TCI (1H, 13C, 15N, and 2H lock) cryoprobe with a z-axis magnetic field-gradient capability.

For every tube, the sample was locked to the solvent, tuned and matched, shimmed and the optimal 

90° pulse was calculated using the automated routine. The 90° length value and the saturation frequency 

and power (presaturation power corresponding to a 25 Hz field) for each sample and the rest of fixed 

acquisition parameters were used for the 1D NOESY acquisition. After spectral recording, for every 

sample, the optimal water saturation (the residual water peak should be small and to allow good phase 

correction) and the line width at half height of the DSS (which should be less than 0.7 Hz with no line 

broadening) were also checked.

In addition, for one of the samples of each group (untreated/exposed to ACR), an ensemble of 2D 

NMR experiments were acquired (1H J-resolved, COSY and TOCSY and 1H-13C HSQC; acquisition 

parameters in Supplementary material). 

Pre-processing of NMR spectra. 1H (1D NOESY-presat) NMR spectra were automatically 

referenced, phased and baseline corrected using TopSpin (Bruker BioSpin GmbH, Billerica, MA, USA) 

routines. Moreover, the 1D 1H NMR spectra were apodized with a weighting exponential function of 0.3 

Hz with MestreNova v.11.0 (Mestrelab Research, Spain), and imported to Matlab R2016a (The 

Mathworks Inc., Natick, MA, USA) as a spectral data matrix. Then, regions of 4.68 -5.14 ppm (water), 

7.65 -7.68 ppm (chloroform), below 0.7 ppm (DSS), and above 9.5 ppm (empty) were removed. After 

the removal of these spectral regions, the number of data-points for each 1H NMR spectra was 28,913. 

Minor resonance misalignments were corrected with icoshift30 algorithm. Finally, the processed 1H 

NMR spectra were normalized using the Probabilistic Quotient Normalization (PQN) 31 method.

Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS). In the application of the 

MCR-ALS method, a data matrix, D, is decomposed by a bilinear model into the product of two factor 
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matrices which describe the set of concentrations, C, and spectral profiles, ST, of the constituents of the 

analyzed samples (Figure 1).

Figure 1. MCR-ALS. A) Matrix representation of the MCR-ALS bilinear decomposition. B) The 1D 1H 

NMR dataset (D) can be decomposed into a set of concentrations (C) and spectral resonances (ST) from 

n metabolites. The plot of C profiles shows the evolution of the resolved concentration profiles for the 3

metabolites (n=4) over the 20 analyzed samples. The plot of ST spectra shows the resonances from the 4 

metabolites.

For 1D 1H NMR data, matrix C contains the set of relative concentrations corresponding to the ST

proton resonances in the 1D 1H NMR spectra of the analyzed samples (Figure 1). The number of 

resolved profiles in C and ST (or number of components) needs to be initially determined. In this case, 

the optimal number of components was assessed by Singular Value Decomposition analysis (see 

Supplementary material). 32 During the MCR-ALS bilinear decomposition, constraints should be 
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proposed to drive the resolution of C and ST factor matrices to be in agreement with the previous 

physical knowledge about the physical nature of the profiles of the chemical constituents of the studied 

system. In this study, only non-negativity constraints were applied for the resolution of both C and ST

matrices.

The dataset consisted of 20 1D 1H NMR spectra (in rows) with 28,913 δH values (in columns). This 

dataset was split into 98 spectral segments (step B1 in Figure 2). Every spectral window was set to 

contain at least one proton resonance, and limits (beginning and end) of these spectral segments were 

chosen at chemical shifts whose intensities were at the noise level with the aim not to split any 

resonance between two segments.

Figure 2. Proposed workflow for the NMR metabolomics experiment.

Every window was then examined separately with MCR-ALS (step B2 in Figure 2). MCR-ALS 

analyses were performed using the MCR-ALS GUI 2.033 toolbox under Matlab 2016b (The Mathworks 

Inc. Natick, MA, USA) environment.
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A total number of 98 spectral segments were resolved by MCR-ALS analysis using between 1 and 4 

components for each window. Thus, from these analyses, 98 C and 98 ST matrices were obtained, and a 

total number of 222 components were obtained in the analysis of all the spectral segments of the 1D 1H

NMR dataset. The 98 C matrices were then combined row-wisely into a super-augmented C matrix 

(from now on, this is called the ‘SuperC’ matrix) with 20 rows (one per sample) and 222 columns (one 

per component) (step B3 in Figure 2).

The arrangement and indexing of these components in the superC matrix was performed using the 

same convention as when plotting NMR spectra: lower column indexes corresponded to MCR-ALS 

components associated with spectral features at lower chemical shifts, while components with spectral 

features at higher chemical shifts were given high column indexes. The superC matrix was then further 

investigated with other multivariate data analysis chemometric methods, such as PCA or PLS-DA (step 

B4 in Figure 2), and the relevant components were assigned by the inspection of their corresponding 

spectral features (step B5 in Figure 2).

Principal Component Analysis. PCA11 was applied to the raw 1D 1H NMR spectral data and to the 

superC data matrices. Prior to PCA analyses, all datasets were mean-centered. PCA results were 

validated using a venetian blinds cross-validation method. The analyses were carried out using the 

PLStoolbox 7.8.0 (Eigenvector Research Inc.).

ANOVA Simultaneous Component Analysis (ASCA). ASCA is a multivariate data analysis method 

that combines the power of ANOVA to separate variance sources with the advantages of Simultaneous 

Component Analysis (SCA) to the modeling of the individual separate effect matrices.12 In this study, 

ASCA was employed to untangle the metabolic response linked to two effects of factors, the type of 

tissue and the ACR exposure (treatment), according to the model defined in eq. 1:

X = XTissue + Xtreatment + XTreatment_Tissue + E, (eq. 1)

Where X corresponds to the superC matrix, XTissue and Xtreatment are descriptive of the separated 

metabolic fingerprints that are either determined by the two types of tissue or by the ACR exposure 
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treatment, and XTreatment_Tissue is giving the metabolic fingerprint showing the possible specific 

interaction between these two factors (type of tissue and ACR exposure) for each set of samples. From 

the analysis of each of the three decomposed matrices, it was possible to investigate whether significant 

differences existed due to the type of tissue, to the ACR treatment only, or to the two factors at the same 

time (e.g., if ACR exposure causes different metabolic response depending on the type of tissue). The 

statistical significance of the effects of each factor and their interaction was evaluated using a 

permutation test (with 1,000 permutations).34 Before the ASCA analysis, the superC matrix was mean-

centered. ASCA analysis were performed using the PLStoolbox 7.8.0 (Eigenvector Research Inc.).

Partial Least Squares-Discriminant Analysis. In this study, 3 different PLS-DA analyses were 

performed. One first PLS-DA analysis (PLS-DA #1 in Figure 3) was used to discriminate the two 

analyzed tissues (brain and muscle) at control conditions and identify the metabolites responsible of the 

tissue discrimination. The two other PLS-DA analyses (PLS-DA #2 and #3 in Figure 3) were applied to 

discriminate between samples from control and exposed ZF for each of the two tissues, respectively, 

and to identify the metabolites associated to their separation. For each of the 3 PLS-DA analyses, the 

studied dataset had the concentration profiles from the superC matrix corresponding to the subgroup of 

samples to be compared. Before each PLS-DA analysis, the data were auto-scaled. PLS-DA analyses 

were validated with a venetian blinds type of cross-validation. The analyses were carried out using the 

PLStoolbox 7.8.0 (Eigenvector Research Inc.).
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Figure 3. PLS-DA on subsets from SuperC matrix.

Spectral resonances integration with BATMAN. Results obtained in the PLS-DA analyses were 

verified by manual integration of the individual resonances using the BATMAN R-package24 and by the 

posterior assessment of their statistical significance using a Student t-test.

RESULTS AND DISCUSSION

Exploratory analysis of the superC matrix by PCA. The PCA analysis of the superC matrix 

containing the relative concentration values of the 222 resolved features in the 20 zebrafish (muscle or 

brain) samples revealed an orthogonal distribution of the metabolism of this organism according to the 

type of tissue and to the ACR exposure (Figure 4B). Specifically, the samples were separated according 

to the two types of tissues (muscle and brain) in PC1 (63.43% of the explained variance), while PC2 

(9.99%) allowed the separation according to the ACR exposure.

Whereas this orthogonal score discrimination was clearly detected in the PCA of the superC matrix, it 

could not be observed when the same analysis was performed on the original 1D 1H NMR 

dataset(Figure 4A). In fact, results from the PCA analysis in Figure 4A erroneously suggested that the 

metabolic response of the ACR-treatment could be neglected when compared with the metabolic 

variance observed between the two tissues. In Figure 4A, the component that separates between the two 

tissues (PC1) accounted for the 97.12% of the explained variance of the dataset. In order to separate 

samples due to the ACR-treatment, it is needed to examine the dataset at the fifth PC (PC5, Figure 4C), 

which only accounted for the 0.18% of the explained variance of the dataset. However, the cluster 

separation in this component is not perfect either. Similarly, the effect of the ACR-treatment could be 

better observed with PCA when samples from each tissue were analyzed separately, but still the clusters 

were partially overlapped in the two cases (FigS4).
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Figure 4. A) PCA scores (PC1 vs PC2) on the 1D 1H NMR spectral matrix. B) PCA scores (PC1 vs 

PC2) on the superC matrix. C) PCA scores (PC1 vs PC5) on the 1D 1H NMR spectral matrix.

We attribute the divergence in the results shown in Figure 4 to the different reliability of the 

examined data in the two cases. While each of the variables from the superC matrix are descriptive of 

pure resolved resonances, every single variable from the 1D 1H NMR spectral matrix can be 

representative of multiple resonances at the same time (if signal overlap occurs) in addition to the 

instrumental noise. Due to the high signal overlap and instrumental noise, the contribution of the 

individual resonances within the corresponding variables is diluted. For this reason, sample differences 

would be less efficiently distinguished when resonances are severely overlapped, as in 1D 1H NMR raw 

data, than when each variable is representing one single resolved resonance, as in the superC matrix.

On the other hand, the 1D 1H NMR data contains a significant amount of variables only descriptive of 

instrumental noise. This is not the case for the superC matrix, since most of the instrumental noise is set 

apart in the residual matrix (E in Figure 1) during the MCR-ALS analysis. This is the reason why the 

PCA analysis of the superC matrix was much less affected by the noise contributions than the analysis 

of raw 1D 1H NMR data.

Therefore, for a comprehensive untargeted NMR metabolomics analysis, we propose performing the 

chemometric study on the data set with the MCR-ALS resolved concentrations instead of on the 

corresponding 1D 1H NMR spectral raw data.

-4 -3 -2 -1 0 1 2 3 4

Scores on PC 1 (63.43%)

-1.5

-1

-0.5

0

0.5

1

1.5

S
c
o

re
s
 o

n
P

C
 2

 (
9

.9
9

%
)

B)

Scores on PC 1 (97.12%)
-1.5 -1 -0.5 0 0.5 1 1.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x105

S
c
o

re
s
 o

n
P

C
 2

 (
1

.5
2

%
)

x104A)

Muscle Control (MC)

Muscle Treated (MT)

Brain Control (BC)

Brain Treated (BT)

-1.5 -1 -0.5 0 0.5 1 1.5

Scores on PC 1 (97.12%)

-8

-6

-4

-2

0

2

4

6

8

x105

S
c
o

re
s
 o

n
P

C
 5

(0
.1

8
%

)

x103C)



13

Tissue specificity of ACR exposure in ZF. As shown above, the PCA analysis of the superC matrix 

detected two main sources of data variance, one related to the tissue (PC1 in Figure 4B) and another to 

the ACR exposure (PC2 in Figure 4B). In order to determine the significance of these two factors, and 

to evaluate whether there exists any interaction between the two factors, the ASCA method was applied 

and the results are shown in Figure 5.

Figure 5. ASCA scores of (A) XTissue, (B) Xtreatment, and (C) XTreatment_Tissue. In the legends, MC and 

MT are muscle extracts from control and ACR-treated ZF; BC and BT are the corresponding brain 

extract counterparts.

The effects of the two studied factors is clearly visualized in Figure 5. As in the PCA analysis, 

metabolic differences where more significant for the tissue type (60.74%, Figure 5A) rather than for the 

ACR exposure itself (8.05%, Figure 5B). In addition, the possible interaction between these two factors 
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(type of tissue and ACR exposure) can also be detected accounting for a 4.56% of the total data variance 

(Figure 5C). 

These results were confirmed after the calculation of the statistical significances of the effects for the 

two factors and of their interaction using a permutation test.34 In all the cases, the significance of the 

tests were high (p values = 0.001).

Metabolic discrimination of the tissues. In order to select the metabolites characteristic for the two 

tissues, a PLS-DA analysis was performed comparing the 222 features for the two type of tissues 

(muscle and brain) of control samples (PLS-DA #1 in Figure 3). As a result, 158 features were found to 

discriminate between muscle and brain. By looking at the spectral profiles associated with these features 

(ST in Figure 1, and step B5 in Figure 2) studying the spectroscopic parameters (δH, J, multiplicity) that 

define these resonances, and after consulting these parameters on a NMR spectral library (such as 

HMDB35 or BRMB36), it was possible to assign some of them to metabolites. It must be noted that this 

level of spectroscopic investigation cannot be performed by more conventional approaches. In these 

approaches, resonances are assigned according to their chemical shifts values (δ), whereas the other 

associated spectroscopic parameters cannot be easily determined due to the resonance overlapping. 

Moreover, since the data were auto-scaled, even the slightest variations among tissues can be detected. 

The resonances most distinctive for brain extracts were for γ-aminobutyric acid (GABA), acetic acid, N-

acetyl-L-aspartic acid, L-glutamic acid, citric acid, carnosine, phosphothreonine, and some other 

resonances from lipidic compounds. On the other hand, creatine, L-histidine, taurine, 

glycerophosphorylcholine, L-alanine, fumaric acid, L-tyrosine, D-glucose, glycogen, UDP, and AXP 

were significantly more concentrated in muscle extracts than in brain extracts. In other words, brain 

samples characteristic compounds (compared to muscle samples) include neurotransmitters, neuronal 

osmolytes, and fats; in muscle, the characteristic metabolites (compared to brain samples) were those 

involved in its functioning, structure, redox, and energy metabolism.37
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Metabolic fingerprint due to ACR treatment. The metabolic biomarkers of ACR exposure in 

muscle and in brain were determined by performing a PLS-DA analysis on each separated data subset of 

the superC matrix by comparing the control and treated samples related to the same tissue (PLS-DA #2 

and #3 in Figure 3). Resulting from these two PLS-DA analyses, several features were detected to be 

significant in each of the two tissues: 93 features in the muscle subset and 79 features in the brain 

subset. After the spectral investigation of these significant features, we concluded that in the muscle 

tissue samples, ACR exposure caused an increase of the pools of the following metabolites: ACR, L-

leucine, L-isoleucine, L-valine, L-lysine, GABA, phosphothreonine, methionine-sulfoxide, D-glucose, 

UDP, L-tyrosine and L-phenylalanine. In contrast, the pools of L-alanine, L-glutamic acid, glutathione, 

and glycerol were diminished due to ACR exposure. In the brain tissue samples, the ACR exposure 

increased significantly the pools of free ACR, L-valine, N-acetyl-S-(carbamoylethyl)-L-cysteine 

(AAMA), and methionine-sulfoxide. Conversely, the pools of carnosine, L-glutamic acid, glutathione, 

and NAD+ were reduced due to this ACR treatment.

All these metabolic alterations reflect that ACR depleted the pools of intracellular glutathione by 

reacting with it. As a product of this reaction, in brain, ACR was accumulated as N-acetyl-S-

(carbamoylethyl)-L-cysteine (AAMA). In addition, glutathione depletion caused a reduction of the 

organism oxidative stress defenses, which elicited the appearance of new oxidized species, such as 

methionine-sulfoxide pools. This enhanced oxidative stress may have caused the alteration of the amino 

acid pools in muscle as well, probably to be used for protein synthesis, in agreement with activation of 

protein synthesis of thioredoxins by ACR exposure.38

Biomarker discovery. Spectral features ST associated with the same metabolite are strongly 

correlated, as they can be observed for instance in the heatmap plots shown in supplementary Figure 

S2. Thus, this fact can be used as a guide during the resonance assignment step. However, not all the 

selected features could be assigned to metabolites because their resonances are from compounds not 

included in metabolomics libraries.39-40 In order to provide a more comprehensive description of the 

effects of ACR exposition on zebra fish, we have investigated unassigned features that increased due to 
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the ACR exposure. In particular, we focused on the features 78, 79, and 96 shown in Figure 6C. These 

3 features were significantly important in muscle extracts of ACR treated zebrafish (Figure 6D-F). The 

reconstructed 1D 1H NMR spectrum with these 3 features revealed two symmetric multiplets, centered

at 2.60 and at 2.86 ppm, that resemble two double triplets (Figure 6C). This observed coupling is in 

agreement with the spin system of a RSCH2CH2R’ moiety. Since this spin system is also found in 

AAMA, we propose that this molecule is a reaction product from ACR. In humans, several ACR-

derived compounds in addition to AAMA have been detected after oral exposition to ACR41.

Figure 6. A-B) Representative 1D 1H NMR spectra of muscle (A) and (B) brain extracts. 1D 1H NMR 

spectra from control ZF are in blue, while spectra from treated ZF are coloured in red. C) Reconstructed 

1D 1H NMR with features 78, 79 and 96. D-F) Concentration profiles for features 78, 79 and 96. 

Arrows point the resonances from the two triple doublets centered at 2.60 and 2.86 ppm.

Hence, in this work, we detected two metabolites resulting from the ACR transformation inside the 

organism, AAMA and the ‘ACR-derivative’. AAMA was found more prevalent in the brain of treated 

ZF, while the ‘ACR-derivative’ was more prominent in the corresponding muscle extracts. This tissue 

specificity may reflect the high reactivity of ACR in the two metabolically different tissues.

Method considerations. The proposed MCR-ALS-based chemometric methodological pipeline has 

been proven to be very useful for both metabolic fingerprint and biomarker discovery. Noteworthy, 

some considerations regarding this pipeline need to be made.
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First, one of the most important steps in this pipeline is to set the limits of the NMR resonances in 

every window to be analyzed by MCR-ALS. In this study, we have chosen the window limits by visual 

inspection (see methods), relying on the user’s spectroscopic knowledge avoiding to split resonances 

between two segments. However, more automatable alternative approaches could be designed. For 

instance, the 1D 1H NMR dataset could have been examined with an intelligent bucketing procedure as 

in Sousa et al. (2013) 42, and MCR-ALS can be applied separately then to every bucket. 

Second consideration is that MCR-ALS is a robust chemometric method which estimates the 

concentrations (C) associated with the same resonances (ST) in all the investigated samples. However, 

this chemometric approach should not be used with an NMR dataset presenting inconsistencies between 

spectra (e.g., derived from incomplete shimming or phasing). Apart from that, the MCR-ALS can be 

used with 1D 1H NMR data from any type of samples (e.g., extracts, serum, CSF) as long as the 

resonances are aligned across all the spectra. In metabolomics studies in the lab, where robust sample 

preparation methods are used43, chemical shifting variations among the spectra can be usually corrected 

with simple resonance alignment methods, such as icoshift30. Also, for samples with complex 

background signals, such as serum samples, it may be recommended to add extra components in the 

MCR-ALS analyses to account for these background signals.

And as a third consideration, resonances presenting the same variance across samples and that are 

found within the same window will be resolved together, even if they are from different metabolites. 

Although this particularity can be seen as a limitation of the method, the resolved components will still 

be very useful and informative. The resolved spectral data will be much simpler than the original data 

(as all the other resonances presenting different variance will appear in other components) facilitating 

the resonance assignment. Moreover, the grouping of resonances in the same component suggests that 

the corresponding compounds are metabolically-related (since they present the same metabolic 

variance), resulting very useful for the biological interpretation.
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CONCLUSIONS

The chemometric methodological pipeline presented here takes advantage of the rapid and powerful 

performance of the MCR-ALS chemometrics method to blindly resolve the concentrations and 

resonances from untangled metabolites, which allows the identification of the spectral features 

characteristic of the metabolomic system under study.

In this work we have proved that this methodology simplifies the metabolic analysis of 1D 1H NMR 

spectra from complex biological extracts and that it can even be used for biomarker discovery. 

Moreover, the presented methodology is more sensitive to small metabolic variations than other 

chemometric methods, which do not take into account the prominent resonance overlapping in 1D 1H 

NMR data.

In consequence, the proposed methodology can accelerate the discovery of unknown metabolites, and 

it has the potential to facilitate the study of large NMR datasets, such as those analyzed in cohort 

metabolomics studies43.
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NMR Experimental Parameters for 2D NMR spectra

Pulse program noesygppr1d

Time domain 65536

Dummy scans 4

Scans 512

Sweep width 20 ppm

Acquisition time 3.277 s

Relaxation delay 4 s

Receiver gain 25.4

Dwell time 50.0 µs

Mixing time 0.01 s

Line broadening 0.3 Hz

Pulse program jresgpprqf

Time domain 8192 in F2               40 in F1

Dummy scans 16

Scans 64

Sweep width 16.62 ppm in F2      0.156 in F1

Acquisition time 0.493 s in F2      0.256 in F1

Relaxation delay 2.0 s

Receiver gain 25.4

Dwell time 60.2 µs

Line broadening 0.3 Hz in F2      0.3 Hz/SINE GB=0.1 in F1  

Pulse program cosygpprqf

Time domain 8192 in F2   512 in F1

Dummy scans 16

Scans 16

Sweep width 15.96 ppm in F2      15.96 in F1

Acquisition time 0.513 s in F2      0.032 in F1

Relaxation delay 2 s

Receiver gain 25.4

Dwell time 62.67

Line broadening 0.3 Hz in F2      0.3 Hz in F1
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Pulse program mlevgpphprzf

Time domain 8192 in F2               600 in F1

Dummy scans 8

Scans 32

Sweep width 15.96 ppm in F2      15.96 in F1

Acquisition time 0.513 s in F2      0.038 in F1

Relaxation delay 2 s

Receiver gain 203

Dwell time 62.67

Mixing time 0.06 s

Line broadening QSINE SSB=2 in F2      QSINE SSB=2  in F1  

Pulse program hsqcetgpprsisp2.2

Time domain 3072 in F2               512 in F1

Dummy scans 64

Scans 48

Sweep width 15.96 ppm in F2      165.00 in F1

Acquisition time 0.193 s in F2      0.012 in F1

Relaxation delay 3 s

Receiver gain 203

Dwell time 62.67

Line broadening QSINE SSB=2 in F2      QSINE SSB=2  in F1  
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Supplementary Results

Selection of the optimal number of components in MCR-ALS

FigS1. Segment 19 (1.67-1.80 ppm).

The optimal number of components to introduce in the MCR-ALS analysis can be found 

by using the Single Value Decomposition (SVD) method. By this method, the eigenvalues 

of the 1H NMR segments are calculated. For instance, for segment 19 (Fig S1), the 

corresponding eigenvalues are given in FigS2A. In this figure, it can be observed that the 

first eigenvalues are larger than the later ones. It is assumed that the firsts eigenvalues are 

representative of meaningful data, while those close to zero are descriptive of noise data. 

So, it could be presumed that the number of eigenvalues representative of meaningful data 

is between 2 and 3, since the 4th eigenvalue is already too small.

If we analyze the NMR segment by using n=2 in the MCR-ALS analysis, two multiplets 

with good symmetry are resolved (FigureS2B). In case we use n-1 in the MCR-ALS 

analysis, then the two multiplets are resolved together (FigureS2C). Finally, by using n+1 

as the number of components, one of the multiplets is split between two components (the 

red and the yellow in FigureS2D). Therefore, the optimal number of components to use 

for this segment is 2.
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FigS2. Selecting the number of components by SVD.
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Additional examples of the MCR-ALS resolution

FigS3. MCR-ALS resolution for 3 1H NMR segments.
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PCA of 1H NMR data (one tissue at a time)

FigS4. PCA on 1D 1H NMR of extracts from ZF. A) Muscle extracts. B) Brain extracts. In the pre-processing, 1H 

NMR spectra were mean-centered.
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Heatmap analysis of the superC matrix

FigS5. Heatmap analysis of the superC matrix.
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Assigned spectral features

Numbers given in the figure titles refers to the features numbering (from 1 to 222). The 

concentration profiles associated to these spectral features are shown in the heatmap figure 

of FigS5. For spectral profiles containing contributions for more than one metabolite, the 

chosen name refers to the metabolite showing the maximal contribution.

1) L-valine

2) L-leucine + L-isoleucine

3) GABA
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4) L-lactic acid

5) L-glutamic acid

6) L-alanine

7) L-Lysine
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8) Ethanol

9) DSS

10) Phosphothreonine

11) N-acetyl-aspartic acid

12)N-Acetyl-S-(carbamoylethyl)-L-cysteine
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13) Glutathione



S-14

14) L-glutamine

15) Succinic acid

16) Citric acid

17) L-methionine
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18) Methionine sulfoxide

19) L-asparagine

20) Creatine

21) L-histidine
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22) Carnosine

23) Choline moiety

24) Taurine



S-17

25) Betaine

26) Glycerol

27) D-glucose

28)Glycogen
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29) Acrylamide

30) UDP

31) AXP

32) AMP
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33) L-tyrosine

34) L-phenylalanine

35) NAD+


