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Biomimetic selenocystine based dynamic
combinatorial chemistry for thiol-disulfide
exchange
Andrea Canal-Martín 1 & Ruth Pérez-Fernández 1✉

Dynamic combinatorial chemistry applied to biological environments requires the exchange

chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange,

one of the most popular dynamic combinatorial chemistries, usually needs long equilibration

times to reach the required equilibrium composition. Here we report selenocystine as a

catalyst mimicking Nature’s strategy to accelerate thiol-disulfide exchange at physiological

pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and

to promote the correct folding of an scrambled RNase A enzyme, thus broadening the

practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial

chemistry target-driven self-assembly processes are tested using spermine, spermidine and

NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in

the glucose oxidase directed dynamic combinatorial library.

https://doi.org/10.1038/s41467-020-20415-6 OPEN

1 Structural and Chemical Biology Department, Centro de Investigaciones Biológicas “Margarita Salas”, CIB-CSIC, Madrid 28040, Spain. ✉email: ruth.perez@csic.es

NATURE COMMUNICATIONS |          (2021) 12:163 | https://doi.org/10.1038/s41467-020-20415-6 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20415-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20415-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20415-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20415-6&domain=pdf
http://orcid.org/0000-0001-7914-2789
http://orcid.org/0000-0001-7914-2789
http://orcid.org/0000-0001-7914-2789
http://orcid.org/0000-0001-7914-2789
http://orcid.org/0000-0001-7914-2789
http://orcid.org/0000-0003-0148-6455
http://orcid.org/0000-0003-0148-6455
http://orcid.org/0000-0003-0148-6455
http://orcid.org/0000-0003-0148-6455
http://orcid.org/0000-0003-0148-6455
mailto:ruth.perez@csic.es
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Dynamic combinatorial chemistry (DCC) establishes
molecular networks under thermodynamic control
that responds to external stimuli1–3. We are interested

in the application of DCC systems or Dynamic combinatorial
libraries (DCLs) to biological environments where a protein or a
biomolecule directs the assembly of the building blocks at
dynamic equilibrium towards the synthesis of the best ligand or
synthetic receptor in situ. Protein-directed DCC has proven its
effectiveness as a hit identification strategy discovering enzyme
inhibitors4–7.

Disulfide exchange8–10 is considered one of the most popular
dynamic covalent chemistries applied to biological systems. This
dynamic process is based on the thiol–disulfide equilibrium
where the slow oxidation of the thiols competes with the disulfide
exchange in aqueous solutions. Thiol/disulfide exchange is
favored by highly nucleophilic thiolates attacking disulfide bonds
constituted by good electrophiles and stable sulfur leaving groups.
Therefore, to allow the mixture to self-correct for reaching the
equilibrium composition, disulfide exchange must be faster than
the oxidation of the thiols to avoid a kinetic trap11. Even though
disulfide exchange proceeds smoothly at neutral or slightly basic
pH, it usually requires several days to reach the required
equilibrium12,13. To improve this limitation, several reaction
conditions based on the use of a co-solvent such as DMSO14,
glutathione redox buffer15, and high concentrations of selenol
derivatives16,17 have been reported as alternative additives to
speed up the exchange reaction from weeks to days. However, the
application of certain additives in biological environments is
limited. The addition of a suitable catalyst18 or additive was
reported for acylhydrazone exchange to enable the exchange at
neutral pH in 5 h even at low temperatures19. The possibility of
conducting the thiol–disulfide exchange under a reasonable time-
frame would benefit from its application in biotemplated-driven
dynamic chemical systems and systems chemistry research20–24.

Inspired by Nature’s strategy to accelerate a thiol–disulfide
exchange, we focus our attention on one of the major antioxidant
systems in mammalian cells, the thioredoxin system which is
formed by the mammalian thioredoxin reductase (TrxR), thior-
edoxin (Trx), and NADPH (nicotinamide adenine dinucleotide
phosphate)25. Mammalian thioredoxin reductase (TrxR) is a
pyridine nucleotide disulfide oxidoreductase that uses selenocys-
teine (Sec)26 in place of cysteine (Cys) in catalysis of the reduction
of its target protein, thioredoxin (Trx) (Fig. 1)27,28. Sec can
accelerate the rate of the thiol–disulfide exchange reactions at
different stages of the TrxR mechanism. Selenium acts as a
nucleophile initially attacking the disulfide bond of Trx (Fig. 1a),
or as an electrophile accepting electrons from the redox center of
TrxR as part of the selenosulfide bond (Fig. 1b).

The pH range influences the relative difference in reactivity
between Cys and Sec in proteins. The pKa differences between Sec
pKa ~ 5.4329, Cys pKa ~ 8.2230 contributes to the fact that at
certain pHs the concentration of thiolates is low compared to the
same reaction containing selenium. The higher polarizability of
selenoates made them better nucleophiles and leaving groups
than the corresponding sulfur derivatives. Additionally, the bond
dissociation energy of Se–Se (46 kcal mol−1) compared to S–S
(64 kcal mol−1) is considerably small31. Hence, the thiol
oxidoreductase-like catalysis profits from the use of Sec whether it
is due to the nucleophilicity, electrophilicity, pKa, or selenium
leaving group ability. The exchange reactions of thiol–disulfide
and selenol–diselenide share the nucleophilic addition mechan-
ism (Fig. 2). Diselenide exchange has been reported as a DCC
reversible reaction in water32. A comparative NMR kinetic study
of thiol/disulfide and selenol/diselenide reactions showed that
selenol–diselenide exchange reactions were ~107 fold faster than
the thiol/disulfide exchange reactions (Fig. 2)33.

In this work, we report the use of selenocystine (Secox) as a
promoter of thiol–disulfide exchange at low temperatures and
basic pH. Selenium generates selenenylsulfide intermediates
which are more reactive towards thiolate nucleophilic addition
accelerating the exchange between the different species. This
chemistry is inspired by the operating mechanism proposed for
the thioredoxin family of proteins. The catalytic efficiency of
selenocystine is studied and applied to different thiol–disulfide
DCLs including a slow DCC system constituted by alkyl thiols.
Furthermore, we evaluate selenocystine as a promoter for the
right formation of disulfide bonds during the folding of a
scrambled RNase A even at acidic pH. DCC target-driven self-
assembly (casting and molding) processes in selenocystine’s
presence are tested. As a proof of concept, the casting approach
where library members assemble around a template is tested
using spermine, among other biomolecules (e.g., spermidine,
NADPH). On the other hand, the molding approach in which the
assembly of library members occurs inside the binding pockets of
the template is studied with glucose oxidase (GOx) from Asper-
gillus niger. The affinity of the amplified molecule (4)2 is mea-
sured using fluorescence techniques and the glucose oxidase
activity is evaluated in tandem with the horseradish-peroxidase
system confirming the non-competitive inhibition of (4)2.

Results
Selenocystine based DCLs were prepared to mimic the mam-
malian thioredoxin reductase (TrxR) system which uses seleno-
cysteine instead of cysteine in its catalysis of the reduction of Trx.
DCLs were composed of dithiols (1–2)34–36 and monothiols (3–
4) to form different architectures such as cyclic and linear oli-
gomers, expanding the possibilities for the molecular recognition
of different templates (Fig. 3b). Besides, the addition of carbox-
ylate groups contributed to their solubility under the DCL con-
ditions and the interaction with positively charged amines from
the templates chosen through hydrogen bonding and ionic
interactions. The aromatic rings may participate in hydrophobic
interactions with the corresponding templates. Therefore, DCLs
using thiols 1–4 were prepared in the absence and presence of
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Fig. 1 Schematic role of selenium in the TrxR-proposed mechanisms.
a Selenium acting as a nucleophile. b Selenium acting as an electrophile.
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Fig. 2 DCC schemes. a Scheme of disulfide exchange. b Diselenide
exchange. c Selenenylsulfide exchange in a thiol–disulfide DCC system.
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cysteine and selenocystine derivatives (Fig. 3c). Their efficiency
speeding up the thiol/disulfide exchange in a rich mixture of
oligomers was tested at low temperatures and no stirring to
maintain the stability of potential biological templates.

Secox as a catalyst. We started our DCL by reacting building
blocks 1–4 (Fig. 3b) in the absence and the presence of the oxi-
dized and reduced forms of sulfur and selenium derivatives of
cysteine (Cys), cystine (Cysox), and selenocystine (Secox) at basic
pH and 6 °C. Sec was not used in the DCL since selenols are easily
oxidized and thus more difficult to manipulate16.

The DCLs were set up at two different pHs 7.8 and 8.8 to
ensure Cys deprotonation. Selenium and sulfur derivatives, Secox
and Cysox (Fig. 3c) were added as the fifth building block in each
of the experiments. Differences in equilibration time at pH 7.8 or
8.8 in tris buffer were negligible (Supplementary Fig. 3 and
Supplementary Methods). Therefore, we set up the experiments at
pH 7.8 and use diselenide Secox and disulfide Cysox for
comparison (Fig. 4).

The DCL that introduced Secox as a building block reached
equilibrium after 24 h (Fig. 4c). Conversely, DCLs with its
homolog Cysox needed 3 days to equilibrate (Fig. 4b) similar to
the control library which required 4 days (Fig. 4a). Different
oligomers were identified by HPLC-MS in the DCL (Supplemen-
tary Figs. 4–20 and Supplementary Discussion). Studies were
performed to ensure the reversibility of the disulfide exchange in
the DCLs. In the presence of Secox, consecutive DCLs were

generated where an additional thiol was added each time the DCL
has reached its equilibration point. The DCL started with thiol 1,
followed by the addition after equilibration of thiols 3 and 4.
Finally, the addition after equilibration of thiol 2 showed an
identical distribution to Fig. 4 (Supplementary Fig. 35 and
Supplementary Methods).

Optimal concentration of Secox in the DCL. The minimum
concentration of Secox necessary for the exchange to occur in 24 h
was studied. Several concentrations of Secox from 1 to 10% (mol)
according to the total concentration of thiols in the DCL were
evaluated. In the absence of selenocystine, the system took 96 h to
reach equilibrium (Fig. 5a, (i)). As the concentration of Secox
increased, the equilibration time was reduced from 96 to 72 h (1%
mol), 48 h (2.5% mol), and 24 h (5 and 10% mol). The results
showed that a concentration of 5% mol of Secox was required for
the system to reach equilibrium within 24 h (Fig. 5a, (iv)). RPAs
were calculated to confirm the library equilibration and to verify
that the proportion of the species generated did not depend on
the different Secox percentages. Selenyl-sulfide intermediates were
detected through LC–MS supporting the existence of these
reactive intermediates to promote the thiol–disulfide exchange
(Supplementary Figs. 31–34).

Kinetic rate of Secox. To quantify the catalytic efficiency of Secox
in thiol–disulfide exchange, kinetic studies were performed under
our standard experimental conditions. The homodimerization of

Fig. 3 Thiol/disulfide catalyzed DCC. a DCC general scheme. b Building blocks of DCL. c Sulfur and selenium Cys and Sec derivatives. The pKa
corresponds to the thiol group. Estimated pKas data calculated with Epik as implemented in Schrödinger Suite Release 2020-254–56 and reported in the
literature (Sec pKa29, Cys pKa30). See Supplementary Fig. 1 for pKa calculations.
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building block 3 to (3)2 (Fig. 6a) was followed by HPLC-MS in
the absence and presence of the previously mentioned percen-
tages of Secox.

The accelerating role of DMSO14 was discarded by running
control experiments containing up to 20% (v/v) DMSO, which is
much larger than the amount of this co-solvent used in our
standard conditions (2.5% (v/v)). Furthermore, we have com-
pared the catalytic activity of selenocystine to that of
selenoenzyme TrxR.

Figure 6b shows the time course for the (3)2 homodimerization
during the first 13 h and the derived kinetic parameters
(Fig. 6c). In the presence of 5% (mol) Secox, the homodimeriza-
tion reaction is completed in 24 h. The addition of 5% Secox (Kobs:
0.259 ± 0.009M−1 s−1) led to a 18-fold acceleration over the
uncatalyzed reaction (Kobs: 0.014 ± 0.001M−1 s−1). The reaction
rate obtained with 5% (mol) of selenocystine is superior to those
observed with 20% (v/v) DMSO (Kobs: 0.068 ± 0.001M−1 s−1)
and 5% (mol) recombinant human TrxR 2 (Kobs: 0.035 ±
0.003M−1 s−1). Of note, the kinetic rate observed with 5%
(mol) selenoenzyme resulted lower than with 1% (mol) Secox
(Kobs: 0.091 ± 0.002M−1 s−1).

Secox effect in a slow DCL. To broaden the scope of selenocystine
we tested this catalyst in a slow disulfide-exchange system. The
DCL comprised 4 building blocks (5–8)37, three of them being
aliphatic thiols with pKa values around 9 to slow down the
exchange reaction (Fig. 7a). Due to solubility issues, a 20% (v/v)
DMSO was added and the reaction mixture was diluted. In the
absence of 5% (mol) Secox (with respect to total thiol con-
centration), the system reached equilibrium after 192 h, whereas
in the presence of selenocystine the system equilibrated after 60 h,
i.e., three times faster. The different oligomers were identified by
HPLC-MS (Supplementary Figs. 21–30).

Folding of scrambled RNase A with Secox. The folding of a small
protein such as RNase A was studied to explore Secox application
in the formation of the correct disulfide bonds during protein

folding. The scrambled RNase A, a mixture of oxidized forms of
RNase A with a random distribution of four disulfide bonds38,
was used to determine the refolding rate. Once the optimum
concentration of GSH and Secox for protein folding was deter-
mined (Supplementary Fig. 40), the relative folding rates for
(Secox/GSH) pair were measured and compared to the standard
glutathione redox buffer (GSSG/GSH) pair (Fig. 7b)39,40. Aliquots
were withdrawn from each of the experiments and immediately
assayed for RNase A activity by following the hydrolysis of cyclic
cytidine-2′,3′-monophosphate (cCMP) at pH 6 for 2 min in a
spectrophotometric discontinuous assay41,42.

RNase A folding versus time was plotted where the percent
activity was proportional to the activity of folded native RNase A
(Fig. 7b). Improved refolding rates were observed replacing GSSG
with Secox. Secox provided a 92% yield of the correctly folded
enzyme during the first 65 min whereas GSSG/GSH reached the
same yield (93%) in 341min.

To confirm the benefit of using Secox over GSSG the same
assays were performed at pH 5.4. Whereas GSSG/GSH only got
half of the protein refolded, Secox reached a 75% yield of native
RNase A in <2 h (Supplementary Fig. 41 and Supplementary
Methods).

Secox in spermine-directed DCC system. To test the casting
DCC target-driven self-assembly, the template spermine was
introduced as a guest into a DCL36,43–45. As spermidine and its
precursor, the putrescine, these polyamines play important roles
in many cellular processes such as the regulation of the kinases’
activities, the protection from oxidative damage, the regulation of
transcription and translation contributing to nucleic acid stability,
modulation of ion channels activity and the preservation of
membrane structure/function.

We chose the spermine two building blocks DCL reported by
Vial et al.36 as a well-studied system to test that Secox did not
interfere with the recognition process and that the same DCL
with two building blocks was efficiently equilibrated in the
presence of 5% (mol) selenocystine. Building blocks 2 and 3

Fig. 4 DCL chromatograms comparing disulfide (Cysox) and diselenide (Secox). DCL conditions: building blocks (1–2) 95 μM each (3–4) at 190 μM
concentration each. Tris buffer 20mM, pH 7.8, 6 °C. a Control after 96 h. b Cysox (190 μM) after 72 h. c Secox (190 μM) after 24 h. Experiments were
performed in triplicate.
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equipped with carboxylate moieties to establish interactions with
the protonated amine groups of the spermine were allowed to
equilibrate at pH 7.8 and 6 °C (Fig. 8a). As expected in our
control experiment, the major component in the absence of
spermine was the linear tetramer (2)2(3)2. After the addition of
spermine, the linear tetramer “decomposed” in order to form
mainly the cyclic tetramer of (2)4, and the (3)2 dimer (Fig. 8a). As
it was reported, several studies determined that the spermine was
threaded through the macrocycle fixing the configuration to a
highly symmetric stereoisomer of (2)436. The addition of 5%
(mol) Secox not only speeded four times the DCL equilibration
(from 96 to 24 h) but also did not interfere with the recognition
event reaching the same result as our control experiment (absence
of Secox), matching the previously reported data and amplifying

mainly the cyclic tetramer (2)4 (Fig. 8a). The precise composition
of the DCL (with and without spermine), was assessed by
measuring the relative peak area (RPA). Indeed, the normalized
change of RPA was used to quantify the spermine influence in the
outcome (Supplementary Fig. 42)46. The same template (sper-
mine) was tested in our reference DCL of four building blocks (1–
4) in the absence and presence of Secox (Fig. 8b). The addition of
selenocystine speeded the equilibration time of the DCL to 24 h
and the normalized change of RPA showed the amplification of
the cyclic tetramer (2)4 (Supplementary Fig. 43). Additionally,
two different templates were tested to confirm the absence of
conflict between selenocystine and the templating effect.
Spermidine and NADPH were introduced in our 4 building
blocks DCL (1–4) in the absence and presence of Secox, leading to

Fig. 5 Analysis of Secox percentages in a 4 building blocks DCL. a DCLs chromatograms showing different percentages of Secox. DCL conditions: building
blocks (1–2) at 95 μM concentration each and building blocks (3–4) at 190 μM concentration each. Tris buffer 20mMpH 7.8, 6 °C, (i) 0% mol as control
DCL, 96 h (black), (ii) 1% mol (5.7 μM) (red) in 72 h, (iii) 2.5% mol (14.25 μM) (green) in 48 h, (iv) 5% mol (28.5 μM) (blue) in 24 h, (v) 10% mol
(57 μM) (yellow) in 24 h. b Relative peak areas (RPAs) of the DCLs after equilibration in the absence and in the presence of different Secox percentages
(Supplementary Table 1). Experiments were performed in triplicate.
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Fig. 6 Kinetic rates to Secox. a Homodimerization of building block 3 to (3)2. b Time course for the (3)2 formation using a concentration of 190 μM of (3),
in 20mM Tris buffer (pH 7.8), T= 6 °C, 0% (mol) Secox and 2.5% (v/v) DMSO (black dots), 5% (mol) TrxR and 2.5% (v/v) DMSO (light blue dots), 0%
mol Secox and 20% (v/v) DMSO (purple dots), 1% (mol) Secox and 2.5% (v/v) DMSO (red dots), at 2.5% (mol) Secox and 2.5% (v/v) DMSO (green dots),
5% (mol) Secox and 2.5% (v/v) DMSO (blue dots) and 10% (mol) Secox and 2.5% (v/v) DMSO (orange dots). c Kinetic parameters. Reaction profiles were
fitted to second-order reaction kinetic equations. Mean ± SD from three independent experiments. (Supplementary Fig. 38, Supplementary Methods, and
Supplementary Discussion). Source data are provided as Source Data file.

Fig. 7 Selenocystine applied to a slow DCL and a protein refolding. a Slow thiol/disulfide exchange. Building block 5 (52,3 μM) and building blocks (6–8)
at 104.6 μM concentration each. Tris buffer 20mMpH 7.8 at 20% (v/v) DMSO and 6 °C. (i) 0% mol Secox as control after 192 h, (ii) 5% mol Secox
(18.3 μM) after 60 h. Relative peak areas (RPAs) of the DCLs, see Supplementary Fig. 36 and Supplementary Table 2. pKa values estimated from
Schrödinger Release 2020-254. See Supplementary Fig. 2 for pKa calculations. b Kinetics for scrambled RNase A folding at pH 7.8 and room temperature.
Yellow circles symbolize disulfide bonds. General conditions: scrambled RNase A (5 μM), tris buffer 100mM, pH 7.8, 2 mM EDTA. 0.2 mM GSSG/1 mM
GSH (black dots), 1 mM Secox/5mM GSH (red dots). Mean ± SD from two independent experiments. Source data are provided as Source Data file.
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the amplification of different species and getting the same results
as the non-catalyzed DCLs (Supplementary Figs. 44, 45,
Supplementary Tables 7–10, and Supplementary Methods).

Secox in a glucose oxidase-directed DCC. Having established
that Secox is an effective promoter for thiol/disulfide exchange, we
next studied the introduction of the enzyme glucose oxidase
(GOx) to the DCL. Glucose oxidase (β-D-glucose:oxygen-oxi-
doreductase, EC 1.1.3.4) from Aspergillus niger is a flavoprotein
that catalyzes the oxidation of β-D-glucose to D-glucono-δ-lactone
and hydrogen peroxide, using oxygen as an electron acceptor.
GOx is well suited for DCC exploration, it is a robust and well-
characterized protein with two identical subunits (molecular
weight: 160 KDa)47–49. Besides, there are relatively few ligands
reported for GOx being one of the most widely used enzymes.

DCC experiments involving thiols 1–4 were set up in the
absence and the presence of GOx (Fig. 9). The stability of the
protein under the experimental conditions (DMSO, Secox
tolerance, and stability over time) was tested using the
fluorescence technique (Supplementary Figs. 46, 47 and Supple-
mentary Methods).

The equilibration of the DCL was completed after 24 h (Fig. 9)
and the oligomers were identified by HPLC-MS (Supplementary
Figs. 4–20). The precise composition of the DCL (with and
without GOx), was assessed by measuring the relative peak area
(RPA). The normalized change of RPA was used to quantify the
protein influence in the final DCL showing the amplification of
the dimer of compound 4, that is (4)2 (Fig. 9b). Control
experiments were set up to verify that the amplification of the
dimer was not due to unspecific binding. Firstly the GOx was

Fig. 8 Spermine-templated DCL. a DCL chromatograms of building block 2 (95 μM) and 3 (190 μM) in the absence and presence of spermine (28.5 μM).
Yellow circle (S–S), red square (CO2H), black hexagon (benzene ring). DCL conditions: Tris buffer 20mMpH 7.8, 6 °C, 2.5% DMSO. (i) control in absence
of spermine after 96 h (black), (ii) in the absence of spermine but with Secox (5% mol, 14.25 μM) 24 h (red), (iii) control in presence of spermine after 96 h
(green), (iv) in the presence of spermine and 5% mol Secox 24 h (blue). b DCL chromatograms of building blocks 1–2 (95 μM each) and 3–4 (190 μM
each), in the absence and presence of spermine (57 μM), Secox (5% mol, 28.5 μM), Tris buffer (20mM, pH 7.8), T= 6 °C, 2.5% (v/v) DMSO. (i) control in
absence of spermine 96 h (black), (ii) in the absence of spermine but with Secox (5%, mol 28.5 μM) 24 h (red), (iii) control in presence of spermine 96 h
(green), (iv) in the presence of spermine and 5% mol Secox 24 h (blue). c Spermine template effect measured by the normalized change of RPA in the
presence and absence of Secox for building blocks 2 and 3. d Spermine template effect measured by the normalized change of RPA in the presence and
absence of Secox for building blocks 1–4. See Supplementary Tables 3–6. Mean ± SD from three independent experiments.
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replaced by the bovine serum albumin (BSA). A stability study of
BSA under the DCL conditions was performed using a
fluorescence technique confirming the BSA stability in the DCL
experiment (Supplementary Fig. 48)50. The BSA-templated DCL
did not amplify (4)2, but it modified the DCL distribution as it
was previously reported for thiol–disulfide exchange (Supple-
mentary Fig. 49 and Supplementary Methods)51. Therefore, we
performed the DCL in the presence of a large excess of DTNB
(5,5′-dithiobis-2-nitrobenzoic acid), an inhibitor of GOx, which
prevented the amplification of any other ligands except DTNB
(Supplementary Fig. 50), indicating that an inhibited GOx cannot
influence the DCL equilibrium composition (4)2.

Glucose oxidase activity inhibited by compound (4)2. The
amplified compound (4)2 was isolated and its activity
towards GOx tested (Fig. 10). Affinity was measured by
fluorescence-based experiments (Supplementary Fig. 52 and
Supplementary Methods). The natural ligand for GOx, β-D-
glucose (Fig. 10a), showed an apparent dissociation constant of
1.10 ± 0.02 mM similar to those reported for apo and holo
GOx forms (Kd′ ≈ 10mM)52. DTNB was chosen as an inhibitor
reference compound. Compound (4)2 with Kd′= 110 ± 10 µM,

presented affinity values similar to DTNB (Kd′=64 ± 2 µM).
Glucose oxidase activity was evaluated by the horseradish-
peroxidase system using o-dianisidine as a chromogen53.
Michaelis–Menten parameters KM and Vmax and the inhibition
constants Ki were calculated for both inhibitors (Fig. 10c).
Control experiments provided glucose conversion values of KM=
15 ± 2 mM and Vmax= 0.14 ± 0.01 min−1 53.

The results from Lineweaver–Burk plots determined that (4)2
and DTNB are non-competitive inhibitors (Fig. 10b). The Ki

values of (4)2 (Ki= 1.7 ± 0.2 µM) and DTNB (Ki= 0.20 ±
0.02 µM) were obtained using different inhibitor concentrations
and the data collected were fitted to a model of non-competitive
inhibitor using the program Prism 8.3.4. Furthermore, IC50 values
were performed at a final concentration of 10 mM of the substrate
in presence of different concentrations of the inhibitors (1.4 nM
to 2 mM). The results suggested that compound (4)2 is a less
potent inhibitor compared to DTNB.

Discussion
Dynamic combinatorial chemistry applied to biological systems
requires that the reversible chemistry of choice can be performed
in practical timescales and under physiological conditions. Even

Fig. 9 GOx-DCL by HPLC. Conditions: building blocks 1–2 (95 μM each) and 3–4 (190 μM each), Secox (5% mol, 28.5 μM), GOx (57 μM), Tris buffer (20
mM, pH 7.8), T= 6 °C, 2.5% (v/v) DMSO. Yellow circle (S–S), black hexagon (benzene ring). a DCL chromatograms after 24 h (i) in absence, blank (ii)
and presence of GOx, templated. b GOx templated effect relative peak area (RPA) and normalized change of RPA in the presence and absence of Secox
(Supplementary Tables 11 and 12). DCC experiments were carried out in triplicate. Mean ± SD.
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though thiol–disulfide exchange is one of the most popular che-
mistries for DCC as it proceeds smoothly at neutral or slightly
basic pH, it usually needs long equilibration times to reach its
final composition.

Inspired by the way the natural enzymes thioredoxin reduc-
tases accelerate the rate of thiol–disulfide reactions, we report the
use of the biocompatible selenocystine as a catalyst for a number
of thiol–disulfide exchange reactions. The operating principle of
this chemistry is that selenenylsulfide intermediates are more
reactive towards thiolate nucleophilic additions, thus accelerating
the exchange between the different species.

5% (mol) Secox is found to be optimal to reach DCL equili-
bration in 24 h. To study the catalytic performance of Secox,
kinetic studies on the homodimerization of compound 3 are
performed. We show that the addition of 5% (mol) selenocystine
produces an 18-fold acceleration on the homodimerization
reaction of compound 3 over the uncatalyzed reaction. The use of
DMSO as a co-solvent is known to accelerate the disulfide
exchange. Nevertheless, the catalytic efficiency of 5% (mol) Secox
clearly outcompetes that of 20% (v/v) DMSO. Moreover, Secox is
catalytically more effective than selenoenzyme TrxR 2 under
identical conditions. We have shown that the presence of sele-
nocystine produced a positive effect on the thiol/disulfide
exchange in a dynamic combinatorial library, being four times
faster than conventional DCC even at low temperatures and
physiological pH.

To broaden its scope of application as a reagent in biological
redox events, the performance of Secox in the refolding of
scrambled RNase A is compared to the standard glutathione
redox buffer. The refolding rate increases five times by replacing
GSSG with Secox. Unlike GSSG, Secox is highly active even at
acidic pH (5.4), expanding the range of conditions for protein
refolding.

Selenocystine has proven not to interfere with DCC target-
driven self-assembly processes (casting and molding) using
spermine, spermidine, NADPH, and the enzyme glucose oxidase
as templates. In spermine-templated DCL the equilibration time
is reduced four times using 5% (mol) Secox compared to the DCL
control and the cyclic tetramer (2)4 is amplified as expected in
different DCLs. The same catalytic effect is observed with the
spermidine and NADPH as templates. Glucose oxidase (GOx)
has confirmed to be an excellent DCL template directing the
library to the synthesis of compound (4)2. Accordingly, this
compound presents affinity values in the micromolar range
similar to the reference GOx inhibitor DTNB. As an additional
proof for specific binding of (4)2 to GOx, glucose oxidase activity
is evaluated and results suggest that compound (4)2 is a non-
competitive inhibitor with a moderate inhibitory activity com-
pared to the reported inhibitor DTNB.

In summary, the use of selenocystine as a catalyst broadens the
scope of dynamic combinatorial chemistry in biological envir-
onments. It accelerates the DCLs equilibration time even at low

Fig. 10 Enzyme activity and binding assays. a Structures of substrate β-D-glucose and the studied inhibitors DTNB and (4)2 of glucose oxidase.
b Lineweaver–Burk plots57 of DTNB and (4)2. Conditions: [glucose] from 0.2 to 4mM, 37 °C at 50mM sodium acetate buffer pH 5.15, [DTNB] 0.07
and 0.14 µM, [(4)2] 0.7 and 1.4 µM. Mean ± SD from four independent experiments. c Summary of the binding affinity and enzymatic activity parameters
(Supplementary Methods). Source data are provided as Source Data file.
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temperatures without interfering with the templating effect.
Furthermore, selenocystine has proven its effectiveness as a cat-
alyst promoting the formation of the right disulfide bonds in
protein folding expanding the pH range conditions.

Methods
Cysox and Secox DCL study. Control DCL of dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), DMSO (4.5 μL) in 20 mM Tris buffer pH 7.8
(466 μL). DMSO percentage is 2.5% v/v. Secox-catalyzed DCL: Dithiols 1–2 (2 × 1.8
μL, 25 mM, 4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL,
50 mM, 9.0·10−8 mol per monomer, DMSO), Secox (1.8 μL, 50 mM, 9.0·10−8 mol
per monomer, DMSO with 4% (v/v) 1M NaOH). DMSO (2.7 μL) in 20 mM Tris
buffer pH 7.8 (466 μL). Cysox-catalyzed DCL: dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), Cysox (1.8 μL, 50 mM, 9.0·10−8 mol per
monomer, H2O), DMSO (4.5 μL) in 20 mM Tris buffer pH 7.8 (464.2 μL). DCLs
were analyzed by HPLC-MS until equilibration without stirring at 6 °C.

Percentage (% mol) of Secox. Control DCL. Dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), DMSO (4.5 μL) in 20 mM Tris buffer pH 7.8
(466 μL). DMSO percentage is 2.5% v/v. Regarding Secox catalyzed DCL, different
stocks of Secox were carried out in order to study the percentages of Secox. The
general catalyzed DCL was the addition of dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO), monothiols 3–4 (2 × 1.8 μL, 50 mM, 9.0·10−8

mol per monomer, DMSO), Secox (1.8 μL, corresponding concentration, DMSO
with 4% (v/v) 1M NaOH), and DMSO (2.7 μL) in 20 mM Tris buffer pH 7.8
(466 μL). Concentration according to the percentage of Secox: 10% mol—15 mM
stock (2.7·10−8 mol), 5% mol—7.5 mM stock (1.35·10−8 mol), 2.5% mol—3.75 mM
(6.7·10−9 mol), 1% mol—1.5 mM stock (2.7·10−9 mol). The DCLs were prepared at
6 °C without stirring and analyzed in several hours until the complete stabilization.

Kinetic studies. The reaction started by the addition of the thiol 3 (3.8 μL, 50 mM,
1.9·10−7 mol, in DMSO) over the mixture of Secox (3.8 μL, at different con-
centrations according to the percentage, in DMSO with 4% (v/v) 1M NaOH) or
DMSO in control DCL (3.8 μL), DMSO (17.4 μL) and buffer Tris 20 mM pH 7.8
(975 μL) up to a total volume of 1 mL, and a final percentage of 2.5% (v/v) DMSO.
T= 6 °C without stirring. Concentration according to the percentage of Secox: 10%
mol—5 mM stock (1.9·10−8 mol), 5% mol—2.5 mM stock (9.5·10−9 mol), 2.5%
mol—1.25 mM (4.75·10−9 mol), 1% mol—0.5 mM stock (1.9·10−9 mol). For the
20% (v/v) DMSO-reaction, 3 was added over the solution of DMSO (196.2 μL) and
buffer Tris 20 mM pH 7.8 (800 μL) following the same parameters described above.
Besides, for TrxR-catalyzed reaction, 3 (3.8 μL, 50 mM, 1.9·10−7 mol, in DMSO)
was added over a solution of TrxR (40 μL, 237.5 μM, 9.5·10−9 mol, in buffer Tris),
DMSO (21.2 μL) and buffer Tris 20 mM pH 7.8 (935 μL). For the data treatment,
see Supplementary Methods and Supplementary Discussion.

Slow DCL system. Control DCL. Dithiol 5 (1.0 μL, 25 mM, 2.5·10−8 mol, DMSO)
and monothiols 6–8 (3 × 1.0 μL, 50 mM, 5·10−8 mol per monomer, DMSO),
DMSO (91.6 μL) in 20 mM Tris buffer pH 7.8 (382 μL), affording a final DMSO
percentage of 20% (v/v). Secox-catalyzed: Dithiol 5 (1.0 μL, 25 mM, 2.5·10−8 mol,
DMSO) and monothiols 6–8 (3 × 1.0 μL, 50 mM, 5·10−8 mol per monomer,
DMSO), Secox (1.0 μL, 8.75 mM, 8.75·10−9 mol, DMSO with 4% (v/v) 1M NaOH),
DMSO (90.6 μL) in 20 mM Tris buffer pH 7.8 (382 μL), DMSO is 20% (v/v) due to
the solubility issues, at 6 °C and without stirring. The DCLs were analyzed until
stabilization.

RNase A refolding by Secox. The activity of folded scrambled RNase was deter-
mined by the selective hydrolysis of cCMP. The folding experiment was carried out
by the addition of scrambled RNase A at a final concentration of 5 µM in presence
of two redox pairs, GSSG/GSH (0.2 mM/1 mM) and Secox/GSH (1 mM/5 mM) in
buffer 20 mM Tris 2 mM EDTA pH 7.8 at room temperature. The concentration of
the properly folded protein was determined by the calibration curve based on the
initial velocity vs. the concentration. Aliquots (30 μL) of the refolding solution were
withdrawn to measure the hydrolysis of cCMP for 2 min at 25 °C spectro-
photometrically (292 nm). The experiment was evaluated for 3 days at prescribed
times. Refolding experiments at pH 5.4 are detailed in Supplementary Methods and
Supplementary Discussion.

Secox catalyzing Spermine-directed DCLs
Methodology of two building blocks DCLs. Control DCL: dithiol 2 (1.8 μL, 25 mM,
4.5·10−8 mol, DMSO) and monothiol 3 (1.8 μL, 50 mM, 9.0·10−8 mol, DMSO),
DMSO (8.1 μL) in 20 mM tris buffer pH 7.8 with 2.5% (v/v) DMSO. The DCL was
stabilized at 96 h. Control DCL-Secox catalyzed: dithiol 2 (1.8 μL, 25 mM, 4.5·10−8

mol, DMSO) and monothiol 3 (1.8 μL, 50 mM, 9.0·10−8 mol, DMSO), Secox (1.8
μL, 3.75 mM, 6.75·10−9 mol, DMSO with 4% (v/v) 1M NaOH), DMSO (6.3 μL) in

20 mM tris buffer pH 7.8 (466 μL) with 2.5% (v/v) DMSO. The mixture was
stabilized after 24 h. Spermine-directed DCL: dithiol 2 (1.8 μL, 25 mM, 4.5·10−8

mol, DMSO) and monothiol 3 (1.8 μL, 50 mM, 9.0·10−8 mol, DMSO), DMSO (8.1
μL), Spermine solution in 20 mM tris buffer pH 7.8 (5 μL, 2.7 mM, 1.35·10−8 mol),
and 20 mM tris buffer pH 7.8 with 2.5% (v/v) DMSO (461 μL). The DCL was
stabilized at 96 h. Spermine-directed-Secox catalyzed DCL: Dithiol 2 (1.8 μL, 25
mM, 4.5·10−8 mol, DMSO) and monothiol 3 (1.8 μL, 50 mM, 9.0·10−8 mol,
DMSO), Secox (1.8 μL, 3.75 mM, 6.75·10−9 mol, DMSO with 4% (v/v) 1M NaOH),
DMSO (6.3 μL), Spermine solution in 20 mM tris buffer pH 7.8 (5 μL, 2.7 mM,
1.35·10−8 mol), and 20 mM tris buffer pH 7.8 with 2.5% (v/v) DMSO (461 μL). The
DCL was analyzed in 96 h after equilibration. DCLs were performed without
stirring at 6 °C and analyzed by HPLC-MS.

Methodology of four building blocks DCLs. Control DCL: dithiols 1–2 (2 × 1.8 μL,
25 mM, 4.5·10−8 mol per monomer, DMSO), monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), DMSO (4.5 μL) in 20 mM tris buffer pH 7.8
with 2.5% (v/v) DMSO. The mixture was stabilized in 96 h. Control DCL-Secox
catalyzed: dithiols 1–2 (2 × 1.8 μL, 25 mM, 4.5·10−8 mol per monomer, DMSO)
and monothiols 3–4 (2 × 1.8 μL, 50 mM, 9.0·10−8 mol per monomer, DMSO),
Secox (1.8 μL, 7.5 mM, 1.35·10−8 mol, DMSO with 4% (v/v) 1 M NaOH), DMSO
(2.7 μL) in 20 mM tris buffer pH 7.8 (466 μL) with 2.5% (v/v) DMSO. The mixture
was stabilized after 24 h. Spermine-directed DCL: dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), DMSO (4.5 μL), Spermine solution in 20 mM
tris buffer pH 7.8 (10 μL, 2.7 mM, 2.7·10−8 mol) and 20 mM tris buffer pH 7.8 with
2.5% v/v DMSO (456 μL). It was stabilized in 24 h. Spermine-directed-
Secoxcatalayzed DCL: dithiols 1–2 (2 × 1.8 μL, 25 mM, 4.5·10−8 mol per monomer,
DMSO), monothiols 3–4 (2 × 1.8 μL, 50 mM, 9.0·10−8 mol per monomer, DMSO),
Secox (1.8 μL, 7.5 mM, 1.35·10−9 mol, DMSO with 4% (v/v) 1 M NaOH), DMSO
(2.7 μL), Spermine solution in 20 mM tris buffer pH 7.8 (10 μL, 2.7 mM,
2.7·10−8 mol) and 20 mM tris buffer pH 7.8 with 2.5% v/v DMSO (456 μL). DCL
was equilibrated in 96 h. DCLs were performed without stirring at 6 °C and ana-
lyzed by HPLC-MS.

See Supplementary Methods for more templated-DCLs (e.g., Spermidine and
NADPH).

Glucose oxidase-directed DCL. Blank DCL: Dithiols 1–2 (2 × 1.8 μL, 25 mM,
4.5·10−8 mol per monomer, DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM,
9.0·10−8 mol per monomer, DMSO), Secox (1.8 μL,7.5 mM, 1.35·10−8 mol, DMSO),
DMSO (2.7 μL) in 20 mM tris buffer pH 7.8 with 2.5% (v/v) DMSO (466 μL). GOx-
directed DCL: Dithiols 1–2 (2 × 1.8 μL, 25 mM, 4.5·10−8 mol per monomer,
DMSO) and monothiols 3–4 (2 × 1.8 μL, 50 mM, 9.0·10−8 mol per monomer,
DMSO), Secox (1.8 μL,7.5 mM, 1.35·10−8 mol, DMSO with 4% (v/v) 1M NaOH),
DMSO (2.7 μL), GOx (135 μM, 200 μL, 2.7·10−8 mol, 10% mol) in 20 mM tris
buffer pH 7.8 with 2.5% (v/v) DMSO (266 μL). The DCL was stabilized for 24 h at
6 °C. Then, GOx was removed by ultracentrifugation through an Amicon ultra-
filter (100 KDa). HPLC analysis was performed.

Supplementary Methods: BSA-directed DCL and GOx-directed DCL in
presence of DTNB.

Reversibility study. See Supplementary Methods and Supplementary Discussion.

Synthesis of building blocks 1, 2, and 5. See Supplementary Methods and
Supplementary Discussion.

Synthesis of compounds (3)2 and (4)2. See Supplementary Methods and Sup-
plementary Discussion.

Protein stability experiments. See Supplementary Methods.

Fluorescence emission experiments. See Supplementary Methods.

GOx activity assays. Enzymatic assay to determine Michaelis–Menten constant
Km and maximum velocity Vmax, IC50, and inhibition constant Ki of the ligands in
presence of compounds were performed by glucose oxidase-horseradish perox-
idase-coupled system using o-dianisidine as chromogen, with a 2.5% (v/v)
of DMSO.

Michaelis–Menten parameters were set up using different final concentrations
of glucose from 0.2 to 4 mM. Glucose stocks from 0.5 to 10 mM (100 µL, 50 mM
sodium acetate buffer pH 5.1), o-dianisidine (127.8 µL, 3.5 mM, MilliQ water),
DMSO (6.2 µL), horseradish peroxidase (8 µL, 207 µM, 50 mM sodium acetate
buffer pH 5.1) and GOx (8 µL, 42.7 nM, 50 mM sodium acetate buffer pH 5.1) were
added to a final volume of 250 µL in a 2.5% (v/v) DMSO. GOx activity was
measured spectrophotometrically at 500 nm 20 min at 37 °C. The data were fitted
to a Lineweaver–Burk model.

IC50 was determined using different concentrations of inhibitors DTNB and
(4)2. The solution containing glucose (100 µL, 25 mM, 50 mM sodium acetate
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buffer pH 5.1), o-dianisidine (127.8 µL, 3.5 mM, MilliQ H2O), DTNB, or (4)2 at
different concentrations (6.2 µL, from 1.4 nM to 2 mM, DMSO), horseradish
peroxidase (8 µL, 207 µM, 50 mM sodium acetate buffer pH 5.1) and GOx (8 µL,
42.7 nM, 50 mM sodium acetate buffer pH 5.1) was analyzed
spectrophotometrically at 500 nm in a plate reader, 20 min at 37 °C. The data were
fitted to a dose–response model for three parameters using Prism 8.3.4.

Inhibition constant Ki was determined by the use of several ligands and
substrate concentrations. Glucose (100 µL, 0.5−10 mM, in 50 mM sodium acetate
buffer pH 5.1), o-dianisidine (127.8 µL, 3.5 mM, MilliQ H2O), DMSO, several
concentrations of DTNB (35−140 nM) or (4)2 (0.07–1.4 µM) in DMSO (6.2 µL),
horseradish peroxidase (8 µL, 207 µM, 50 mM sodium acetate buffer pH 5.1) and
GOx (8 µL, 42.7 nM, 50 mM sodium acetate buffer pH 5.1). Plates were measured
spectrophotometrically at 500 nm 20min at 37 °C. The data were fitted to a non-
competitive inhibition model by Prism 8.3.4. For more details, see Supplementary
Methods.

Data availability
A reporting summary for this Article is available as a Supplementary Information file.
The rest of the data are available in the Supplementary Information File. Source data are
provided with this paper.
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