LOW TEMPERATURE PLASMAS FOR LABORATORY ASTROPHYSICS

Isabel Tanarro

<u>i.tanarro@csic.es</u>, IEM-CSIC, Spain

 C. Bermúdez, C. Cabezas, J. Cernicharo,
J. L. Doménech, V. J. Herrero, R. J. Peláez,
K. Lauwaet, G. Santoro, J. A. Martín-Gago,
F. Beltrán, J. M. Hernández, P. de Vicente, J. D. Gallego and the Team of Yebes Observatory

Funding: EU Synergy Grant ERC-2013-Syg 610256 "NANOCOSMOS" Spanish Grants CSD2009-00038 "ASTROMOL" & FIS2016-77726-C3-1-P

MOTIVATION

- Molecules play a key role in Interstellar Molecular Clouds for the formation of stars, and participate in a rich chemistry in those regions.
- Since the original discovery of CH and CN radicals (1940) more than 200 Molecular Species have been found in the interstellar medium by Spectroscopic Methods (containing up to 70 atoms).
- <u>http://www.astrochymist.org/astrochymist_mole.html</u>
- Laboratory Data are crucial for their spectral identification and to clarify their generation and destruction mechanisms.
- Many of them are **Unstable Species** (Ions, Radicals). **Cold Plasmas** are useful to generate them and to characterize their spectral signatures and behavior.

- ~ 80% of these species have been detected by RADIO ASTRONOMY, from their Pure Rotational Emissions ($v \approx GHz$, $\lambda \approx mm$, $\Delta E \approx meV$).
- **Radio Astronomy** is crucial to characterize very cold interstellar regions, where only low molecular levels, close to the ground state, are populated.
- **Radio Astronomy** provides Broadband Range and High Spectral Resolution.
- **Radio emissions** reach Earth observatories better than **IR**, **Visible & UV**, due to the different opacities of the media to be crossed by radiation.

HOW ARE THESE MEDIA? HOW DO THEY HINDER RADIATION?

EARTH'S ATMOSPHERE

High Transmittance for Radio Waves, especially at high altitude and dryness

DARK MOLECULAR CLOUDS

Composed mainly of H_2 and **Dust** (~15% mass of galaxies)

Unlike UV and visible light, scattered or absorbed by interstellar dust, longer wavelengths can pass through the microscopic particles.

Dark molecular cloud Barnard 68 , T \approx 16 K

Nowadays, the most recent generation of Radio-Telescopes, like ALMA, provides more sensitivity and angular resolution than all the previous ones to search molecules in space!

ALMA (Atacama Large Mm/sub-mm Array) Atacama Desert (Chile), ~2400 m altitude

6

PRESENT WORK: USE FOR THE FIRST TIME OF RADIO-ASTRONOMY TECHNIQUES TO DETECT MOLECULAR EMISSIONS IN LABORATORY COLD PLASMAS

40 m Radio Telescope of Yebes Observatory, Guadalajara, Spain

CSIC CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

7

FUNDAMENTAL MAGNITUDES: THE PROOF OF CONCEPT ⁹

Molecular Clouds

Length ~ 10^{19} cm Density ~ 10^4 - 10^5 cm⁻³

Column density in line of sight $H_2 \sim 10^{22} \text{ cm}^{-2}$, CO $\sim 10^{18} \text{ cm}^{-2}$ HCN, HCO⁺, C₂H, CN, CS $\sim 10^{14} \text{ cm}^{-2}$

Glow Discharge Reactors

Length ~ 100 cm Density ~ 2.5 x 10^{15} cm⁻³ (0.1 mbar) $\downarrow\downarrow$ Column density in line of sight: Stable species ~ 10^{17} cm⁻² Ions and Radicals ~ $10^{13} - 10^{15}$ cm⁻²

Observations reasonably expected for times of minutes - hours

TWO CAMPAIGNS OF EXPERIMENTS TWO INDEPENDENT EQUIPMENTS

- 1.- Proof of Concept in the 40 m Radio-Telescope of Yebes Observatory (Spain). *Tanarro et al, A&A 609, A15 (2018)*
- 2.- New Astrophysics Laboratory in Yebes' Observatory location. Cernicharo et al, A&A 626, A34 (2019)

1. PROOF OF CONCEPT IN THE 40 m RADIO-TELESCOPE

Several short campaigns (2016-2017) in the receptors' room, subjected to the time schedule of the astronomers.

100 steps, no room enough, no heating, no coffee machine ... **but a very funny experience!**

BASIC EXPERIMENTAL SCHEME

- **REACTOR** devoted to study **Gases** and **Cold Plasmas** in glow discharges.
- HETERODINE RECEIVERS for broad band, high resolution, rotational emission spectroscopy.
- COLD LOAD at the backend to minimize mm background radiation (+ movable HOT LOAD for calibration).

Additional equipment:

- Quadrupole Mass Spectrometry
- Visible Emission Spectroscopy

Very weak signal $\sim 10^{\text{-}15}$ W, $\sim 30\text{-}300~\text{GHz}$

Heterodyne Detection

Amplification Frequency Down Conversion Processing by FFTS

 $Gain \sim 120 \ \text{dB} \\ IF \sim 2 \ \text{GHz}$

Careful noise reduction is essential

13

PROTOTYPE REACTOR

- RF inductively coupled discharge: 13.56 MHz, 5-60 W
- Pressures ~ 10^{-2} 10^{-1} mbar (gas flow or static)
- Stainless steel, 40 cm length x 25 cm diameter, specially designed to be used in the limited space available in the telescope.

• Windows: 1 cm thickness Fused Silica or a 70 μ m yellow polyimide film (Upilex), at different angles to avoid etalon effects.

HETERODINE RECEIVER

The HEMT Q band Receiver of the Radio Telescope

- Spectral Range = 30 50 GHz
- Instantaneous Bandwidh = 2 GHz

- 2 Fast Fourier Transform Spectrometers (65536 channels/u)
- \Rightarrow 38 kHz Spectral Resolution

COLD LOAD

- 40 m Antenna towards the Zenith \Rightarrow 42 K (45 GHz)
- Load of liquid N₂ (cloudy or rainy weather) \Rightarrow 77 K

Hot Load Corrugated foam rubber

PRELIMINARY TESTS (a)

Radiation reflected between both sides of the 1 cm silica windows rose unacceptably the background signal (etalon effect)

• 1 cm Fused Silica: similar thickness to Q band wavelengths (6-9 mm)

• 70 μm Polyimide Film: much lower interferences.

70 μ m Polyimide Film: Low Noise, but Dangerous for warping at vacuum and giving rise to very loud implosions

Two Sampling Modes for Noise Reduction

- Sample in/Sample out: the common ON/OFF technique in Astronomy. But too slow for us, by the need to evacuate and fill the reactor.
- Frequency Switching (±24 MHz), much more convenient.

Could electrical noise of the RF discharge affect the RF receivers?

Astronomical observation of a SiO maser signal from TX Cam star through the reactor showed identical results with PLASMA ON/OFF.

EXPERIMENTAL RESULTS

~ 80% of molecular species discovered in the interstellar medium contain at least one carbon atom \Rightarrow Study focused on different carbon containing molecules of astrophysical interest.

Particular showcases:

- Carbonile Sulphide (**OCS**) and its plasma products.
- **O**₂ plasmas reacting with wall deposits (cleaning effect).

Species are identified and concentrations estimated with MADEX (Molecular and Atomic Database and Excitation Code, Cernicharo 2012) with molecular data of > 6000 species including isotopologues. <u>https://nanocosmos.iff.csic.es/madex/</u>

OCS plasma (0.15 mbar, 5 W)

- OCS dissociation ~ 70%
- v_2/v_0 intensities \Rightarrow Temp. change plasma Off / On = 300 K / 450 K
- Production of reactive CS was observed

OCS Gas (0.15 - 0.5 mbar)

- Higher resolution at lower pressures, with not so large intensity loss.
- OC³⁴S detected (\approx 25 µbar)
- v_2 J=4-3 doublet detected.

O₂ discharge (0.1 mbar, 60 W) after deposition of Sulphur & Carbon on the walls by the former OCS plasma

- SO₂ (40 μbar) was produced by surface reactions.
- CO (non active in the Q band) was detected by mass spectrometry.

IPS 2018, Oxford, UK September 23-26, 2018

Proof of concept successful !!!

A&A 609, A15 (2018) DOI: 10.1051/0004-6361/201730969 © ESO 2017 Astronomy Astrophysics

Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept*

I. Tanarro¹, B. Alemán², P. de Vicente³, J. D. Gallego³, J. R. Pardo², G. Santoro⁴, K. Lauwaet⁴, F. Tercero³, A. Díaz-Pulido³, E. Moreno², M. Agúndez², J. R. Goicoechea², J. M. Sobrado⁵, J. A. López³, L. Martínez⁴, J. L. Doménech¹, V. J. Herrero¹, J. M. Hernández³, R. J. Peláez¹, J. A. López-Pérez³, J. Gómez-González³, J. L. Alonso⁶, E. Jiménez⁷, D. Teyssier⁸, K. Makasheva⁹, M. Castellanos², C. Joblin^{10, 11}, J. A. Martín-Gago⁴, and J. Cernicharo²

The design and construction of a completely new laboratory, not subject to the unavoidable restrictions of the telescope, was addressed.

2.- NEW SET-UP FOR LABORATORY ASTROPHYSICS

Control room of 13.5 m old telescope (~1980's) covered with spherical dome

Cons

CSIC

NEW Q AND W BAND RECEIVERS, 16 FFTS, A LARGER REACTOR AND CRYOGENIC COLD LOADS

16 FFTS New Reactor (1 m x 0.6 m) RF Source & Matching Image: Construction of the state of t

Q & W band Radio-Receivers in a single housing

Visible Spectrometer New Reactor BACK END

Mass Spectrometer Cold Load: Helium Cryostat (17 K)

Teflon corrugated windows optimized for W band

RECEIVERS

• Two receivers in a single cryostat:

Q band = 32-50 GHz **W band** = 72-116 GHz Divided in three sub-bands

- Each one connected to 8 FFTS of 2.5 GHz, 1.5 x 10⁶ channels \Rightarrow
- Instantaneous Bandwidth = 18 GHz Resolution = 38 kHz

EXPERIMENTAL RESULTS

Particular showcases:

- OCS
- O₂ plasma reacting with wall deposits
- CH₄ + N₂ plasma

Very low pressures (\approx tens of μ bar) could be used at stable plasma conditions, reducing line-widths and improving signal detection.

OCS, 40 µbar, without discharge

The lines of SO($^{3}\Sigma$) are Zeeman splitted by the Earth magnetic field (~ 45 μ T)

Plasma of 13 μ bar CH₄ + 19 μ bar N₂ , 20 W (40 min)

Main component of Titan atmosphere CH_3CN , HCN and HC_3N produced in the discharge were detected.

CH₃CN (0.01 μbar)

HCN (0.4 µbar)

New laboratory successfully working !!!

A&A 626, A34 (2019) https://doi.org/10.1051/0004-6361/201935197 © ESO 2019 Astronomy Astrophysics

Broad-band high-resolution rotational spectroscopy for laboratory astrophysics*

J. Cernicharo¹, J. D. Gallego², J. A. López-Pérez², F. Tercero², I. Tanarro³, F. Beltrán², P. de Vicente², K. Lauwaet^{4,5}, B. Alemán^{4,6}, E. Moreno¹, V. J. Herrero³, J. L. Doménech³, S. I. Ramírez^{1,7}, C. Bermúdez¹, R. J. Peláez³, M. Patino-Esteban², I. López-Fernández², S. García-Álvaro², P. García-Carreño², C. Cabezas¹, I. Malo², R. Amils², J. Sobrado⁸, C. Diez-González², J. M. Hernandéz², B. Tercero², G. Santoro⁴, L. Martínez⁴, M. Castellanos¹, B. Vaquero Jiménez², J. R. Pardo¹, L. Barbas², J. A. López-Fernández², B. Aja⁹, A. Leuther¹⁰, and J. A. Martín-Gago⁴

1. Technique very useful to detect molecular species with great **sensitivity** and measure their spectral frequencies with high **accuracy**, allowing to derive their rotational constants with large **precision**.

2.- It allows to detect **unstable products of astronomical interest** in **cold plasmas** with complex precursor mixtures, and contribute to the identification of their kinetic processes.

3.- These experiments open new and very encouraging opportunities to laboratory astrophysics and to possible collaborations between astronomers and plasma specialists.

Work in progress

- 1. Laboratory spectra and astronomical search of gases and vapors not previously studied. *Cabezas et al, A&A 629, A35 (2019)*
- 2.- DC hollow cathode discharges (instead RF) to favor the study of ions.
- 3.- Photo-chemistry experiments with VUV lamps.
- 4.- Surface chemistry on ices of astrophysical interest.

Thank you very much for your attention!

CSIC CONSE IO SUPERIOR DE INVESTIGACIONES CIENTÍE

