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ABSTRACT

The viscoelastic-plastic properties of glassy PET in the micron and submicron
range have been investigated by means of load-displacement analysis from depth sensing
experiments. Experimental data have been modelled using two methods: a) assuming the
elastic behaviour during initial unloading as that of a cylindrical punch, b) using a power
law relation. The creep behaviour under the indenter has been examined. Furthermore,
the influence of the maximum penetration depth and loading and holding times on the
hardness values is discussed. Hardness data from the depth sensing and imaging methods
are shown to be in good agreement. When using the depth sensing method, hardness
values are shown to be constant with decreasing penetration depth (0.5um £ hmax <
9um), provided a correction procedure to account for the indenter tip defect is applied.
The Young’s modulus derived from the compliance method has been studied and results

are discussed in the light of the various testing conditions employed.



§ 1. INTRODUCTION

The indentation test is one of the simplest ways to measure the mechanical
properties of a material. The micromechanical behaviour of polymers and the correlation
with morphology and microstructure have been widely investigated over the past two
decades (Balta Calleja 1985, 1994; Balta Calleja and Fakirov 1997). Conventional
microindentation instruments are based on the optical measurement of the residual
impression produced by a sharp indenter penetrating the specimen surface under a given
load at a known rate. Microhardness is obtained by dividing the peak load by the contact
area of impression. It has been shown that post-indentation microhardness of plastic
polymers is a good measure of microhardness at peak load due to a negligible recovery
of the area of impression (Eyerer and Lang 1972). While hardness, defined in this way, is
an indicator of the irreversible plastic deformation processes, information about the
elastic recovery of the indentation penetration depth is mostly lost. On a
microindentation experiment, typical loads range from 10°-10° mN. When these loads are
applied onto the surface of hard semicrystalline polymers such as poly(ethylene
terephthalate) (PET), the penetration depths range between 4-10 um (Santa Cruz et al.
1991).

The need to mechanically characterize the surface of very thin films and near
surfaces has led to the development of ultramicro and nanoindentation testers (Loubet ef
al. 1984; Doerner and Nix 1986; Oliver and Pharr 1992; Pharr ef al. 1992; Raman and
Berriche 1992; Blau et al. 1993; Vancoille et al. 1993; Kulkarni and Bhushan 1996,
Briscoe ef al. 1996). Continuous load-displacement monitoring, as the indenter is driven
into and withdrawn from the film, substitutes the imaging method used in conventional

microindenters. Smaller loads can be applied leading to penetration depths within the



sub-micron scale. The compliance method opens up the possibility of investigating the
mechanical properties of a material at the near surface. In addition, the elastic recovery
of the indentation upon the removal of the load can be investigated.

Indentation testing in the sub-micron scale has been widely explored in metals
and ceramics (Loubet ez al. 1984, Doerner and Nix 1986, Oliver and Pharr 1992, Pharr
et al. 1992, Raman and Berriche 1992, Blau e? al. 1993, Vancoille et al. 1993, Kulkarni
and Bhushan 1996). However, there is still little research on the viscoelastic-plastic
properties of polymers derived from depth sensing experiments. This is probably due to
the time-dependent mechanical behaviour which complicates the interpretation of the
results. Hardness and elastic modulus values of poly(isobutadiene) rubber, poly(ether-
ether ketone), poly(methyl methacrylate) (PMMA) and nylon-6 have been reported
(Briscoe et al. 1996). In all cases, the indentation depth lay within the micron regime
(=2pm). In a recent paper (Briscoe and Sebastian 1996), the influence of the indenter
geometry on the hardness and Young’s modulus values of PMMA has been carefully
examined. These authors show, in addition, that the values of hardness measured directly
from the residual image, correlate well with those computed using the compliance
method. The plastic, elastic and flow properties of amorphous and uniaxially drawn PET
containing different fillers have also been reported (Ion ez al. 1990). The penetration
depths of the impressions produced ranged between 0.5-5 pm. In the micron regime,
hardness values reported were about a factor two greater than H of an amorphous PET
sample measured using the imaging technique (Balta Calleja er al. 1993). The
discrepancy is possibly due to the presence of fillers in the sample investigated by means
of the depth sensing technique although the authors of the former paper adwvised not to

rely upon the absolute values of hardness.



The aims of the present paper are the following: a} to discuss the difference in
hardness/elastic modulus values of amorphous PET, obtained from a depth sensing
experiment, according to which theoretical assumptions are used, b) to compare H
results from the compliance and the imaging methods in a wide range of experimental
conditions; c) to examine the influence of the test parameters (loading time and holding
time) on the mechanical properties obtained; d) to investigate the plastic properties of

PET in the sub-micron range and compare to the H values obtained in the micron regime.

§ 2. EXPERIMENTAL

2.1. Materials and sample mounting

Amorphous PET supplied by Kalle (Germany) in the form of a 200 pm thick film
was investigated. It is known that ageing affects the hardness values of amorphous PET
during the first hours of storage (Ania et al. 1989). In order to avoid ageing effects
during the performance of our experiments, a sample stored for three years at room
temperature has been chosen. For the compliance method, the specimen was glued onto
a metal holder to avoid air gaps between the sample and the test piece stage. The sample
was then positioned on the test stage of the ultramicroindenter and tightened with the
help of band fasteners. The same PET sample was used to measure hardness values by
means of the imaging method.

2.2. Imaging method: microhardness measurements

A Leitz microindenter was used to measure hardness at room temperature. The
indenter is a Vickers square-based diamond pyramid with included angles ¢=136°
between non-adjacent faces. The force applied was 249 mN. The time at which this force

was held varied between 6 and 1000 seconds. For a holding time of 6 seconds, a load of



147 mN was also used. Hardness was measured from the residual projection of the area
of indentation according to (Tabor [951):

L
A

H= (1)

where A is the projected area of the indentation. A is related to the diagonal of the

residual impression, d, through:

4}
A=245 [:};) (2)

Using equation (2), we may write equation (1) as:

P

H= Z-d—2 (3)

The length of the impression was measured to +0.5um with a microscope
equipped with a filar eyepiece.
2.3. Compliance method: ultramicroindentation experiments
Depth sensing experiments were carried out in a Shimadzu dynamic
ultramicroindentation tester. In this system, the indenter enters the test surface vertically.
The load is applied through a load generator which comprises a fixed permanent magnet
and movable force coil. When electric current flows through the coil, the electromagnetic
force is generated in proportion to the coil current. The coil is controlled to obtain the
desired load. The electromagnetic force generated is transmitted to the indenter via a
lever and an indenter supporting shaft. Indentation depth is measured by using a
differential transformer positioned near the indenter. The minimum load that ‘can be
applied with this instrument is 0.1 mN with an accuracy of +1%. The displacement of
the indenter is recorded with an accuracy of 10” pm. In order to better compare the

measurements of this technique with those of the imaging method, 2 Vickers diamond



pyramid was used to make indentations. Figure 1 shows a typical load-displacement
curve for one of the PET samples investigated in this paper. On loading, the force was
incremented at constant velocity. In the compliance curve of figure 1, the rate at which
the force is incremented is of 6.6 mN/s. The depth represents the contribution of, both,
the elastic and plastic displacements. The loading curve was followed by a period of
time, Atpa, at which the peak load is held constant. The value of Atpqg in figure 1
corresponds to 200 seconds. During unloading, the load is always reduced at the same

rate as in the loading cycle. In this case, the elastic displacements are recovered.

Three sets of experiments were carried out in order to independently study the
influence of the three main parameters (holding time, loading rate and maximum load) on
the viscoelastic-plastic properties of the polymer. The experimental parameters values
used are collected in table 1.

In the first set of experiments, a maximum load, Pmax, of 147 mN (in the range of the
loads used in the imaging technique) was reached at a loading rate, P, of 13.2 mN/s and
held thereafter for a period of time which varied between 6 and 10° seconds.

In a second set of experiments, the loading rate was varied between 0.47 and 13.2 mN/s
to reach again a maximum 147 mN peak load which was held for 6 and 200 seconds.

For the comparative study of the plastic properties of PET in the micron and sub-micron
regime (third set of experiments), the maximum load was varied between 0.98 and 245
mN. The loading rate was adjusted on each experiment to maintain the time employed in

the loading cycle, tiea, between 7-14 seconds. Atyq Was 6 seconds in all cases.



§ 3. ANALYSIS OF THE COMPLIANCE CURVES

3.1. Derivation of mechanical properties
Values of hardness and elastic modulus were obtained following the procedure of
Doerner and Nix (1986) and Oliver and Pharr (1992). Both procedures use the slope of

the unloading curves as a measure of the elastic properties of the sample.

Doerner and Nix modelled the elastic behaviour of the indentation during the
initial unloading as that of a blunt punch. These authors used Sneddon’s analysis of the
indentation of an elastic half space by a flat cylindrical punch (Sneddon 1965). The

elastic modulus, E, was derived from the initial unloading slope following:
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and where S=AP/Ah is the initial unloading stiffness, A the projected area of contact, E;
the reduced modulus, E and v Young’s modulus and Poisson’s ratio of the material
respectively and E, and v, Young’s modulus and Poisson’s ratio of the indenter
respectively. AP/Ah is evaluated by fitting a tangent to the initial portion of the unloading
curve. For a perfect Vickers geometry, A =24.5h,’, where h, (plastic depth) is the depth
of the indenter in contact with the sample at maximum load. Doerner and Nix suggest to
estimate the plastic depth by extrapolating to zero load the tangent fitted to the initial
portion of the unloading curve (see figure 1). In the present study, we have used 20% of
the upper part of the unloading curve to derive AP/Ah. The reduced elastic modulus, E,,

is introduced to account for the displacement contribution of a non-rigid indenter. For



diamond, v, = 0.07 and E, = 1141 GPa (Simmons and Wang 1971). Poisson’s ratio for
PET is taken to be 0.5 (Birley ef al. 1992). The elastic modulus of PET is around 2.5

GPa (see below). Then, (1-v,")/E, is negligible in equation (5) and equation (4) leads to:

_ =S .
E_\/;2 (1-v%) (6)

Hardness is derived through:
Poax
H= - (7

where P« isthe maximum load applied.

Pharr et al. showed that equation (4) holds for all indenters than can be
considered as bodies of revolution (Pharr ef al. 1992). Moreover, they indicated that it is
possible to use eq. (4) for a Vickers geometry without great error (1.2% error in the
unloading stiffness values). Oliver and Pharr simﬁltaneous]y developed a method to
evaluate the initial unloading stiffness, S, and the contact penetration depth at peak load,
h., for several indenter geometries (Oliver and Pharr 1992). Once S and h. are
determined, E and H are evaluated through equations (6) and (7) respectively, where
A=24.5 h? for a perfect Vickers geometry. The new method of analysis uses a power
law relation to describe the unloading curves:

P=q(h-hg" (3)
where P is the load, h-h¢the elastic displacement (see figure 1) and o and m are material
constants. We have used a least square fitting procedure to fit the entire experimental
unloading data to a power law curve. In this way, the parameters o, m, and hy are
determined. The initial unloading stiffness, S=(6P/Gh)m, is found by analytically
differentiating expression (8) and evaluating the derivative at the peak load and

displacement. Oliver and Pharr calculated the contact depth, b, following:



h,=h, + (1-€) (heax-hy) %)
where h, represents the intercept of the initial unloading slope with the displacement axis
(as shown in figure 1), hma is the maximum displacement reached by the indenter (see
figure 1) and e is a geometric constant. The e value depends on which of the indenter
geometries best describes the experimental data (see Oliver and Pharr 1992 for more
details). In our case, an e value of 0.72 was chosen, which corresponds to a conical

geometry. Note that € = 0.72 implies that h. is always higher than h,,

3.2. Sources of error
To minimize the error on the determination of the true zero of indentation depth,
the experimental loading curve was fitted to a power law function of the type (Briscoe
and Sebastian 1996):

P=m(h-h,) (10)
where m is a material constant, » is the index of the deformation and h, is the true zero
point.

To correct for the instrument compliance, Cy, the compliance data, C= S were
plotted versus 1/v/A for the biggest indentation sizes (load ranges from 9.8 to 245 mN).
A is that of an ideal Vickers indenter. The y-axis intercept was used as a first estimate of

the frame compliance, being:

1 )
== (1-V’ 1
C=5 Jazz U7V an
The method assumes an E value which is independent of the indentation depth. The first

estimate of the frame compliance was used to correct the experimental compliance

curves, and new values of A were derived. The procedure was iterated several times until



convergence was achieved. The machine compliance correction is more important for
materials with high elastic modulus and low hardness. In our case, the machine
compliance was negligible except for the E value corresponding to 245 mN peak load,

where a 7% increase in E was obtained.

§ 4. RESULTS AND DISCUSSION

4.1. Plastic properties

Holding and loading time dependence

The derivation of hardness from load-displacement data requires an evaluation of
the elastic displacements during the indentation recovery. Time-dependent plastic effects
contributing to the initial portion of the unloading curve lead to an unsatisfactory analysis
(Turmnbull and White 1996). To discard the time-dependent displacements during'
unloading, one common procedure is to hold the maximum load for a sufficiently long
period of time. However, microindentation experiments on polymeric materials had
shown that hardness is strongly dependent on the time of application under the peak load
(Balta Calleja 1985). Usually, hardness values derived from microindentation
experiments are referred to short holding times (a few seconds) so as to minimize the
creep of the sample under the indenter (Baltd Calleja 1985). In depth sensing
instruments, increasing the holding time at peak load diminishes the plastic effects
masking the elastic displacements but on the other side, hardness values are modulated
by the creep effect. The need to reach a compromise to select an appropriate value of
the holding time, prompted us to investigate the hardness variation with Atyo.

Figure 2 shows the double logarithmic plot of H derived from the compliance

method, Mo, vs. holding time (peak load=147mN, loading rate=13.2mN/s). The
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cylindrical punch approximation and the power law fitting method were used in the data
analysis. Hardness values obtained from the imaging method, Himag, are included in figure
2 for comparison. From microindentation experiments on a wide range of polymers, the
time dependent part of the plastic deformation is shown to follow a function of the type
(Balta Calleja 1985):
H=Ht*

where H, is the hardness measured at t=1 min and k is the creep constant. It is interesting
to observe the same type of creep effect in, both, depth sensing and imaging
experiments. Hardness values do not seem to be sensitive to time-dependent plastic
contributions to the unloading as no significant deviation from the creep curves at the
shortest times is observed. In the following, a holding time of six seconds will be
employed to evaluate H. This arbitrary criterion arises from the fact that Himsg is
frequently measured using a holding time of six seconds (Balta Calleja 1985). Therefore,
if we wish to compare Heompt With Himag, it seems reasonable to use the same holding time
at maximum load in both experiments. Other authors have also used a holding time of a
few seconds on their microhardness testing using the compliance method (see Doerner
and Nix 1986, where Atnia=10s). Figure 2 shows that Hem analysed using the power-
law fitting method is very close t0 Him, the differences lying within the error limits. This
result suggests that, at least for amorphous PET, post-indentation hardness as measured
using the imaging technique is a good measure of hardness under load. On the other
hand, Heomp values derived from the cylindrical punch method and using h, as the contact
depth, are 10-15% higher than Him,. This difference could be due to: i) an inaccurate
determination of the initial unloading stiffness when using the cylindrical punch method.

S is known to depend on how many data are used in the linear fit to the upper part of the
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unloading (Oliver and Pharr 1992); ii) an underestimation of the contact depth, hy, which
is directly derived from the intercept of the unloading slope at zero load. To elucidate
which one of the two possibilities is responsible for the high Heompt values obtained using
Doerner and Nix’s analysis, figure 2 includes hardness values obtained when fitting a
tangent to 1/5 of the upper part of the unloading (cylindrical punch approximation) and
calculating the contact depth using eq. (9). These hardness values are represented by
squares. It is clear that H data as calculated using the power law fitting method and H
values from the cylindrical punch approximation are very close to each other, the
difference lies within the error limits, when the criterion adopted to calculate the contact
depth is the same. However, if the stiffness were calculated by the cylindrical punch
method using a larger fraction of the unloading curve, deviations in the H values with
respect to those obtained using the power law method would be expected (Oliver and
Pharr 1992).

Figure 3 shows the plot of the hardness value as a function of the loading time

(peak load=147mN, holding time=6s). No considerable H variation with ti.q is obtained.

Penetration depth influence on hardness

Figure 4a illustrates the variation of H as a function of the maximum penetration
depth reached by the indenter when applying different peak loads (loading time=7-14s,
holding time=6s). Hardness is shown to be independent of the indentation depth when
this is larger than 2 um. In this range, Heomu obtained when the contact depth is
determined using equation (9), is comparable t0 Himg At hmu<lpm, there is a
pronounced H increase with decreasing penetration depth. There are two possible

reasons for the H increase when husx is below 1 um: i) an intrinsic higher H value at the
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near surface or ii) a change in the contact area to depth relation, A(h.), due to a non-
negligible tip defect at these penetration depths. A harder outer skin of ~ 20 pum has been
observed in semicrystalline poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) which
was annealed above the glass transition temperature (Rueda ef al. 1994). This hardening
effect of the outer layer could be explained due to a thermal gradient during the
annealing experiment which could give rise to a higher crystallinity at the surface.
Although this is not the case in amorphous PET, the first 30 um of the sample were
removed to check the hardness values below the surface. No significant differences in
hardness were found. Thus, the use of A(h,) as the area of a perfect pyramid geometry is
not anymore valid for penetration depths smaller than 1 pm. Several methods have been
developed to account for the difference between the genuine contact area and the area
corresponding to an ideally sharp indenter (Mencik and Swain 1995). We have used a
procedure which assumes that for an ideally sharp indenter, the load is proportional to
the square of the depth of indenter penetration. That is to say, that the » exponent in
equation (10) takes a value of 2. This is, indeed, the n-value obtained when fitting our
experimental loading curves for the largest indentations (hmax = 21m) to a power law
function. The h, value in equation (10) corrects for the experimental uncertainty in the
location of the point of initial contact and the magnitude of the tip defect. The latter
causes that the experimental loading curves depart from P~(h-h,)’ at small penetration
depths. At these penetration depths, the difference between the observed and the ideal
penetration depth values provides the correction which should be introduced in the
measured penetration depth of the compliance curves corresponding to indentations of
_ small size. The real contact area can now be calculated as A=24.5 . (or analogously:

A=24.5 ')%) where h'; (or h',) represents the corrected contact depth value. Figure 4b
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shows the H values as a function of the maximum penetration depth when the above
mentioned correction procedure, which accounts for the indenter tip defect, is applied.
From these results, we can conclude that hardness of glassy PET remains constant with

decreasing penetration depth, within the range of penetration depths investigated.

4 2. Elastic properties

Holding time dependence

Figure S shows the variation of Young’s modulus versus holding time at peak
load (Pma=147mN; P=13.2mN/s). E derived from the cylindrical punch approximation
using either h, or h,, appears to be constant over the holding times considered. On the
contrary, E derived from the power-law fitting method shows a tendency to increase
with At showing a higher rate in the range 0.1< Atpog< 3 minutes. To clarify this
finding, the variation of AP/Ah and (6P/Oh)ms vs. holding time has been represented in
figure 6. This variation directly supports the results in figure 5. The steep increase of
(8P/0h)mex cannot be explained in terms of the time-dependent plastic contribution to the
initial elastic recovery of the indentation. Such an effect would produce a (OP/0h)max
decrease with increasing holding time. A careful examination of the load-displacement
curves at different holding times shows a similar rate of depth recovery at the initial
stages of unloading (see figure 7). However, at approximately 1/4 of the unloading
curve, the withdrawal of the indenter is slower at the highest Atyo. The cylindrical punch
method makes use of the initial part of unloading. Thus, AP/Ah only shows a slight
variation with Atyya. On the other hand, the power law fitting method employs all the
force-displacement data during the indentation recovery. In this case, (OP/ON)max

markedly varies with Atys . This result suggests than an appreciably time-dependent
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elastic recovery is present in the unloading curves. The viscoelastic response of the
material seems to vary with the holding time at maximum load in a way that the shorter
At is, the higher is the viscoelastic recovery during unloading. The fact that E values
(power law fitting) do not seem to level-off at the highest Aty , scems to suggest that,

at this holding time, there is still some retarded elastic recovery present during unloading.

Loading time dependence

Figure 8a and b illustrates the variation of E as a function of the time required in
the loading cycle for Aty of 6 and 200 seconds respectively (Pma=147mN). For a Atho
of 6 seconds, Young’s modulus values show a steep increase at Atpoq < 1 min and 2
further increase up to tias ~ 5 min. In figure 8b, where Atpgq = 200 s, E shows an
appreciably increase up to ~ ti.a =1min where a level-off n the E values is observed. To
understand the results obtained in figures 8a and b, force-displacement curves
corresponding to time =11 s and 311 s at different Atuos have been represented in figure
9. Figure 9a shows the compliance curves for a loading rate P=0.47 mN/s (tiaa =311 8)
and 13.2 mN/s (tis=11s), both with a holding time of 6 seconds. At the lowest loading
rate, the depth registered during the holding time is much smaller than that
corresponding to the highest loading rate. This effect could be explained in terms of
inertial plastic effects at the highest loading rate. When the indenter is withdrawn, an
abnormal shape in the upper part of the unloading is observed at the lowest P. This
curvature could be explained in terms of the sample creep under the indenter. At the
same time, a quick look to the entire shape of the unloading curve reveals that the
withdrawal of the indenter is slower at the slowest loading rate, suggesting a different

viscoelastic response during unloading at different tia. It seems that viscoelastic
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recovery during unloading is minimized at the lowest P. The fact that a creep effect is
not observed during the initial stages of unloading for P=13.2 mN/s, could be possibly
due to the influence of the viscoelastic recovery of the indentation masking the creep
effect. From figure 9a it is obvious that the initial unloading stiffness increases with
decreasing loading rate (or increasing tj.q), leading to the E increase with increasing tieq
observed in figure 8a. Figure 9b shows the load-displacement data corresponding to
P=0.47 and 13.2 mN/s. The holding time at maximum load is 200s. The first observation
is that the creep effect present in the upper part of the unloading when ti.s=311s,
Atyog=6s, is missing when the holding time is increased up to 200 sec. This fact facilitates
the calculation of the initial unloading stiffness leading to more reliable values. The shape
of the unloading curve is still different for the highest and lowest tieaa. At the largest tigad,
the viscoelastic recovery during unloading seems to be minimized. S does not
substantially vary for ti,¢>1min leading to E values independent of tie. Figure 8b shows
that two different E values at high ti,s are obtained for the cylindrical punch
approximation and the power law method when both procedures use equation (9) to
calculate the contact depth. This finding arises from the different S values estimated. As
previously mentioned, the stiffnesses values estimated using the cylindrical punch method
are sensitive to the fraction of the unloading curve used. Thus, the S values derived using
this last method seem to be underestimated leading to slightly smaller values of E with
respect to the power law method.

In summary, to obtain reliable values of the Young’s modulus, the experimental
conditions have to be chosen appropriately. Our results show that decreasing the loading
rate and increasing the holding time at maximum load gives satisfactory and consistent E

values.
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§ 5. CONCLUSIONS

From the results obtained we may draw the following conclusions:

(1) The H data obtained using the power law method and H values from the cylindrical
punch approximation (for the portion of unloading curve used) agree with each other
within the error limits when the criterion used to calculate the contact depth is the
same.

(2) The H data from the compliance and from the imaging methods appear to be in
agreement with each other in the range of holding times used.

(3) The creep behaviour under the indenter derived from the compliance method yields a
H decrease with time: H~t'k, similar to that obtained by the imaging method.

(4) The Heomp values are shown to be independent on the loading time (tie.a) for small
holding times.

(5) Analysis of the H values versus penetration depth shows that for hmax 2 1 1m, Heompl
is constant while for hms < 1 pm, Hemm exhibits an increase with decreasing
penetration depth. This apparent change in hardness is due to a non-negligible tip
defect at small depths of penetration. After correction for the indenter tip defect, H is
shown to be constant over the range of penetration depths investigated.

(6) The power law method turns out to be more reliable than the cylindrical punch
method for the evaluation of the elastic modulus values.

(7) For short loading times, E (power law method) increases with increasing Atho. At
short holding times, E is an increasing function of tiea while at long holding times, E

tends to remain constant for tieg >1min.
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First set of experiments

Second set of experiments

Prax P Athoud Athora

(mN) (mN/s) (s) s)
147 0.47 6 200
147 1.32 6 200
147 4.41 6 200
147 6.62 6 200
147 13.2 6 200

Prnax P Athod
mN) | mNs) | (9
147 13.2 6
147 13.2 11
147 13.2 20
147 13.2 40
147 13.2 200
147 13.2 600
147 13.2 1000
Third set of experiments
Pmax tioad Atnong
(mN) (s) (s)
0.98 7 6
1.96 14 6
4.90 10 6
9.8 7 6
147 11 6
245 10 6
TABLE 1
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CAPTION TO TABLE

Table 1. Experimental parameters used in the three sets of experiments.
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CAPTION TO FIGURES

Figure 1. Compliance curve for aged amorphous PET (P =6.6 mN/s; Atyga=200s).

Figure 2. Double logarithmic plot of hardness versus holding time. O: compliance
method, cylindrical punch approximation, A=24.5 h,%; O: compliance method,
cylindrical punch approximation, A=24.5 h.’; @: compliance method, power law
fitting method, A=24.5 h%; O: imaging method.

Figure 3. Plot of hardness as a function of time during the loading cycle. O: cylindrical
punch approximation, A=24.3 h,%, O: cylindrical punch approximation, A=24.5
heZ; ®: power law fitting method, A=24.5 h.

Figure 4. a) Hardness variation with the maximum penetration depth of the indenter.
Symbols as in figure 2. Question mark: limit in the imaging method resolution.
b) Corrected hardness values as a function of the maximum penetration depth
reached by the indenter. O: cylindrical punch approximation, A=24.5 I >
®: power law fitting method, A=24.5 b2

Figure 5. Plot of Young’s modulus values as a function of the holding time. Symbols as
in figure 3.

Figure 6. Plot of AP/Ah, as calculated using the cylindrical punch approximation, and

(8P/6h)max, as calculated using the power law fitting method, versus Atpoa.
Figure 7. Load-displacement curves for different holding times.
Figure 8. Young’s modulus versus loading time. Symbols as is figure 3. (a) Athoa = 6s;
(b) Athag = 200s.
Figure 9. Load-displacement curves for loading times of 11s (dashed line) and 311s

(solid line): (a) Atpeia = 6s; (b) Atyea = 200s.
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