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Ensuring the safe and responsible use of nanotechnologies and nanoscale materials
is imperative to maximize consumer confidence and drive commercialization of nano-
enabled products that underpin innovation and advances in every industrial sector. The
enormous diversity of nanomaterials and their applications requires new approaches to
governance, new approaches to managing the wealth of data relating to nanomaterials and
their impacts on humans and the environment, and new approaches to risk assessment.
Indeed, the regulatory landscape is evolving to account for the complexity and diversity of
nanomaterials, including the recent introduction by the European Chemicals Agency of
the concept of “nanoforms”, to distinguish individual members of a family of nanomateri-
als with a common core composition (e.g., carbon-family materials, TiO2 materials, etc.)
but differing in size, shape, surface composition, or coating (for example), and “sets of
nanoforms”, to group nanoforms that induce similar toxicological effects, so that a single
set of characterization and toxicity data will cover the full set of nanoforms [1].

Informatics approaches for nanosafety assessment, including prediction of nanoma-
terials properties, interactions with biomolecules, cells and organisms, nanomaterials
transformations, and biological effects and impacts of nanomaterials are contributing to
data gap-filling, predictive modeling, and in silico tools for the risk assessment of nanoma-
terials. Key to facilitating progress in development of safe and sustainable nanomaterials
applications, as well as risk governance and nanoinformatics approaches, is that high-
quality data are available for re-use and fit for the purpose of developing predictive models,
i.e., that are compliant with the FAIR (Findable Accessible, Re-usable, and Interopera-
ble) principles. However, achieving this has been challenging, and is one of the themes
addressed in the current Special Issue.

This Special Issue collects the most recent advances in governance of nanomaterials
and in the emerging field of nanoinformatics. The 16 articles in this collection address
three interlinked aspects of the topic: (1) data-management tools and approaches to make
nanosafety data FAIR; (2) in silico tools for nanosafety assessment; and (3) experimental
best practice in terms of data collection, preprocessing, and interrogation, to understand
the mechanisms of action of nanomaterials, as shown schematically in Figure 1.

A range of tools to increase the FAIRness of nanosafety data have been developed,
targeted towards experimental researchers who are the data generators, as well as focusing
on the databases themselves. For example, Kochev et al. present a workflow to convert the
spreadsheets beloved by experimentalists into a FAIR database via the NMDataParser tool
(Version 1.1.4, https://github.com/enanomapper/nmdataparser), which was developed

Nanomaterials 2021, 11, 121. https://doi.org/10.3390/nano11010121 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4250-4584
https://orcid.org/0000-0002-0977-8180
https://orcid.org/0000-0001-9195-9003
https://orcid.org/0000-0003-3875-4468
https://doi.org/10.3390/nano11010121
https://doi.org/10.3390/nano11010121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/enanomapper/nmdataparser
https://doi.org/10.3390/nano11010121
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/1/121?type=check_update&version=1


Nanomaterials 2021, 11, 121 2 of 5

to streamline the mapping of the original file layout into the eNanoMapper semantic data
model [2]. A key element of FAIR data is that they are re-usable, and the core feature
of re-usability of data is that the dataset is fully described in terms of what the dataset
is, how it was generated, what it contains, etc. These “data about the data” are called
metadata, and what metadata are required for re-usability of nanosafety must be defined
by the nanosafety community itself. Papadiamantis et al. present a community-driven
metadata schema, introduce some “scientific FAIR principles” implementable by exper-
imental researchers, and suggest that a new role, that of data shepherd, is required to
support data management across the whole nanosafety data life cycle, from experimental
design to deposition in publicly accessible databases [3]. Depositing data into a database
is not a complete guarantee of FAIRness, as not all databases are created equal and there
are very broad interpretations of the FAIR principles. Thus, the concept of maturity in-
dicators for evaluation of dataset (database) FAIRness have emerged, and Ammar et al.
present a reproducible computational workflow to assess data FAIRness in the life sci-
ences, presenting the compliance with each of the principles as a FAIR balloon plot to
summarize and compare dataset FAIRness [4]. On the basis of this analysis, recommenda-
tions for improvement of the databases include the use of standard schema for metadata
and indexing of the database in registries of repositories that could increase FAIRness
of datasets. An exciting example of the implementation of data management workflows
into experimental practice is presented in Martinez et al., who investigated the toxicity of
graphene-based materials to Daphnia magna alone and in combination with cadmium as
a co-pollutant and explored the role of an acquired biomolecule corona on the graphene
in mitigating the toxicity of cadmium [5]. The data were collected and captured by uti-
lizing an Electronic Laboratory Notebook, and all the data were annotated with relevant
ontology terms and integrated into the NanoCommons Knowledge Base (version 1.1;
https://ssl.biomax.de/nanocommons/cgi/login_bioxm_portal.cgi), making the data in-
teroperable with similar datasets and facilitating utilization of the experimental data in
nanoinformatics workflows [5]. In a major step towards dataset interoperability, a commu-
nity proposal for an extension of the InChI [6], a textual identifier for chemical substances
that was designed to provide a standard way to encode molecular information and to facil-
itate the search for such information in databases (that is endorsed and supported by the
International Union of Pure and Applied Chemistry (IUPAC)), to capture and encode the
multi-component structures of nanomaterials in a machine-readable format, is presented
by Lynch et al. [7]. Six case studies were conducted to elucidate the requirements for unam-
biguous description of nanomaterials and to demonstrate the utility of the nanomaterial
InChI (NInChI) in linking disparate datasets, supporting determination of nanoforms and
sets of nanoforms, and for nanoinformatics development and machine learning [6].

Exciting advances in predictive modeling of nanomaterials’ properties, their inter-
actions with their surroundings, including biomolecules, and their impacts on cells are
presented. Shateri et al. compare the performance of eight different machine-learning
models for prediction of nanofluid viscosity against the predictions of the gold-standard
model (the committee machine intelligent system, CMIS), using an experimental dataset
consisting of 3144 data points of relative viscosity of 42 different nanofluid systems based
on five features (temperature, the viscosity of the base fluid, nanoparticle volume fraction,
size, and density) and found that all eight suggested models outperformed the baselines
used in the literature, and five outperformed the CMIS [8]. An approach to generating
the protein corona associated with nanomaterials in biological fluids from first principles,
using free energy of adsorption, is described by Alsharif et al. [9]. A multiscale model of
protein–nanomaterial interaction was generated by using adsorption energies of 59 human
serum proteins and gold and titanium dioxide (anatase) nanoparticles, 2D and 3D protein
descriptors, and statistical models for predicting the binding energy of proteins, enabling
the rapid characterization of the affinity of nanomaterials for a wide range of proteins [9]. A
robust and validated in silico model for prediction of metal oxide nanomaterial cyto-
toxicity (cell viability, measured as irreversible cell membrane damage) was developed,
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using a literature dataset on 24 metal oxides consisting of 15 physicochemical, struc-
tural, and assay-related descriptors and 62 atomistic computational descriptors, of which
seven were identified as being significant for induction of cytotoxicity by MexOy nano-
materials [10]. This model was also provided with a user-friendly interface (Version 1.0,
https://cellviability.cloud.nanosolveit.eu/), allowing users to apply it themselves, includ-
ing tables of the computational descriptors for a range of metal oxide nanomaterials [10].
Two review papers complement the nanoinformatics advances. Utembe et al. review the
state-of-the-art and emerging trends in Physiologically Based Pharmacokinetic (PBPK)
modeling of nanomaterials, highlighting areas of progress, such as the inclusion of the
mononuclear phagocyte system, and gaps that require further innovation, such as in-
clusion of organ- and species-specific nanomaterial corona formation, and nanomaterial
dissolution, which is a key elimination process for some nanomaterials [11]. Furxhi et al.
review the sequence of steps involved in implementing a machine-learning model, from
data preprocessing to model implementation, model validation, and applicability domain
determination; they also review the techniques and procedures of existing models that can
be used readily to assemble new nanotoxicological in silico approaches [12].

Figure 1. Schematic representation of the range of topics covered in the Special Issue and their clustering into three key
areas, addressing (1) nanosafety data-management tools, (2) in silico tools for nanoinformatics and (3) experimental best
practice to support data re-use for modeling and prediction of the impacts of nanomaterials on living systems. The smaller
images around the central core are the graphical abstracts of a subset of the papers contained in the Special Issue.
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Recognizing the growing importance of toxicogenomics analysis in providing mech-
anistic insights into nanomaterials modes of actions, and the hampering effect of poor
study design and the lack of standardization in data generation and analysis, a series of
three interlinked papers explore aspects of toxicogenomics, ranging from the experimental
details (Part 1) to rigorous and reliable data preprocessing (Part II) and utilization of the
toxicogenomics datasets in modeling (Part III), such as the development of adverse out-
come pathways (AOPs). Part I provides guidelines on exposure time, dose and complex
endpoint selection, sample quality considerations, and sample randomization [13]. Part II
reviews the steps involved in transcriptomics data preprocessing, which spans multiple
steps, including data quality checking, filtering, normalization, batch defect detection
and correction, and defines the optimal tools and procedures to be employed to ensure
the generation of homogeneous and unbiased data, allowing the development of more
reliable, robust, and accurate predictive models [14]. Part III reviews the state-of-the-art
of data modeling applied to transcriptomics data, including benchmark dose analysis,
AOP modeling methodologies, network-based approaches to clarify mechanisms of ac-
tion, and the emergence of Artificial Intelligence and deep learning (DL) approaches to
enable more accurate chemical safety assessment [15]. Ede et al. review the current status
and next steps for the development and use of the AOP framework in decision-making
regarding the safety of nanomaterials, identifying opportunities and challenges for in-
clusion of AOPs into integrated approach to testing and assessing (IATA) strategies [16].
Meanwhile, Kohl et al. review the state-of-the-art in evaluation of genotoxicity, focusing
on approaches for miniaturization, organ-on-a-chip and high-throughput methods, in
standard human in vitro models, as well as new advanced 3D models that are closer to the
in vivo situation [17]. Murphy et al. evaluate the economic efficacy of the widespread usage
of nanomaterials coated textiles, which have antimicrobial properties and thus are pro-
posed to reduce hospital-acquired infections (HAIs), utilizing an aggregated approach [18].
While this approach relies on some supposition, it allows for a comparison with similar
data regarding standard treatments to reduce HAIs and provides a reasonable economic
comparison. The analysis found that, relative to antiseptics, nanomaterial-coated textiles
represent a significant clinical advantage, and also offer considerable cost savings [18].

In summary, this Special Issue of Nanomaterials collects a series of original research
articles and review papers, providing new insights into the emerging state-of-the-art in
nanosafety data management, for in silico hazard and risk assessment of nanomaterials,
and in the application of these emerging approaches for decision-making and governance.
It illustrates the breadth and diversity of the field and the range of innovative approaches
being developed, to ensure the safe and responsible implementation of nanotechnologies.
We are confident that this Special Issue will provide readers with an overview of the latest
prospects in this rapidly evolving and cross-disciplinary field.
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