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Highlight 

A proteomics strategy based on quantitative peptide estimation with Ascochyta blight as 

a model pathosystem was developed to identify potential protein markers associated to 

biological resistance in pea. 
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ABSTRACT 

Peyronellaea pinodes causes Ascochyta blight, one of the major diseases of pea 

worldwide. Cultivated pea plants have a low resistance to this disease. Although 

Quantitative Traits Loci (QTL) involved in the resistance to Ascochyta blight have been 

identified, the specific genes associated to these QTL remain unknown, which makes 

marker-assisted selection difficult. Complex traits alter proteins and their abundance. 

Quantitative estimation of proteins in pea might therefore be useful to select potential 

markers for breeding. In this work, we developed a strategy using a combination of 

shotgun proteomics (viz., high performance liquid chromatography–mass spectrometry 

Data-Dependent Acquisition (DDA)) and Data-Independent Acquisition (DIA) analysis, 

to identify putative protein markers associated to resistance to Ascochyta blight, and 

explored its use for breeding selection. For this purpose, an initial list of target peptides 

based on proteins closely related to resistance to P. pinodes was compiled by using two 

genotypes with contrasting responses to the disease. Then, targeted data analysis (viz., 

shotgun proteomics–DIA) was used for constitutive quantification of the target peptides 

in a representative number of the Recombinant Inbred Line (RIL) population 

segregating for resistance as derived from a cross between the two genotypes. Finally, a 

peptide panel of potential markers for resistance to P. pinodes was built. The results 

thus obtained are discussed and compared with those of previous gene expression 

studies using the same parental pea genotypes responding to the pathogen. Also, a 

molecular defense mechanism against Ascochyta blight in pea is proposed. To the 

authors’ knowledge, this is the first time a targeted proteomic approach based on data 

analysis has been used to identify peptides associated to resistance to this disease.  

 

Keywords: peptide markers, resistance, targeted proteomic analysis, shotgun–Data-

Dependent Acquisition (DDA), Data-Independent Acquisition (DIA), pea, Ascochyta 

blight. 
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INTRODUCTION 

Pisum sativum L. (dry pea) is a pulse crop of global economic importance. In fact, this 

is the most widely cultivated pulse crop in Europe and the second in the world 

(FAOSTAT 2014; http://faostat.fao.org/). Field pea production is currently affected by 

various abiotic and biotic stresses
1
. Specifically, Peyronellaea pinodes (formerly called 

Mycosphaerella pinodes, the teleomorph of Ascochyta pinodes) causes Aschochyta 

blight, which is the most serious foliar disease of pea cultivars worldwide.
2
 This fungus 

occurs widely in temperate regions,
3,4

 and, together with broomrape (Orobanche 

crenata Forsk), constitutes the greatest constraint on pea production in the 

Mediterranean basin.
5,6

 Because existing control practices for Ascochyta blight are 

largely uneconomical and inefficient,
7
 the use of resistant cultivars to fight the disease 

tends to be preferred. In any case, some pea cultivars (particularly Pisum wild species) 

are moderately resistant to Ascochyta blight.
8-10

 Thus, the P. sativum ssp. syriacum 

(P665) line has proved resistant to all tested isolates of P. pinodes.
10

 This genotype 

exhibits partial resistance in the form of limited colonization by the fungus and smaller 

lesions.
11

 In a previous study, the Recombinant Inbred Line (RIL) population obtained 

by crossing the partially resistant line P665 and the susceptible P. sativum ssp. sativum 

(cv. Messire) was used to develop a genetic map that allowed eleven QTL controlling 

resistance to P. pinodes to be identified.
12

 Also, using the SuperSAGE technique in 

combination with a Medicago truncatula microarray
13,14 

allowed genes differentially 

expressed in the response of the two genotypes to P. pinodes to be identified. Consistent 

with the results provided by P665, other studies on P. pinodes have revealed that 

biological resistance in pea is a polygenic trait involving various QTLs with minor 

effects.
15-22

 Some such QTLs are also present in other genetics backgrounds;
23

 also, 

their resistance mechanisms have been deciphered.
12

 However, the resistance genes 

associated to most of these QTLs remain unknown. Efficient Marker-Assisted Selection 

(MAS) entails the precise identification of the resistance genes most closely related to 

the QTL in question.  

Marker-assisted plant breeding frequently requires predicting phenotypes at the 

genomic level. However, major agronomic traits are frequently associated to complex 

molecular mechanisms comprising several stages of regulation that involve genes 

expression, post-translational modifications and protein interactions. Because 

transcription and translation are intermediate steps between the genome and the 

http://faostat.fao.org/
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phenotype, transcriptomic analyses are broadly used to predict phenotypes with a view 

to mapping populations.
24

  

Quantitative protein estimation has emerged as a useful method to find markers 

for complex traits such as those involving protein modifications and changes in their 

abundance. Using in silico Mass Spectrometry (MS) assay libraries jointly with 

extraction of targeted peptide signals has proved effective for protein identification and 

quantification. Targeted MS allows no new proteins to be identified because this 

approach requires the prior measurement of the targeted proteins by discovery 

proteomics. As a result, targeted proteomics can be a good choice when sufficient 

information has previously been acquired and the aim is not to identify the whole 

complement of proteins associated to a process or location, but rather to characterize 

coordinated changes in proteins abundance.
25

 For example, this approach can be used to 

examine the protein abundance profiles of lines differing in a given trait in order to 

identify or validate proteins whose abundance could be used as markers for selection of 

the trait concerned. 

Selected Reaction Monitoring (SRM) is a sensitive MS technique allowing 

previously selected peptides in biological samples to be quantified. This method is a 

good choice for the highly accurate quantification of proteins in large cohorts of 

samples.
25

 SRM has been used to study the induction of certain enzymes in response to 

various chemical and biological stimuli,
26

 and also to reveal some aspects of symbiotic 

signalling in legumes.
27

 For example, a recent SRM-based study identified new markers 

for various traits in potato.
24

 While SRM is the current gold standard for quantitative 

estimation of proteins, the emerging Data-Independent Acquisition (DIA) technique has 

opened up a new dimension for comprehensive quantitative proteomics.
28

 In fact, DIA 

allows large numbers of peptides to be measured with modest sacrifices in sensitivity, 

selectivity and reproducibility relative to SRM, so it has been deemed a useful choice 

for large-scale targeted proteomics experiments. Whereas SRM is a target data 

acquisition method in which the data for the target molecules must be defined before 

acquisition, DIA acquires all data and the specific information needed is subsequently 

extracted.
29

 Data-Dependent Acquisition (DDA) runs are processed by using a peptide 

spectrum matching pipeline; then, the resulting peptide IDs, spectra and retention times 

are used to build a spectral library of fragment ions and their relative abundance that can 

be reused in subsequent DIA runs performed with the same equipment. DIA analysis 

was recently used for proteome characterization of apple fruit,30 tomato fruit 
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formation31 and grapevine,32 and also for gluten profiling.33 To the authors’ knowledge, 

however, this is the first time DIA has been used in combination with shotgun-DDA to 

identify peptide markers for resistance in pea crop.  

This paper reports a two-step strategy for identifying defense-related key 

proteins of use as resistance markers in breeding selection programs. In the first step, 

two genotypes exhibiting a contrasting response to P. pinodes were selected for 

shotgun–DDA proteomic analysis. Using multivariate statistical analysis and comparing 

the results with those of previous gene expression studies allowed a list of candidate 

proteins as potential use as markers of resistance to Ascochyta blight to be compiled. In 

the second step, shotgun–DDA proteomics was used in combination with DIA analysis 

for the constitutive quantification of the target peptides in a RIL population segregated 

for resistance that was obtained by crossing the previous genotypes. Finally, a peptide 

marker panel for predicting pea-resistant phenotypes against P. pinodes was compiled. 

 

MATERIAL AND METHODS 

Experimental design  

In this work, a strategy for identifying peptides potentially useful with a view to 

selecting pea plants resistant to P. pinodes was developed (Fig. 1). The list of target 

peptides consisted of proteins closely related the response of pea to P. pinodes and was 

compiled by using two genotypes with a contrasting response to P. pinodes, namely: the 

highly susceptible cultivar Messire (P. sativum ssp. sativum) and the incompletely 

resistant cultivar P665 (P. sativum ssp. syriacum). These cultivars have a typical disease 

rating value of 4.5–5 and 2.5–3, respectively, on a scale from 0 to 5 (Fig. 1A).
10

  A 

shotgun (LC-MSMS) proteomic experiment with no previous fractionation of samples 

was performed to identify the proteins that accumulated differentially under the 

established conditions (Fig. 1B). Peptides were selected by pairwise comparison and a 

multivariate statistical analysis was conducted of both inoculated and non-inoculated 

genotypes (Fig. 1C). Then, a second experiment was used to identify and quantify the 

previously selected peptides in 15 of the 111 F10 RIL families derived from the Messire 

x P665 cross—8 from the most resistant and 7 from the most susceptible lines—in the 

absence of pathogen,
12

 using a proteomics (MS1+DIA) strategy (Fig. 1D). Finally, the 

results of the statistical analysis of the data were used to select the peptides most 
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significantly represented in the resistant lines and a list of putative peptide markers of 

resistance was compiled (Fig. 1E).  

Plant growth, inoculation and sampling time 

Pea seeds were germinated on wet fiber paper in Petri dishes and kept at 20 °C in the 

dark until roots were 4-5 cm long. Then, seedlings were transferred to pots (250 cm
3
) 

filled with a (1:1) sand-peat mixture and grown under controlled conditions: (20 ± 2) 

°C, 12 h dark/12 h light photoperiod and a photon flux density of 250 μmolm
-2

 s
-1

. 

The first experiment involved 15 plants per genotype (Messire or P665). Six 

inoculated plants and six non-inoculated plants were used for leaf sampling, and another 

three to score disease symptoms on the scale of Roger and Tivoli
34

 7 days after 

inoculation. Plants were inoculated with a monoconidial P. pinodes isolate Co-99 

obtained from pea plants with symptoms of Ascochyta blight in commercial fields at 

Córdoba (Spain). The isolate was confirmed to be P. pinodes and to contain no other 

pathogens causing Ascochyta blight from visual observation of the symptoms, 

morphological characterization of conidia and by Internal Transcribe Spacer (ITS) 

sequencing.
35

 The isolate was multiplied in Petri dishes containing Potato Dextrose 

Agar (PDA) medium at 20 °C, using a photoperiod of 16 h. A spore suspension was 

prepared according to Carrillo et al.
12

 the concentration of which was further 

determined with a hemocytometer and adjusted to 5 x 10
5
 spores per milliliter. Plants 

were inoculated at the 5-6 leaf stage (3 weeks old) by spreading the conidial suspension 

over the surface of the third and fourth leaf with the aid of a small paintbrush. Then, the 

plants were kept at high humidity in the dark for the first 24 h by using ultrasonic 

humidifiers operating for 15 min every 2 h, after which they were switched off. Finally, 

the plants were placed in a growth chamber with a 12 h light/12 h darkness photoperiod, 

at 250 μmolm
-2

 s
-1

.  

A previous histological study was performed to characterize the timing of the 

different steps of P. pinodes infection under the conditions to be used in the experiments 

in order to select the most suitable sampling times for protein analysis. Messire plants 

were inoculated as described above and leaf samples were taken from them 12, 24, 36 

and 48 hours after inoculation (hai). At those times, the proportion of germinated 

spores, penetration into the epidermis and formation of necrotic lesions in the mesophyll 

were determined in four leaflets per time point according to Carrillo et al.
11

 Based on 
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the results, 24 and 48 hai, which corresponded to epidermal penetration and 

development of necrotic lesions in the mesophyll, respectively, were selected for further 

study (Supporting Information Fig. S1a and S1b). These time points were assumed to be 

the most suitable to harvest samples for proteomic analysis because previous studies
36,11

 

suggested that resistance in P665 is characterized by the presence of an initial barrier 

hindering penetration of P. pinodes in the epidermis and further barriers restricting 

growth of the fungus in the mesophyll. The third and fourth leaves from each individual 

plant were collected and three biological replicates per condition were frozen in liquid 

nitrogen and stored at -80 °C for subsequent analysis. 

The second experiment involved non-inoculated plants belonging to 15 F10 RIL 

segregating for resistance to Ascochyta blight and obtained by crossing the P665 and 

Messire cultivars. These choices were based on a previous study aimed at identifying 

QTL controlling resistance to P. pinodes in P. sativum that used a population consisting 

of 111 lines of the same RIL.
37

 Since proteomic experiments are subject to certain 

limitations such as the number of samples that can be analyzed in practice —replicates 

per condition included—, we used the 15 lines exhibiting the most extreme responses to 

P. pinodes (viz., the eight most resistant and the seven most susceptible lines). Four 

plants per line were grown under the conditions used in the first experiment albeit in the 

absence of pathogen. Also, a single sampling time corresponding to 17-days-old plants 

was used. As in the first experiment, the third and fourth leaves from three independent 

plants per line were collected, frozen in liquid nitrogen and stored at -80 °C for later 

analysis. 

Protein extraction and digestion  

Pea leaves (200–300 mg fresh weight) from three independent replicates per condition 

(treatment, sampling time and genotype line) were crushed into a fine powder with 

liquid nitrogen in a precooled mortar and the powder was used to extract proteins 

according to Castillejo et al.
38

 

In-solution digestion was performed by using 50 µg of protein and diluting 

samples to a final urea concentration of 1 M with trypsin buffer containing 10% 

acetonitrile (ACN), 50 mM ammonium bicarbonate and 2 mM CaCl2. Then, the samples 

were reduced with 5 mM DTT and alkylated with 10 mM iodoacetamide. Proteins were 

digested with proteomics-grade trypsin (Promega) at a final concentration of 12.5 ng/µl 
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and incubated at 37 °C overnight, the resulting digest being desalted by passage through 

a C18 cartridges from Scharlau (Barcelona, Spain). Finally, eluted peptides were 

vacuum-dried and dissolved in a mixture of 2% ACN and 0.05% trifluoroacetic acid.   

Shotgun-DDA–LC-MS/MS analysis 

Protein analyses were conducted at the Proteomics Facility of the Research Support 

Central Service (SCAI) of the University of Cordoba. All peptides separations were 

done by nano-LC, using Dionex Ultimate 3000 nano UPLC equipment from Thermo 

Scientific (San Jose, CA, USA) and a C18 75 μm × 50 cm Acclaim Pepmap column 

also from Thermo Scientific at 40 °C at a flow rate of 300 nl/min. Peptides were 

previously concentrated and cleaned up on a 300 μm × 5 mm Acclaim Pepmap cartridge 

(Thermo Scientific) by using 2% ACN/0.05% formic acid (FA) at 5 µl/min for 5 min. A 

gradient of 120 min ranging from 95% solvent A (0.1% FA) to 80% solvent B (80% 

ACN, 0.1% FA) was used. Eluted peptide were ionized by using a nano-electrospray 

ionization source and analyzed on a trihybrid Thermo Orbitrap Fusion mass 

spectrometer from Thermo Scientific operated in the positive mode. A Top30 Data-

Dependent Acquisition method with a maximum cycle time of 3 s was set up. MS1 

scans of peptide precursors were acquired over the  m/z range 400–1500, using a 

resolution of 120 000, at m/z 200 and a 4 × 10
5
 ion count target threshold. Those 

precursor ions with a 2–5 charge state were sampled for MS/MS by using a quadrupole 

isolation window of 1.2 Da. Monoisotopic precursor ions were CID-fragmented in the 

ion trap, which was set up as follows: automatic gain control, 2 × 10
3
; maximum 

injection time, 300 ms; and 35% normalized collision energy. A dynamic exclusion 

time of 15 s and a tolerance of 10 ppm around the selected precursor and its isotopes 

were used to avoid redundant fragmentations. 

Protein identification and statistical analysis 

The raw data obtained in the first experiment were processed by using the software 

Proteome Discoverer v. 2.1.0.81 from Thermo Scientific. MS2 spectra were searched 

with the SEQUEST engine against the protein FASTA files compiled by using a 

combination of the following databases: (1) the Uniprot-UniRef100 Pisum sativum 

database and Medicago truncatula (www.uniprot.org), (2) the legume-specific protein 

database LegProt (http://bioinfo.noble.org/manuscript-support/legumedb/), and (3) 

Pisum sativum unigene v.2 (https://www.coolseasonfoodlegume.org/ID328000). In 

http://www.uniprot.org/
http://bioinfo.noble.org/manuscript-support/legumedb/
https://www.coolseasonfoodlegume.org/ID328000
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silico peptide lists were generated by theoretical tryptic digestion allowing up to one 

missed cleavage, carbamidomethylation of cysteines as a fixed modification and 

oxidation of methionine as a variable modification. Precursor mass tolerance was 10 

ppm and product ions were searched at a 0.1 Da tolerance. Peptide spectrum matches 

(PSM) were validated by using “percolator”, an algorithm included in Proteome 

Discoverer, to discriminate correct and incorrect peptide spectrum matches and 

calculate accurate statistics based on q-values at a false discovery rate (FDR) of 1%. For 

identification, peptides were grouped into proteins according to the law of parsimony 

and filtered to FDR=1% and XCorr ≥ 2. 

Proteins were quantified in relative terms from the Spectra Count (SC), which is 

the total number of MS/MS spectra identified for a particular peptide represented by its 

precursor ion in a sample. The abundance of a peptide is thus measured as the number 

of peptide spectrum matches (PSM) events. Proteome Discoverer software creates 

protein groups from the identified PSMs and considers the presence of proteins that 

have shared peptides. The software excludes all protein groups having no unique 

peptides (i.e., peptides that are not shared with any other protein). Shared peptides are 

quantified by dividing their assigned values by the number of proteins in which they are 

present. Protein values were normalized according to the Normalized Spectral 

Abundance Factor (NSAF), a method that accounts for protein size and variability 

between runs to normalize relative protein abundance between samples.39 In this work, 

we used 3 replicates per experimental condition for statistical analysis. The criteria used 

to deem a protein as change were as follows: (a) the protein was consistently present or 

absent in all three replicates for a condition; (b) it exhibited statistically significant 

differences (T-test, p≤0.05) between genotypes or treatments; and (c) the change was at 

least two-fold. The whole data set was additionally subjected to multivariate factor 

analysis with the software SPSS v.23. Data were checked to be amenable to factor 

analysis by using the Kaiser–Meyer–Olkin (KMO)
40

 measurement of sampling 

adequacy and Bartlett’s test of sphericity.
41

 The procedure included Principal 

Component Extraction and Oblique Rotation. 

Functional classification and prediction of interactions between proteins  

Functional annotations and molecular functions were retrieved from Uniprot and 

Mapman tool v.3.5.1. Protein–protein interaction networks of stress-induced proteins 

were generated by using the webtool STRING10 (http://string-db.org). The protein 

http://string-db.org/
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homologs in Arabidopsis were analyzed by sequence BLASTing of the TAIR database 

(http://www.arabidopsis.org/Blast/index.jsp), followed by application of STRING10 to 

develop a proteome-scale interaction network.
42

 

Targeted data analysis for selection of putative peptide markers 

The peptides from proteins that fulfilled the following criteria were selected as target 

peptides by comparing the response of the Messire and P665 genotypes to P. pinodes: 

(a) proteins significantly (p ≤ 0.05) induced in the resistant genotype (P665) relative to 

the susceptible genotype (Messire) upon inoculation with P. pinodes; (b) +2 and +3 

charged peptides with a robust and reproducible high-quality peak shape in all 

replicates; (c) proteotypic peptides (viz., the peptide sequence marked for protein 

specificity as far as the present annotation information allows). A shotgun proteomics 

(DDA LC–MS/MS) experiment was used to quantify the selected target peptides in the 

15 RIL families by using the precursor ions MS1. Liquid chromatography analyses were 

done with the mass spectrometer operating in a Top30 Data-Dependent mode. The 

resulting DDA data, which were obtained from individual analyses of ca. 200 ng of 

sample, were used in the database searches needed to identify proteins present in the 

samples and to build a spectral library with the software Skyline
43

 (https://skyline.ms), 

which could was then used to extrac the target peptides from the DIA data. The 

chromatographic conditions used were the same as in the shotgun–DDA analysis but 

runs were much shorter (90 min).  

Peptides were quantified by integrating the chromatographic peak areas of the 

fragment ions in Skyline. The conditions used for relative quantification of MS1ions 

were a mass tolerance of 0.055 m/z, 0.5 m/z for library peak integration and a resolution 

of 120 000 at m/z 200. Peptide values were subsequently subjected to statistical 

significance analysis by using the external tool MS Stats44 included in Skyline. Those 

ions exhibiting a low or inconsistent signal between replicates in Skyline were 

quantified with the software MaxQuant v.1.5.1.245 on the same database, using the 

default “instrument” and “LFQ” (label-free quantification) settings, and the peptide 

modifications as in SEQUEST. Data were normalized by equalizing the medians of the 

intensity values and applying a log2-transformation. Then, SPSS was used to perform a 

multivariate factor analysis based on the quantitative values for the peptides 

(specifically, the precursor ions for the target peptides), in order to assess the degree of 

association between the peptides and the resistant trait.  

http://www.arabidopsis.org/Blast/index.jsp
https://skyline.ms/
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The results of the MS1 analysis were confirmed by using a DIA strategy based 

on targeted data analysis at the fragment ion level (MS2). Amounts of ca. 200 ng of 6 

segregating lines were used in each case. The mass spectrometer was operated with a 

High-Resolution Accurate Mass (HR/AM) MS1 scan at a resolution of 120 000, 

followed by 40 DIA scans of 10 m/z isolation windows at a resolution of 30 000 at m/z 

200. In this way, the precursor mass range from m/z 500 to 900 was spanned throughout 

the chromatographic elution profile. MS2 DIA data were extracted with Skyline. Only 

unique tryptic peptides having no missed cleavages and no methionine sequence motifs 

were considered. The processing method for DIA analyses was applied under identical 

conditions as the DIA acquisition method. Thus, “no deconvolution” and “overlap” 

were set to ON. MS1 filtering was done by fixing 3 isotopic peaks at a resolution of 120 

000. Only those scans completed within the first 5 min were considered for MS/MS 

alignment and for peak integration both b and y ions series; also, data extraction was 

based on parent ions. Instrument mass tolerance was 0.055 m/z, ion match tolerance 0.5 

Da and the seven most intense ions were used for matching with the library. The MS 

proteomics data were deposited with the dataset identifier PXD009351 in the 

ProteomeXchange Consortium via the PRIDE46 partner repository.  

 

RESULTS  

Disease assessment 

Disease rating (DR) was scored on the 0-5 scale of Roger and Tivoli.
34

 One week after 

inoculation, the Messire genotype was strongly affected by P. pinodes (average DR, 

4.5; range, 3.5–5; variance, 0.4). In fact, this genotype exhibited extensive coalesced 

lesions in addition to dehydration or necrosis over most of its leaf area (Supporting 

Information Fig. S1c). On the other hand, the P665 genotype was highly resistant 

(ANOVA p < 0.05) and only exhibited small flecks or lesions (average DR, 2.8; range, 

2.5-3; variance, 0.06), which is consistent with the incomplete resistance observed in 

previous studies10 (Supporting Information Fig. S1d). 

Shotgun–DDA proteomic analysis and selection of target peptides  

A total of 1375 proteins were identified of which 653 differed significantly between 

genotypes (Messire and P665) and treatments (control and inoculation). Table S1 

(Supporting Information) shows the whole dataset of differential proteins, and Fig. 2A 

and Table S2a (Supporting Information) the significantly (p ≤ 0.05) over- and down-
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accumulated ratios (2-fold change) between treatments and genotypes. A Principal 

Component Analysis (PCA) allowed data to be grouped in terms of genotype, sampling 

time and treatment (control and inoculated) (Fig. 2B). The first two principal 

components jointly accounted for more than 80% of the biological variability. Fig. 2C 

shows unique proteins and those shared between genotypes or treatments at each 

sampling time in the form of Venn diagrams. As can be seen, inoculation increased the 

number of unique proteins in both genotypes at the second sampling time (48 hai). 

All significantly modified proteins were functionally categorized by using the 

Uniprot database and Mapman tool v.3.5.1 (Supporting Information Table S2a). Fig. 3A 

shows the significantly up- and down-accumulated proteins between genotypes and 

treatments (653) by functional category. The pie chart in Fig. 3B shows the proteins 

categories induced in response to P. pinodes inoculation (355). The major functional 

categories, which jointly accounted for nearly one-half of induced proteins, were 

translation, redox, folding/degradation, and energy metabolism proteins.  

The focus was placed on proteins involved in the defense against P. pinodes, 

which were initially assumed to be those differentially accumulating in the resistant 

genotype (P665) but not in the susceptible genotype (Messire) upon inoculation 

(Supporting Information Table S2b). Such was the case with 83 proteins of which 75 

accumulated in inoculated P665 plants but not in non-inoculated plants. These 83 

differentially accumulated proteins were used to select target peptides. The procedure 

involved identifying proteotypic peptides derived from them in the 15 RIL lines at the 

constitutive level. As can be seen from Fig. 3C, the proteins spanned the main 

functional categories protein synthesis/degradation (42%), and redox and stress-related 

(21%). Fig. 4 shows a MapMan overview of the functional distribution and relative 

abundance ratio of the proteins in response to inoculation. A significant increase in 

proteins involved in energy production pathways (oxidative pentose phosphate, 

mitochondrial electron transport and TCA), secondary metabolism, redox and stress 

response, protein regulation, signaling and cell organization was observed. 

Selection of putative peptide markers of resistance by targeted data analysis 

A list of peptides from the 83 selected proteins was compiled for use in a second 

targeted data analysis. The list included 320 peptides from the dataset of the shotgun–

DDA analysis (Supporting information Table S3) that were selected as potential 
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candidates for marker selection as described under Material and Methods, and 

quantified in the 15 F10 RIL segregating population.
37

 Of the 320 peptides, 117 were 

quantified by using the library built as described in Material and Methods (Supporting 

Information Table S4). The degree of association of the 117 peptides to the resistance 

trait in the RIL families was assessed by multivariate factor analysis of the quantitative 

values for the peptides (viz., normalized intensity values). As can be seen in Fig. S2 

(Supporting Information), resistant lines tended to group, with the first three factors 

(Sum of Squares (SS) loadings > 1) jointly accounted for 82% of the total variance. The 

peptides were assigned unrotated factor loadings, so the greater the value was, the 

stronger was its contribution to explaining the variability. Those peptides with loadings 

equal or greater than an absolute value of 0.7 in factors F1 to F3 were assumed to be 

significantly related to resistance. Table 1 includes information about the 24 most 

relevant peptides, which were present in 15 different proteins. Interestingly, of the 15 

proteins, 9 (15 peptides) were significantly more abundant in the resistant genotype 

P665 than they were in the susceptible genotype (Messire) at the constitutive level (non-

inoculated plants) (Supporting Information Table S3b). Under inoculation, the other 6 

proteins in the panel were better represented in P665 than in Messire. 

A DIA analysis was carried out to quantify the 320 selected peptides by 

sequentially acquiring fragment-ion spectra with overlapping precursor isolation 

windows (Fig. 5). Figure S3 (Supporting Information) illustrates the reproducibility in 

retention time (RT) along all the lines for each of the 24 peptides and Fig. S4a shows 

the peak groups extracted from the results of the DDA and DIA analyses on 6 peptides 

from the marker panel. As can be seen in Fig. S4b, a similar pattern of peak ion 

intensity was observed with both strategies (DDA and DIA). This result testifies to the 

suitability of the DDA strategy (viz., quantifying MS1 precursor ions by shotgun–DDA 

analysis) for selecting putative marker peptides.  

Protein–protein interactions unravel the defensive response of pea to Ascochyta 

blight 

Potential relationships among the 83 significantly induced proteins were explored by 

generating protein-protein interaction networks using the web-tool STRING10 

(http://string-db.org). As can be seen in Fig. 6, the red nodes that clustered together —

most of them corresponding to ribosomal proteins involved in protein synthesis— were 

strongly connected. This protein group was also linked to other functional groups but 

mostly to the redox (glutathione S-transferase, peroxidase, thioredoxin, glutaredoxin), 

http://string-db.org/
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protein degradation (CLP proteases), defense (osmotin, disease resistance response 

protein Pi176) and energy metabolism (mitochondrial electron transfer) categories. 

Several proteins of signaling (calmodulin, 14-3-3-like), transport (ADP/ATP carrier), 

and elongation factors linked this group of ribosomal proteins to other functional groups 

including mitochondrial electron transport, redox, degradation and sulfite metabolism 

proteins. Most of the proteins in the interaction network were somehow related to 

others.  

  

DISCUSSION 

The results of the proteomic analysis revealed that inoculation with P. pinodes triggered 

different defense mechanisms in the two genotypes; this may have been the source of 

resistance in P665 and susceptibility in Messire. The underlying mechanisms are 

discussed and compared below with others established from previous transcriptomic 

analyses. As can be seen in Table S2 (Supporting Information), 83 differentially 

represented proteins accumulated to a great extent in the resistant genotype in response 

to P. pinodes; most such proteins were previously found to be expressed at the genomic 

level in response to Ascochyta in similar systems. Below are discussed and compared 

the results of this work with those of previous studies. 

Regulation of protein synthesis and energy production to offset the cost of resistance 

Eight of the peptides proposed as potential markers belonged to four proteins in the 

protein degradation category, namely: ATP-dependent Clp protease proteolytic subunit 

(contig2217), 26S protease regulatory subunit 6A (contig20430) and subunit 11 

(contig4092), and leucine aminopeptidase 2 (contig3912). Proteases have been 

associated to the defense against predators through degradation of exogenous proteins;47 

also, they may degrade proteins produced by P. pinodes to infect the plant. Recently, 

two such proteases (viz., ATP-dependent Clp protease and leucine aminopeptidase) 

were identified to be increased in the resistant pea genotype P665 in response to aphids 

attack.48 Also, previous studies have shown proteases to be involved in preventing 

parasite attack on pea plants and the model legume Medicago truncatula.49-51  

Here, we found a close relationship between the transport protein ADP, ATP 

carrier protein (AAC1; contig21564) and several ribosomal proteins (contig04805, 

contig2390, contig03572) (Fig. 6), whose peptides have also been deemed potential 

markers (Table 1). In addition, AAC1 is related to a group of enzymes involved in the 
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mitochondrial respiratory chain that may be triggered in response to increased cell 

energy requirements. Ribosomal proteins are also linked to a group of carbohydrate 

metabolism proteins (TCA, glycolysis) such as malate dehydrogenase, isocitrate 

dehydrogenase or phosphoglycerate mutase (Fig. 6). A previous proteomic study on the 

pea–P. pinodes system revealed similar effects. Also, the resistant pea cultivar was 

found to exhibit increased levels of proteins involved in energy and amino acid 

metabolism, probably to offset the cost of resistance.52 More efficient energy use could 

make P665 more resistant without major reductions in yield, but this hypothesis requires 

experimental testing. 

Cell wall reinforcement and detoxification to restrict pathogen growth   

Previous microarray experiments13 identified structural genes of the primary cell wall 

that were up-regulated in P665 relative to Messire in response to P. pinodes. Such genes 

included caffeic acid O-methyltransferase (COMT) gene, which is involved in the 

synthesis of lignin. Coram and Pang53 previously found a Caffeoyl-CoA-

methyltransferase in a chickpea EST library set up to identify defense-related encoding 

proteins in response to Ascochyta blight. In this work, we found a COMT protein to be 

significantly increased in response to Ascochyta in both genotypes, a result that was 

previously observed in the resistant genotype (P665) only.  

Pectinesterases or pectin methylesterases (PME) are ubiquitous enzymes that 

modify the degree of methylesterification of pectins, the major components of plant cell 

walls. These proteins were found to accumulate markedly in the resistant genotype in 

response to the pathogen. Four peptides selected as potential markers in the resistant 

RIL population corresponded to this protein (O24298). Modifications in pectin structure 

have been associated to changes in cellular adhesion, plasticity, pH, and ionic contents 

of the cell wall, which influence plant development and stress responses.54 Activity 

changes in pectinesterases, and associated changes in the degree of methylesterification 

of pectins in cell walls, were previously found to correlate to modifications in plant 

susceptibility to biotic and abiotic stresses.55-57 Thus, these proteins are also 

significantly increased in the resistant pea genotype (P665) in response to drought 

stress.38 

In addition to our proteomic results, histological studies36 have shown P. 

pinodes to be largely unsuccessful in colonizing P665 because most infection units stop 

at the epidermal cells and fail to reach the mesophyll. Wall reinforcement was 

previously found to play a role in pea resistance to P. pinodes.9,14,58 In fact, 
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reinforcement cell walls may help develop a physical barrier to prevent epidermal 

penetration of P. pinodes and expansion in mesophyll, thereby hindering diffusion of 

pathogenic toxins. 

The ribosomal protein group was also related to redox, defense, signaling, 

proteins of degradation and sulfur metabolism categories. Many of the peptides in the 

marker panel (Table 1) contained such proteins, which included calmodulin (P59220), 

cytochrome c oxidase (Q0KKQ5), TIC110 (O24303) and sulfite reductase (Q75NZ0).  

Perception of pathogen-associated molecules triggers defense responses via 

signal transduction cascades and activation of many genes.53 The signals for the defense 

mechanisms include expression of transcription factors and protein kinases, and an 

increase in cytosolic calcium levels.9 In recent years it has become apparent that 

reactive oxygen species (ROS) produced by plants are signaling molecules for control 

processes such as programmed cell death, biotic and abiotic stress responses, and 

systemic signaling. Several components involved in the signal transduction pathways of 

ROS-sensing plants were recently identified. For example, activation of calmodulin and 

MAP-kinase cascade triggers or suppresses some transcription factors that regulate the 

response of plants to oxidative stress.60 Some of the proteins identified here are 

involved in signal recognition and transduction pathways. Such is the case with 

calmodulin, 14-3-3 like protein, kinases and various transcription factors, all of which 

accumulated differentially in P665 in response to P. pinodes. Consistent with our 

results, previous microarray13 and superSAGE14 experiments revealed up-regulation of 

the genes encoding these proteins in the resistant pea genotype (P665).  

As can be seen in Fig. 6, calmodulin was associated to 14-3-3 like protein, which 

is closely connected to defense proteins such as GSH and the disease resistance 

response protein MLP423. 14-3-3 plant proteins bind to many pathogens-secreted 

effectors. In plant–fungus interactions, these proteins play a potential role as receptors 

of fungal toxins.61 Recent studies have suggested that 14-3-3 proteins are involved in 

the responses to environmental stress through regulation of ion channels. Thus, Yan et 

al.62 found overexpression of Arabidopsis 14-3-3 in cotton by and, more recently, in pea 

plants infected by Fusarium oxysporum.63 Interestingly, our protein network included 

transport protein TIC110, which was closely related to the group of defense proteins. 

The chloroplast envelope anion channel-forming TIC110 family consists of proteins 

present in the inner chloroplast envelope membrane. This is a protein import-related 

anion-selective channel. 

https://en.wikipedia.org/wiki/Chloroplast_membrane
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Calmodulin was also closely related to two reductases enzymes, namely: 

ferredoxin-NADP reductase (FNR) and sulfite reductase [ferredoxin] (SiR). In 

photosynthetic electron transport, FNR transfers electrons from ferredoxin (Fd) to 

NADP
+
. Both NADPH and reduced Fd are required for reductive assimilation and 

light/dark activation/deactivation of enzymes, which thus connect photosynthetic 

electron transport to chloroplast redox metabolism. Although the precise mechanism is 

unclear, a relationship between FNR content and tolerance to oxidative stress has been 

unequivocally established.64 SiR has been associated to oxidative stress tolerance, 

which it probably favors by maintaining sulfite homeostasis through glutathione 

levels.65 Glutathione (GSH) is known to be a major reduced sulfur sink and a regulator 

of sulfur assimilation;66 also, it plays a central role in protecting plants from oxidative 

stress.67,68 Recently, a substantial reduction in GSH levels in impaired-SiR tomato 

plants was found to result in early leaf senescence.69 Whether this protein is involved in 

the response to oxidative stress is unknown, however. Previous transcriptomic studies 

revealed up-regulation of some members of the Glutathione S-transferase (GST) gene 

family in the resistant pea genotype P665 upon inoculation with P. pinodes.13 GSTs are 

involved in various metabolic processes and also in the detoxification of a wide range of 

compounds including microbial toxins.70 Interestingly, our protein network revealed a 

relationship between ribosomal proteins, transcription factors and a group of redox 

proteins including GSTs, glutaredoxins, thioredoxin and peroxidase, all of which were 

significantly increased in response to Ascochyta.  

Other defense mechanisms 

Other proteins closely involved in pea resistance to P. pinodes included defensin, 

endoglucanase inhibitor and endochitinase. Previous studies on the pea–P. pinodes 

interaction suggested activation of β-1,3-glucanase and chitinases,14,71 and production of 

superoxide anion,72 among other defense responses in pea. Also, some authors have 

proposed candidate genes such as defensin and endochitinase for pea resistance to P. 

pinodes.13,21 

Based on the foregoing, the response of pea to P. pinodes may involve various 

mechanisms that make it resistant to the fungus. A major redox response is probably 

triggered to detoxify fungal toxins that is accompanied by strong regulation of protein 

synthesis and energy production. In addition, growth of P. pinodes in the mesophyll is 

seemingly inhibited by altering the composition of cell walls. These defense 
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mechanisms were especially apparent at the last sampling time (48 hai), once the 

pathogen had penetrated the leaf epidermis and reached the mesophyll. For the first 

time, a panel of peptides as putative markers of resistance to P. pinodes is proposed 

here. As shown by our results, most of the proteins induced in response to the pathogen 

were present at the constitutive level in the resistant genotype; also, they were highly 

represented in the resistant group of the segregating lines after 10 generations. However, 

these results should be taken cautiously and would require validation if they were to be 

extrapolated to other experimental systems.  

The proposed markers could be useful to combine the resistance mechanisms of P665 

with those found in other genotypes into a single variety of increased resistance. 

Investigating gene co-segregation in the proteins identified here and previously reported 

resistance QTLs
37 

in the parental lines from which the mapping populations were 

developed might help provide plant breeders with new markers for incorporation into 

marker-assisted breeding programs with a view to improving pea resistance to 

Ascochyta. 

 

CONCLUSIONS  

Targeted proteomics has to date scarcely been used to identify markers for predicting 

important phenotypes. To our knowledge, this is the first time that a targeted proteomic 

(shotgun–DDA combined DIA) based data analysis strategy has been used to identify 

potential markers of resistance to P. pinodes. A defense mechanism of pea against 

Ascochyta blight based on the results is proposed. The mechanism involves 

reinforcement of cell walls to hinder growth of the pathogen within cells, detoxification 

of fungal toxins via a redox response and tight regulation of protein synthesis, and 

energy production to offset the cost of resistance. From a methodological point of view 

this strategy allowed us to select a panel of peptides closely related to pea resistance to 

Ascochyta blight. Targeted proteomic data analysis therefore provides a promising 

method for markers selection and can open up new avenues for plant breeding. Also, it 

can be useful to identify new markers for predicting important traits in other crops and 

validating potentially significant biomarkers in plant research. 
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FIGURE CAPTIONS 

Figure 1. Schematic workflow for marker selection. (A) Susceptible and resistant plant 

inoculation; (B) shotgun-DDA proteomics for identification of differential proteins; (C) 

univariate and/or multivariate statistics to identify significantly changed proteins 

between genotypes and induced in response to inoculation; (D) quantitative proteomics 

(shotgun-DDA + DIA) analysis in a segregating (non-inoculated) population derived 

from a cross between the two genotypes; (E) selection of peptide markers based on the 

degree of association between the peptides and the resistance trait determined by 

statistical analysis. 

Figure 2. (A) Number of proteins significantly altered in abundance (p ≤ 0.05) up- or 

down-accumulated, represented as positive and negative respectively, comparing non-

inoculated genotypes, and also in response to P. pinodes inoculation. P: P665 genotype, 

M: Messire genotype, C: Control (non-inoculated), I: Inoculated, 1: 24 hai, 2: 48 hai; 

(B) Principal Component Analysis (PCA) showing associations between samples. A 

short distance between samples in the component space is indicative of similarity in 

abundance protein profiles; (C) Venn diagrams representing significantly changed 

proteins between genotypes and in response to P. pinodes. 

Figure 3. (A) Functional categories of 653 pea proteins given as the number of those 

significantly altered in abundance (one-way ANOVA, p ≤ 0.05) after inoculation. P: 

P665 genotype, M: Messire genotype, C: Control (non-inoculated), I: Inoculated, 1: 24 

hai, 2: 48 hai; (B) Functional categorization as a percentage of the 355 differential 

proteins on both genotypes under P. pinodes inoculation; (C) Functional categories as 

percentage of the 83 induced proteins in the resistant genotype (P665) in response to P. 

pinodes.  

Figure 4. MapMan overview: functional distribution and relative abundance ratio of the 

83 proteins (Log10 of the spectral count normalized by protein weight) identified when 

several conditions were compared: PI/MI (P665 inoculated versus Messire inoculated), 

PI/PC (P665 inoculated versus P665 control). Numbers 1 and 2 correspond to sampling 

times 24 and 48 hai, respectively. The strength of the color indicates the protein 

abundance. 

Figure 5. Representative MS1 fragment ion of a target precursor (A) also monitored by 

Data-Independent Acquisition (DIA) analysis (B). 
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Figure 6. Protein interaction network analysis of the 83 induced proteins in the resistant 

pea genotype (P665) in response to P. pinodes, represented by the homologous proteins 

from Arabidopsis. Proteins are grouped according the annotated biological process. The 

protein network in the confidence view generated by STRING database is shown. 

Stronger associations are represented by thicker lines. 

 

SUPPORTING INFORMATION 

Figure S1. Disease assessment. Histological observations of P. pinodes infection 

process (upper pictures): P. pinodes spore penetrating epidermis of Messire pea 

genotype 24 hours after inoculation (hai). The arrow shows the penetration point (a); 

necrotic lesions produced by P. pinodes in mesophyll of Messire 48 hai (b). Symptoms 

(lower pictures) caused by P. pinodes in P665 (c) and Messire (d) pea genotypes one 

week after inoculation. 

Figure S2. Multivariate factor analysis to define association of the RIL families based 

on the normalized intensity values of the target peptides. 

Figure S3. Retention Time (RT) reproducibility recorded on the 24 peptides selected. 

Box widths, handle bars and horizontal lines indicate peak group integration boundaries 

and peak apex respectively. 

Figure S4. a) Extracted peak groups from shotgun-DDA (precursor ion, left) and DIA 

(transitions ions, right) assays measured in 6 peptides of the marker panel; b) Peak area 

of precursors and transitions were measured in 6 lines (103, 12, 3, 44, 68, 84).  

Table S1. Dataset of proteins identified by shotgun-DDA proteomic analysis. 

Table S2. a) Fold change ratios of the significantly changed proteins classified by 

functional categories; b) Fold change ratios of the induced proteins in response to 

Ascochyta classified by functional categories. 

Table S3. Dataset of peptides identified by shotgun-DDA proteomic analysis. 

Table S4. Quantitation of peptide candidates for marker selection in the segregating 

RIL population. 
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Table 1. List of peptides markers selected based on multivariate factor analysis
 
 

Protein ID Peptides Sequences Precursor m/z Protein Function Protein Description 

Factor 
*
 

1 2 3 

G7IAA3 NLANPTALLLSSVSMLR 900.5060 Carbohydrate metabolism Isocitrate dehydrogenase (NAD+)  0,77 -0,39 -0,03 

O24298 FTVTQLIQGNVWLK 823.9669 Cellular processes Pectinesterase  0,02 0,78 -0,11 

O24298 TVAEAVASAPDNGK 665.3359 Cellular processes Pectinesterase  -0,25 0,86 -0,13 

O24298 VGADQSVINR 529.7831 Cellular processes Pectinesterase  -0,11 0,88 -0,02 

O24298 IDAFQDTLYAHSNR 550.9339 Cellular processes Pectinesterase  -0,08 0,90 -0,03 

Q0KKQ5 DILEIDHPEGPFGTK 834.4174 Energy metabolism Cytochrome c oxidase subunit Vb  -0,75 0,18 -0,20 

contig2217 FQGQATDVNLAR 660.3388 Folding, sorting and degradation ATP-dependent Clp protease 

proteolytic subunit-related protein 4 

-0,71 0,57 0,05 

contig2217 TELVNLLAK 500.8055 Folding, sorting and degradation ATP-dependent Clp protease 

proteolytic subunit-related protein 4 

-0,70 0,34 0,30 

contig20430 AMEVDEKPTEDYNDIGGLEK 1127.0150 Folding, sorting and degradation 26S protease regulatory subunit 6A 

homolog 

0,77 -0,39 0,22 

contig20430 DATEVNHEDFNEGIIQVQAK 753.0292 Folding, sorting and degradation 26S protease regulatory subunit 6A 

homolog 

-0,78 0,33 -0,04 

contig20430 LAGPQLVQMFIGDGAK 822.9425 Folding, sorting and degradation 26S protease regulatory subunit 6A 

homolog 

0,74 -0,34 -0,04 
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contig4092 VEIAHIAELIELPIDHVER 732.7389 Folding, sorting and degradation 26S proteasome non-ATPase 

regulatory subunit 11 

0,84 -0,02 0,06 

contig4092 VLDDPSSSPEALR 693.3490 Folding, sorting and degradation 26S proteasome non-ATPase 

regulatory subunit 11 

-0,72 0,18 -0,16 

contig3912 SGVADMVNTGGR 582.2773 Folding, sorting and degradation Leucine aminopeptidase 2 0,84 -0,23 -0,04 

Q75NZ0 VSNQLYLTMDDLADQFGIGTLR 824.0809 Redox Sulfite reductase [ferredoxin] 0,74 -0,06 0,00 

P59220 DTDSEEELKEAFR 784.8574 Signalling Calmodulin-7  0,20 -0,19 0,91 

P59220 EADVDGDGQINYEEFVK 964.4314 Signalling Calmodulin-7 0,09 -0,25 0,92 

P59220 VFDKDQNGFISAAELR 905.4601 Signalling Calmodulin-7 0,04 0,01 0,96 

contig04805 TLTAVHEAMLEDVVLPAEIVGK 779.0908 Translation 40S ribosomal protein S7-2 0,74 -0,54 0,18 

contig2390 KELDAEVHR 548.7909 Translation 60S ribosomal protein L5 -0,06 0,74 -0,30 

contig03572 KFIPEMIGK 531.8044 Translation 40S ribosomal protein S3a 0,13 0,12 -0,72 

contig04086 WYEIASFPSFFQPK 873.9299 Transport Outer membrane lipoprotein blc -0,77 0,15 -0,27 

O24303 DDTEYIYLNQLGGILGLTGK 1092.0652 Transport Protein TIC110 0,96 0,04 0,12 

contig21564 MMMTSGEAVK 542.7454 Transport ADP, ATP carrier protein 1 0,78 -0,29 0,06 

*
 Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization. The 3 first factors of the 14 extracted are showed. Unrotated factors loadings are the 

correlations between the variable and the factor. Loadings equal or greater than an absolute value of 0.7 are underlined. 
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