Taxonomical considerations and molecular phylogeny of the closely related	1
genera Bitylenchus, Sauertylenchus and Tylenchorhynchus (Nematoda:	2
Telotylenchinae), with one new and four known species from Iran	3
	4
	5
Manouchehr Hosseinvand ¹ , Ali Eskandari ¹ , Shahin Ganjkhanloo ¹ , Reza Ghaderi ² , Pablo Castillo ³	6
and Juan E. Palomares-Rius ³	7
	8
¹ Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan,	9
Iran	10
² Department of Plant Protection, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran	11
³ Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC),	12
Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario,	13
ceiA3, Spain	14
	15
Correspondence	16
Ali Eskandari, Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-	17
38791, Zanjan, Iran	18
Email: eskandari.a@znu.ac.ir	19
	20
Contributing authors	21
Manouchehr Hosseinvand (m.houseinvand@gmail.com); Shahin Ganjkhanlo	22
(Sh.ganjkhanloo69@gmail.com); Reza Ghaderi (rghaderi@shirazu.ac.ir); Pablo Castillo	23
(p.castillo@csic.es); Juan E. Palomares-Rius (palomaresje@ias.csic.es)	24
	25
Running title: Review of Tylenchorhynchus and related genera	26
	27
Keywords: 18S rRNA, 28S rRNA, Bitylenchus parvulus n. sp., Identification key,	28
Sauertylenchus maximus, synonymy, Tylenchorhynchus.	29
	30
	31

Abstract

During several nematological surveys in cultivated and natural habitats in Khuzestan and 33 Zanjan provinces of Iran, a new species, Bitylenchus parvulus n. sp., two new records for Iran 34 namely Tylenchorhynchus agri and T. graciliformis, and a population of Bitylenchus parvus 35 and one of Sauertylenchus maximus were recovered and characterised based upon 36 morphological and molecular approaches. The new species is characterized by lip region with 37 five to seven annuli, stylet 17.7 (17.0-18.5) µm long, sub-cylindrical tail narrowing abruptly 38 near terminus, cuticle near anterior part of vulva wrinkled and post-rectal sac occupied whole 39 of tail cavity. The phylogenetic analyses were carried out using molecular data from D2-D3 40 expansion segments of 28S rDNA for all studied species and the partial 18S rDNA for the new 41 species. The representatives of Bitylenchus and Sauertylenchus formed distinct clades from 42 Tylenchorhynchus members supporting the hypothesis in which Bitylenchus and 43 Sauertylenchus could be considered as valid genera but rejecting the 'large-genus' concept for 44 Tylenchorhynchus. Also, S. ibericus was proposed as a junior synonym of S. maximus based 45 on the results from morphological and phylogenetic analysis. Furthermore, an identification 46 key for all known species included in three genera Bitylenchus, Tylenchorhynchus and 47 Sauertylenchus is presented herein. The number of transverse annuli on the lip region and 48 presence/absence of post-rectal sac were considered as main diagnostic characters for 49 classifying of the species into seven groups, and other morphological and morphometric 50 characters were subsequently used for distinguishing species in each group. 51

52

32

Introduction

Nematode members of the genus Tylenchorhynchus Cobb, 1913, known under the common 55 name "stunt nematodes", are one of the largest groups of plant-parasitic nematodes which are 56 migratory ectoparasites of the roots of many plants, including various agricultural crops and 57 native plants (Siddiqi, 2000; Handoo et al., 2014). Bitylenchus Filipjev, 1934 was proposed as 58 a subgenus of the genus Tylenchus Bastian, 1865 by Filipjev (1934) with Tylenchus 59 (Bitylenchus) dubius (Bütschli, 1873) Filipjev, 1934 as its type species; however, it was 60 synonymized with Tylenchorhynchus by Filipjev (1936). Some nematologists (Fortuner & Luc, 61 1987; Handoo, 2000; Geraert, 2011) considered Bitylenchus as a synonym of 62 Tylenchorhynchus, but others recognized both as valid genera (Gomez-Barcina et al., 1992; 63 Siddiqi, 2000; Andrássy, 2007; Handoo et al., 2014; Ghaderi et al., 2014). The genus 64 Bitylenchus was differentiated from Tylenchorhynchus in having areolated outer bands of 65 lateral fields, a large post-anal intestinal sac containing intestinal granules and fasciculi, 66 relatively more thickened cuticle at the female tail tip, and gubernaculum lacking a crest 67 (Gomez-Barcina et al., 1992). The genus Sauertylenchus Sher, 1974 is also similar to 68 Bitylenchus except for the difference in the structure of the lip region which has an offset labial 69 disc and the first labial annulus divided into six sectors and a relatively longer stylet (Sher, 70 1974; Siddiqi, 1986, 2000; Gomez-Barcina et al., 1992). 71

Siddiqi (2000) listed 105 valid species under Tylenchorhynchus, 29 valid species under 72 Bitylenchus and further five species under Sauertylenchus. Geraert (2011) considered 133 73 species under Tylenchorhynchus (the genus Bitylenchus was considered as its synonym) and 74 only one species under the genus Sauertylenchus (S. labiodiscus Sher, 1974). Subsequently, 75 Tylenchorhynchus bambusi Singh, Lal, Rathour & Ganguly, 2010; B. hispaniensis Handoo, 76 Palomares-Rius, Cantalapiedra-Navarrete, Liébanas, Subbotin & Castillo, 2014; B. capsicumi 77 Zarina & Akhtar, 2014; T. mediterraneus Handoo, Palomares-Rius, Cantalapiedra-Navarrete, 78 Liébanas, Subbotin & Castillo, 2014 and T. iranensis Azimi, Mahdikhani-Moghadam, Rouhani 79 & Rajabi Memari, 2016 were described from India, Spain, Pakistan, Spain, and Iran, 80 respectively. Sturhan (2014) transferred Paratrophurus striatus Castillo, Siddiqi & Gomez-81 Barcina, 1989 to the genus Tylenchorhynchus and named it T. casigo (Castillo, Siddiqi & 82 Gomez-Barcina, 1989) Sturhan, 2014. 83

Recently, Handoo *et al.* (2014) studied relationships between the genera *Bitylenchus* and *Tylenchorhynchus* using integrative taxonomy. In this sense, the use of integrative taxonomy
85
combined with the phylogenetically test of alternative hypotheses confirmed the separation of
86

these two genera, rejecting the Fortuner & Luc's conceptual view of Tylenchorhynchus as a 87 large genus (Fortuner & Luc, 1987). Because of the few and difficult characters to study in this 88 group of nematodes, the use of molecular markers for species identification in the genus is of 89 high importance. The use of nuclear ribosomal RNA genes [D2-D3 expansion segments of the 90 large ribosomal subunit (28S), internal transcribed spacer (ITS), and partial small ribosomal 91 subunit (18S)] have been proven useful in the latest phylogenetical studies of this group of 92 nematodes (Handoo et al., 2014; Azizi et al., 2016; Hosseinvand et al., 2019a; Gharakhani et 93 al., 2019; Hosseinvand et al., 2020). 94

Taxonomic position of certain genera incorporated into the large genus Tylenchorhynchus, 95 particularly Bitylenchus and Sauertylenchus is still controversial despite several phylogenetic 96 and morphological studies. Sufficient morphological information is not available on several 97 known species, which make their identification a challenging task. So far, several identification 98 keys have been given for species included in these genera, mostly under Tylenchorhynchus 99 sensu lato (Allen, 1955; Brzeski, 1998; Brzeski & Dolinski, 1998; Handoo, 2000; Geraert, 100 2011). In the present study, we provided a revised and new updated key for species included 101 in the genera Bitylenchus, Sauertylenchus and Tylenchorhynchus. Moreover, we described a 102 new species from Bitylenchus and provided additional morphological and molecular 103 information on four other known species namely B. parvus (Allen, 1955) Jairajpuri, 1982; 104 Sauertylenchus maximus (Allen, 1955) Siddiqi, 2000; Tylenchorhynchus agri Ferris, 1963 and 105 T. graciliformis Siddiqi & Siddiqui, 1983. 106

> 107 108

> 109

110

Materials and methods

Taxonomic review of Bitylenchus, Sauertylenchus and Tylenchorhynchus

The original and several relevant published descriptions of the species included in the genera 111 Bitylenchus, Sauertylenchus and Tylenchorhynchus were studied in detail. Based on obtained 112 information from these descriptions, as well as those given in the monograph by Geraert 113 (2011), we provided an updated and revised identification key for all known species in these 114 genera. For practical reasons, we prefer to include all species in a single key due to close 115 morphological affinity of the genera and the problems arise when assigning a correct taxon for 116 a given population. Besides the characters implemented in the key by Geraert (2011), we used 117 new additional characters such as the number of tail annuli, areolation of the lateral field, and 118 the shape of gubernaculum for obtaining a better resolution to separate closely related species. 119

The taxonomic position of the valid species and their synonyms are mainly based on Siddiqi120(2000).121

Sampling and morphological identification

Soil samples were collected from the rhizosphere of different wild plants in Khuzestan and 124 Zanjan provinces of Iran. Nematodes were extracted by the tray method (Whitehead & 125 Hemming, 1965), then killed and fixed by hot FPG (4: 1: 1, formaldehyde: propionic acid: 126 glycerol), and processed to anhydrous glycerol (De Grisse, 1969). The nematodes were 127 transferred to a drop of glycerol and a surrounding ring of paraffin wax on permanent slides 128 and studied using a light microscope, equipped with a Dino-eye microscope eye-piece camera 129 in conjunction with its Dino Capture version 2.0 software. Drawings were made through a 130 drawing tube attached to a light microscope. Specimens were identified at species level using 131 available identification keys (Geraert, 2011). 132

Molecular characterization

For molecular analyses, and in order to avoid mistakes in case of mixed populations in the same 135 sample, two specimens from each sample were temporarily mounted in a drop of 1M NaCl 136 containing glass beads (to avoid nematode crushing/damaging) to ensure confirming specimens 137 with the unidentified populations. All necessary morphological and morphometric data 138 (pictures and measurements) of the studies specimens in temporary slides were recorded using 139 the abovementioned camera-equipped microscope. This was followed by DNA extraction from 140 single individuals as described by Subbotin et al. (2000). The D2-D3 region was amplified 141 (5'-ACAAGTACCGTGAGGGAAAGTTG-3') using the D2A and D3B (5'-142 TCGGAAGGAACCAGCTACTA-3') primers (Nunn, 1992). Finally, the 18S rRNA was 143 amplified using primers 988F (5'-CTCAAAGATTAAGCCATGC-3'), 1912R (5'-144 TTTACGGTCAGAACTAGGG-3'), 1813F (5'-CTGCGTGAGAGGTGAAAT-3') and 2646R 145 (5'-GCTACCTTGTTACGACTTTT-3') (Holterman et al., 2006). 146

All PCR assays were carried out according to the conditions described by Archidona-Yuste *et al.* (2016). Then, the amplified PCR products were purified using ExoSAP-IT 148 (Affimetrix, USB products) and used for direct sequencing on a DNA multicapillary sequencer 149 (Model 3130XL genetic analyser; Applied Biosystems, Foster City, CA, USA), using the 150 BigDye Terminator Sequencing Kit V.3.1 (Applied Biosystems, Foster City, CA, USA), at the 151 Stab Vida sequencing facilities (Caparica, Portugal). The newly obtained sequences were 152

122

123

submitted to the GenBank database under the accession numbers indicated on the phylogenetic 153 trees. 154

Phylogenetic analyses

D2-D3 segments of 28S rRNA and 18S rRNA sequences of different genera of Telotylenchinae 157 Siddigi, 1960 were obtained from GenBank and used for phylogenetic reconstruction. 158 Outgroup taxa for each dataset were chosen following previous published studies (Handoo et 159 al., 2014; Azizi et al., 2016; Hosseinvand et al., 2019a). The D2-D3 region alignment consisted 160 of 54 sequences as ingroups and two sequences of Psilenchus hilarulus de Man, 1921 161 (KP313831) and Coslenchus paramaritus Hosseinvand, Eskandari, & Ghaderi, 2019b 162 (MK542004) as outgroups. The 18S rRNA alignment consisted of 30 sequences as in groups 163 and Geocenamus quadrifer (Andrássy, 1954) Brzeski, 1991 (AY993997) and P. hilarulus 164 (KX798728) as outgroups. The newly obtained sequences were edited and aligned with other 165 relevant sequences available in GenBank using Muscle alignment tool implemented in 166 MEGA7 program (Kumar et al., 2016). The ambiguously aligned parts and divergent regions 167 were removed from the alignments using the online version of Gblocks 0.91b (Castresana, 168 2000) (http://molevol.cmima.csic.es/castresana/Gblocks server.html). The best-fit model of 169 nucleotide substitution used for the phylogenetic analysis was statistically selected using 170 jModelTest 2.1.10 (Darriba et al., 2012) with the Akaike Information Criterion (AIC). 171 Phylogenetic trees were generated with Bayesian inference method using MrBayes 3.2.6 172 (Huelsenbeck & Ronquist, 2001; Ronquist et al., 2012). The best-fit model, the base frequency, 173 the proportion of invariable sites, and the gamma distribution shape parameters and substitution 174 rates in the AIC were then used in MrBayes for the phylogenetic analyses. The general time-175 reversible model with invariable sites and a gamma-shaped distribution (GTR + I + G), for the 176 D2-D3 segments of 28S rRNA and 18S rRNA genes, was run with four chains for 2×10^6 177 generations. A combined analysis of the two genes was not undertaken due to some sequences 178 not being available for all species. The topologies were used to generate a 50 % majority-rule 179 consensus tree. Posterior probabilities (PP) are given on appropriate clades. Trees from all 180 visualized analyses were and saved using FigTree software V.1.4.3 181 (http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut, 2014) and edited with Adobe® Acrobat® 182 XI Pro 11.0.1. 183

- 184
- 185

Results	186
Key to the species of Bitylenchus, Sauertylenchus and Tylenchorhynchus	187
All known species of these three genera are treated in a single identification key here (see	188
discussion for justification). For practical reasons, we separate this complex nematode group	189
in several morphotype groups, based on the main diagnostic characters (mainly the number of	190
lip region annuli and presence/absence of post-rectal sac) used for species delineation in these	191
genera.	192
	193
	194
Group 1. Lip region without annuli, smooth; post-rectal sac absent or very slightly overlapping	195
rectum (presented in the original description of T. amgi but not drawn)	196
Group 2. The number of transverse annuli on lip region (excluding labial disc) usually 2 or 3,	197
rarely 4; post-rectal sac absent or very slightly overlapping rectum	198
Group 3. The number of transverse annuli on lip region (excluding labial disc) usually 2 or 3,	199
rarely 4; post-rectal sac present	200
Group 4. The number of transverse annuli on lip region (excluding labial disc) usually 4 or 5,	201
rarely 6; post-rectal sac absent or very slightly overlapping rectum	202
Group 5. The number of transverse annuli on lip region (excluding labial disc) usually 4 or 5,	203
rarely 6; post-rectal sac present	204
Group 6. The number of transverse annuli on lip region (excluding labial disc) mostly 6-10,	205
fine; post-rectal sac absent or very slightly overlapping rectum	206
Group 7. The number of transverse annuli on lip region (excluding labial disc) mostly 6-10,	207
fine; post-rectal sac present	208
	209
Dichotomous keys for species identification in proposed morphospecies groups:	210
Group 1.	211
	212
1. Average of stylet length below 15 µm T. cynodoni Kumar, 1981	213
- Average of stylet length 17-22 μm 2	214
- Average of stylet length 23 µm T. robustus Thorne & Malek, 1968 (lip region described	215
as having no visible transverse annuli; however, this species may have 6-10 mostly fine	216
annuli, and belongs to the group 6)	217
2. Average value of c' ratio 2 to 3.5 3	218

- Average value of c' ratio nearly 4 or more 6	219
3. Average of cuticular annuli on the ventral side of tail below 30 4	220
- Average of cuticular annuli on the ventral side of tail more than 40 T. sudanensis (Decker,	221
Yassin & El-Amin, 1975) Castillo, Siddiqi & Gomez-Barcina, 1989	222
4. Lip region distinctly offset; tail sub-cylindrical T. oryzae Kaul & Waliullah, 1995	223
- Lip region continuous to slightly offset; tail cylindrical 5	224
5. Lip region hemispherical, basal bulb saccate; stylet knobs posteriorly or laterally directed	225
T. parasudanensis (Elbadri, Moon, Lee & Choo, 2010) Geraert, 2011	226
- Lip region conoid truncate, basal bulb pyriform; stylet knobs anteriorly directed T.	227
tuberosus Zarina & Maqbool, 1994	228
6. Cuticular annuli on the ventral side of tail below 25 in average 7	229
- Cuticular annuli on the ventral side of tail more than 35 in average 8	230
7. Stylet with anteriorly directed basal knobs; cuticular annuli 1.0-1.2 µm apart T. amgi	231
Kumar, 1981	232
- Stylet with posteriorly directed basal knobs; cuticular annuli 1.5-2.4 µm apart T.	233
leviterminalis Siddiqi, Mukherjee & Dasgupta, 1982	234
8. Lip region hemispherical, slightly offset, tail cylindrical, very slightly arcuate ventrally	235
T. ooti Siddiqi, 2008	236
- Lip region conoid-truncate, continuous, tail cylindrical to sub-clavate with characteristic	237
shallow depression on its dorsal side T. microcephalus Siddiqi & Patel, 1990	238
	239
Group 2.	240
	241
1. Average of stylet length below 18 μm 2	242
- Average of stylet length 18-22 μm 17	243
- Average of stylet length more than 23 μ m 28	244
2. Cuticular annuli on the ventral side of tail more than 25 in average 3	245
- Cuticular annuli on the ventral side of tail below 25 in average 5	246
3. Average of body length more than 800 µm T. handooi Khan, 2004	247
- Average of body length less than 700 µm 4	248
4. c' = 2.7-3.2; stylet 16-17 μm <i>T. karnalensis</i> Saha, Singh, Lal & Kaushal, 2002	249
- c' = 4; stylet 14-16 μ m <i>T. delhiensis</i> Chawla, Bhamburkar, Khan & Prasad, 1968	250
5. Lip region distinctly offset 6	251

- Lip region continuous or slightly offset 7	252
6. Basal bulb saccate and offset from intestine; cuticular annuli 1.6-1.8 μm wide at mid-body;	253
tail slightly ventrally curved; c = 17-24 T. microconus Siddiqi, Mukherjee &	254
Dasgupta, 1982	255
- Basal bulb pyriform with slight overlapping, cuticular annuli 2.7 µm wide at mid-body; tail	256
straight; c = 14-17 T. aspericutis Knobloch, 1975	257
7. Tail cylindrical 8	258
- Tail conical to sub-cylindrical 9	259
8. Lateral field marked by peculiar oblique striae T. gossypii Nasira & Maqbool, 1996	260
- Lateral field not marked by such striae T. lucknowensis Singh & Jain, 1983	261
9. Average of stylet length below 14 µm T. tritici Golden, Maqbool & Handoo, 1987	262
- Average of stylet length more than 14 μ m 10	263
10. c' = 3.9 <i>T. elamini</i> Elbadri, Moon, Lee & Choo, 2010	264
- c' = 2.0-3.5 11 (including 8 similar species)	265
11. Average of body length less than 600 μ m 12	266
- Average of body length more than 600 µm 16	267
12. Stylet knobs anteriorly directed 13	268
- Stylet knobs posteriorly directed 14	269
13. Lip region with 2 transverse annuli; $c' = 2.3-2.8$; average of stylet length more than 17 μ m	270
T. varicaudatus Singh, 1971	271
- Lip region with 3-4 transverse annuli; c' = 3.0-3.4; average of stylet length less than 17 μm	272
T. qasimii Ramzan, Handoo & Fayyaz, 2008	273
14. Tail annuli 20-24 T. iarius Saha, Gaur & Lal, 1998	274
- Tail annuli 11-20 15	275
15. c' = 2.3-2.9 <i>T. rudis</i> Siddiqi, 2008	276
- c' = 3.2 <i>T. haki</i> Fotedar & Mahajan, 1971	277
16. Tail annuli 13-16; cuticular annuli about 3 µm wide at mid-body; spicules with distinct	278
terminal notch T. mashhoodi Siddiqi & Basir, 1959	279
- Tail annuli 17-21; cuticular annuli 2.6 µm wide at mid-body; spicules without terminal notch	280
T. bohrrensis Gupta & Uma, 1980	281
- Tail annuli 23; cuticular annuli about 2.2 µm wide at mid-body; spicules without terminal	282
notch T. elegans Siddiqi, 1961	283
17. Tail annuli more than 25 in average 18	284

- Tail annuli less than 25 in average 21	285
18. Tail clavate; c' = 4; tail with distinct hyaline near 10 μ m thick T. clavicaudatus	286
Seinhorst, 1963	287
- Tail conical to sub-cylindrical; c' below 3.5; tail without distinct hyaline 19	288
19. Lip region distinctly offset T. sanwali Kumar, 1982	289
- Labial region continuous to slightly offset 20	290
20. Tail conical to almost funnel-shaped with narrow terminus T. paratriversus Brzeski,	291
1992	292
- Tail regularly conical with hemispherical terminus T. thermophiles Golden, Baldwin &	293
Mundo-Ocampo, 1995	294
21. Tail clavate 22	295
- Tail conical to sub-cylindrical 23 (two similar species)	296
22. Pharynx 115-160 μm; spicules 19-23 μm; tail hyaline 7-13 μm thick T. crassicaudatus	297
Williams, 1960	298
- Pharynx 105-120 µm; spicules 21-26 µm; tail hyaline 5-8 µm thick T. kegasawai	299
Minagawa, 1995	300
23. Tail terminus striated; longitudinal striae present on anterior end T. claytoni Steiner,	301
1937	302
- Tail terminus smooth; longitudinal striae absent 24	303
24. Male not found, even in populations with very high number of females T. annulatus	304
(Cassidy, 1930) Golden, 1971	305
- Males usually present 25	306
25. Lip framework refractive; stylet knobs concave, 5 µm across T. ancorastyletus	307
Ivanova, 1983	308
- Lip framework non-refractive; stylet knobs usually not concave, 4 µm or less 26	309
26. c' = 2.0; stylet 19-23 μ m; stylet knobs posteriorly directed <i>T. mexicanus</i> Knobloch &	310
Laughlin, 1973	311
- c' = 2.7-3.0; stylet 17-20 μ m; stylet knobs laterally or anteriorly directed 27 (three similar	312
species)	313
27. Lip region annuli three; body length 620-710 μm; spicules 20-22 μm T. badliensis	314
Saha & Khan, 1982	315
- Lip region annuli two; body length 570-630 µm; spicules 23-24 µm T. coffeae Siddiqi &	316
Basir, 1959	317
 27. Lip region annuli three; body length 620-710 μm; spicules 20-22 μm <i>T. badliensis</i> Saha & Khan, 1982 - Lip region annuli two; body length 570-630 μm; spicules 23-24 μm <i>T. coffeae</i> Siddiqi & Basir, 1959 	314 315 316 317

- Lip region annuli 2; body length 580-660 µm; spicules 24-26 µm T. musae Kumar, 1981	318
28. Body length 700-800 μ m; tail hyaline very thick (12-16 μ m); spicules 21-25 μ m T.	319
clavus Khan, 1990	320
- Body length 800-1000 μ m; tail hyaline normal (below 8 μ m thick); spicules 28-33 μ m <i>T</i> .	321
silvaticus Ferris, 1963	322
	323
Group 3.	324
	325
1. Average of stylet length less than 18 µm; spicules 24-28 µm T. microcephaloides	326
(Zarina, Siddiqi & Shahina, 2004) Geraert, 2011	327
- Average of stylet length between 18 and 22 μ m; spicules shorter than 25 μ m 2	328
- Average of stylet length more than 24 µm; spicules shorter than 25 µm T. botrys Siddiqi,	329
1985	330
2. Cuticular annuli on the ventral side of tail below 25 in average; tail terminus smooth (except	331
in T. kashmirensis) 3	332
- Cuticular annuli on the ventral side of tail 25-35 in average; tail terminus striated B.	333
equatorialis Talavera & Siddiqi, 1995	334
- Cuticular annuli on the ventral side of tail more than 35 in average; tail terminus smooth	335
T. neoclavicaudatus Mathur, Sanwal & Lal, 1979	336
3. Lip region distinctly offset; tail terminus striated T. kashmirensis Mahajan, 1974	337
- Lip region continuous or slightly offset; tail terminus smooth 4	338
4. Tail cylindrical to clavate 5 (two similar species)	339
- Tail conical to sub-cylindrical 6	340
5. Tail cylindrical to slightly clavate T. nudus Allen, 1955	341
- Tail distinctly clavate T. bambusi Singh, Lal, Rathour & Ganguly, 2010	342
6. c' = 2.8-4.1; post-rectal sac filling less than 20% of tail length <i>T. alami</i> Shaw & Khan,	343
1996	344
- c' = 2.1-2.6; post-rectal sac filling about 45-70% of tail length \dots 7	345
7. Spicules 21-25 µm; stylet knobs with concave anterior surfaces T. agri Ferris, 1963	346
- Spicules 18 µm; stylet knobs rounded T. ewingi Hopper, 1959	347
	348
Group 4.	349
	350

1. Average of stylet length below 18 μm 2 (some species have a stylet near to 18 $\mu m;$	351
comparison with those bearing 18-22 μ m stylet is recommended)	352
- Average of stylet length 18-22 μm 15	353
- Average of stylet length more than 22 μ m 28	354
2. Cuticular annuli on the ventral side of tail below 30 in average 3	355
- Cuticular annuli on the ventral side of tail more than 30 in average 11	356
3. Lip region distinctly offset 4	357
- Lip region continuous or slightly offset 5	358
4. Tail terminus smooth; spicules 24-26 µm T. variannulatus Siddiqi, 2008	359
- Tail terminus striated; spicules 14 µm T. leucaenus Azmi, 1991	360
- Tail terminus striated; male unknown T. crotoni Pathak & Siddiqui, 1997	361
5. Body ventrally contracted behind vulva T. contractus Loof, 1964	362
- Body not contracted behind vulva 6	363
6. Tail with broadly rounded terminus; lateral field strongly areolated; gubernaculum hammer-	364
shaped T. aerolatus Tobar Jiménez, 1970	365
- Tail with narrower terminus; lateral field not strongly areolated; gubernaculum simple 7	366
7. Spermatheca non-functional; males absent or very rare T. clarus Allen, 1955 (T.	367
variannus Mavlyanov, 1978 is a possible synonym)	368
- Spermatheca functional; males usually present 8	369
8. Stylet length 11-13 µm T. nordiensis Khan & Nanjappa, 1974	370
- Stylet length 15-19 μ m 9 (three similar species; also they should be compared with <i>T</i> .	371
zeae and T. chirchikensis which have only slightly longer stylet)	372
9. Tail terminus flattened T. shivanandi Shaw & Khan, 1992	373
- Tail terminus hemispherical 10	374
10. Spicules 18-21 µm T. brassicae Siddiqi, 1961	375
- Spicules 21-26 µm T. spinaceai Singh, 1976	376
11. Tail terminus striated T. mangiferae Luqman & Khan, 1986	377
- Tail terminus smooth 12	378
12. Cuticle on either side of vulva irregular B. usmanensis (Khurma & Mahajan, 1988)	379
Siddiqi, 2000	380
- Cuticle near vulva normal 13	381
13. Lip region hemispherical; vulva with lateral membrane T. fatimae Khan, Saeed &	382
Akhter, 2004	383

- Lip region sunken and dome-shaped; vulva without lateral membrane 14	384
14. Lip region with 5-6 transverse annuli; lateral field areolated B. quaidi (Golden,	385
Maqbool & Handoo, 1987) Siddiqi, 2000	386
- Lip region with 4 transverse annuli; lateral field apparently not areolated T. minutus	387
Karapetjan, 1979	388
15. Cuticular annuli on the ventral side of tail below 25 in average 16	389
- Cuticular annuli on the ventral side of tail between 25 and 35 in average 25	390
- Cuticular annuli on the ventral side of tail more than 35 in average 27	391
16. Tail cylindrical to clavate 17	392
- Tail conical to sub-cylindrical 19	393
17. Body length 730-830 μm; c' = 3.0-3.8 <i>T. idahoensis</i> Siddiqi, 2008	394
- Body length 570-710 μ m; c' = 2.5-3.0 18	395
18. Tail clavate; tail annuli about 15 T. dactylurus Das, 1960	396
- Tail cylindrical; tail annuli 8-10 T. georgiensis Eliashvili, 1971	397
19. Lip region distinctly offset 20	398
- Lip region continuous or slightly offset 22	399
20. Tail with very narrow terminus T. aduncus de Guiran, 1967	400
- Tail terminus not so narrow 21	401
21. Body length 460-660 µm; tail terminus striated T. ismaili Azmi & Ahmad, 1991	402
- Body length 670-830 µm; tail terminus smooth T. graciliformis Siddiqi & Siddiqui, 1983	403
22. Tail with very narrow terminus T. paulettae Bloemers & Wanless, 1998	404
- Tail terminus not so narrow 23	405
23. Tail terminus striated; spicules 26-29 µm T. irregularis Wu, 1969	406
- Tail terminus smooth; spicules less than 25 μ m 24 (three similar species)	407
24. Body length 530-640 µm T. zeae Sethi & Swarup, 1968	408
- Body length 620-700 μm T. chirchikensis Mavlyanov, 1978	409
- Body length 700-780 μm T. projectus Khan, 1990	410
25. Body length 520-590 μm; lip region with 5 annuli; stylet knobs rounded <i>T. ebriensis</i>	411
Seinhorst, 1963	412
- Body length 600-760 µm; lip region with 4 annuli; stylet knobs with concave anterior end	413
26	414
26. Tail terminus narrow, striated T. eremicolus Allen, 1955	415
- Tail terminus hemispherical, smooth T. digitatus Das, 1960	416

27. Tail with finger-shaped outgrowth; $c' = 2.2 \dots T$. erevanicus Karapetjan, 1979	417
- Tail with distinct hyaline (9-12 μ m); c' = 5 <i>T. areoterminalis</i> Siddiqi, 2008	418
- Tail normal; c' = 2.8 <i>T. hordei</i> Khan, 1972	419
28. Tail with elongated-conical with narrow terminus; tail annuli more than 30 T.	420
antarctictus Wouts & Sher, 1981	421
- Tail bifurcated; tail annuli 26-27 T. bicaudatus Khakimov, 1973	422
- Tail suddenly constricted ventrally before middle, distal part hook-shaped with a bursa-like	423
structure formed by lateral fields; tail annuli less than 25 T. bursifer Loof, 1960	424
- Tail conical; tail annuli 15-22 T. cylindricus Cobb, 1913	425
- Tail almost cylindrical; tail annuli near 25 S. velatus (Sauer & Annells, 1981) Siddiqi,	426
2000	427
- Tail almost cylindrical; tail annuli 14-15 T. tarjani Andrássy, 1969	428
	429
Group 5.	430
	431
1. Average of stylet length below 18 μm 2	432
- Average of stylet length more than 18 μ m 7	433
2. Tail annuli more than 40 T. paracanalis Khan, 1991	434
- Tail annuli less than 40 3	435
3. Average of stylet length below 15 μ m; vulva without distinct epiptygma 4	436
- Average of stylet length more than 15 µm; vulva without epiptygma B. capsicumi Zarina	437
& Akhtar, 2014	438
- Average of stylet length more than 15 μ m; vulva with distinct epiptygma B. queirozi	439
(Monteiro & Lordello, 1976) Jairajpuri, 1982	440
4. Cuticle posterior to vulva with irregular ondulations B. ventrosignatus (Tobar Jiménez,	441
1969) Jairajpuri, 1982	442
- Cuticle posterior to vulva normal 5	443
5. Tail terminus smooth T. subcylindricus Singh & Jain, 1982	444
- Tail terminus striated 6	445
6. Tail conical with narrow terminus; spicules 20-23 µm B. swarupi (Singh & Khera, 1978)	446
Jairajpuri, 1982	447
- Tail almost cylindrical with hemispherical terminus; spicules 23-26 µm B. cuticaudatus	448
(Ray & Das, 1983) Siddiqi, 1986	449

7. Tail annuli less than 25 T. kamlae Shaw & Khan, 1996	450
- Tail annuli 25-35 8	451
- Tail annuli 35-45 B. bryobius (Sturhan, 1966) Jairajpuri, 1982	452
8. Body length 480-800 μm; spicules 18-26 μm 9	453
- Body length 830-1300 µm; spicules 33-35 µm S. pratensis (Gomez-Barcina, Siddiqi &	454
Castillo, 1992) Siddiqi, 2000	455
9. Lip region usually with 4 transverse annuli B. colombianus Siddiqi, 1985	456
- Lip region with 5 or 6 transverse annuli 10 (two similar species)	457
10. Stylet length 16-20 μm B. iphilus Minagawa, 1995	458
- Stylet length 19-21 µm B. malinus (Lin, 1992) n. comb.	459
	460
Group 6.	461
	462
1. Average of stylet length below 17 μ m 2 (two similar species)	463
- Average of stylet length 18-22 μm 3	464
- Average of stylet length more than 22 μ m 6	465
2. Body length 580-700 μm; stylet 16-17 μm <i>T. latus</i> Allen, 1955	466
- Body length 710-730 µm; stylet 14-16 µm T. persicus Sultan, Singh & Sakhuja, 1991	467
3. Tail annuli less than 20 T. shimizui Talavera, Watanabe & Mizukubo, 2002	468
- Tail annuli 20-35 4	469
- Tail annuli more than 35 5	470
4. Lip region continuous; c' = 1.7-2.3; spicules 29-34 µm T. casigo (Castillo, Siddiqi &	471
Gomez-Barcina, 1989) Sturhan, 2014	472
- Lip region offset; c' = 3.4-5.0; spicules 20-22 μ m T. teres (Khan & Darekar, 1979)	473
Siddiqi, 1986	474
5. Lip region distinctly offset; body length 800-1200 µm; tail regularly sub-cylindrical T.	475
mediterraneus Handoo, Palomares-Rius, Cantalapiedra-Navarrete, Liébanas, Subbotin &	476
Castillo, 2014	477
- Lip region continuous; body length 750 µm; tail contracted behind anus T. manubriatus	478
Litvinova, 1946	479
6. Tail annuli 16-30; vulva with protruding double epiptygma T. siccus Nobbs, 1990	480
- Tail annuli more than 30; epiptygma absent 7	481

7. Tail conical ending to a very narrow terminus; stylet 23-26 µm <i>T. tenuicauda</i> Wouts &	482
Sher, 1981	483
- Tail cylindrical ending to a hemispherical terminus; stylet 26-31 µm T. kegenicus	484
Litvinova, 1946	485
	486
Group 7.	487
1. Average of stylet length 10-11 μm B. depressus Jairajpuri, 1982	488
- Average of stylet length 12-15 μm 2	489
- Average of stylet length 15-19 μm 6	490
- Average of stylet length 19-22 μm 10	491
- Average of stylet length 22-30 μm 13	492
- Average of stylet length 35-40 µm S. labiodiscus Sher, 1974	493
2. Cuticle near vulva irregular 3	494
- Cuticle near vulva normal 4	495
3. Longitudinal striae present on anterior end (pharyngeal region); spicules 23-27 µm B.	496
brevilineatus (Williams, 1960) Jairajpuri, 1982	497
- Longitudinal striae absent; spicules 21-23 µm B. goffarti (Sturhan, 1966) Jairajpuri, 1982	498
4. Lip region continuous B. mediocris Talavera & Siddiqi, 1995	499
- Lip region offset 5	500
5. Lateral field not areolated; lip region with 6-7 transverse annuli; spermatheca with spheroid	501
sperm B. vulgaris (Upadhyay, Swamp & Sethi, 1972) Jairajpuri, 1982	502
- Lateral field areolated; lip region with 7-9 transverse annuli; spermatheca lacking sperm	503
B. singularis Siddiqi & Sharma, 1994	504
6. Lip region offset 7	505
- Lip region continuous 9	506
7. Lip region with 5-7 transverse annuli; epiptygma present; intestinal fasciculi absent; tail sub-	507
cylindrical, abruptly narrowing near terminus B. parvulus n. sp.	508
- Lip region with 6-10 transverse annuli; epiptygma absent; intestinal fasciculi present; tail	509
sub-cylindrical to cylindrical, with normal hemispherical terminus 8	510
8. c' = 2.2-3.7; spermatheca filled with sperm, males common B. dubius (Bütschli, 1873)	511
Filipjev, 1934	512
- c' = 3.1-4.4; spermatheca empty, males absent <i>B. tobari</i> (Sauer & Annells, 1981) Siddiqi,	513
1986	514

9. Gubernaculum with crest, distinctly curved proximally T. iranensis Azimi, Mahdikhani-	515
Moghadam, Rouhani & Rajabi Memari, 2016	516
- Gubernaculum lacking crest, simple B. parvus (Allen, 1955) Jairajpuri, 1982 (three other	517
species, B. teeni (Hashim, 1984) Siddiqi, 1986, B. huesingi (Paetzold, 1958) Jairajpuri,	518
1982 and B. hispaniensis Handoo, Palomares-Rius, Cantalapiedra-Navarrete, Liébanas,	519
Subbotin & Castillo, 2014 are very similar)	520
10. Tail annuli less than 30; c' below 2 B. kidwaii (Rashid & Heyns, 1990) Siddiqi, 2000	521
- Tail annuli more than 30; c' more than 2 11	522
11. Post-rectal sac covers one-third of tail length at maximum B. serranus Gomez-Barcina,	523
Siddiqi & Castillo, 1992	524
- Post-rectal sac covers almost the total tail length 12	525
12. Stylet knobs anteriorly directed; $c' = 2.7$; Stylet knobs anteriorly directed B. canalis	526
(Thorne & Malek, 1968) Jairajpuri, 1982	527
- Stylet knobs posteriorly directed; c' = 3-4; Stylet knobs posteriorly directed B. natalensis	528
(Kleynhans, 1984) Siddiqi, 1986	529
13. Labial region distinctly offset; average of stylet length 25 μ m; vulva with epiptygma	530
S. pamiricus (Ivanova, 1989) n. comb.	531
- Labial region slightly offset; average of stylet length below 25 μ m; vulva without epiptygma	532
14	533
14. Tail terminus annuli finer than other tail annuli S. maximus (Allen, 1955) Siddiqi, 2000	534
- Tail terminus annuli as wide as other tail annuli S. ibericus (Mahajan & Nombela, 1987)	535
Siddiqi, 2000	536
	537
	538
Descriptions and observations on Iranian populations	539
A total of 81 individuals including 62 female and 19 male specimens belonging to seven	540
species were used for morphological analyses. Description of the new species and some	541
species are given and observations are made on other species.	542
	543
Bitylenchus parvulus n. sp.	544
ZooBank (zoobank.org) identifier: urn:lsid:zoobank.org:pub: 9089459F-7E88-4039-80EB-	545
F0B65B600CFC.	546
(Figs 1, 2 & 3)	547

Measurements

The morphometrics of *B. parvulus* n. sp. are present in Table 1.

548 549

550 551

Description

Female. Medium sized, ventrally arcuate to J-shaped after heat fixation. Lateral field with 552 four incisures, outer bands areolated, 29 (21-37)% of the corresponding body diameter. Cuticle 553 annuli delicate, 1.0 (0.5-1.5) µm wide at mid-body. Cuticle just anterior to vulva with irregular 554 undulations (wrinkling) at its ventral side. Labial framework slightly sclerotized; lip region 555 slightly offset from body contour by a distinct depression, with five to seven annuli, 3.6 (3.0-556 4.0) µm high and 7.4 (6.5-8.5) µm wide. Amphidial apertures indistinct. Stylet well-developed, 557 conus 9.1 (8.5-9.5) µm, about one half of stylet length, stylet knobs rounded, slightly sloping 558 backward, 3.7 (3.0-4.5) µm in width. Dorsal pharyngeal gland orifice (DGO) 2.8 (2.0-3.5) µm 559 from stylet knobs. Procorpus cylindrical, as long as isthmus, median bulb well developed, 560 ovate, with distinct valve, 17.5 (15.0-19.5) µm long and 11.6 (10.0-13.5) µm wide, occupying 561 48 (57-66)% of the corresponding body diameter. Nerve ring at anterior half of isthmus, 91 562 (80-101) µm from anterior end. Excretory pore position varies from posterior end of isthmus 563 to anterior end of basal bulb. Hemizonid 5-6 annuli anterior to excretory pore, 109 (96-119) 564 µm from anterior end. Basal bulb pocket-shaped, offset from intestine, 27 (22-34) µm in length 565 and 13.5 (10.0-15.5) µm in width. Cardia small. Intestine generally without distinct fasciculi. 566 Post-rectal sac occupies almost entire tail cavity. Reproductive system didelphic-amphidelphic, 567 gonads straight, oocytes arranged in single row, spermatheca non-offset, usually without 568 sperm, uterus long, vagina perpendicular to the body axis, 8.7 (7.5-10.5) µm long, occupying 569 24 (22-26) % of the vulval body width. Vulva near mid-body, as a transverse slit, with small 570 epiptygma. Phasmids at 42 (31-50)% of tail length. Tail sub-cylindrical, often dorsally convex, 571 usually narrowing abruptly near terminus giving a bluntly digitate appearance to its striated 572 terminus. 573

Male. Body ventrally curved to J-shaped. Cuticle annuli 0.8 (0.5-1.0) μ m at mid-body. 574 Lateral field occupying 29 (26-37)% of body width, not areolated. Labial framework not 575 sclerotised. Labial region slightly offset from body with five to six annuli, 6.8 (6.5-7.5) μ m 576 wide and 3.5 (3.0-4.5) μ m high. Stylet knobs well developed, slightly sloping backward, 3.4 577 (3.0-3.5) μ m in width. Median bulb oval, 10.0 (9.0-11.0) μ m × 14.5 (13.5-16.5) μ m. Basal bulb 578 pyriform, 11.4 (10.5-12.0) μ m × 21.5 (18.0-26.5) μ m. Testis single, 430 (417-460) μ m long, 579 occupying 65.5 (63.0-68.0)% of total body length. Spicules curved ventrally, with velum and 580

pointed tip. Gubernaculum simple, crescent-shaped, about one-third of spicules length. Bursa	581
elongated, 58 (51-62) µm long. Tail conical, ending to a pointed terminus.	582
	583
Type locality	584
The new species was recovered from the rhizosphere of milk vetch (Astragalus sp.) in Sendan	585
mountain, Zanjan province, northwestern Iran (GPS coordinates: 49°07'13"N, 36°42'41"E).	586
	587
Type material	588
Holotype, 16 paratype females and 6 paratype males were deposited in the nematode collection	589
of the Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran;	590
and two paratype females and one paratype male at the USDA Nematode Collection	591
(Bitylenchus parvulus T-7480p).	592
	593
Etymology	594
The species epithet refers to the proximity of the new species with the other known species, <i>B</i> .	595
parvus.	596
	597
Diagnosis and relationships	598
The new species is characterized by lip region with five to seven annuli, stylet 17.7 (17.0-	599
18.5) µm long, sub-cylindrical tail with digitate terminus, cuticle just anterior to vulva	600
wrinkled, and post-rectal sac occupied whole of tail cavity.	601
Regarding general characters, lip region annuli, tail shape and post-rectal sac, Bitylenchus	602
parvulus n. sp. is similar to a group of some closely related species namely: B. dubius; B. tobari	603
(Sauer & Annells, 1981) Siddiqi, 1986; B. hispaniensis; B. huesingi (Paetzold, 1958) Jairajpuri,	604
1982; B. parvus; B. serranus Gomez-Barcina, Siddiqi & Castillo, 1992 and B. teeni (Hashim,	605
1984) Siddiqi, 1986. The new species differs from <i>B. dubius</i> and <i>B. tobari</i> in the number of lip	606
region annuli (5-7 vs 6-9 and 8-10, respectively), epiptygma (present vs absent), fasciculi	607
(absent vs present), unique shape of tail terminus (suddenly narrowing near terminus giving a	608
bluntly digitate shape to tail terminus vs normal hemispherical tail terminus), and cuticle	609
anterior to the vulva wrinkled (vs usually normal). It can be further distinguished from B. tobari	610
by difference in c' ratio (2.8 (2.3-3.3) vs 3.8 (3.1-4.4)) and reproduction behavior (spermatheca	611
filled with sperm and males are common vs spermatheca empty and males absent).	612

From B. parvus, B. serranus and B. teeni, It differs by having a distinctly offset lip region 613 (vs continuous or slightly offset) and female tail shape (digitate vs not digitate). It can be further 614 distinguished from *B. hispaniensis* and *B. parvus* by presence a distinct epiptygma (vs absence), 615 and absence of intestinal fasciculi (vs presence), from B. huesingi by stylet knobs shape 616 (sloping backward vs rounded), from B. serranus by slightly shorter stylet (17.7 (17.0-18.5) vs 617 19.0-22.0 μ m), slightly posterior position of vulva (V = 56.0 (54.5-60.0) vs 49-54 %) and 618 slightly shorter spicules (23.2 (21.5-25.0) vs 26-31 µm), and from B. teeni by absence of 619 intestinal fasciculi (vs presence). 620

621

622

633

634

637

638

639

640

641

Iranian population of Bitylenchus parvus (Allen, 1955) Jairajpuri, 1982623(Fig. 6)624625

Measurements626The morphometrics of *B. parv*us are presented in Table 2.627This population was found around the rhizosphere of rice (*Oryza sativa* L.) in Dezful,628Khuzestan province, southwestern Iran (GPS coordinates: 32°27'87"N, 48°46'11"E). The629morphological and morphometric characters of the Iranian population of *B. parvus* well fit with630other populations recorded in literature (Allen, 1955; Geraert, 2011; Ghaderi *et al.*, 2014),631except that tail terminus is usually smooth.632

Iranian population of Sauertylenchus maximus (Allen, 1955) Siddiqi, 2000635(Figs. 4 & 5)636

Measurements The morphometrics of *Sauertylenchus maximus* are presented in Table 3.

Description

Female. Body ventrally curved to C-shaped, about 1 mm in length. Lateral field with four 642 incisures, about one-fourth to one-third or 30.0 (25.5-35.5)% of body diameter, with areolation 643 at entire body. Body annuli deep, 2.2 (2.0-2.5) µm wide at pharynx, 1.7 (1.5-2.0) µm wide at 644 mid-body. Lip region high, non-offset or offset by a slight depression, with 6-8 distinct annuli, 645

8.4 (8.0-9.0) μm wide and 4.3 (4.0-5.0) high. Stylet slender, conus 11.5 (11.0-12.0) μm, 646 occupying 53 (51-56)% of total stylet length, knobs sloping backward, 2.9 (2.5-3.0) µm wide. 647 DGO 2.2 (1.5-3.0) µm posterior to stylet knobs. Procorpus cylindrical, about as long as 648 isthmus. Median bulb masculine with distinct refractive valve, 14 (13-15) µm wide and 21.0 649 (19.0-23.5) µm long, occupying 66 (60-70)% of body diameter. Nerve ring at middle of 650 isthmus, 118 (111-125) µm from anterior end. Excretory pore at level with anterior end of basal 651 bulb. Hemizonid 3-8 annuli anterior to excretory pore, or 133 (127-143) µm from anterior end. 652 Basal bulb pyriform and offset, 14.7 (13.5-16.0) µm wide and 30 (28-36) µm long. Cardia 653 small. Post-rectal sac occupies entire tail cavity. Ovaries paired, vulva a transverse slit, without 654 epiptygma, spermatheca indistinct, uterus short, vagina perpendicular to the body axis, 12 (9-655 16) µm or 47 (35-57)% of vulval body diameter. Phasmids at 43 (37-52) % of tail length. Tail 656 cylindrical, curved ventrally ending to a rounded striated terminus. 657

Male. Not found.

Locality

This population was recovered from the rhizosphere of milk vetch (*Astragalus* sp.) in Sendan662mountain, Zanjan Province, northwestern Iran (GPS coordinates: 36°42'31"N, 49°07'23"E).663

658

659

660

661

664

665

Remarks

Sauertylenchus maximus is very similar to Bitylenchus canalis (Thorne & Malek, 1968) 666 Jairajpuri, 1982; B. serranus and S. ibericus (Mahajan & Nombela, 1987) Siddiqi, 2000. It 667 differs from B. canalis by lip region morphology (rounded vs truncated), stylet knobs shape 668 (sloping posteriorly vs anteriorly) and the number of tail annuli (25-52 vs 66). It differs from 669 B. serranus by annuli characters in tail tip (as wide as other tail annuli vs wider), and post-670 rectal sac length (occupied almost whole of tail cavity vs short post-rectal sac, 10-19 µm long). 671 The present population fits well with S. maximus but differs by annuli on tail terminus as same 672 as other tail annuli (vs finer than other tail annuli). Mahajan & Nombela (1987) differentiated 673 S. ibericus from S. maximus in having an offset lip region and lacking areolation in the caudal 674 region. However, lip region is illustrated as slightly offset similar to that observed for S. 675 maximus. Therefore, areolation of the lateral field on tail region and the width of tail terminus 676 annuli remain as the only diagnostic characters between S. maximus and S. ibericus. The 677 present population shows areolation of the lateral field on tail region (similar to S. maximus) 678

but tail terminus annuli are generally as wide as other tail annuli (similar to S. ibericus). As the	679
present population of S. maximus has an offset labial disc distinctly separable from lip region	680
annuli, and the first cephalic annuli divided into six sectors, we prefer to follow Siddiqi (2000)	681
for maintaining this species in Sauertylenchus, not in Bitylenchus.	682
	683
	684
Iranian population of Tylenchorhynchus agri Ferris, 1963	685
(Figs. 7 & 8)	686
	687
Measurements	688
The morphometrics of Tylenchorhynchus agri are presented in Table 4.	689
	690
Description	691
Female. Body slightly ventrally curved to C-shaped after heat fixation. Lateral field	692
occupies 30 (28-33)% of the corresponding body diameter. Body annuli delicate, 2.2 (2.0-2.5)	693
μ m wide at pharynx, and 1.7 (1.5-2.0) μ m at mid-body. Labial region slightly offset, bearing	694
four to five annuli, 7.5 (7.4-7.7) µm wide and 3.4 (3.5-4.0) µm high. Stylet conus 8.8 (8.5-9.0)	695
$\mu m,53$ (50-56)% of total stylet length, knobs rounded, 3.9 (3.5-4.5) μm wide. DGO 2.4 (2.0-	696
2.7) µm posterior to stylet knobs. Procorpus cylindrical, about as along as isthmus. Median	697
bulb ovate with distinct valve, 11 (10-12) µm wide, 16.5 (16-17) µm long, occupying 61 (55-	698
70) % of the corresponding body diameter. Isthmus slender. Basal bulb pyriform to slightly	699
elongate, offset from intestine, 12 (11-14) μm wide and 32 (29-36) μm long. Cardia	700
hemispherical. Nerve ring at anterior half of isthmus, at 85 (83-89) µm from anterior end.	701
Excretory pore at anterior part of basal bulb. Hemizonid one to two annuli anterior to excretory	702
pore, at 99 (96-106) µm from anterior end. A small post-rectal sac occupying 30 (26-36)% of	703
tail cavity. Ovaries paired and straight, spermatheca rounded and non-offset, without sperm.	704
Uterus short, vagina perpendicular to the body axis, 7.5 (7.0-8.0) μ m, occupying 38 (34-43)%	705
of the vulval body width, vulva with small epiptygma. Phasmids located at 37 (23-30) % of tail	706
length. Tail sub-cylindrical ending to a smooth terminus.	707
	708
Male. Not found.	709
	710
Locality	711

This population was recovered from the rhizosphere of desert poplar (*Populus euphratica*712Oliv.) in Dezful region, Khuzestan province, southwestern Iran (GPS coordinates: 32°11'36"N,71348°42'67"E).714

- 715
- 716

Remarks

Measurements

Description

717

Tylenchorhynchus agri is similar to T. alami Shaw & Khan, 1996; T. claytoni Steiner, 1937;	718
T. crassicaudatus Williams, 1960; T. ewingi Hopper, 1959; T. haki Fotedar & Mahajan, 1971	719
and T. mexicanus Knobloch & Laughlin, 1973. It is different from T. alami by lip region	720
morphology (slightly offset vs continuous), tail shape and length (sub-cylindrical, 32-39 μ m	721
long vs conoid, 48 µm long), spicules length (21-25 vs 17-18 µm), and post-rectal sac (filling	722
30% vs less than 20% of tail length). From T. claytoni, it can be distinguished by longitudinal	723
striae (absent vs present) and post-rectal sac (present vs absent). It differs from T.	724
crassicaudatus by tail length (32-39 vs 38-63 µm) and post-rectal sac (present vs absent), from	725
T. ewingi by annuli of lip region (4-5 vs 3 annuli), spicules (21-25 vs 18 μm) and stylet knobs	726
shape (with concave anterior surfaces vs rounded), from T. haki by slightly longer stylet (17-	727
23 vs 16-18 µm), tail characters (sub-cylindrical, 32-39 µm long vs conoid, 27 µm long), and	728
from T. mexicanus by lip region characters (slightly offset vs distinctly offset), tail shape (sub-	729
cylindrical vs conoid) and post-rectal sac (present vs absent).	730
	731

732

Iranian population of Tylenchorhynchus graciliformis Siddiqi & Siddiqui, 1983733(Figs. 9 & 10)734735

The morphometrics of *Tylenchorhynchus graciliformis* are presented in Table 4.

738

736

737

739

Female. Body ventrally curved to C-shape. Lateral field occupied one fourth to one third of pody width, outer bands crenate, 32 (23-39)% of body width in diameter. Body annuli delicate, 741 1.9 (1.0-2.3) µm at pharynx, and 1.7 (1.5-1.9) µm at mid-body. Lip region slightly offset 742 bearing usually five, rarely six annuli, 6.8 (6.5-7.5) µm wide, and 3.2 (3.0-4.0) µm high. Stylet 743 delicate, conus 8.7 (8.0-9.5) µm, 52 (50-54)% of total stylet length, knobs laterally directed, 744

4.1 (3.5-4.5) μm wide. DGO 2.2 (1.5-3.0) μm posterior to stylet knobs. Procorpus cylindrical, 745 about as along as isthmus. Median bulb ovate with distinct valve, 10.7 (10.0-11.0) µm wide, 746 16.8 (15.5-18.0) long, occupying 64 (59-69)% of body width in diameter. Isthmus slender. 747 Basal bulb elongate-saccate, offset from intestine to slightly overlapping anterior end of 748 intestine, 12.3 (11.0-14.0) µm wide, 31 (27-38) µm long. Cardia hemispherical. Nerve ring at 749 middle of isthmus, 86 (76-93) µm from anterior end. Excretory pore at anterior part of basal 750 bulb. Hemizonid one to three annuli anterior to excretory pore, 104 (97-109) µm from anterior 751 end. Deirid indistinct. Post-rectal sac absent. Reproductive system didelphic-amphidelphic, 752 gonads straight, spermatheca rounded and non-offset, filled with spheroid sperm, 2-3 µm in 753 diameter. Uterus short, vagina perpendicular to body axis, 9.0 (7.5-12.0) µm, occupying 44 754 (35-53)% of vulval body diameter. Vulva prominent equipped with small epiptygma. Phasmids 755 located at 32 (23-40)% of tail. Tail sub-cylindrical bearing 22 (18-26) cuticular annuli on its 756 ventral side, ending to a smooth terminus. 757

Male. General characters similar to those of female. Body ventrally curved to J-shaped. Body 758 annuli 1.6 (1.5-2.0) µm wide at mid-body. Lateral field with four incisures, 29 (23-36)% of 759 body width. Lip region bearing four to five annuli, 6.1 (6.0-6.5) µm wide and 2.9 (2.5-3.0) µm 760 high. Stylet comparable with that of female, conus 51 (50-52)% of total stylet length; knobs 761 sloping backward. DGO 1.9 (1.5-2.0) µm posterior to stylet knobs. Median bulb 10.0 (9.5-762 11.0) µm wide and 13.5 (12.0-15.0) µm long. Basal bulb elongate-saccate, slightly shorter than 763 female, 11.4 (10.0-13.0) µm wide and 28 (25-30) µm in length. Nerve ring located at 87 (80-764 93) µm from anterior end. Deirids indistinct. Spicules tylenchoid. Gubernaculum with crest. 765 Bursa extending to end of tail, 61 (53-67) µm in length. 766

Locality

The present population of T. graciliformis was recovered from the rhizosphere of tamarisc769(*Tamarix* sp.) in Dezful region, Khuzestan province, southwestern Iran (GPS coordinates:77032°16'66"N, 48°47'56"E).771

767

768

772

773

Remarks

All morphological and morphometric characteristics of the present population fit well with 774 those of the original population of *Tylenchorhynchus graciliformis* differing only in the lip 775 region demarcation; in the present population, lip region is generally slightly offset from the 776 rest body (drawn and illustrated as distinctly offset in the original description). *T. graciliformis* 777

is similar to T. aduncus de Guiran, 1967; T. brassicae Siddiqi, 1961; T. clarus Allen, 1955; T. 778 contractus Loof, 1964; T. aerolatus Tobar Jiménez, 1970, T. striatus Allen, 1955 and T. ismaili 779 Azmi & Ahmad, 1991. It differs from T. aduncus by tail shape (sub-cylindrical vs conical), 780 shape of stylet knobs (laterally directed vs posteriorly directed), spermatheca shape (spherical 781 vs ovoid), spicules length (19-21 vs 22-25 µm) and shape of gubernaculum (with a simple crest 782 vs characteristic hammer-shaped). It can be distinguished from T. aerolatus by absence of 783 areolation in lateral field (vs having regular areolation), the shape of gubernaculum (with 784 simple crest vs hammer-shaped), and body length (678-780 vs 540-700 µm). It differs from T. 785 brassicae by annuli of lip region (5-6 vs 4 annuli), stylet length (17-19 vs 16-17 µm) and tail 786 characters (sub-cylindrical, 36-51 µm vs conical, 23-40 µm in length). The present population 787 can be differentiated from T. clarus by lip region morphology (offset vs non offset), number of 788 tail annuli (16-20 vs 7-20 annuli), presence of males and spermatheca filled with sperm (vs 789 absence of males and empty spermatheca), from T. contractus and T. striatus by lip region 790 characters (offset vs non offset), and from T. ismaili by body size (678-780 vs 460-660 µm) 791 and tail terminus striation (smooth vs striated). 792

793

794

Molecular characterization of Tylenchorhynchus, Bitylenchus and Sauertylenchus species795from Iran796

The amplification of D2-D3 expansion segments of 28S, and partial 18S rRNA genes yielded 797 single fragments of 669 and 1695 bp, respectively after discarding primer sequences. D2-D3 798 for B. parvulus n. sp. (MK473884) differed from the closest related species, B. parvus 799 (KJ585431) by 14 different nucleotides and 0 indels (98% similarity), from B. hispaniensis 800 (KJ461548; KJ461544; KJ461547 and MG770479) by 13-15 different nucleotides and 1 indels 801 (98% similarity); from B. huesingi (KX789756) by18 different nucleotides and 1 indel (97% 802 similarity); and from B. dubius (DQ328707 and EU368590) by 20 different nucleotides and 0 803 indel (97% similarity). Two sequences for B. parvulus n. sp. (MT232322-MT232323) differing 804 in 3 nucleotides (99,8% similar) were obtained for the 18S rRNA marker. These sequences 805 closely matched with several species, such as B. parvus (KX789742) and B. teeni (KJ636394) 806 by 19, 21 different nucleotides and 1, 3 indels (99% similarity), respectively. D2-D3 from 807 Iranian population of B. parvus (MT193835) was identical to B. parvus (KJ585431) from Fars, 808 Iran. D2-D3 from the Iranian population of S. maximus (MK473883) closely matched with 809 several populations of S. maximus (KX789749, KX789755 and KX789748) differing by 1-2 810 bp and 0 indel (99% similarity). Finally, D2-D3 from Iranian populations of *T. agri* and *T. graciliformis* (MT193837 and MT193836) showed that these isolates had the highest similarity812(100% and 97.2%) with *T. agri* and *T. zeae*, respectively.813

Phylogenetic relationships of studied species

815 816

814

Phylogenetic relationships within Bitylenchus, Sauertylenchus, Tylenchorhynchus and 817 representatives of other genera of the subfamily Telotylenchinae from the analysis of the partial 818 28S rRNA and 18S rRNA gene sequences are given in Figures 11 and 12, respectively. The 819 phylogenetic analysis of the 28S rRNA separated the genus Bitylenchus and Sauertylenchus in 820 different clades, at exception of B. brevilineatus (Williams, 1960) Jairajpuri, 1982 (KJ461533). 821 The D2-D3 sequences of *B. parvulus* n. sp. clustered well (PP = 99) with two sequences of *B.* 822 dubius (DQ328707 and EU368590). B. parvulus n. sp. formed a well-supported clade (PP = 823 100) with B. parvus (KJ585431 and MT193835), B. huesingi (KX789756) and four sequences 824 of B. hispaniensis (KJ461548; KJ461544; KJ461547 and MG770479). Our isolate of S. 825 maximus (MK473883) formed a well-supported clade (PP = 99) with populations of S. 826 maximus (KX789749, KX789755 and KX789748) deposited in GenBank. Iranian isolate of B. 827 parvus (MT193835) clustered well (PP = 100) with B. parvus (KJ585431). The Iranian isolate 828 of T. agri (MT193837) formed a clade (PP = 99) with three isolates of T. agri (KX622690, 829 MG491667 and KJ475549). The Iranian isolate of T. graciliformis (MT193837) formed a clade 830 (PP = 100) with four isolates of T. zeae Sethi & Swarup, 1968 (MN757911, KJ461563, 831 KJ461565and KM068058). 832

The 18S rRNA phylogeny showed that *B. parvulus* n. sp. (MT226922 and MT226923) 833 formed a moderately supported clade (PP = 84) with *B. parvus* (KX789742) and a high 834 supported clade (PP = 100) with other species of the genus *Bitylenchus*, as *B. dubius* 835 (EU306352, AY284601 and EU306352), *B. teeni* (KJ636395 and KJ636394), *B. huesingi* 836 (KX789739) and *B. serranus* (KX789743), . 837

- 838
- 839

840

Discussion

In the present study, we provided a key for identification of the all known species treated in the three closely related genera *Bitylenchus*, *Sauertylenchus* and *Tylenchorhynchus*. A new species, *B. parvulus* n. sp., was described and illustrated during this study, morphological and 843 additional molecular data were obtained for some previously described species (*T. agri, B.* 844 *parvus* and *S. maximus*), and new molecular and morphological data were presented for *T.* 845 *graciliformis*. 846

Some morphological (Gomez-Barcina et al., 1992; Siddiqi, 2000) and molecular data (Handoo847et al., 2014; Ghaderi et al., 2014; present study) support that Bitylenchus and Sauertylenchus848are separable genera from Tylenchorhynchus. However, the validity of the genus849Sauertylenchus still needs to be tested with more studies, particularly by inclusion of the type850species of this genus (Handoo et al., 2014).851

Although Bitylenchus, Sauertylenchus and Tylenchorhynchus are treated as the three 852 separated valid genera in literature, there is no adequate information on the important 853 diagnostic characters such as lateral field areolation, lip region structure, post-rectal sac 854 presence, or the shape of gubernaculum on many of described species in literature. Moreover, 855 there is no agreement on the taxonomic position of certain species; for instance, S. maximus in 856 Siddiqi (2000) has been considered as B. maximus in Andrássy (2007) or T. maximus in Geraert 857 (2011). Which is why, the identification of species in Tylenchorhynchus, Bitylenchus and 858 Sauertylenchus remains as a challenging task and certain species from one genus may come 859 close to certain species from the other. Considering these problems in identification of species, 860 all known species of these three genera are treated in a single identification key here. 861

The following studies have tried to provide identification keys or diagnostic compendiums 862 for identification of species in the genus Tylenchorhynchus: Ganguly et al., 2013 (compendium 863 to 158 species), Geraert, 2011 (key for 133 species including *Bitylenchus* species), Andrássy, 864 2007 (key for 16 European species), Handoo, 2000 (key and compendium for 111 species), 865 Brzeski & Dolinski, 1998 (compendium for 177 species of Tylenchorhynchus sensu lato), 866 Brzeski, 1998 (key for 9 European species and compendium for 160 species of 867 Tylenchorhynchus sensu lato), Hooper, 1978 (key and compendium for 55 species), Tarjan, 868 1973 (key and compendium for 46 species), Tarjan, 1964 (key and diagnostic compendium for 869 88 species of Tylenchorhynchus sensu lato), Thorne & Malek, 1968 (key for 9 species), Allen, 870 1955 (key for 34 species of Tylenchorhynchus sensu lato). For the genus Bitylenchus, only two 871 keys are provided separately: Jairajpuri (1982) and Andrássy (2007). 872

According to D2-D3 of 28S, and partial 18S rRNA genes phylogeny, we accept the hypothesis of *Bitylenchus*, *Sauertylenchus* and *Tylenchorhynchus* as valid genera and reject the 'large-genus idea' advocated by Fortuner & Luc (1987). Similar results were obtained in some recently published molecular phylogenies (Handoo *et al.*, 2014, Ghaderi *et al.*, 2014; Azimi *et* al., 2016). Diagnosis and identification of Bitylenchus, Sauertylenchus and Tylenchorhynchus 877 species based solely on morphometric features is quite problematic because there is a 878 continuous range in values of morphological-morphometric data within populations of the 879 same species, as well as amongst species (Handoo et al., 2014). As a result, it is important to 880 include molecular markers in the description of topotypes from already described and new 881 species, as it has been suggested by other authors (Gutiérrez-Gutiérrez et al., 2010, Zamora 882 Araya et al., 2016) and the probability of cryptic speciation in plant-parasitic nematodes 883 (Palomares-Rius et al., 2014; Gharakhani et al., 2019). 884

Bitylenchus parvulus n. sp. is molecularly closely related to B. dubius and B. parvus, and885in both phylogenetic trees (D2-D3 expansion segments of 28S rRNA and partial 18S rRNA)886formed a monophyletic position as valid species inside the genus Bitylenchus. This species887moreover could be separated from these closely related species in regard to morphological and888morphometric characteristics. The validity of Bitylenchus as a separated genus from889Tylenchorhynchus has been already discussed in Handoo et al. (2014) and the addition of more890representatives of this genus, as B. parvulus n. sp., reinforce this idea..891

Morphological characters of the Iranian isolate of *T. agri* (MT193837) were similar to type species, and in D2-D3 tree formed a clade with three isolates of *T. agri* (KX622690, MG491667 and KJ475549). *Tylenchorhynchus agri* formed a sister clade with *T. annulatus* in the 28S rRNA tree. Additonally, these species could be separated morphologically because *T. annulatus* (MH142612) differs by the number of lip region annuli and absence of post-rectal sac from *T. agri*. Our isolate of *T. graciliformis* formed a clade with *T. zeae*, which could be also separated morphologically by slightly shorter stylet length and the number of tail annuli.

Tylenchorhynchus iranensis (KU248449 and KU248450) was transferred to the genus899Bitylenchus by Ghaderi & Karegar (2018). The authors noticed that this species is not different900from B. parvus, B. teeni and B. huesingi, but according to the shape of gubernaculum, having901a distinct crest in the relevant description (Azimi et al., 2016) and its phylogenetic position902within Tylenchorhynchus species in the 28S rRNA tree, it could be considered as a valid species903in the genus Tylenchorhynchus and not in Bitylenchus.904

Sauertylenchus ibericus is very close to *S. maximus* and differs only by tail terminus annuli 905 (as wide as *vs* smaller than other tail annuli). *Sauertylenchus maximus* (MK473883) isolate 906 from Iran has the annuli of tail terminus as wide as the other tail annuli (seldom smaller than 907 tail annuli). This sequence is identical to and formed a clade with *S. maximus*. As no stable 908 diagnostic character can be observed and sequences of *S. maximus* and *S. ibericus* are identical, 909 synonymy of these two species is proposed here, being S. maximus the valid species and S. 910 ibericus a junior synonym. However, the study of topotypes of both species may clarify the 911 exact taxonomic status of them. 912

Conclusions

913 914

- 1. In this paper, we provided an identification key to all known species treated in closely 915 related genera, Bitylenchus, Sauertylenchus and Tylenchorhynchus. 916
- 2. Confirmed the Siddiqi's classification for transferring S. maximus to the genus 917 Sauertylenchus as representatives of this species formed a separate clade from 918 Bitylenchus species. 919
- 3. Described a new species namely *B. parvulus* n. sp. and characterized four known species 920 (B. parvus, S. maximus, T. agri and T. graciliformis) by morphological and molecular 921 characters, two of them (T. agri and T. graciliformis) were new records from Iran. 922
- 4. Proposed the synonymization of *S. ibericus* with *S. maximus*.

- 923 924
- 925

929

930

931

935

943

Acknowledgements. The authors thank anonymous reviewers and the editor of this manuscript	926
for their valuable suggestions to improve the paper. J.E.P.R. acknowledges Spanish Ministry	927
of Economy and Competitiveness for the "Ramon y Cajal" Fellowship RYC-2017-22228.	928

Conflict of interest. The authors declare no conflicts of interest.

Ethical standards. No specific permits were required for the indicated fieldwork studies. The 932 soil samples were obtained in public areas, forests, and other natural areas and do not involve 933 any species endangered or protected in Iran, nor are the sites protected in any way. 934

ORCID	936
Manouchehr Hosseinvand: https://orcid.org/0000-0002-0472-1513	937
Ali Eskandari: https://orcid.org/0000-0003-3902-7422	938
Reza Ghaderi: ID: https://orcid.org/0000-0001-7647-1413	939
Pablo Castillo: ID: https://orcid.org/0000-0003-0256-876X	940
Juan E. Palomares-Rius: https://orcid.org/0000-0003-1776-8131	941
	942

References	944
Akhter S and Zarina B (2014) Bitylenchus capsicumi sp. n. and one known species of the	945
genus Aphelenchus from chilli plants in Sindh, Pakistan. International Journal of	946
Biological Research 2, 135-141.	947
Allen MW (1955) A review of the nematode genus Tylenchorhynchus. University of California	948
Publications in Zoology 61, 129-166.	949
Andrássy I (1954) Drei neue Arten aus der Superfamilie Tylenchoidea. Nematologische	950
Notizen 3. Annales Biologicae Universitatum Hungariae 2, 9-15.	951
Andrássy I (1969) The scientific results of the Hungarian soil zoological expedition to	952
Brazzaville-Congo. 40. Vier neue Bodemnematoden Arten. Opuscula Zoologica	953
Budapestinensis 9, 15-29.	954
Andrássy I (2007) Free-living Nematodes of Hungary, II. Pedozoologica Hungarica No.4.	955
Hungarian Natural History Museum, 496 pp.	956
Archidona-Yuste A, Navas-Cortés JA, Cantalapiedra-Navarrete C, Palomares-Rius JE	957
and Castillo P (2016) Molecular phylogenetic analysis and comparative morphology	958
resolve two new species of olive-tree soil related dagger nematodes of the genus	959
Xiphinema (Dorylaimida: Longidoridae) from Spain. Invertebrate Systematics 30, 547-	960
565.	961
Azimi S, Mahdikhani-Moghadam E, Rouhani H and Rajabi Memari H (2016) Description	962
of Tylenchorhynchus iranensis sp. n. (nematoda telotylenchidae) from iran. Redia XCIX,	963
3-8.	964
Azizi K, Eskandari A, Karegar A, Ghaderi R, van den Elsen S, Holterman M and Helder	965
J (2016) Morphological and molecular data support the monophyletic nature of the genus	966
Pratylenchoides Winslow, 1958 (Nematoda: Merliniidae) and reveal its intrageneric	967
structuring. Nematology 18, 1165-1183. DOI: 10.1163/15685411-00003023	968
Azmi MI and Ahmad ST (1991) Tylenchorhynchus ismaili n. sp. from India. Indian Journal	969
of Nematology 19, 279-281.	970
Azmi MI (1991) Tylenchorhynchus leucaenus sp. nov. (Nematoda: Tylenchida) from Jhansi,	971
India. Current Nematology 2, 81-82.	972
Bastian HC (1865) Monograph on the Anguillulidae, or free nematoids, marine, land and	973
freshwater; with descriptions of 100 new species. Transactions of the Linnean Society	974
25 , 73-184.	975

Bloemers GF and Wanless FR (1998) Description of Tylenchorhynchus paulettae sp. n.	976
(Dolichodoridae) from Cameroon with comments on the status of the genus Triversus	977
Sher, 1974. International Journal of Nematology 8, 53-56.	978
Brzeski MW and Dolinski CM (1998) Compendium of the genus Tylenchorhynchus Cobb,	979
1913 sensu lato (Nematoda: Belonolaimidae). Russian Journal of Nematology 6, 189-	980
199.	981
Brzeski MW (1992) Tylenchorhynchus paratriversus sp. n. and comments on three other	982
species of the genus (Nematoda: Belonolaimidae). Nematologia Mediterranea 19, 213-	983
220.	984
Brzeski MW (1998) Nematodes of Tylenchina in Poland and Temperate Europe. Muzeum i	985
Instytut Zoologii Polska Akademia Nauk, Warszaw, 397 pp.	986
Bütschli O (1873) Beiträge zur Kennntis der freilebenden Nematoden. Beiträge zur Kenntnis	987
der freilebenden Nematoden. Nova acta Academiae Caesareae Leopoldino-Carolinae	988
Germanicae Naturae Curiosorum 36, 1-124.	989
Cassidy GH (1930) Nematodes associated with sugarcane in Hawaii. Hawaiian Planters	990
<i>Record</i> 34 , 379-387.	991
Castillo P, Siddiqi MR and Gomez-Barcina A (1989) Studies on the genus Paratrophurus	992
Arias (Nematoda: Tylenchina) with descriptions of two new species. Nematologia	993
Mediterranea 17, 83-95.	994
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in	995
phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.	996
Chawla MI, Bhamburkar BL, Khan E and Prasad SK (1968) One new genus and seven	997
new species of nematodes from India. Labdev Journal of Science and Technology 6, 86-	998
100.	999
Cobb NA (1913) New nematode genera found inhabiting fresh water and non-brackish soils.	1000
Journal of the Washington Academy of Sciences 3, 432-444.	1001
Darriba D, Taboada GL, Doallo R and Posada D (2012) jModelTest 2: more models, new	1002
heuristics and parallel computing. Nature Methods 9, 772.	1003
Das V (1960) Studies on the nematode parasites of plants in Hyderabad (Andhra Pradesh,	1004
India). Zeitschriftfiir Parasitenkunde 19, 553-605.	1005
De Grisse A (1969) Redescription ou modification de quelques techniques utilisées dans	1006
l'étude des nematodes phytoparasitaires. Mededelingen Rijksfaculteit	1007
Landbouwwetenschappen Gent 34, 351-369.	1008

De Guiran G (1967) Description de deux espèces nouvelles du genre Tylenchorhynchus Cobb,	1009
1913 (Nematoda: Tylenchinae) accompagnée d'une clé des femelles, et précisions sur T.	1010
mamillatus Tobar-Jimenez, 1966. Nematologica 13, 217-230.	1011
De Ley P, Félix MA, Frisse LM, Nadler SA, Sternberg PW and Thomas WK (1999)	1012
Molecular and morphological characterisation of two reproductively isolated species	1013
with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1, 591-612.	1014
De Man JG (1921) Nouvelles recherches sur les nematodes terricoles de la Hollande. Capita	1015
<i>Zoologica</i> 1 , 3-62.	1016
Decker H, Yassin AM and El-Amin ETM (1975) Zur Gattung Paratrophurus Arias, 1970	1017
(Nematoda: Dolichodoridae). In: Voortragstagung (1) zu Aktuellen Problemender	1018
Phytonematologie am 29.5.1975 in Rostock. Manuskriptdruck der Vortrage. Biologische	1019
Gesellschaft der DDR, Sektion Phytopathologie und Universitat Rostock. Rostock. DDR.	1020
pp. 89-102.	1021
Elbadri GAA, Moon IS, Lee DW and Choo HJ (2010) Two new species of	1022
Tylenchorhynchus Cobb, 1913 (Nematoda: Belonolaimidae) from Sudan. Korean	1023
Journal of Applied Entomology 49, 57-60.	1024
Eliashvili TS (1971) Two new soil-inhabiting nematode species (Amphidelus paramonovi and	1025
Tylenchorhynchus georgiensis n.sp.) of eastern Georgia. Bulletin of the Academy of	1026
Sciences of the Georgian SSR 61, 213-216.	1027
Ferris VR (1963) Tylenchorhynchus silvaticus sp. nov. and Tylenchorhynchus agri sp. nov.	1028
(Nematoda: Tylenchida). Proceedings of the Helminthological Society of Washington 30,	1029
165-168.	1030
Filipjev IN (1934) Harmful and Useful Nematodes in Rural Economy. Moscow & Leningrad,	1031
440 pp.	1032
Filipjev IN (1936) On the classification of the Tylenchinae. Proceedings of the	1033
Helminthological Society of Washington 3, 80-82.	1034
Fortuner R and Luc M (1987) A reappraisal of Tylenchina (Nemata). 6. The family	1035
Belonolaimidae Whitehead, 1960. Revue de Nématologie 10, 183-202.	1036
Fotedar DN and Mahajan R (1971) On a new species of the genus Tylenchorhynchus Cobb,	1037
1913 (Nematoda: Tylenchorhynchidae) from Kashmir, India. Kashmir Science 8, 120-	1038
122.	1039
$Geraert \ E\ (2011)\ The\ Dolichodoridae\ of\ the\ world,\ identification\ of\ the\ family\ Dolichodoridae$	1040
(Nematoda: Tylenchida). Ghent, Belgium, Academia Press, 520 pp.	1041

Gharakhani A, Pourjam E and Pedram M (2019) Occurrence of Neodolichodorus	1042
persiangulfus n. sp. (Nematoda: Dolichodoridae) in mangrove forest of southern Iran,	1043
Forest Pathology DOI: 10.1111/efp.12563.	1044
Ghaderi R, Karegar A, Niknam G and Subbotin SA (2014) Phylogenetic relationships of	1045
Telotylenchidae Siddiqi, 1960 and Merliniidae Siddiqi, 1971 (Nematoda: Tylenchida)	1046
from Iran, as inferred from the analysis of the D2D3 expansion fragments of 28S rRNA	1047
gene sequences. Nematology 16, 863-877.	1048
Ghaderi R and Karegar A (2018) Nematodes of the families Merliniidae and	1049
Telotylenchidae. In: Ghaderi, R., Kashi, L. & Karegar, A. (Eds). Plant-parasitic	1050
nematodes in Iran. Marjae-e-elm Publication and Society of Iranian Nematology,	1051
Tehran, Iran, pp. 193-294.	1052
Golden AM (1971) Classification of the genera and higher categories of the order Tylenchida	1053
(Nematoda). In B. M. Zuckerman, W. F. Mai & R. A. Rohde (Eds.), Plant parasitic	1054
nematodes. Volume 1. Morphology, Anatomy, Taxonomy and Ecology (pp. 191-232).	1055
New York: Academic Press.	1056
Golden AM, Baldwin JG and Mundo-Ocampo M (1995) Description of Tylenchorhynchus	1057
thermophilus sp. nov. (Nematoda: Tylenchina) from Saltgrass in Death Valley,	1058
California. Journal of Nematology 27, 312-319.	1059
Golden AM, Maqbool MA and Handoo ZA (1987) Description of two new species of	1060
Tylenchorhynchus Cobb, 1913 (Nematoda: Tylenchida), with details on morphology and	1061
variation of T. claytoni. Journal of Nematology 19, 58-68.	1062
Gomez-Barcina A, Siddiqi MR and Castillo P (1992) The genus Bitylenchus Filipjev, 1934	1063
(Nematoda: Tylenchida) with descriptions of two new species from Spain. Journal of the	1064
Helminthological Society of Washington 59, 96-110.	1065
Gupta NK and Uma (1980) On a new species of the genus Tylenchorhynchus Cobb, 1913	1066
(Family Tylenchorhynchidae (Eliava, 1964) Golden, 1971). Revista Ibérica de	1067
<i>Parasitologia</i> 40 , 423-427.	1068
Gútiérrez Gutiérrez C, Palomares-Rius JE; Cantalapiedra-Navarrete C, Landa Del	1069
Castillo BB, Esmenjaud D and Castillo P (2010) Molecular analysis and comparative	1070
morphology to resolve a complex of cryptic Xiphinema species. Zoologica Scripta 39,	1071
483-498.	1072
Handoo ZA, Palomares-Rius JE, Cantalapiedra-Navarrete C, Liébanas G, Subbotin SA	1073
and Castillo P (2014) Integrative taxonomy of the stunt nematodes of the genera	1074

Bitylenchus and Tylenchorhynchus (Nematoda, Telotylenchidae) with description of two1075new species and a molecular phylogeny. Zoological Journal of the Linnean Society 172,1076231–264.1077

Hashim Z (1984) Description of *Tylenchorhynchus teeni* sp. nov. and observations on 1078
 Rotylenchus cypriensis Antoniou, 1980 (Nematoda: Tylenchida) from Jordan. *Systematic* 1079
 Parasitology 6, 33-38.

- Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov
 O, Bakker J and Helder J (2006) Phylum-wide analysis of SSU rRNA reveals deep
 phylogenetic relationships among nematodes and accelerated evolution toward crown
 clades. *Molecular Biology and Evolution* 23, 1792-1800.
- Hopper BE (1959) Three new species of the genus *Tylenchorhynchus* (Nematoda: Tylenchida. 1085
 Nematologica 4, 23-30. 1086
- Hosseinvand M, Eskandari A and Ghaderi R (2019a) Additional data on *Pratylenchoides* 1087 *riparius* (Andrássy, 1985) Luc, 1986 (Nematoda: Merliniidae) from Iran. *Nematology* 1088
 21, 827-836. 1089
- Hosseinvand M, Eskandari A and Ghaderi R (2019b) Morphological and Molecular 1090
 Characterization of *Coslenchus paramaritus* sp. nov. and *C. cancellatus* (Cobb, 1925) 1091
 Siddiqi, 1978 (Nematoda: Tylenchidae) from Iran. *Journal of Nematology* 51, e2019-59. 1092
- Hosseinvand M, Eskandari A and Ghaderi R (2020) Morphological and molecular 1093 characterisation of *Telotylenchus tamariscus* n. sp. (*Nematoda*: Telotylenchinae) 1094 recovered from Khuzestan, south-western Iran. *Nematology* DOI: 10.1163/15685411- 1095 bja10016.
- Huelsenbeck JP and Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. 1097 Bioinformatics 17, 754-755. 1098
- Ivanova TS (1983) New species of nematodes from the family Tylenchorhynchidae (Eliava, 1099 1964) Golden, 1971 from the southern Pamir-Alai. *Izvestiya Akademii Nauk Tadzhikskoi* 1100 *SSR, Biologicheskie Nauki* 1, 40-45.
- Ivanova TS (1989) Phytoparasitic nematodes of the Tylenchina suborder of the Eastern1102Pamirs. Doklady Akademii Nauk Tadzhikskoi SSR 32, 785-788.1103
- Jairajpuri MS (1982) Some studies on Tylenchorhynchinae: The subgenus Bitylenchus 1104
 Filipjev, 1934, with description of Tylenchorhynchus (Bitylenchus) depressus sp. nov. 1105
 and a key to species of Bitylenchus. Mededelingen van de Fakulteit 1106
 Landbouwwetenschappen Rijksuniversiteit Gent 47, 765-770. 1107

Karapetjan JA (1979) Four new species of nematodes (Nematoda: Tylenchorhynchidae) from	1108
greenhouses in Armenia. Doklady Akademii Nauk Armyanskoi SSR 68, 124-128.	1109
Kaul V and Waliullah MIS (1995) Tylenchorhynchus oryzae sp. n. (Tylenchorhynchidae:	1110
Nematoda) from Kashmir, India. Annals of Plant Protection Science 3, 155-157.	1111
Khakimov NK (1973) Nematodes of the soil in cotton fields of Golodnaya steppe of	1112
Uzbekistan. (Tylenchorhynchus bicaudatusi). Voprosy Fitogel'mintologii v Uzbekistane.	1113
Book 3, Izdatel'stvo "FAN", Tashkent, USSR, pp. 161-214.	1114
Khan A (2004) Tylenchorhynchus handooi n.sp. (Nematoda: Tylenchida) from Khuzdar,	1115
Balochistan. Proceedings of Parasitology 38, 57-61.	1116
Khan E and Darekar KS (1979) Soil and plant-parasitic nematodes from Maharashtra, India.	1117
IV. Two new species of Telotylenchus Siddiqi, 1960 (Tylenchida: Nematoda). Indian	1118
Journal of Nematology 8, 13-18.	1119
Khan E and Nanjappa CK (1974) Tylenchorhynchus nordiensis nomen novum for T.	1120
aerolatus Khan & Nanjappa, 1971. Indian Journal of Nematology 2, 216.	1121
Khan FA (1971) Merlinius bijnorensis sp. nov. and Tylenchorhynchus hordei sp. nov.	1122
(Nematoda: Tylenchida) from North India. Proceedings of the 59th Session of the Indian	1123
Science Congress Association, Calcutta, 1972, Part III, pp. 594-595.	1124
Khan FA (1990) Two new species of the genus Tylenchorhynchus Cobb, 1913 (Nematoda:	1125
Tylenchorhynchinae) from India. Pakistan Journal of Nematology 8, 73-78.	1126
Khan FA (1991) Tylenchorhynchus paracanalis sp. nov. (Nematoda: Tylenchida) from	1127
Nigerian Savanna. Pakistan Journal of Nematology 9, 87-90.	1128
Khan HA, Saeed H and Akhter M (2004) A new species of Tylenchorhynchus with	1129
comments on Geocenamus rugosus (Thome and Malek, 1968) Brzeski, 1991 from Sindh.	1130
Pakistan Journal of Scientific and Industrial Research 47, 446-450.	1131
Khurma U and Mahajan R (1988) Two new species of Tylenchorhynchus Cobb, 1913 from	1132
Punjab, India. Indian Journal of Nematology 17, 202-207.	1133
Kleynhans KPN (1984) Tylenchorhynchus natalensis sp. nov. from South Africa (Nematoda:	1134
Tylenchorhynchinae). Phytophylactica 16, 71-72.	1135
Knobloch NA and Laughlin CW (1973) A collection of plant parasitic nematodes	1136
(Nematoda) from Mexico with descriptions of three new species. Nematologica 19, 205-	1137
217.	1138

Knobloch NA (1975) Tylenchorhynchus aspericutis sp. nov. (Nematoda) from Mexico with	1139
an emended description of Psilenchus hilarulus de Man, 1921 and two intersexes.	1140
Nematologica 21 , 287-295.	1141
Kumar AC (1981) Studies on nematodes in coffee soils of South India. 5. Descriptions of	1142
three new species of Tylenchorhynchus and occurrence of four other Tylenchid species.	1143
Journal of Coffee Research 11, 89-99.	1144
Kumar P (1982) On new species of Tylenchorhynchus and Helicotylenchus from cauliflower	1145
(Brassica oleracea var. botrytis) at Lucknow. Kanpur University Research Journal 1,	1146
185-192.	1147
Kumar S, Stecher G and Tamura K (2016) MEGA7: Molecular Evolutionary Genetics	1148
Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870-	1149
1874.	1150
Lin M (1992) A new species of Tylenchorhynchus (Nematoda: Tylenchorhynchinae). Journal	1151
of Nanjing Agricultural University 15, 41-44.	1152
Litvinova NF (1946) Four new species of Tylenchorhynchus (Nematoda) from Kazakhstan.	1153
Proceedings of the Zoological society of London 116, 120-128.	1154
Loof PAA (1960) Miscellaneous notes on the genus Tylenchorhynchus (Tylenchinae:	1155
Nematoda). Nematologica 4, 294-306.	1156
Loof PAA (1964) Free-living and plant parasitic Nematodes from Venezuela. Nematologica	1157
10 , 201-300.	1158
Luqman M and Khan SH (1986) Three new nematode species attacking fruit trees in India.	1159
Indian Journal of Nematology 15, 202-208.	1160
Mahajan R and Nombela G (1987) Tylenchorhynchus ibericus sp. n. (Nematoda:	1161
Tylenchorhynchinae) from Spain. Phytophylactica 19, 47-48.	1162
Mahajan R (1974) Tylenchorhynchus kashmirensis sp. n. and Quinisulcius himalayae sp. n.	1163
(Nematoda: Tylenchorhynchinae) from India. Proceedings of the Helminthological	1164
Society of Washington 41, 13-16.	1165
Mathur VK, Sanwal KC and Lal A (1979) Tylenchorhynchus neoclavicaudatus sp. nov. in	1166
soil washings from imported potato tubers. Indian Journal of Nematology 8, 148-150.	1167
Mavlyanov OM (1978) Two new species of Nematodes of the family Dolichodoridae	1168
(Nematoda: Tylenchida) from the root soil of cotton. Parazitologiya 12, 138-142.	1169
Minagawa N (1995) Bitylenchus iphilus sp. n. and Tylenchorhynchus kagasawai sp. n.	1170
(Nematoda: Tylenchida) from Japan. Afro-Asian Journal of Nematology 5, 151-160.	1171

Monteiro AR and Lordello LGE (1976) Tylenchorhynchus queirozi sp. nov. (Nemata,	1172
Tylenchorhynchidae) de solo do Brasil. Revista Brasileira de Biologia 36, 697-699.	1173
Nasira K and Maqbool MA (1996) Description of Tylenchorhynchus gossypii sp. nov.	1174
(Nematoda: Dolichodoridae) with observations on T. elegans Siddiqi, 1961 from	1175
Pakistan. Pakistan Journal of Nematology 14, 33-40.	1176
Nobbs JM (1990) Four new species of plant parasitic nematodes (Nematoda: Tylenchida) from	1177
the arid region of South Australia. Nematologica 35, 399-412	1178
Paetzold D (1958) Beitrage zur Nematodenfauna mitteldeutscher Salzstellen im Raum von	1179
Halle. Wissenschaftliches Zeitschrift Universitiit Hall, Mathematisch-	1180
naturwissenschaftliche Reihe 8, 17-48.	1181
Palomares-Rius JE, Cantalapiedra-Navarrete C and Castillo P (2014) Cryptic species in	1182
plant-parasitic nematodes. Nematology 16, 1105-1118.	1183
Pathak M and Siddiqui AU (1997) One new and five known species of Tylenchorhynchus	1184
Cobb, 1913 from ornamental crops in Udaipur region of Rajasthan. Indian Journal of	1185
Nematology 27, 99-103.	1186
Rambaut A (2014) Figtree, a graphical viewer of phylogenetic trees [Internet]. Available	1187
from: http://tree.bio.ed.ac.uk/software/figtree.	1188
Ramzan M, Handoo ZA and Fayyaz S (2008) Description of Tylenchorhynchus qasimii sp.	1189
n. with a new report of T. kegasawai Minagawa, 1995 from Pakistan. Journal of	1190
Nematology 40 , 20-25.	1191
Rashid F and Heyns J (1990) Tylenchorhynchus species from Namibia (Nematoda:	1192
Belonolaimidae). Phytophylactica 22, 403-412.	1193
Ray S and Das SN (1983) Three new and five nominal species in the family	1194
Tylenchorhynchidae (Tylenchoidea: Nematoda) from Orissa, India. Indian Journal of	1195
<i>Nematology</i> 13 , 16-25.	1196
Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L,	1197
Suchard MA and Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian	1198
phylogenetic inference and model choice across a large model space. Systematic Biology	1199
61, 539–542.	1200
Saha M, Gaur HS and Lal M (1998) A new species of the stunt nematode, Tylenchorhynchus	1201
iarius sp.nov. (Tylenchorhynchidae: Tylenchida) from rice field at New Delhi. Annals of	1202
plant Protection Science 6, 63-65.	1203

Saha M, Singh M, Lal M and Kaushal KK (2002) Two new tylenchid nematode species	1204
associated with wheat and rice cropping system in North India. (Tylenchorhynchus	1205
karnalensis). Annals of plant Protection Science 10, 355-359.	1206
Sara M and Khan E (1982) Duotylenchus bilineatus gen. n., sp. n. and Tylenchorhynchus	1207
badliensis sp. n. (Tylenchida: Nematoda) from Haryana, India. Indian Journal of	1208
Nematology 11 , 205-211.	1209
Sauer MR and Annells CM (1981) Three new Tylenchs (Nematoda) from Australia.	1210
Nematologica 27 , 422-431.	1211
Seinhorst JW (1963) Five new Tylenchorhynchus species from West Africa. Nematologica 9,	1212
173-180.	1213
Sethi CL and Swarup G (1968) Plant parasitic nematodes of northwestern India. I. The genus	1214
Tylenchorhynchus. Nematologica 14, 77-88.	1215
Shaw SP and Khan E (1992) Tylenchorhynchidae Golden, 1971 (Nematoda: Tylenchida) in	1216
India. 1. Amplimerlinius sikkimensis sp. n. from Sikkim with key to Amplimerlinius	1217
species and Tylenchorhynchus shivanandi sp. n. from Nagaland. Bulletin of Entomology	1218
33 , 7-13.	1219
Shaw SP and Khan E (1996) Two new species of Tylenchorhynchidae Golden, 1971	1220
(Nematoda: Tylenchida) from India. Journal of Research Birsa Agricultural University	1221
8 , 1-8.	1222
Sher SA (1974) Sauertylenchus labiodiscus n. gen., n. sp; from Australia (Nematoda:	1223
Tylenchorhynchinae). Journal of Nematology 6, 37-40.	1224
Siddiqi MR (1960) Telotylenchus, a new nematode genus from North India (Tylenchida	1225
Telotylenchinae n. subfam.). Nematologica 5, 73-77.	1226
Siddiqi MR (1961) Studies on Tylenchorhynchus spp. (Nematoda: Tylenchida). Zeitschriftfir	1227
Parasitenkunde 21, 46-64.	1228
Siddiqi MR (1985) Nematodes from Colombian rain forest. 2. Tylenchorhynchus	1229
(Bitylenchus) botrys sp. nov. and T. (B.) colombianus sp. nov. Fitopatologia Colombiana	1230
11, 29-31.	1231
Siddiqi MR (1986) Tylenchida: parasites of plants and insects. Commonwealth Agricultural	1232
Bureaux, Farnham Royal, Slough SL2 3BN, UK, 645 pp.	1233
Siddiqi MR (2000) Tylenchida: parasites of plants and insects. 2nd edition. CABI Publishing,	1234
Wallingford, UK, 833 pp.	1235

Siddiqi MR (2008) Descriptions of five new species of Tylenchorhynchus Cobb (Nematoda:	1236
Tylenchida: Telotylenchinae). International Journal of Nematology 18, 159-168.	1237
Siddiqi MR and Basir MA (1959) On some plant parasitic nematodes occurring in South	1238
India with description of two new species of the genus Tylenchorhynchus Cobb, 1913.	1239
Proceedings 46th Indian Science Congress Part IV (Abstracts), p. 35.	1240
Siddiqi MR, Mukherjee B and Dasgupta MK (1982) Tylenchorhynchus microconus sp.	1241
nov., T. crassicaudatus leviterminalis n. subsp. and T. coffeae Siddiqi & Basir, 1959	1242
(Nematoda: Tylenchida). Systematic Parasitology 4, 257-262.	1243
Siddiqi MR and Patel DJ (1990) Tylenchorhynchus microcephalus sp. n. and Paurodontus	1244
simms Siddiqi, 1961 (Nematoda: Tylenchida) from Gujarat state, India. Current	1245
<i>Nematology</i> 1 , 7-10.	1246
Siddiqi MR and Sharma SB (1994) Scutellonema paralabiatum sp. n., S. propeltatum sp. n.	1247
and Bitylenchus singularis sp. n. found associated with pigeonpea in Kenya. Afro-Asian	1248
Journal of Nematology 4, 35-39.	1249
Siddiqi MR and Siddiqui ZA (1983) Paratrophurus acristylus sp. n. and Tylenchorhynchus	1250
and ilifermitian of (Nametade, Tylershide) from wheat fields in Libra. Dressed in a st	1251
graciliformis sp. n. (Nemaloda: Tylenchida) from wheat fields in Libya. Proceedings of	
the Helminthological Society of Washington 50, 301-304.	1252
 <i>the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species 	1252 1253
 <i>gracilyormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. 	1252 1253 1254
 <i>gracilyormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> 	1252 1253 1254 1255
 gracilyormis sp. h. (Nematoda: Tylenchida) from wheat fields in Libya. Proceedings of the Helminthological Society of Washington 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. Indian Journal of Nematology 40, 216-220. Singh SP (1976) A new species of the genus Deladenus Thorne, 1941 and Tylenchorhynchus Cobb, 1913 from Lucknow, India. Indian Journal of Zootomy 15, 187-192. 	1252 1253 1254 1255 1256
 <i>gracilyormis</i> sp. h. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable 	1252 1253 1254 1255 1256 1257
 <i>gracilyormis</i> sp. h. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of</i> 	1252 1253 1254 1255 1256 1257 1258
 <i>gracultormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. 	1252 1253 1254 1255 1256 1257 1258 1259
 grachtformts sp. h. (Nematoda: Tylehendda) from wheat fields in Libya. Proceedings of the Helminthological Society of Washington 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. Indian Journal of Nematology 40, 216-220. Singh SP (1976) A new species of the genus Deladenus Thorne, 1941 and Tylenchorhynchus Cobb, 1913 from Lucknow, India. Indian Journal of Zootomy 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. Bulletin of Zoological Survey of India 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly 	1252 1253 1254 1255 1256 1257 1258 1259 1260
 <i>gracultormis</i> sp. n. (Nematoda: Tylenchida) from wheat heids in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
 <i>gracultormis</i> sp. n. (Nematoda: Tylenchida) from wheat helds in Eloya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 Singh SP and Jain VK (1983) Two plant parasitic nematodes of the genus <i>Tylenchorhynchus</i> 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
 <i>grachijormis</i> sp. n. (Nematoda: Tytenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 Singh SP and Jain VK (1983) Two plant parasitic nematodes of the genus <i>Tylenchorhynchus</i> Cobb, 1913 (Nematoda: Tylenchida) from Lucknow. <i>Journal of the Zoological Society</i> 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
 <i>graculyormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Eloya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 Singh SP and Jain VK (1983) Two plant parasitic nematodes of the genus <i>Tylenchorhynchus</i> Cobb, 1913 (Nematoda: Tylenchida) from Lucknow. <i>Journal of the Zoological Society of India</i> 34, 62-68. 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
 <i>gractitjormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 Singh SP and Jain VK (1983) Two plant parasitic nematodes of the genus <i>Tylenchorhynchus Cobb</i>, 1913 (Nematoda: Tylenchida) from Lucknow. <i>Journal of the Zoological Society of India</i> 34, 62-68. Steiner G (1937) Opuscula miscellanea Nematologica V. <i>Tylenchorhynchus claytoni</i> sp. nov. 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
 <i>graculyormis</i> sp. n. (Nematoda: Tylenchida) from wheat fields in Libya. <i>Proceedings of the Helminthological Society of Washington</i> 50, 301-304. Singh M, Lal M, Rathour KS and Ganguly S (2010) Two New Tylenchid Nematode Species from India. <i>Indian Journal of Nematology</i> 40, 216-220. Singh SP (1976) A new species of the genus <i>Deladenus</i> Thorne, 1941 and <i>Tylenchorhynchus</i> Cobb, 1913 from Lucknow, India. <i>Indian Journal of Zootomy</i> 15, 187-192. Singh RV and Khera S (1978) Plant parasitic nematodes from the rhizosphere of vegetable crops around Calcutta. 2. Family Tylenchorhynchidae. <i>Bulletin of Zoological Survey of India</i> 1, 25-28. Singh SD (1971) Studies on the morphology and systematic of plant and soil nematodes mainly from Andra Pradesh. I. Tylenchoidea. <i>Journal of Helminthology</i> 45, 353-369 Singh SP and Jain VK (1983) Two plant parasitic nematodes of the genus <i>Tylenchorhynchus</i> Cobb, 1913 (Nematoda: Tylenchida) from Lucknow. <i>Journal of the Zoological Society of India</i> 34, 62-68. Steiner G (1937) Opuscula miscellanea Nematologica V. <i>Tylenchorhynchus claytoni</i> sp. nov. an apparently rare nemic parasite of the tobacco plant. <i>Proceedings of the</i> 	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

Sturhan D (1966) Uber Verbreitung, PathogeniUitund Taxonomie der Nematodengattung	1268
Tylenchorhynchus. Mitteilungen der Biologischen Anstalt fir Land-u Forstwirtschaft	1269
118 , 82-99.	1270
Sturhan D (2014) Plant-parasitic nematodes in Germany - an annotated checklist. Soil	1271
Organisms 86 , 177–198.	1272
Subbotin S, Waeyenberge AL and Moens M (2000) Identification of cyst forming nematodes	1273
of the genus Heterodera (Nematoda: Heteroderidae) based on the ribosomal DNA-	1274
RFLPs. Nematology 2, 153-164.	1275
Sultan MS, Singh I and Sakhuja PK (1991) Plant parasitic nematodes of Punjab, India III.	1276
Tylenchorhynchinae Eliava, 1964 with proposal of Macrorhynchus n. gen. and	1277
Tylenchorhynchus persicus sp. nov. Indian Journal of Nematology 19, 215-222.	1278
Talavera M and Siddiqi MR (1995) Bitylenchus mediocris sp. nov. from Malawi and B.	1279
equatorialis sp. nov. from Ecuador (Nematoda: Telotylenchinae). Afro-Asian Journal of	1280
Nematology 5 , 181-185	1281
Talavera M, Watanabe T and Mizukubo T (2002) Description of Tylenchorhynchus	1282
shimizui sp. nov. from Paraguay and notes on T. leviterminalis Siddiqi, Mukhetjee &	1283
Dasgupta from Japan (Nematoda: Tylenchida: Telotylenchidae). Systematic	1284
Parasitology 51 , 171-177.	1285
Thorne G and Malek RB (1968) Nematodes of the Northern Great Plains. Part I. Tylenchida	1286
(Nemata: Secernentea). South Dakota State University Agricultural Experiment Station	1287
Technical Bulletin 31 , 1-111.	1288
Tobar Jimenéz A (1969) Descripción del Tylenchorhynchus ventrosignatus sp. nov.	1289
(Nematoda: Tylenchida). Revista Ibérica de Parasitologia 29, 399-403.	1290
Tobar Jimenéz A (1970) Descripción de dos nuevas especies del género Tylenchorhynchus	1291
Cobb, 1913 (Nematoda: Tylenchidae), con algunos datos adicionales sobre el T. sulcatus	1292
de Guiran, 1967. Revista Ibérica de Parasitologia 30, 215-228.	1293
Upadhyay KD, Swarup G and Sethi CL (1972) Tylenchorhynchus vulgaris sp. n. associated	1294
with maize roots in India, with notes on its embryology and life history. Indian Journal	1295
of Nematology 2 , 129-138.	1296
Whitehead AG and Hemming JR (1965) A comparison of some quantitative methods	1297
extracting small vermiform nematodes from the soil. Annals of Applied Biology 55, 25-	1298
38.	1299

Williams JR (1960) Studies on the nematode soil fauna of sugar cane fields in Mauritius. 4.	1300
Tylenchoidea (Partim). Occas. Paper. Mauritius Sugar Industry Research Institute 4, 1-	1301
30.	1302

Wouts WM and Sher SA (1981) Two new *Tylenchorhynchus* species (Nematoda: 1303 Tylenchorhynchidae) from the sub-antarctic region. *Nematologica* 27, 253-257. 1304

- Wu LY (1969) Three new species of the genus *Tylenchorhynchus* Cobb, 1913 (Tylenchida: 1305 Nematoda) from Canada. *Canadian Journal of Zoology* 47, 563-567.
 1306
- Zamora Araya T, Peraza Padilla W, Archidona Yuste A, Cantalapiedra Navarrete C, 1307
 Liébanas G, Palomares-Rius JEP and Castillo P (2016) Root-lesion nematodes of the 1308
 genus *Pratylenchus* (Nematoda: Pratylenchidae) from Costa Rica with molecular 1309
 identification of *P. gutierrezi* and *P. panamaensis* topotypes. *European Journal of Plant* 1310 *Pathology* 145, 973-998. 1311
- Zarina B and Maqbool MA (1994) Description of *Tylenchorhynchus tuberosus* sp. nov. and 1312 observations on *Dolichorhynchus phaseoli* (Nematoda: Dolichodoridae) from 1313 ornamental plants of Karachi, Pakistan. *Pakistan Journal of Nematology* 12, 51-57. 1314
- Zarina B, Siddiqi MR and Shahina F (2004) Bitylenchus microcephalus sp. n. and B. 1315 maximus pakistanensis subsp. n. (Nematoda: Telotylenchidae). International Journal of 1316 Nematology 14, 85-90. 1317
 - 1318
 - 1319

Figure legends	1320
Fig. 1. Bitylenchus parvulus n. sp. Female (A, C, E, F, H-K) and male (B, D, G, L). A, B: Entire	1321
body; C: Anterior end; D, E: Anterior end and pharyngeal region; F: reproductive system; G:	1322
Spicules and Gubernaculum; H-L: Posterior end.	1323
Fig. 2. Bitylenchus parvulus n. sp. Female (A, B, D, E, F, I-K) and male (C, G-H). A: Anterior	1324
body and pharyngeal region; B-C: Entire body; D: Anterior end; E: Lateral field; F: Pharyngeal	1325
basal bulb; G-H, K: Posterior end; I-J: Vulva region. (Scale-bars: B, $C = 100 \ \mu m$, A, D-K = 10	1326
μm).	1327
Fig. 3. Bitylenchus parvulus n. sp. Female (A-N). A-E: Anterior end; F-H: Vulva region; I-N:	1328
Posterior end. (Scale-bars: $A-N = 10 \ \mu m$).	1329
Fig. 4. Sauertylenchus maximus. Female (A-I). A: Entire body; B-C: Anterior end; D:	1330
Reproductive system; E: Anterior end and pharyngeal region; F-H: Posterior end; I: Lateral	1331
field.	1332
Fig. 5. Sauertylenchus maximus. Female (A-L) and male (B-C). A: Anterior body and	1333
pharyngeal region; B-C: Anterior end; D: Entire body; E: Vulva region; F: Lateral field; G-L:	1334
Posterior end. (Scale-bars: $A-G = 10 \ \mu m$).	1335
Fig. 6. Bitylenchus parvus. Female (A, D-G) and male (B-C). A-B: Anterior end; C-G:	1336
Posterior end. (Scale-bars: $A-G = 10 \ \mu m$).	1337
Fig. 7. Tylenchorhynchus agri. Female (A-F). A: Entire body; B: Anterior end and pharyngeal	1338
region; C: Anterior end; D-E: Posterior end; F: Reproductive system.	1339
Fig. 8. Tylenchorhynchus agri. Female (A-G). A: Entire body; B: Anterior end and pharyngeal	1340
region; C: Anterior end; D: Pharyngeal basal bulb; E-G: Posterior end. (Scale-bars: A = 100	1341
μ m, B-G = 10 μ m).	1342
Fig. 9. Tylenchorhynchus graciliformis. Female (A, C-E, F-H) and male (B, D, I-J). A-B: Entire	1343
body; C-D: Anterior end and pharyngeal region; E: Reproductive system; F-I: Posterior end; J:	1344
Spicules and gubernaculum.	1345
Fig. 10. Tylenchorhynchus graciliformis. Female (A, D, E-J) and male (B-C, H). A-B: Entire	1346
body; C-D: Anterior end; E: Vulva region; F-H: Posterior end. (Scale-bars: $A-B = 100 \ \mu m$, C-	1347
$H = 10 \ \mu m$).	1348
Fig. 11. Phylogenetic relationships among Bitylenchus, Sauertylenchus and Tylenchorhynchus	1349
species with representatives of other Telotylenchinae genera. Bayesian 50 % majority rule	1350
consensus tree as inferred from D2-D3 expansion segments of 28S rRNA sequence alignment	1351
under the general time-reversible model of sequence evolution with correction for invariable	1352

sites and a gamma-shaped distribution (GTR + I + G). Newly obtained sequences in this study1353are shown in bold. (Scale bar = expected changes per site).1354

Fig. 12. Phylogenetic relationships among *Bitylenchus*, *Sauertylenchus* and *Tylenchorhynchus*1355species with representatives of other Telotylenchinae genera. Bayesian 50 % majority rule1356consensus tree as inferred from the partial 18S rRNA gene sequence alignment under the1357general time-reversible model of sequence evolution with correction for invariable sites and a1358gamma-shaped distribution (GTR + I + G). Newly obtained sequences in this study are shown1359in bold. (Scale bar = expected changes per site).1360

	Holotype	Paratypes					
		Females		Males			
n	-	18	CV	7	CV		
L	816	$697 \pm 77.6 \ (542\text{-}834)$	11.1	$633 \pm 32.9 \ (582\text{-}672)$	5.2		
H-V	448	$390\pm 40.0\;(323\text{-}455)$	10.2	-	-		
H-a	761	$649 \pm 73.9 \ (498\text{-}775)$	11.3	$593 \pm 29.6 \; (545\text{-}627)$	4.9		
Stylet	18.5	$17.7\pm0.4\;(17.0\text{-}18.5)$	2.7	$16.7 \pm 0.5 \ (16-18)$	3.3		
m	52.0	51.4 ± 1.7 (49-56)	3.4	53 ± 1.1 (52-55)	2.1		
b	5.3	$5.0 \pm 0.5 \; (4.2 \text{-} 5.8)$	9.9	$4.7\pm 0.1\;(4.4\text{-}4.9)$	3.1		
a	32.5	$30.7 \pm 3.0 \ (26\text{-}38)$	9.9	34 ± 1.8 (32-38)	5.4		
с	14.8	$14.6 \pm 1.0 \; (12\text{-}17)$	6.8	$15.7 \pm 1.5 \ (13.1 \text{-} 17.7)$	9.7		
c'	2.9	$2.8\pm 0.2\;(2.3\text{-}3.3)$	8.8	$2.2 \pm 0.2 \ (1.9 - 2.5)$	9.0		
V	54.9	$56.0 \pm 1.3 \; (54.5\text{-}60.0)$	2.4	-			
Median bulb	76.0	$66.9 \pm 5.3 \; (58\text{-}77)$	7.9	$63.2 \pm 2.8 \ (60-69)$	4.4		
MB	49.7	$48.8 \pm 2.5 \; (45\text{-}57)$	5.1	$48.3 \pm 2.0 \; (46\text{-}51)$	4.2		
Excretory pore	121	107 ± 8.7 (93-126)	8.2	$102 \pm 3.0 \ (97-107)$	3.0		
Pharynx	153	137 ± 9.3 (123-155)	6.8	$131 \pm 5.9 \ (123 - 140)$	4.5		
Body width	25.0	$22.6 \pm 1.5 \ (20-25)$	6.9	$18.5\pm0.6\ (17.7\text{-}19.5)$	3.5		
Lateral field	7.8	6.6 ± 1.0 (5-8)	16.4	$5.4 \pm 0.8 \; (4.5 \text{-} 7.0)$	15.8		
Vulva body width	25.0	23.1 ± 1.8 (19-26)	7.9	-			
Anal body width	19.0	16.5 ± 2.1 (13-20)	12.8	$17.6 \pm 0.9 \ (16.5 19.5)$	5.5		
Tail length	55.0	$47.5 \pm 4.5 \; (42\text{-}59)$	9.5	$40.5\pm5.4\ (34.8\text{-}50.0)$	13.4		
Phasmid	22.0	19.8 ± 3.3 (13.5-26)	16.9	17.9 ± 3.6 (13-23)	20.3		
Tail annuli	48.0	46 ± 2.9 (42-52)	6.3	-	-		
Spicules	-	-	-	$23.2 \pm 1.4 \ (21.5 - 25.0)$	6.2		
Gubernaculum	-	-	-	$10.2 \pm 1.1 \ (9-12)$	10.8		
Bursa length	-	-	-	58 ± 7.1 (52-73)	12.3		

Table 1. Morphometric characters of *Bitylenchus parvulus* n. sp. recovered from Iran. All1362measurements are in μ m, and in the form: mean \pm s.d. (range) and coefficient of variation.1363

	Present study		Geraert, 2011	Ghaderi et al., 2014	
-	Females	Males	Female/Male	Female/Male	
n	7	5	?	26	
L	758 ± 60.3 (644-834)	622 ± 32.8 (582-672)	650-910	745 (630-863)	
H-V	$419\pm 31.2\;(358\text{-}455)$	-	-	-	
H-a	$707 \pm 55.7 \ (600-775)$	$583 \pm 29.2 \; (545\text{-}626)$	-	-	
Stylet	$18.2\pm0.2\;(18.018.7)$	$16.6 \pm 0.4 \ (16-17)$	16.5-19.5	17.6 (16.5-19)	
b	5.2 ± 0.3 (4.7-5.8)	$4.7\pm 0.1\;(4.4\text{-}4.9)$		6.0 (5.1-7.3)	
a	32.6 ± 3.7 (26-38)	34 ± 2.1 (32-38)	25-31	31.3 (28-34.9)	
c	$14.9 \pm 0.6 \; (14\text{-}16)$	$16 \pm 1.1 \ (14.6-17.7)$	12-17	14.6 (12-17)	
c'	$2.9\pm 0.1\;(2.5\text{-}3.0)$	$2.2\pm 0.2\;(1.9\text{-}2.5)$	2.3-3.3	2.9 (2.4-3.4)	
V	$55.3\pm0.8\;(54.5\text{-}57.0)$	-	50-57	53 (50-56)	
Median bulb	$72 \pm 2.6 \ (68-77)$	62.1 ± 1.6 (60-64)	-	-	
MB	$50.4 \pm 3.2 \ (46-57)$	$47.4 \pm 1.6 \; (46\text{-}49)$	-	-	
Excretory pore	115 ± 7.8 (101-126)	$101 \pm 2.7 \ (97-103)$	-	-	
Pharynx	144 ± 6.4 (135-155)	131 ± 5.1 (128-140)	125-148	-	
Body width	$23 \pm 1.8 \ (20-25)$	$18.5 \pm 0.5 \ (18-19)$	23-33	-	
Lateral field	$7.7\pm0.2\;(7.5\text{-}8.0)$	$5.0\pm0.3\;(4.5\text{-}5.5)$	-	-	
Anal body width	$17.5 \pm 1.9 \ (15\text{-}20)$	$17 \pm 0.6 (16-18)$	-	-	
Tail length	$51 \pm 5.0 \; (44\text{-}59)$	$39 \pm 4.2 \ (35-46)$	43-63	33-48	
Phasmid	21.8 ± 2.3 (19-26)	$17 \pm 3.4 (13-21)$	-	-	
Tail annuli	$48 \pm 2.5 \ (45-52)$	-	42-58	45-50	
Spicules	-	$23.5\pm 0.8\;(23\text{-}25)$	28-31	23.9 (22-26)	
Gubernaculum	-	$9.5\pm0.6\;(9.010.5)$	13-13.5	-	
D 1 4					

Table 2. Morphometric characters of *Bitylenchus parvus* recovered from Iran. All measurements are in1366 μ m, and in the form: mean \pm s.d. (range).1367

Table 3. Morphometric characters of Sauertylenchus ibericus recovered from Iran and its comparison1370with original description, as well as with populations of S. maximus. All measurements are in μ m, and1371in the form: mean \pm s.d. (range) and coefficient of variation.1372

	S. ibericus		S. maximus			
	Present study		Mahajan & Nombela,	Geraert 2011	Panahandeh &	
	Tresent study		1987	Genuent, 2011	Pourjam, 2014	
	Females		Females	Females	Females	
n	13	CV	10	?	10	
L	1108 ± 55.5 (1012-1191)	5.	1130 (990-1270)	940-1620	1329 (1120-1348)	
H-V	582 ± 34.8 (496-620)	5.9	-	-	-	
H-a	$1056 \pm 53.2 \ (966\text{-}1137)$	5.	-	-	-	
Stylet	$21.8 \pm 0.8 \ (20-23)$	3.6	24.1 (21-26)	20-24.5	-	
а	42 ± 2.1 (39-46)	5.1	43 (40-48)	28-58	41.6 (36.2-46.5)	
b	$6.1\pm 0.3\;(5.5\text{-}6.6)$	5.2	6.4 (5.6-7.1)	-	6.7 (6.0-7.3)	
c	21.3 ± 1.3 (19.0-23.1)	6.2	21.8 (18.4-25.1)	16-26	20.4 (18.7-23.5)	
c'	$2.7 \pm 0.1 \ (2.5 - 3.0)$	5.6	2.7 (2.3-3.3)	1.9-4.1	2.9 (2.3-4.0)	
V	52.5 ± 2.3 (46-58)	4.5	53.1 (51-56)	47-58	52 (50-54)	
Median bulb	96± 3.3 (90-100)	3.5	-	-	-	
MB	53.5 ± 1.6 (51-57)	2.9	57.6 (53-61)	51-58	-	
Excretory pore	137.1 ± 5.1 (130-148)	3.7	143 (111-176)	-	-	
Pharynx	179 ± 5.1 (170-189)	2.8	-	153-192	-	
Body width	$26.5 \pm 1.5 \ (24-29)$	5.7	-	23-32	-	
Lateral field	$8.0 \pm 0.8 \ (6.8-10.0)$	10.7	-	8-11	-	
Vulva body width	25.7 ± 1.5 (24-28)	6.	-	-	-	
Anal body width	18.8 ± 1.3 (17-21)	7.1	-	-	-	
Tail length	52 ± 4.0 (46-59)	7.7	-	42-83	-	
Phasmid	22.5 ± 3.3 (19-28)	14.7	-	19-30	-	
Tail annuli	32±1.8 (28-35)	5.9	32-36	25-52	39-47	
					1070	

T. gracilif			iliformis	formis		
	females	CV	males	CV	females	CV
n	16		7		8	
L	722 ± 33.5 (678-779)	4.6	703 ± 17.4 (682-729)	2.4	659 ± 31.3 (615-709)	4.7
H-V	$405\pm24.2\;(374\text{-}471)$	5.9	-		$358 \pm 14.0 \; (338\text{-}381)$	3.9
H-a	680 ± 31.0 (636-728)	4.5	$660 \pm 17.9 \ (636\text{-}686)$	2.7	$608 \pm 29.1 \; (567\text{-}654)$	4.7
Stylet	16.8 ± 0.8 (15.5-18.5)	4.9	$16.9 \pm 0.3 \; (16.5 17.5 \;)$	2.3	$17.6 \pm 0.4 \ (17-18)$	2.6
m	$52 \pm 1.2 \ (50\text{-}54)$	2.4	$51.6 \pm 0.9 \ (50\text{-}53)$	1.7	$50.0\pm0.2\;(50.0\text{-}50.5)$	0.5
a	$37 \pm 2.9 \; (32\text{-}45)$	8.0	$36 \pm 1.3 (34-39)$	3.7	31 ± 1.6 (29-34)	5.3
b	$5.3 \pm 0.4 \; (4.6 \text{-} 6.1)$	7.7	$5.2\pm 0.1\;(5.0\text{-}5.5)$	2.7	$4.6 \pm 0.2 \; (4.2 \text{-} 4.9)$	4.8
с	17.3 ± 1.1 (15.2-19.1)	6.4	$16.3 \pm 0.7 (14.8 - 17.1)$	4.8	$12.9 \pm 0.2 \ (12.5 \text{-} 13.3)$	2.1
c'	$3.1 \pm 0.3 \ (2.6-3.8)$	11.2	$2.6\pm 0.1\;(2.5\text{-}2.8)$	4.6	$3.6 \pm 0.1 \ (3.4-3.8)$	3.6
V	$56 \pm 2.4 \ (53-64)$	4.2	-		$54 \pm 1.0 \ (53-56)$	1.9
Median bulb	$60 \pm 2.8 \ (56\text{-}65)$	4.7	61 ± 2.7 (57-64)	4.5	63 ± 2.1 (61-67)	3.3
MB	$44 \pm 1.6 \ (41-48)$	3.6	$46 \pm 1.5 \ (44-48)$	3.3	44 ± 1.2 (42-46)	2.7
Excretory pore	$104 \pm 3.9 \ (97\text{-}109)$	3.8	$106 \pm 6.1 \ (102-120)$	5.8	103 ± 3.3 (99-109)	3.2
Pharynx	$136 \pm 6.1 \ (125 - 145)$	4.5	133 ± 3.7 (127-139)	2.8	$143 \pm 5.8 \ (134\text{-}150)$	4.0
Body width	$19.5 \pm 1.4 (16-22)$	7.3	$19 \pm 0.7 \ (18-20)$	3.8	$21 \pm 0.9 \; (19.5\text{-}22.0)$	4.7
Lateral field	$6.0\pm0.9\;(5.0\text{-}7.5)$	14.9	$5.6 \pm 0.7 \; (4.5 \text{-} 7.0)$	12.7	6.4 ± 0.3 (6-7)	5.7
Vulva body width	$20.0 \pm 1.4 \ (17.5 \text{-} 22.5)$	7.3	-		$19.5 \pm 1.2 \; (17.5 21.0)$	6.2
Anal body width	$13.5 \pm 1.4 \ (11-16)$	10.6	$16 \pm 0.4 \ (15 16.5)$	2.8	$14 \pm 0.8 \ (13-15)$	5.9
Tail length	$42 \pm 3.7 (36-51)$	8.8	$43 \pm 1.5 \ (41-46)$	3.7	51 ± 2.4 (48-55)	4.8
Phasmid	13.5 ± 2.5 (9-18)	19.1	$15 \pm 1.6 \ (13.5 \text{-} 18.0)$	10.6	$19 \pm 1.7 (17-22)$	9.1
Tail annuli	$22.5 \pm 2.2 (19-26)$	10.1	-		$26.4 \pm 2.5 \ (23-30)$	9.4
Spicules	-		$19.7 \pm 0.6 \ (19\text{-}21)$	3.5	-	
Gubernaculum	-		$10.3 \pm 0.6 \ (9.5\text{-}11.0)$	6.6	-	
Bursa length	-		$61.4 \pm 4.7 \ (53\text{-}67)$	7.7	-	
Post-rectal sac	-		-		15.3 ± 2.3 (13-20)	15.5
PAS/Tail	-		-		$30.1 \pm 3.3 \ (26.5 36.0)$	11.2

Table 4. Morphometric characters of *Tylenchorhynchus graciliformis* and *T. agri* recovered from Iran.1376All measurements are in μ m, and in the form: mean \pm s.d. (range) and coefficient of variation.1377