
1 
 

Monitoring biochemical limitations to photosynthesis in N and 1 

P-limited radiata pine using plant functional traits quantified 2 

from hyperspectral imagery 3 

 4 

Michael S. Watt1*, Henning Buddenbaum2, Ellen Mae C. Leonardo3, Honey Jane 5 

Estarija3, Horacio E. Bown4, Mireia Gomez-Gallego5, Robin Hartley3, Grant D. 6 

Pearse3, Peter Massam3, Liam Wright3, Pablo J. Zarco-Tejada6,7 
7 

 8 

1Scion, 10 Kyle St, Christchurch 8011, New Zealand 9 

2Environmental Remote Sensing and Geoinformatics, Trier University, 54286 Trier, Germany 10 

3Scion, PO Box 3020, Rotorua, New Zealand  11 

4Faculty of Forestry, Universidad de Chile, Casilla 9206, Santiago, Chile 12 

5Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 13 

7026, 750 07 Uppsala, Sweden 14 

6The University of Melbourne, Melbourne, Victoria 3010, Australia 15 

7Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), 16 

Alameda del Obispo s/n, 14004 Cordoba, Spain. 17 

 18 

*Corresponding author: Tel: +64 7 343 5665; Email: michael.watt@scionresearch.com 19 

 20 

Target Journal: Remote Sensing of Environment 21 

 22 

  23 

mailto:michael.watt@scionresearch.com


2 
 

Abstract 24 

The prediction of carbon uptake by forests across fertility gradients requires accurate 25 

characterisation of how biochemical limitations to photosynthesis respond to variation in key 26 

elements such as Nitrogen (N) and Phosphorus (P). Over the last decade, proxies for chlorophyll 27 

and photosynthetic activity have been extracted from hyperspectral imagery and used to predict 28 

important photosynthetic variables such as the maximal rate of carboxylation (Vcmax) and 29 

electron transport (Jmax). However, little research has investigated the generality of these 30 

relationships within the Nitrogen (N) and Phosphorus (P) limiting phases, which are 31 

characterised by mass based foliage ratios of N/P ≤ 10 for N limitations and N:P > 10 for P 32 

limitations.  33 

Using measurements obtained from one year old Pinus radiata D. Don grown under a 34 

factorial range of N and P treatments this research examined relationships between 35 

photosynthetic capacity (Vcmax, Jmax) and measured N, P and chlorophyll (Chla+b). Using 36 

functional traits quantified from hyperspectral imagery we then examined the strength and 37 

generality of relationships between photosynthetic variables and Photochemical Reflectance 38 

Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) and chlorophyll a+b derived by 39 

radiative transfer model inversion. 40 

 There were significant (P<0.001) and strong relationships between photosynthetic 41 

variables and both N (R2 = 0.82 for Vcmax; R2 = 0.87 for Jmax) and Chla+b (R2 = 0.85 for Vcmax; R2 = 42 

0.86 for Jmax) within the N limiting phase that were weak (R2 < 0.02) and insignificant within 43 

the P limiting phase. Similarly, there were significant (P<0.05) positive relationships between P 44 

and photosynthetic variables (R2 = 0.50 for Vcmax; R2 = 0.58 for Jmax) within the P limiting phase 45 

that were insignificant and weak (R2 < 0.33) within the N limiting phase.  46 

 Predictions of photosynthetic variables using Chla+b estimated by model inversion were 47 

significant (P<0.001), positive and strong (R2 = 0.64 for Vcmax; R2 = 0.63 for Jmax) within the N 48 

limiting phase but insignificant and weak (R2 < 0.05) within the P limiting phase. In contrast, 49 
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both SIF and PRI exhibited moderate to strong positive correlations with photosynthetic 50 

variables within both the N and P limiting phases. These results suggest that quantified SIF and 51 

PRI from hyperspectral images may have greater generality in predicting biochemical 52 

limitations to photosynthesis than proxies for N and chlorophyll a+b, particularly under high 53 

foliage N content, when P is limiting.  54 

 55 

Keywords: high resolution hyperspectral; Jmax, leaf maximum carboxylation rate; N:P ratio; 56 

nutrient limitation; physically based models; radiative transfer; reflectance; Vcmax 57 

 58 

  59 
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1.Introduction 60 

 61 

The use of optical data to predict biochemical, structural and physiological traits from leaves 62 

and plant canopies has increased rapidly over the last two decades (for reviews see Hill et al. 63 

2019; Watt et al. 2019). Key attributes of interest that have been successfully estimated include 64 

water content (Buddenbaum et al. 2011; Buddenbaum et al. 2015; Colombo et al. 2008; Fang et 65 

al. 2017; Malenovský et al. 2006; Riaño et al. 2005), leaf morphological traits such as specific 66 

leaf area (Asner and Martin 2008) and leaf mass per area (Asner et al. 2011b; Doughty et al. 67 

2011), pigments such as chlorophyll (Croft et al. 2014; Curran et al. 2001; Gitelson et al. 1996; 68 

Tsay et al. 1982; Yoder and Pettigrew-Crosby 1995; Zarco-Tejada et al. 2019), carotenoids 69 

(Hernández-Clemente et al. 2012; Hernández-Clemente et al. 2014) and foliar concentrations of 70 

most key nutrients, particularly nitrogen (N) and phosphorus (P) (Asner and Martin 2008; Asner 71 

et al. 2011a; Curran et al. 2001; Dechant et al. 2017; Gillon et al. 1999; Luther and Carroll 72 

1999; Masaitis et al. 2014; Petisco et al. 2005; Schlerf et al. 2010; Serbin et al. 2014; Stein et al. 73 

2014; Tsay et al. 1982; Wang et al. 2018; Wang et al. 2015; Yoder and Pettigrew-Crosby 1995). 74 

However, the remote sensing of attributes associated with photosynthesis has progressed at a far 75 

slower rate.  76 

 The rate of carbon assimilation under ambient conditions (A) is strongly influenced by 77 

light intensity, air temperature, water availability and leaf biochemistry (Farquhar et al. 1980; 78 

Leuning 1995). These factors have been combined into a C3 photosynthesis model that shows 79 

the rate of carbon assimilation to be limited under ambient conditions by the maximal rate of 80 

ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) carboxylation (Vcmax) and 81 

the maximal electron transport rate driving regeneration of RuBP (Jmax). In combination Vcmax 82 

and Jmax define the plants biochemical limitations to photosynthesis and these two variables will 83 

be, hereafter, collectively termed photosynthetic capacity.  84 
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Previous research shows that photosynthetic capacity ranges widely both within and 85 

among species, and is sensitive to variation in environmental conditions (Groenendijk et al. 86 

2011; Xu and Baldocchi 2003). Despite this variation, a fixed value for Vcmax is often assumed 87 

in Terrestrial Biosphere Models which provide the main means of predicting regional and 88 

global estimates of terrestrial carbon (Beer et al. 2010). Many studies have investigated the use 89 

of plant functional traits such as leaf phosphorus (P), specific leaf area (SLA) and leaf nitrogen 90 

(N) to account for variation in photosynthetic capacity (Walker et al. 2014). As N is a primary 91 

component of Rubisco and the light-harvesting complexes that regulate photosynthesis 92 

(Niinemets and Tenhunen 1997), studies have often successfully used N to predict 93 

photosynthetic capacity (Dechant et al. 2017), although seasonal variation in partitioning of N 94 

to photosynthetic fractions can complicate predictions (Croft et al. 2017). Chlorophyll content 95 

has also been found to be a useful predictor of photosynthetic capacity (Croft et al. 2017) as this 96 

pigment is involved in light harvesting and there is a direct relationship between this pigment 97 

and Jmax (Collatz et al. 1991; Sellers et al. 1992), which in turn is usually strongly and linearly 98 

related to Vcmax, across a large range of species (Medlyn et al. 2002).  99 

Chlorophyll fluorescence has been widely shown to serve as a proxy for electron transport 100 

rate and photosynthetic activity (Genty et al. 1989; Weis and Berry 1987). As chlorophyll 101 

fluorescence is dependent on chlorophyll concentration, which has been found to be closely 102 

aligned to photosynthetic capacity (Croft et al. 2017; Houborg et al. 2013), a strong link has 103 

also been shown between Sun Induced Chlorophyll Fluorescence (SIF) and Vcmax (Rascher et al. 104 

2015). A recent review has outlined the progress in SIF retrievals over the last 50 years 105 

(Mohammed et al. 2019) and research has demonstrated the utility of SIF in predicting 106 

photosynthetic activity at both the leaf and the canopy scales from a range of remote sensing 107 

platforms (Cendrero-Mateo et al. 2015; Zarco-Tejada et al. 2013a; Zarco-Tejada et al. 2016). 108 

 A parallel line of investigation over the last two decades has focussed on the use of 109 

Photochemical Reflectance Index (PRI) to predict photosynthetic activity of vegetation. This 110 
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index, which is determined from narrow band reflectance at 531 and 570 nm (Gamon et al. 111 

1992; Gamon et al. 1997) and in closely related bands in derivative versions (Gamon et al. 112 

1993), has been widely used to predict photosynthetic status across a range of vegetation types. 113 

PRI provides a linkage with the efficiency of photosystem II through characterising variation in 114 

xanthophyll pigments and as such quantifies changes in non-photochemical quenching and light 115 

use efficiency (Gamon et al. 1997). This index has been successfully used to predict 116 

photosynthetic rate (Drolet et al. 2008; Fuentes et al. 2006; Gamon et al. 1997; Guo and Trotter 117 

2004; Hilker et al. 2008; Middleton et al. 2009; Nichol et al. 2000; Penuelas et al. 1995; 118 

Stylinski et al. 2000) and the photosynthetic response of plants subject to a range of stresses 119 

(Dobrowski et al. 2005; Hernández-Clemente et al. 2011; Scholten et al. 2019; Suárez et al. 120 

2008) and is responsive to seasonal changes in pigments (Gitelson et al. 2017). PRI can be 121 

readily used to scale photosynthesis to the canopy level as recently launched satellite based 122 

hyperspectral imagers (e.g. PRISMA, DESIS) and planned missions (e.g. EnMAP) are capable 123 

of measuring this variable. In addition, Sentinel-2 and in particular the Sentinel-3 satellite OLCI 124 

and SLSTR sensors enable the estimation of vegetation pigments using the red edge spectral 125 

region and spectral bands centered at the green region for the assessment of the xanthophyll 126 

pigment dynamics and Vcmax at global scales using the SCOPE model (Prikaziuk and van der 127 

Tol 2019). Although many studies show that PRI is an effective proxy for photosynthesis 128 

(Hernández-Clemente et al. 2019) the index has been shown to be affected by canopy structure, 129 

leaf pigments and background (Suárez et al. 2009; Suárez et al. 2008), which can negatively 130 

impact predictions of photosynthesis (Rascher and Pieruschka 2008).  131 

 In this context, physically based modelling has been widely used as a method for 132 

generalising the spatial prediction of important vegetation traits. As these models are able to 133 

account for the influence of variations in background, canopy architecture and conditions during 134 

the image acquisition on reflectance they can be more generally applied than other approaches 135 

(Hill et al. 2019; Watt et al. 2019). One of the most widely used models is PROSAIL which 136 
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uses PROSPECT (Jacquemoud and Baret 1990) to simulate leaf reflectance and transmittance 137 

which are then fed into SAIL (Verhoef 1984), which predicts canopy reflectance from this input 138 

and soil optical properties and illumination geometry (Berger et al. 2018). When PROSAIL is 139 

run in inverse mode this model can be used to predict chlorophyll content and other biochemical 140 

constituents of foliage from canopy reflectance (Le Maire et al. 2008; Zarco-Tejada et al. 141 

2004b; Zhang et al. 2005). Given the importance of chlorophyll in the photosynthetic process, 142 

predictions of this pigment from PROSAIL have considerable potential for spatially describing 143 

variation in key photosynthetic variables. As described in the review by Jacquemoud et al. 144 

(2009) PROSAIL has been developed for homogeneous and uniform canopies, and requires 145 

more complex approximations to account for forest architecture. For this purpose, radiative 146 

transfer approaches such as DART (Gastellu-Etchegorry et al. 1996), 4-Scale (Chen et al. 1997) 147 

and FLIGHT (North 1996) have been used with success but these require a large number of 148 

inputs. 149 

 Considerable research has demonstrated that N and P independently limit both plant 150 

growth and photosynthetic capacity and that the N/P ratio can be used to partition ranges that 151 

are either limited by N or P (Bown et al. 2007; Domingues et al. 2010; Ingestad 1971, 1979; 152 

Ingestad and Lund 1986). The underlying premise of this approach is that a N/P ratio of 10 153 

(Knecht and Göransonn 2004) marks a threshold and deviations from this lead to nitrogen (N/P 154 

≤ 10) or phosphorus (N/P > 10) deficiencies (Aerts and Chapin 2000; Marschner 1995; Reich 155 

and Schoettle 1988). This assumption of independent limitations clearly influences how models 156 

linking photosynthetic capacity to predictors derived from hyperspectral data are interpreted. 157 

These hyperspectral predictors may have a stronger association with photosynthetic capacity 158 

within either the N or P limiting range or alternatively could be applied using a single equation 159 

across both ranges. Despite this, we are unaware of any research that has examined how 160 

generalisable relationships between key hyperspectral variables and photosynthetic capacity are 161 

within N and P limiting ranges.  162 
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Within the southern hemisphere Pinus radiata D. Don (radiata pine) is the most widely 163 

planted plantation species and is particularly abundant within New Zealand where it constitutes 164 

90% of the 1.7 M ha plantation area (NZFOA 2018). A key limitation of photosynthesis and 165 

growth in P. radiata plantations is nutrient supply (Raison and Myers 1992; Sheriff et al. 1986; 166 

Watt et al. 2005) and previous research has established relationships between Vcmax, Jmax and 167 

foliar concentration of N and P in this species (Bown et al. 2007; Walcroft et al. 1997). 168 

However, we are unaware of any research that has investigated the utility of hyperspectral 169 

imagery for predicting photosynthetic capacity in P. radiata.  170 

In this study, measurements of hyperspectral imagery, foliage nutrition and 171 

photosynthesis were taken from an experiment that included a factorial combination of N and P 172 

treatments applied to P. radiata. Using this data, the overall goal of this research was to better 173 

understand the key determinants of photosynthetic capacity and how hyperspectral imagery can 174 

best be used to predict photosynthetic capacity. Specifically, we examined relationships 175 

between photosynthetic capacity and measured chlorophyll (Chla+b), N and P within both the N 176 

and P limiting ranges. Using plant functional traits derived from hyperspectral data we then 177 

explored the strength and generality of relationships between photosynthetic capacity and PRI, 178 

SIF and chlorophyll a+b derived by radiative transfer model inversion.   179 

 180 

2. Methods  181 

 182 

2.1. Experimental set up  183 

 184 

The experiment was undertaken within the Scion nursery, located in Rotorua, New Zealand. A 185 

total of 120 P. radiata seedlings were transplanted into pots with a 15 L volume during October 186 

2018. The medium into which the plants were transplanted consisted of a mixture of perlite and 187 

vermiculite which are silica-based products without any nutritional content. Plants were grown 188 
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in a thermostatically controlled greenhouse where temperature in spring fluctuated between 10 189 

and 24 °C during the day and between 10 and 16 °C during the night. These plants were watered 190 

weekly over the duration of the trial so that root-zone water content did not limit growth. This 191 

study reports on detailed measurements taken from a subsample of 30 trees, within this trial, that 192 

included six trees from each of the five treatments. 193 

The five fertiliser treatments consisted of a factorial combination of N and P that were 194 

applied as 500 ml of nutrient solution per plant every fortnight starting on the 20th February, 2019. 195 

These five treatments included application of water only (Control), low N–low P (N0P0), low N–196 

high P (N0P1), high N–low P (N1P0) and high N–high P (N1P1). Nutrient solutions consisted of 197 

two levels of nitrogen (N0 = 1.43 and N1 = 7.14 mol m-3) and phosphorus (P0 = 0.084 and P1 = 198 

0.420 mol m-3). Following Ingestad (1979) N was provided at concentrations of 100 ppm (7.14 199 

mM) and P at 13 ppm (0.420 mM) as the high-N and high-P supply regimes. The low-N (1.43 200 

mM) and low-P (0.084 mM) supply regimes were chosen as one-fifth of the high-N and high-P 201 

concentrations, respectively. Nitrogen was supplied as NH4NO3 and phosphorus as KH2PO4 and 202 

nutrients other than N and P were provided in optimum proportions in relation to N, as defined 203 

by Ingestad (Ingestad 1971, 1979). 204 

 205 

2.2. Hyperspectral data capture 206 

 207 

2.2.1 Data capture 208 

 209 

A hyperspectral camera (FX10, Specim, Spectral Imaging Ltd, Oulu, Finland) was used to 210 

acquire hyperspectral imagery outside of the greenhouse, under clear sky conditions, from 10:30 211 

am to 1:30 pm on the 4th October, 2019. This push-broom camera captures 448 bands with 212 

wavelengths ranging from 400 to 1000 nm with a spectral full width at half maximum (FWHM) 213 

of 5.5 nm. The camera is designed for industrial applications and as such has a high maximum 214 
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frame rate of 9900 frames per second with one band, and 330 frames per second using the full 215 

range of bands, as well as a high Signal-to-Noise Ratio (SNR) of 600:1. Within the field of view 216 

of 38° the spatial sampling comprises 1024 pixels. We used the Lumo Recorder software 217 

interface to manage the image acquisition.  218 

 The camera was mounted 2 m above ground on a cross beam that was supported by two 219 

posts, and a conveyor belt was used to move the plants through the field of view. The speed of 220 

the conveyor belt was adapted to fit the frame rate of the camera, which in turn was dependent 221 

on the exposure time, which had to be adjusted to the current illumination conditions. During the 222 

measurements, the conveyor belt speed and frame rate were kept constant and the exposure time 223 

was adjusted to avoid over or undersaturation. A diffuse white reference standard (Spectralon, 224 

North Hutton, NH, USA) was placed so that it was visible in every frame allowing calibration of 225 

the imagery as a function of the changing illumination conditions.  226 

 227 

2.2.2. Pre-processing of hyperspectral data 228 

 229 

All pre-processing of the hyperspectral data was carried out using Matlab (The MathWorks, Inc., 230 

Natick, Massachusetts, United States) following the methods described in Buddenbaum et al. 231 

(2019). Pixels with NDVI ≥ 0.5 and reflectance at 780 nm ≥ 0.2 were selected as vegetation 232 

pixels. Pixels with absolute first difference values ≥ 0.1 were masked out. Sample reflectance 233 

spectra for trees that are representative of the treatments are shown in Figure 1. Following these 234 

steps the number of pixels selected ranged from 16,000 – 112,000 pixels/tree, with an average of 235 

52,267 pixels/tree. The mean of all pixels for each tree was calculated to represent the whole 236 

plant.  237 

 Following these steps, the tree level spectra were smoothed using the Savitzky-Golay filter 238 

(Mouazen et al. 2010) as this filter has consistently been found to be one of the best available pre-239 
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processing transformations (Vasques et al. 2008). This smoothing used a third order polynomial 240 

which was applied across a moving window of 27 spectral bands. Reflectance and the 1st 241 

derivative of reflectance were extracted from these smoothed spectra. As there was considerable 242 

noise at either end of the smoothed spectral data, the 52 bands that occurred both below 415 nm 243 

and above 951 nm, were excluded from further analyses. Following these exclusions, 396 bands 244 

(415 – 951 nm) describing reflectance and 395 bands (416 – 951 nm) describing the 1st derivative 245 

of reflectance were available for analyses.  246 

 247 

2.2.3. Radiative transfer model inversion 248 

 249 

Pure vegetation reflectance spectra extracted from the hyperspectral data acquired from the 250 

seedlings was used to invert PROSAIL to estimate chlorophyll a+b content (Chla+b PROSAIL). 251 

Although SAIL is designed for homogeneous canopies and this condition was not met by our 252 

experimental set-up, an inversion of PROSAIL was undertaken (Jacquemoud et al. 2009) using 253 

the spectra extracted from pure vegetation pixels (as in Zarco-Tejada et al. 2018). The 254 

PROSPECT model has been demonstrated to be valid for simulating needle reflectance in Jack 255 

Pine (Pinus banksiana Lamb.) stands for chlorophyll a+b content estimation (Zarco-Tejada et al. 256 

2004a). The proposed PROSPECT and SAIL models used here were successful for chlorophyll 257 

content estimation when targeting pure vegetation pixels in forest areas (Zarco-Tejada et al. 258 

2001). Thus, we used a combination of PROSPECT-D (Féret et al. 2017) and 4SAIL (Verhoef et 259 

al. 2007) model versions, and inverted the spectra using the function lsqcurvefit in Matlab, 260 

following an approach by Jay et al. (2016). Parameters with low sensitivity were fixed so that 261 

only a limited number of parameters needed to be optimized. The leaf inclination distribution 262 

type was set to 2 so that only the average leaf inclination angle (ALA) was included in the model. 263 

The soil spectrum was also fixed. The model code includes spectra for a dark wet and a bright 264 
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dry soil. We used a linear combination of 10% dark soil and 90% bright soil. Further model 265 

parameters are listed in Table 1. 266 

 267 

2.2.4. Calculation of PRI and Sun Induced Chlorophyll Fluorescence quantification 268 

 269 

The reflectance spectra were interpolated to a 1 nm resolution within Matlab. Using the 270 

interpolated spectra, calculations of PRI (PRI531,570) were made using the following (Gamon et 271 

al. 1992), 272 

 273 

PRI = (R531 - R570)/ (R531 + R570)           (1) 274 

 275 

We also trialled an alternative formulation of PRI (PRI528,567) that utilised 528 nm and 567 nm 276 

(Gamon et al. 1993) and this variation was used in analyses as it was more precisely correlated 277 

to photosynthetic capacity than PRI531,570. Although PRI was developed to track changes in 278 

xanthophyll pigments, it has been reported that such spectral bands in the 530-570 nm region are 279 

also influenced by confounding effects related to the absorption of other photosynthetic pigments, 280 

structure of the canopy, and the soil and background (Suárez et al. 2009; Suárez et al. 2008; 281 

Zarco-Tejada et al. 2013b). Thus, changes observed in PRI are potentially due to the combined 282 

changes of chlorophyll and xanthophylls, and structural effects over the course of the experiment. 283 

Sun-Induced Chlorophyll Fluorescence (SIF) was quantified using the 760 nm O2-A band 284 

using the in-filling method based on the Fraunhofer Line Depth principle (FLD) calculated from 285 

a total of three spectral bands (FLD3) as follows, 286 

 287 

𝑆𝐼𝐹 =
𝐸𝑜𝑢𝑡 𝐿𝑖𝑛−𝐸𝑖𝑛 𝐿𝑜𝑢𝑡 

𝐸𝑜𝑢𝑡 𝐸𝑖𝑛
          (2) 288 

 289 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fraunhofer-line
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where radiance, L, corresponds to Lin (L761), Lout (average of L747 and L780 bands), and the 290 

irradiance, E, to Ein (E761), and Eout (average of E747 and E780 bands). Values of SIF were rescaled 291 

through addition of an offset value to ensure that calculations of SIF from Equation 2 were not 292 

negative.  293 

 294 

2.3. Photosynthetic capacity  295 

 296 

Measurements of photosynthetic capacity were made using a coupled chlorophyll fluorescence 297 

and gas-exchange system (Imaging-PAM M-Series and GFS-3000, Walz, Effeltrich, Germany) 298 

from the 7th  to 16th of October 2019 following measurements of hyperspectral data. For each of 299 

the 30 plants, the response of assimilation to intercellular CO2 concentration (A/Ci response) was 300 

measured on two to three fully expanded young fascicles that were selected from the upper third 301 

of the canopy. These needles were arranged inside the 6 cm2 cuvette without overlap and the area 302 

for these needles was determined by differentiating thresholded pixels using the Imaging-Win 303 

software of the coupled system. During the course of the measurements, conditions in the cuvette 304 

were maintained at 20 °C, with a relative humidity of 60% and an irradiance of 1,000 μmol 305 

photons m-2 s-1. The external CO2 concentration (Ca) supplied to the plants included the following 306 

series: 400, 300, 200, 100, 75, 50, 400, 600, 800, 1000, 1200, 1500, 2000 μmol mol -1. 307 

Measurements were recorded after values of A, Ci and gs were stable.  308 

A/Ci curves were analysed using Farquhar-type equations (Long and Bernacchi 2003). A 309 

generalised nonlinear least squares regression (gnls function, nlme package in R) was used to 310 

estimate Vcmax and Jmax. 311 

 312 

2.4. Determination of foliage N, P and Chlorophyll  313 

 314 
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Following the completion of the A/Ci response curves, approximately 10 fully extended fascicles, 315 

were selected from the upper third of the crown of each plant. These fascicles were dried at 70 ° 316 

C for at least 48 hours to constant dry mass and transported to the Landcare Research laboratory 317 

(Palmerston North, New Zealand) for analysis of N and P. Foliage samples were finely ground, 318 

acid digested by the Kjeldahl method, and the N and P concentrations were determined 319 

colorimetrically (Blakemore et al. 1987). Approximately 20 fully extended fascicles were 320 

selected for measurements of chlorophyll a+b (Chla+b). These needles were placed in tubes and 321 

frozen at -80ºC before being transported with dry ice to Plant and Food Laboratory (Lincoln, New 322 

Zealand) where analysis was undertaken using Chla+b estimation by spectrometry. From finely 323 

ground foliage samples, plant materials were extracted with acetone. This extraction was 324 

undertaken in the dark and the samples were kept on ice throughout the process to avoid pigment 325 

degradation. The absorbance of the extracts in the wavelengths 645, 652, 663, and 700 nm were 326 

read against 80% acetone and these values were then used to compute the chlorophyll 327 

concentration (Holden 1965). All values of chlorophyll reported here refer to the total chlorophyll 328 

(Chla+b).  329 

 Specific leaf area, (SLA) was determined from needles sampled for chlorophyll and 330 

expressed on a hemi-surface leaf area basis. Following Bown et al (2009b) leaf area was 331 

determined from [nld(1 + π/n)]/2, where d is fascicle diameter, l is fascicle length and n is the 332 

number of needles per fascicle. SLA was expressed in µg cm-2 as the quotient of dry weight and 333 

leaf area. Measurements of SLA were used to convert foliage nutrient and pigment concentrations 334 

to a hemi-surface area basis. 335 

 336 

2.5. Measurements of tree dimensions 337 

 338 

Tree height, root collar diameter and crown diameter were measured on the 22nd of October. 339 

Crown diameter was measured in two perpendicular directions at the widest point and these 340 
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measurements were averaged. Electronic calipers were used to measure root collar diameter and 341 

both height and crown width were measured using a tape.  342 

 343 

2.6. Data analysis 344 

 345 

All analyses were undertaken at the plant level using a combination of Matlab (The MathWorks, 346 

Inc., Natick, Massachusetts, United States) and R (R Development Core Team 2011). Matlab was 347 

used to plot the spectra and invert PROSAIL while all other analyses were undertaken using R.  348 

 349 

2.6.1. Treatment differences 350 

 351 

Tree dimensions, foliage nutrient content, photosynthetic variables, and PROSAIL output were 352 

tabulated and one-way analysis of variance was used to test for treatment differences between 353 

these variables. Multiple range testing, using the Tukey test, was used to determine which 354 

treatments significantly differed for all variables in which treatment had a significant effect.  355 

Treatment variation in hyperspectral variables was plotted. We undertook a one-way 356 

analysis of variance across each of the 396 reflectance bands to identify which bands were most 357 

sensitive to the treatments. This band level ANOVA was also undertaken on four different 358 

treatment contrasts to isolate the influence of N and P on reflectance. The influence of N was 359 

determined through contrasting reflectance for low and high N treatments at both low (N0P0 vs 360 

N1P0) and high P (N0P1 vs. N1P1). Similarly, the influence of P on reflectance was identified 361 

through contrasting low and high P treatments at both low (N0P0 vs N0P1) and high N (N1P0 vs. 362 

N1P1). Using a Bonferroni correction these contrasts were deemed to be significant at P < 0.0125.   363 

 364 

2.6.2 Prediction of photosynthetic variables 365 

 366 



16 
 

Nutrient ratios were used to separate the dataset into plants that were either N or P limiting to 367 

gain greater insight into the processes regulating photosynthetic capacity within each of these 368 

two phases. Following previous literature (Aerts and Chapin 2000; Knecht and Göransonn 369 

2004; Marschner 1995; Reich and Schoettle 1988) trees with an N/P ratio (expressed on a mass 370 

basis) of ≤ 10 were categorised as N deficient, while those with N/P > 10 were categorised as P 371 

deficient. The foliage N/P within sampled trees ranged from 2.6 – 27.9, of which 9 observations 372 

were P limited while the remaining 21 were N limited (Fig. 2).  373 

Following Kattenborn et al. (2019) all modelling used nutrient concentrations expressed 374 

on an area basis. Initial analyses examined correlations between N, P, and PRI and SIF. 375 

Bivariate relationships were then developed between the photosynthetic variables and N, P, 376 

Chla+b to examine the role that these variables played in regulating photosynthetic capacity. The 377 

potential of predicting Vcmax and Jmax from hyperspectral data was then investigated through 378 

development of models that included either Chla+b PROSAIL, PRI or SIF. In all developed models 379 

only significant variables were included in the models and variables were used in the models in 380 

either linear formulations, and where significant, in a polynomial formulation. 381 

 382 

3. Results  383 

 384 

3.1. Tree characteristics 385 

 386 

All physical dimensions varied significantly between treatments (Appendix 1) and dimensions 387 

for the two high N treatments were markedly greater than those for the three low N treatments. 388 

Mean height, root collar diameter and crown width in N1P1 were, respectively, 85.8 cm, 15.9 389 

mm and 31.6 cm, which exceeded corresponding mean values for these three dimensions in the 390 

Control, N0P1 and N0P1, by respectively, 58, 31 and 64%. There were no significant treatment 391 

differences in SLA and values averaged 2,467 µg cm-2 across treatments (Appendix 1).  392 
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 393 

3.2 Foliar nutrition 394 

 395 

The applied treatments resulted in a wide range in N and P (Fig. 2) and both elements significantly 396 

varied between treatments when expressed on either a mass or area basis (Appendix 1). Values of 397 

N ranged from 0.41 – 2.00 % when expressed on a mass basis and 11.1 – 45.8 µg cm-2 on an area 398 

basis while P varied from respectively 0.053 – 0.278 % and 1.41 – 6.47 µg cm-2. The relationship 399 

between N and P was weakly significant (Fig. 2) when data was expressed on a mass basis (P = 400 

0.03; R2 = 0.224) but insignificant when expressed on an area basis (P = 0.10; R2 = 0.155). The 401 

relationship between N and Chla+b was positive, highly significant and very strong when expressed 402 

on either a mass (P <0.001; R2 = 0.887) or area basis (P <0.001; R2 = 0.870).  403 

When expressed on an area basis there were no significant differences in N or Chla+b 404 

(Appendix 1) between the two high N treatments (N1P0, N1P1) or the two low N treatments 405 

(N0P0, N0P1). Similarly, P did not significantly differ between the two low P treatments (N0P0, 406 

N1P0) or the two high P treatments (N0P1, N1P1). There was an identical significance pattern 407 

for N, P and Chla+b expressed on a mass basis (Appendix 1), except for the pairwise comparison 408 

of N for the two high N treatments (N1P0 and N1P1) which exhibited significant differences. 409 

This low level of lack of significance provided a sound basis for the pairwise testing of the 410 

impacts of N and P on both photosynthetic capacity and hyperspectral imagery, that is described 411 

below.  412 

 413 

3.3. Photosynthesis capacity 414 

 415 

Differences between treatments were highly significant for both Vcmax and Jmax (P<0.001). The 416 

mean values of Vcmax and Jmax for N1P1, were respectively, 34.9 and 90.5 µmol m-2 s-1 which 417 

exceeded those in the Control treatment by ca. three-fold for both variables (Appendix 1). Most 418 
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variation between the treatments was attributable to addition of N (Appendix 1). Values for the 419 

two high N treatments (N1P0, N1P1) significantly exceeded those of the two low N treatments, 420 

with equivalent P additions (N0P0, N0P1) by respectively 55 and 51% for Vcmax and Jmax 421 

(Appendix 1). Addition of P to the low N treatment (i.e. N0P1 vs N0P0) increased Vcmax and 422 

Jmax by respectively 7.8 and 3.3%, while addition of P to the high N treatment (i.e. N1P1 vs 423 

N1P0) resulted in greater increases to Vcmax and Jmax of respectively, 11.5 and 16.2% (Appendix 424 

1).   425 

 426 

3.4. Hyperspectral data 427 

 428 

Figure 3 shows variation in canopy reflectance and the 1st derivative of reflectance at the tree 429 

level while Figure 4 describes variation in reflectance across the entire spectrum and within three 430 

narrow wavelength ranges for data averaged by treatment (Fig. 4 a – d) and type of limitation 431 

(Fig 4e – h). Tree level variation in reflectance was relatively tightly clustered within treatments 432 

highlighting the consistency of the data (Fig. 3a). Treatment level reflectance was higher in the 433 

low N treatments between 450 – 680 nm with the highest values recorded in the Control 434 

treatment (4a – d). There was also a marked shift in the lower wavelengths of the red edge for 435 

the low N treatments compared to those with high N (Fig. 4d). Both of these treatment influences 436 

on reflectance were significant, with the highest levels of significance occurring at wavelengths 437 

centred in the red edge at 700 nm and the green peak at 580 nm (Fig. 5), with significant 438 

treatment differences occurring at all other wavelengths between 472 – 728 nm (Fig. 5).  439 

The first derivative of reflectance for the three low N treatments exhibited marked 440 

increases between 500 – 550 nm (Fig. 3b), compared to the two high N treatments and peak 441 

values for the first derivative were reached at lower wavelengths, with both features being most 442 

marked for the Control treatment (Fig. 3b). Significant treatment differences were noted in the 443 
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first derivative in almost all wavelengths between 422 – 811 nm with the most significant 444 

differences occurring at wavelengths centred around 497 and 647 nm (Fig. 5).  445 

 Analysis of variance, using treatment combinations that partitioned the impact of N and P, 446 

showed that treatment differences were mainly attributable to variation in N. For reflectance, 447 

comparisons of low and high P at similar values of N, that were either low (i.e. N0P0 vs. N0P1, 448 

red circles, Fig. 6a) or high (i.e. N1P0 vs. N1P1, blue circles, Fig. 6a) did not significantly differ. 449 

The small influence of P on reflectance is also clearly evident in figures showing spectral 450 

changes across discrete ranges which shows these two P contrasts almost overlap between 400 – 451 

700 nm (Figs. 4b – d).  Similarly, for the first derivative, these two treatment comparisons were 452 

mostly non-significant, with the exception of a few wavelengths, scattered across the spectral 453 

range (Fig. 6b).  454 

In contrast, comparisons of reflectance for low and high N, made at low values of P (green 455 

circles, Fig. 6a) or high values of P (black circles, Fig. 6a) showed significant differences 456 

between treatments from ca. 500 – 730 nm, reaching highest significance for both comparisons 457 

in the red edge region, and at wavelengths centred around 534 nm for N0P1 vs. N1P1 (Fig. 6a). 458 

Treatment contrasts shown for discrete spectral regions (Figs 4b – d) show that higher N 459 

markedly reduces reflectance, compared to low N, for both contrasts and that these differences 460 

are particularly marked within the green peak region (Fig. 4c).  461 

Treatment comparisons were in general more significantly different for the first derivative 462 

of reflectance than reflectance (Fig. 6b). Differences in the first derivative for these two N 463 

treatment comparisons were significant across most of the spectral range, from ca. 432 – 763 nm, 464 

with the most significant values occurring in the red-edge region for N0P0 vs. N1P0 and at 465 

wavelengths centred around 504, 608 and 651 nm for N0P1 vs. N1P1 (Fig. 6b).  466 

When expressed by the type of limitation, trees that were limited by N had higher 467 

reflectance than P limited trees within both the red edge range and visible spectrum above 430 468 

nm (Fig. 4e). These differences were most marked within the green peak region (Fig. 4g). There 469 
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was also a marked shift in the lower wavelengths of the red edge for the N limited plants 470 

compared to those that were P limited (Fig. 4h). 471 

 472 

3.5 Relationships between nutrient content and spectral indices 473 

 474 

Within the N limiting range there were significant positive relationships between N and both PRI 475 

(P < 0.001; R2 = 0.83; Fig 7a) and SIF (P < 0.001; R2 = 0.59; Fig. 7c) but relationships between 476 

N and both of these variables were insignificant and weak, within the P limiting range (Fig. 7a, 477 

c). In the P limiting range, strong significant positive relationships were found between P and 478 

both SIF (P < 0.01; R2 = 0.697) and PRI528, 567 (P < 0.001; R2 = 0.792), as shown by the filled 479 

blue circles, respectively, in Figures 7d and b. Within the N limiting range, the relationship 480 

between P and SIF was insignificant and weak (P = 0.23; R2 = 0.076), while the relationship 481 

between P and PRI528, 567 was only marginally significant but very weak (P = 0.048; R2 = 0.190).  482 

 483 

3.6 Models of photosynthetic capacity 484 

 485 

3.6.1 Use of measured variables 486 

 487 

Under both N and P limiting conditions Chla+b was most strongly related to both Vcmax (P < 488 

0.001; R2 = 0.85) and Jmax (P < 0.001; R2 = 0.82) and both relationships were positive (Fig. 8a, c; 489 

Table 2). There were strong positive relationships between N and both Vcmax (P < 0.001; R2 = 490 

0.84) and Jmax (P < 0.001; R2 = 0.82), that were only marginally weaker than the relationships 491 

with Chla+b (Fig. 9a, c; Table 2). Under N limiting conditions these relationships generally 492 

remained at similar strength, although N was a slightly stronger predictor of Jmax than Chla+b (R2 493 

= 0.87 vs. 0.86). Under P limiting conditions, relationships between photosynthetic capacity and 494 
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either N (Fig. 9 a, c) or Chl a+b (Fig. 8 a, c) were very weak (R2 < 0.02) and insignificant (Table 495 

2).  496 

Under P limiting conditions, relationships between P and both Vcmax (Fig 9b) and Jmax (Fig 497 

9d) were positive, significant and of a moderate strength, with respective R2 of 0.50 and 0.58 498 

(Table 2). In contrast, relationships between P and photosynthetic capacity (Vcmax, Jmax) were 499 

insignificant under either N limiting conditions or across the entire dataset (Figs. 9b, d; Table 2).  500 

 501 

3.6.2. Use of derived variables 502 

 503 

There was a strong linear relationship (R2 = 0.88) between area based measured chlorophyll (Ca+b) 504 

and chlorophyll predicted by model inversion (Ca+b PROSAIL). Values of Ca+b were overpredicted 505 

by Ca+b PROSAIL at low values and underpredicted at high values, but there was little treatment bias 506 

in the predictions (Fig. 10).  507 

Using all the data, Chla+b PROSAIL exhibited strong positive linear relationships (Fig. 8b, d) 508 

with both Vcmax (P < 0.001; R2 = 0.79) and Jmax (P < 0.001; R2 = 0.76). These relationships 509 

remained significant and relatively strong using data restricted to N limiting conditions (Table 510 

2). However, there was no significant relationship between Chla+b PROSAIL and either both Vcmax 511 

and Jmax under P limiting conditions, with R2 < 0.04 for both relationships (Table 2; Fig. 8b, d).  512 

Using all the data there were strong relationships between PRI528, 567 and both Vcmax (P < 513 

0.001; R2 = 0.84) and Jmax (P < 0.001; R2 = 0.84) that were best described using quadratic terms 514 

(Table 2; Fig. 11a, c). These relationships remained strong, but the precision was slightly 515 

reduced when data was restricted to N limiting conditions (Table 2). Under P limiting conditions 516 

positive correlations of moderate strength were found between PRI528, 567 and Vcmax (P = 0.06; R2 517 

= 0.42) and Jmax (P = 0.029; R2 = 0.51), that were generally aligned with predictions under N 518 

limiting conditions (Table 2; Fig. 11a, c).  519 
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Using all the data SIF exhibited strong positive linear relationships with both Vcmax (P < 520 

0.001; R2 = 0.78) and Jmax (P < 0.001; R2 = 0.80), which were slightly reduced in strength when 521 

data was restricted to N limiting measurements (Table 2; Fig. 11b, d). Under P limiting 522 

conditions, SIF was moderately related to Vcmax (P = 0.09; R2 = 0.35) and strongly related to Jmax 523 

(P < 0.01; R2 = 0.68) and these relationships aligned very well with predictions made under N 524 

limiting conditions (Fig. 11b, d).  525 

 526 

Discussion 527 

 528 

Our results show that N and P were only significantly related to Vcmax and Jmax, within the N and 529 

P limiting ranges, respectively, suggesting that photosynthetic capacity is independently 530 

regulated by these elements. Predictions of photosynthetic capacity (Vcmax, Jmax) using variables 531 

derived from hyperspectral imagery showed contrasting generality across the dataset. Strong 532 

positive relationships were observed between Chla+b PROSAIL and both Vcmax and Jmax in the N 533 

limiting phase but these relationships were insignificant in the P limiting range. However, both 534 

SIF and PRI528, 567 exhibited moderate to strong positive relationships with photosynthetic 535 

capacity in both the N and P limiting phases suggesting that these variables are more 536 

generalisable than Chla+b PROSAIL.   537 

The treatments used here created a wide range in N and P that exceeded the ranges in 538 

content and N/P ratio typically found in field grown P. radiata. When expressed on a mass basis 539 

foliage N ranged from 0.41 to 2.0% while foliage P ranged from 0.05 to 0.28%. Within a 540 

designed field experiment, located at 20 sites spanning almost all variation in soil fertility found 541 

in New Zealand plantations, ranges were markedly lower varying from 0.75 – 1.64% for N and 542 

from 0.09 – 0.18% for P (Watt et al. 2009). Our reported values in N and P covered ranges 543 

considered to be deficient, marginal and sufficient for both elements (Mead 2013). 544 
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The use of ratios provided a useful means of separating N from P limitations. Nutrient 545 

ratios have been extensively used to identify optimum nutrition and account for particular 546 

nutrient limitations (Ingestad 1971, 1979; Ingestad and Lund 1986). In terrestrial plants an 547 

optimum N/P ratio of 10 has been found for a wide range of species (Knecht and Göransonn 548 

2004) which agrees with our results that show photosynthetic capacity peaks at ratios of 9.3 – 549 

11.3 (data not shown). Several authors (Aerts and Chapin 2000; Marschner 1995; Reich and 550 

Schoettle 1988) suggest that deviations from this N/P ratio of 10 should lead to nitrogen (N/P ≤ 551 

10) or phosphorus (N/P > 10) deficiencies. Our results strongly support this suggestion through 552 

showing that N and P were only significantly related to Vcmax and Jmax, within the N and P 553 

limiting ranges, respectively.  554 

Overall our results show that Chla+b and N had the largest influence on photosynthetic 555 

capacity. The strong relationships found here between photosynthetic capacity and both Chla+b 556 

and N under N limiting conditions have a sound physiological basis. Nitrogen is a major 557 

component of Rubisco (Niinemets and Tenhunen 1997) and at least 50% of leaf nitrogen is 558 

invested in the photosynthetic apparatus of plants (Niinemets and Sack 2006). As Rubisco 559 

catalyses the carboxylation reaction, there is a mechanistic link between the leaf Rubisco 560 

content and the maximum capacity of carboxylation, Vcmax.  561 

Similarly, chlorophyll also plays an important role in photosynthesis. Chlorophyll which 562 

is embedded in the thykaloid membranes of chloroplasts, provides the principal means of 563 

harvesting light (Croft et al. 2017). This light harvest provides the energy to supply electrons, 564 

via the cytochrome b6f complex, to produce nicotinamide adenine dinucleotide phosphate 565 

(NADPH) and chemical energy as adenosine triphosphate (ATP), for the reactions of the Calvin–566 

Benson cycle. Chlorophyll content has been shown to be related to the amount of light 567 

harvested across a range of species (Collatz et al. 1991; Evans 1996), and photosynthetically 568 

active radiation absorbed by the leaf drives the potential rate of electron transport, J (Collatz et 569 

al. 1991; Sellers et al. 1992). Although Chl is theoretically more closely related to Jmax, in 570 
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practice a strong linear relationship between Vcmax and Jmax, is often observed across a range of 571 

species (Medlyn et al. 2002) as was found for our data (P <0.001; R2 = 0.939). This tight 572 

coupling, which is thought to reflect coordination between these two rate‐ limiting biochemical 573 

cycles (Kattge and Knorr 2007; Leuning 1997; Medlyn et al. 2002; Walker et al. 2014), means 574 

that in practice Chla+b can be used as a predictor for both variables. 575 

Under N limiting conditions, relationships between photosynthetic capacity and both 576 

Chla+b and N were found to have a very similar precision. This suggests that wavelengths 577 

associated with N in the SWIR range are not as important for predicting photosynthetic capacity 578 

in P. radiata as those associated with chlorophyll in the VNIR range. Examination of spectral 579 

differences between treatments confirm the importance of chlorophyll as a key predictor of 580 

photosynthetic capacity. These analyses show the most significant treatment differences occur 581 

within the green and red edge spectral regions which have previously been found to be key 582 

spectral predictors of chlorophyll content (Carter 1994; Gitelson and Merzlyak 1996; Horler et 583 

al. 1983; Rock et al. 1988; Vogelmann 1993).  584 

The significant positive relationships that we found between P and both Vcmax and Jmax 585 

within the P limiting range were associated with high values of N. Results from a P. radiata 586 

nutrition experiment with a similar design (Bown et al. 2009a), that investigated relationships 587 

between nutrition and photosynthetic capacity, were very similar to ours and found a significant 588 

relationship between P and photosynthetic capacity in the P limiting range. This result is also 589 

consistent with a meta-study undertaken by Walker (2014) who observed little gain in Vcmax and 590 

Jmax under increasing P at low N, but a doubling of modelled gross carboxylation rates across a 591 

P range under high N levels, which is analogous to the P limiting range in our study. The 592 

importance of P in regulating Vcmax and Jmax has a sound theoretical basis as the availability of P 593 

has an impact on many important aspects of photosynthesis including membrane solubility, 594 

ATP, and NADPH production (Marschner 1995; Taiz et al. 2015). 595 
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 Our results demonstrate very little spectral alteration associated with P but do show 596 

significant relationships between P and both PRI528, 567 and SIF within the P limiting range.  597 

After controlling for N, results clearly show little discernible change in reflectance or the first 598 

derivative of reflectance between plants with high or low P. This is consistent with previous 599 

literature as P does not directly absorb energy in the shortwave spectrum and consequently 600 

predictions of P typically rely on strong positive correlations with N (Asner and Martin 2008; 601 

Gillon et al. 1999; Porder et al. 2005). While this is a useful approach for vegetation with 602 

normal ratios of N and P, this empirical relationship is likely to break down when ratios of N 603 

and P deviate from normal values, and there is little correlation between N and P. Within the P 604 

limiting range there were moderate to strong positive, linear relationships between P and both 605 

SIF and PRI suggesting that these variables may act as proxies for P and the effect of this 606 

element on photosynthetic capacity.  607 

 Although the three variables, derived from the hyperspectral data, used to predict 608 

photosynthetic capacity had similar precision, there were marked differences in their utility for 609 

predicting photosynthetic capacity. The significant relationship found here between Chla+b 610 

PROSAIL and photosynthetic capacity is consistent with previous research that has used 611 

chlorophyll derived from physically based models to predict Vcmax and Jmax (Croft et al. 2017; 612 

Dechant et al. 2017). Our results generally support Croft et al (2017), who advocate the use of 613 

chlorophyll as a potentially useful proxy for photosynthetic capacity but extend these findings 614 

through showing that chlorophyll should be used with caution under P limiting conditions, 615 

where we found this relationship to be weak and insignificant.  616 

SIF was strongly correlated with both Vcmax and Jmax and, in contrast to Chla+b PROSAIL, 617 

predictions exhibited relatively robust correlations across both the N and P limiting ranges. 618 

Although SIF has been widely used to predict gross primary productivity (Meroni et al. 2009; 619 

Porcar-Castell et al. 2014; Rascher et al. 2015), and photosynthesis (Frankenberg et al. 2011; 620 

Guanter et al. 2014; Smith et al. 2018), in a range of species, with few exceptions (Camino et al. 621 
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2019) little research has linked SIF to Vcmax and Jmax at a fine scale. As found here, there is 622 

generally a strong relationship between Chl and SIF as leaves with a higher Chl will absorb 623 

more light and produce a higher leaf SIF, although this effect is complicated by the fact that 624 

emitted SIF is scattered and reabsorbed throughout the canopy (Verrelst et al. 2015). It has been 625 

hypothesised that SIF is a useful predictor of photosynthetic capacity as it can be used to 626 

selectively measure the quantity of absorbed light in chlorophyll (Rascher et al. 2015). 627 

However, in contrast to Chla+b, our results suggest that SIF can at least partially account for the 628 

role of P on photosynthetic capacity at high values of N as supported by the strong relationship 629 

found between SIF and P under P limiting conditions.  630 

 Similarly, PRI was also strongly related to photosynthetic capacity and was able to 631 

account for variation in Vcmax and Jmax across both N and P limitations. Research has widely 632 

demonstrated the utility of PRI for predicting light use efficiency (Garbulsky et al. 2011; 633 

Peñuelas et al. 2011) and key photosynthetic parameters under a range of stresses including 634 

severe drought conditions (Ripullone et al. 2011), cold winter temperatures (Gamon et al. 2016; 635 

Wong and Gamon 2015a, b) and herbicide damage (Scholten et al. 2019). The relationship 636 

found here between PRI and photosynthetic capacity is consistent with Scholten et al. (2019) 637 

and has a strong theoretical basis as PRI can track plant photosynthetic activity through its 638 

intimate link with the dissipation of excess energy by nonphotochemical quenching (NPQ) via 639 

the xanthophyll cycle. The xanthophyll cycle is activated during periods of excess excitation 640 

energy in the leaf and through this process violaxanthin is de-epoxidized to zeaxanthin. These 641 

increased concentrations in zeaxanthin reduce reflectance at wavelengths around 531 nm, which 642 

results in reductions in PRI. Nevertheless, PRI has been demonstrated to be related to the 643 

absorption of chlorophyll content, in addition to the xanthophyll pigments, as well as by the 644 

canopy structure and soil (Suárez et al. 2009; Suárez et al. 2008; Zarco-Tejada et al. 2013b). 645 

Results shown in this experiment show the potential contribution of both xanthophylls and 646 

chlorophyll in the observed relationships with photosynthetic capacity. As with SIF, our results 647 
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suggest that PRI may provide a more generalisable means of predicting photosynthetic capacity 648 

under a range of nutritional limitations than chlorophyll derived from physically based models.   649 

Predictions of photosynthetic capacity estimated by PRI and SIF could be scaled up using 650 

satellite imagery. As summarised in Mohammed et al. (2019) measurements of SIF are 651 

currently taken from a number of satellite platforms (e.g. GOME-2, OCO-2) and the first 652 

satellite mission designed for SIF measurement, FLEX, is scheduled for launch in 2022. The 653 

recently launched PRISMA and DESIS hyperspectral imagers, and the EnMAP sensor, which is 654 

scheduled for launch in 2021, are particularly suitable for estimating PRI and will provide 655 

imagery at a spatial resolution of 30 m with a relatively fine spectral resolution of up to 6.5 nm 656 

within the VNIR range (Guanter et al. 2015). In addition, Sentinel-3 has been proposed for 657 

Vcmax estimation at global scales using radiative transfer models such as SCOPE (Prikaziuk and 658 

van der Tol 2019). 659 

In conclusion, results from this study clearly demonstrate the utility of SIF and PRI for 660 

prediction of photosynthetic capacity across both the N and P limiting ranges. Although results 661 

clearly highlight the importance of N and Chla+b as key predictors of photosynthetic capacity we 662 

also show that these relationships break down within the P limiting range. The use of a N/P 663 

ratio to separate N from P limitations provided insight into relationships that would have 664 

otherwise have been concealed. Further research should examine the utility of this approach for 665 

development of models that link nutrient content and hyperspectral data to photosynthesis at 666 

increased scale across a broader range of species.   667 
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List of figure captions 1057 

 1058 

Figure 1. Images of individual trees selected from the treatments (left) and their corresponding 1059 

canopy reflectance (right).  1060 

 1061 

Figure 2. Relationships between mass based nitrogen and phosphorus. The treatment designation 1062 

for individual trees are denoted by filled circles while treatment means area shown as large 1063 

crosses with differing colours. The dashed line in panel (a) represents a N/P ratio of 10. Values 1064 

of foliage N and P content above the line are N limited while those below the line are P limited.   1065 

 1066 

Figure 3. Tree level variation in (a) canopy reflectance and (b) the 1st derivative of canopy 1067 

reflectance against wavelength. Treatment identity is identified by lines with differing colours.  1068 

 1069 

Figure 4. Variation in (a, e) canopy reflectance across the entire spectrum and between (b, f) 400 1070 

– 500 nm, (c, g) 500 – 600 nm and (d, h) 600 – 700 nm for data averaged by (a – d) treatment 1071 

and (e – h) limitation type.   1072 

 1073 

Figure 5. Variation in treatment significance, as indicated by the P-value, for reflectance (open 1074 

red circles) and the first derivative of reflectance (filled blue circles). The grey region shown at 1075 

the top of the figure outlines the area of insignificance at P > 0.05 while the dashed line is drawn 1076 

at P = 0.001. The y-axis is shown as a logarithmic scale to highlight the significance strength. 1077 

 1078 

Figure 6. Variation in treatment significance, as indicated by the P-value, for (a) reflectance and 1079 

(b) the first derivative of reflectance, for comparisons of P under low (red circles) and high N 1080 

(blue circles) and comparisons of N under low (green circles) and high P (black circles). The 1081 

grey region shown at the top of the figure outlines the area of insignificance at P > 0.0125 while 1082 
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the dashed line is drawn at P = 0.001. The y-axis is shown as a logarithmic scale to highlight the 1083 

significance strength.   1084 

 1085 

Figure 7. Relationships between nitrogen and phosphorus content and (a, b) Photochemical 1086 

Reflectance Index and (c, d) Sun Induced Chlorophyll Fluorescence, under N (open brown 1087 

circles) and P limiting conditions (filled teal circles). Lines have been fitted to relationships that 1088 

are significant at P <0.048 with the brown and teal lines fitted respectively to N and P limited 1089 

data. 1090 

 1091 

Figure 8. Relationships between measured chlorophylla+b and inverted chlorophylla+b and (a, b) 1092 

Vcmax and (c, d) Jmax under N (open brown circles) and P limiting conditions (filled teal circles). 1093 

Lines have been fitted to relationships that are significant at P <0.05 with the brown lines fitted 1094 

to N limited data.   1095 

 1096 

Figure 9. Relationships between area based nitrogen and phosphorus and (a, b) Vcmax and (c, d) 1097 

Jmax under N (open brown circles) and P limiting conditions (filled teal circles). Lines have been 1098 

fitted to relationships that are significant at P <0.05 with the brown and teal lines fitted 1099 

respectively to N and P limited data. 1100 

 1101 

Figure 10. Relationship between measured chlorophyll and estimated chlorophyll derived from 1102 

the PROSAIL inversion. The 1:1 line is shown as a solid line and treatments are denoted by 1103 

filled circles with differing colours.  1104 

 1105 

Figure 11. Relationships between Photochemical Reflectance Index and Sun Induced 1106 

Chlorophyll Fluorescence and (a, b) Vcmax and (c, d) Jmax under N (open brown circles) and P 1107 
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limiting conditions (filled teal circles). The black lines were fitted to the combined N and P 1108 

limited dataset. 1109 

 1110 

  1111 
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Table 1. Model parameters used within PROSAIL.  1112 

 1113 

Variable parameters 
Parameter Symbol Unit Min Max 

Mesophyll structure parameter N  1.4 1.6 
Chlorophyll a+b Chla+b µg cm-2 25 60 
Carotenoids Ccx µg cm-2 1 15 
Anthocyanins Canth µg cm-2 0 5 
Water content Cw g cm-2 0.0002 0.06 
Dry matter content Cm g cm-2 0.0001 0.03 
Average leaf inclination angle ALA (LIDFa) ° 0 90 
Leaf area index LAI  0.5 5 

Fixed parameters 
Parameter Symbol Unit Value 

Brown pigments Cbp  0 
Hot spot parameter Hot  0.1 
Observation zenith angle θo ° 0 
Illumination zenith angle θs ° 45 
Relative azimuth angle ψ ° 0 

1114 
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Table 2. Summary of model precision, as denoted by the coefficient of determination (R2) for 1115 

models describing the maximal carboxylation capacity (Vcmax) and the maximal electron 1116 

transport rate (Jmax). Measured predictors include area based measurements of nitrogen (N), 1117 

phosphorus (P) and chlorophyll (Chla+b). Predictors that were derived from hyperspectral data 1118 

included Photochemical Reflectance Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) 1119 

and chlorophyll derived from the PROSAIL inversion (Chla+b PROSAIL).  1120 

 1121 

 1122 
 1123 
 1124 
 1125 
  1126 

Predictor(s) All data  N limiting  P limiting 

 Vcmax Jmax  Vcmax Jmax  Vcmax Jmax 

Measured variables         
N 0.84*** 0.82***  0.82*** 0.87***  0.01ns 0.02ns 
P 0.04ns 0.06ns  0.33ns 0.31ns  0.50* 0.58* 
Chla+b 0.85*** 0.82***  0.85*** 0.86***  0.02ns 0.01ns 
         
Derived predictors         
Chla+b  PROSAIL 0.79*** 0.76***  0.64*** 0.63***  0.03ns 0.04ns 
SIF 0.78*** 0.80***  0.69*** 0.70***  0.35ns 0.68** 
PRI 0.84*** 0.84***  0.73*** 0.75***  0.42ns 0.51* 
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 1127 
 1128 

Figure 1. Images of individual trees selected from the treatments (left) and their corresponding 1129 

canopy reflectance (right).  1130 

 1131 

   1132 

  1133 

 1134 

  1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

  1143 
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 1144 

Figure 2. Relationships between mass based nitrogen and phosphorus. The treatment designation 1145 

for individual trees are denoted by filled circles while treatment means area shown as large 1146 

crosses with differing colours. The dashed line in panel (a) represents a N/P ratio of 10. Values 1147 

of foliage N and P content above the line are N limited while those below the line are P limited.   1148 

 1149 

  1150 
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 1151 

Figure 3. Tree level variation in (a) canopy reflectance and (b) the 1st derivative of canopy 1152 

reflectance against wavelength. Treatment identity is identified by lines with differing colours.  1153 

  1154 
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 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

 1174 

Figure 4. Variation in (a, e) canopy reflectance across the entire spectrum and between (b, f) 400 1175 

– 500 nm, (c, g) 500 – 600 nm and (d, h) 600 – 700 nm for data averaged by (a – d) treatment 1176 

and (e – h) limitation type.    1177 
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 1178 

Figure 5. Variation in treatment significance, as indicated by the P-value, for reflectance (open 1179 

red circles) and the first derivative of reflectance (filled blue circles). The grey region shown at 1180 

the top of the figure outlines the area of insignificance at P > 0.05 while the dashed line is drawn 1181 

at P = 0.001. The y-axis is shown as a logarithmic scale to highlight the significance strength. 1182 

  1183 
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 1184 

Figure 6. Variation in treatment significance, as indicated by the P-value, for (a) reflectance and 1185 

(b) the first derivative of reflectance, for comparisons of P under low (red circles) and high N 1186 

(blue circles) and comparisons of N under low (green circles) and high P (black circles). The 1187 

grey region shown at the top of the figure outlines the area of insignificance at P > 0.0125 while 1188 

the dashed line is drawn at P = 0.001. The y-axis is shown as a logarithmic scale to highlight the 1189 

significance strength.   1190 

  1191 
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 1192 

Figure 7. Relationships between nitrogen and phosphorus content and (a, b) Photochemical 1193 

Reflectance Index and (c, d) Sun Induced Chlorophyll Fluorescence, under N (open brown 1194 

circles) and P limiting conditions (filled teal circles). Lines have been fitted to relationships that 1195 

are significant at P <0.048 with the brown and teal lines fitted respectively to N and P limited 1196 

data. 1197 
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 1199 

Figure 8. Relationships between measured chlorophylla+b and inverted chlorophylla+b and (a, b) 1200 

Vcmax and (c, d) Jmax under N (open brown circles) and P limiting conditions (filled teal circles). 1201 

Lines have been fitted to relationships that are significant at P <0.05 with the brown lines fitted 1202 

to N limited data.   1203 

 1204 

 1205 

 1206 

  1207 
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 1208 

Figure 9. Relationships between area based nitrogen and phosphorus and (a, b) Vcmax and (c, d) 1209 

Jmax under N (open brown circles) and P limiting conditions (filled teal circles). Lines have been 1210 

fitted to relationships that are significant at P <0.05 with the brown and teal lines fitted 1211 

respectively to N and P limited data. 1212 

  1213 



55 
 

 1214 

Figure 10. Relationship between measured chlorophyll and estimated chlorophyll derived from 1215 

the PROSAIL inversion. The 1:1 line is shown as a solid line and treatments are denoted by 1216 

filled circles with differing colours.  1217 

 1218 

 1219 

 1220 

  1221 
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 1222 

Figure 11. Relationships between Photochemical Reflectance Index and Sun Induced 1223 

Chlorophyll Fluorescence and (a, b) Vcmax and (c, d) Jmax under N (open brown circles) and P 1224 

limiting conditions (filled teal circles). The black lines were fitted to the combined N and P 1225 

limited dataset. 1226 

 1227 

 1228 
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Appendix 1. Treatment variation in tree characteristics, photosynthetic variables, foliage nutrition, and predictor variables derived from 1229 

hyperspectral data. Values shown include the mean followed by the standard deviation. Values presented for the ANOVA include the F-value 1230 

followed by the P category, in which asterisks ***, **, represent significance at P = 0.001 and 0.01, respectively, ns = non-significant at P = 0.05. 1231 

For all variables with significant treatment differences multiple range testing was undertaken using the Tukey test. Treatment values followed by the 1232 

same letter were not significantly different at P = 0.05. 1233 

 1234 
Variable Control N0P0 N0P1 N1P0 N1P1 ANOVA 

Tree characteristics       
Height (cm) 54.2 (5.11)a 66.3 (7.07)a 63.2 (7.27)a 85.3 (19.8)b 85.8 (6.70)b 10.5*** 
Tree diam. (mm) 13.2 (1.88)a 12.9 (1.50)a 12.1 (1.45)a 14.7 (1.95)ab 15.9 (1.08)b 5.49**   
Crown diam. (cm) 20.1 (3.70)a 22.4 (3.83)ab 19.2 (3.25)a 26.5 (3.33)bc 31.6 (2.36)c 14.3*** 
SLA (µg cm-2) 2,858 (573) 2,306 (518) 2,406 (226) 2,288 (234) 2,478 (647) 1.44ns 
       
Photosynthetic variables      
Vcmax (µmol m-2 s-1) 13.5 (3.60)a 20.6 (1.61)b 22.2 (2.87)b 31.3 (3.73)c 34.9 (3.16)c 46.6*** 
Jmax (µmol m-2 s-1) 31.6 (10.8)a 54.7 (7.31)b 56.5 (8.36)b 77.9 (11.7)c 90.5 (10.3)c 32.3*** 
       
Foliage nutrition – mass based      
N (%) 0.447 (0.045)a 0.758 (0.120)b 0.759 (0.131)b 1.81 (0.127)c 1.58 (0.194)d 119*** 
P (%) 0.065 (0.019)a 0.093 (0.011)ab 0.214 (0.075)c 0.078 (0.013)ab 0.162 (0.039)c 15.7*** 
Chla+b (%) 0.399 (0.165)a  0.878 (0.140)b 0.849 (0.113)b 1.78 (0.192)c 1.68 (0.162)c 85.3*** 
       
Foliage nutrition – area based      
N (µg cm-2) 12.0 (1.21)a 18.4 (2.93)b 17.6 (3.05)b 41.4 (2.91)c 36.7 (4.50)c 105*** 
P (µg cm-2) 1.74 (0.51)a 2.26 (0.26)a 4.98 (1.74)b 1.79 (0.29)a 3.76 (0.89)b 14.3*** 
Chla+b (µg cm-2) 10.7 (4.42)a  21.4 (3.41)b 19.7 (2.63)b 40.6 (4.39)c 39.0 (3.76)c 71.2*** 
       
Derived predictor traits      
Inverted Chlab (µg cm-2) 14.9 (3.47)a 23.7 (2.82)b 22.4 (1.86)b 34.5 (3.27)c 33.7 (1.51)c 56.6*** 
PRI -0.150 (0.018)a -0.112 (0.006)b -0.115 (0.012)b -0.089 (0.004)c -0.078 (0.004)c 42.4*** 
SIF (W m-2 nm-2 sr-1) 1.14 (1.11)a 3.08 (0.67)ab 2.46 (0.65)b 4.90 (0.54)c 6.04 (1.08)c 32.1*** 


