1	Non-adaptive radiation and mass extinction explains patterns of low diversity and
2	extreme morphological disparity in North American blister beetles (Coleoptera,
3	Meloidae)
4	
5	Estefany Karen López-Estrada ^{1,2*,3**} , Isabel Sanmartín ^{2¶} , Mario García-París ^{3¶} , and
6	Alejandro Zaldívar-Riverón ^{1¶}
7	
8	1- Colección Nacional de Insectos, Instituto de Biología UNAM, 3er Circuito Exterior s/n
9	Cd. Universitaria, Copilco, Coyoacán, 04510, CDMX, México.
10	2- Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2, 28014. Madrid, España.
11	3- Museo Nacional de Ciencias Naturales Naturales (MNCN-CSIC). José Gutiérrez
12	Abascal, 2, 28006 Madrid, España.
13	
14	* Current address: RJB-CSIC and MNCN-CSIC
15	** Corresponding author: doi:10.1011/journal.com .
16	¶ Equal contributions
17	

18 Declarations of interest: none.

19 Abstract

20 Untangling the relationship between morphological evolution and lineage diversification is 21 key to explain global patterns of phenotypic disparity across the Tree of Life. Evolutionary 22 theory posits that species diversification is coupled with phenotypic evolution. Few studies 23 have examined the relationship between high morphological disparity and extinction. In 24 this study, we infer phylogenetic relationships and lineage divergence times within 25 Eupomphini (Meloidae), a tribe of blister beetles endemic to the arid zone of North 26 America, which exhibits a puzzling pattern of very low species richness but rampant 27 variation in morphological diversity across extant taxa. Using Bayesian and maximum 28 likelihood inference, we estimate diversification and phenotypic evolutionary rates and 29 infer the time and magnitude of extinction rate shifts and mass extinction events. Our 30 results suggest that Eupomphini underwent an event of ancient radiation coupled with rapid 31 morphological change, possibly linked to the loss of the evolutionary constraint in the 32 elytral shape. Subsequent mass extinction events associated to climatic oscillations 33 decimated the diversity within each major clade, resulting in the species-poor genera 34 observed today. Our study supports a connection between high extinction rates and patterns 35 of decoupled phenotypic evolution and lineage diversification, and the possibility of a 36 radiation in the absence of ecological release.

37

```
38 Key words
```

Body-shape, extinction rates, Eupomphini, mass extinction events, non-adaptive radiation,phenotypic disparity.

41

42 1. Introduction

43 Explaining the mechanisms and factors behind the extraordinary variation in rates of 44 diversification (i.e., unequal species numbers) and phenotypic evolution (i.e., 45 morphological diversity) observed across the Tree of Life, is a major subject in 46 Evolutionary Biology (Darwin, 1859; Erwin, 2007; Eastman et al., 2011; Rabosky and 47 Adams, 2012). Classic evolutionary models propose the existence of a positive correlation 48 between species diversification and phenotypic evolution, with large clades exhibiting more 49 morphological variation than species-poor lineages (e.g. Eastel, 1990; Meyer et al., 1990; 50 Pennell et al., 2014). Some recent studies, however, have shown that the amount of 51 phenotypic change is not always correlated with species diversification (Harmon et al., 52 2003; Slater et al., 2010).

53 Groups where morphological disparity, i.e., differences in body shape or "bauplan" 54 sensu Gould, (1991), is in conflict with the expected levels of species diversity represent 55 ideal models to test the link between lineage diversification (speciation minus extinction 56 rates) and trait evolution (Sanderson and Donoghue, 1996; Rabosky and McCune, 2010; 57 Adams et al., 2009; Lee et al., 2013). Studies on these groups support the long-held tenet 58 that significant morphological change can occur in short time scales (Mayr, 1954; Eldredge 59 and Gould, 1972). Lineage diversification coupled with rapid phenotypic evolution has 60 often been linked to ecological release (Osborn, 1902; Schluter, 2000, 2001; Gavrilets and 61 Vose, 2005), in which the colonization of a new region with different environmental conditions promotes the evolution of novel traits with subsequent speciation (Glor, 2010; 62 63 Yoder et al., 2010). Other studies, however, have argued that it is the capacity of a lineage 64 to evolve novel phenotypes through different intrinsic mechanisms (genetic, epigenetic, 65 etc.), which triggers species diversification (Adamowicz et al., 2008; Pigliucci, 2008). In 66 this case, diversification is a consequence of intrinsic evolvability ("non-adaptive";

67 Gittenberger, 1991; Rundell and Price, 2009). Yet, few examples to date have provided68 support for this hypothesis.

69 Diversification studies have mainly focused on rapid events of speciation (i.e., 70 species radiations), and the factors driving them such as niche evolution or morphological 71 key innovations (e.g., Lagomarsino et al., 2016). Although extinction is seen as a positive 72 and constructive evolutionary force in paleontology (Raup, 1991; Benton, 2009), 73 difficulties to infer extinction rates from neontological data (Rabosky, 2009) have made it 74 less often the subject of such studies. Recently, the development of likelihood methods to 75 estimate changes in diversification rates and the time and magnitude of mass extinction 76 events from phylogenies containing only extant taxa (Stadler, 2011A; May et al. 2015) has 77 brought renewed attention into extinction. It is now seen as a critical process, responsible 78 for shaping the evolutionary history of individual taxa and regional biotas (Antonelli and 79 Sanmartín, 2011; Condamine and Hilnes, 2015; Sanmartín and Meseguer, 2016). None of 80 these studies, however, have focused on the relationship between extinction rates and 81 phenotypic diversity.

82 Here, we use the North American desert blister beetles (Meloidae) of the tribe 83 Eupomphini to explore the role of extinction in explaining patterns of low species diversity 84 coupled with rampant morphological variation across extant taxa. Eupomphini is currently 85 represented by only 26 described species, grouped into seven genera (Pinto, 1984). Yet, 86 these 26 species represent an extraordinary level of morphological differentiation in 87 complex anatomical structures within an otherwise relatively morphologically-88 homogeneous family (Figure 1). Other tribes of Meloidae have much higher species 89 richness but share a generally conservative bauplan. For example, *Epicauta*, within tribe 90 Epicautini, contains more than 370 described species (Pinto and Bologna, 2002), but most

91 of them exhibit the overall body shape characteristic of blister beetles: an elongate body 92 with long legs, entire or shortened elytra, and wings that are rarely reduced or absent. In 93 contrast, species of Eupomphini, except those within genus Eupompha LeConte 1858, 94 exhibit strikingly dissimilar morphologies (Figure 2), especially regarding the shape of 95 elytra and abdomen, and some display also exclusive behavioral traits associated to a 96 specific elytral morphology (Pinto, 1984). In addition to this diversity of body shapes, 97 Eupomphini presents an unusually restricted geographic distribution among blister beetles: 98 it is the only tribe of Meloidae that is restricted to the Nearctic region (Pinto and Bologna, 99 2002), with all species inhabiting arid and semiarid areas from western Mexico to 100 southwestern USA (Pinto, 1984).

101 Evolutionary relationships within the tribe Eupomphini have so far been 102 investigated using morphological and behavioral characters (Pinto, 1979; Pinto, 1984), or a 103 limited set of molecular markers (Bologna and Pinto, 2001), and relationships among 104 genera remain poorly resolved. In this study, we use a set of five mitochondrial and nuclear 105 molecular markers to obtain a robust phylogeny covering all seven genera and 85% of 106 species diversity within Eupomphini. We also estimated lineage divergence times and used 107 the resulting timetree as a template to test alternative hypotheses on the link between 108 phenotypic disparity, species diversification and extinction rates. Specifically, we use 109 macroevolutionary models to: (1) estimate changes in rates of speciation and extinction 110 over evolutionary time; (2) estimate the mode and rate of phenotypic evolution by 111 quantifying morphological change in some key traits (elytral and abdominal shape), and (3) 112 relate phenotypic disparity among clades from the origin of the tribe to the present with 113 shifts in lineage diversification and mass extinction events (Labandeira, 1997; Harmon et 114 al., 2003; Mayhew, 2007; Slater et al., 2010).

- 116 2. Materials and methods
- 117 2.1. Taxon sampling

118 A total of 72 specimens belonging to 22 of the 26 currently recognized species of

- 119 Eupomphini were examined, covering about 85 % of the known species richness in the
- tribe. Six of the seven genera of Eupomphini were represented by all of their species, while
- 121 eight of the 12 described species of *Eupompha* were included in our data set. We also
- added eight representative species of the other tribes of Meloinae (Lyttini, Mylabrini,
- 123 Pyrotini, Epicautini and Meloini), as well as one species of the sister subfamily

124 Nemognathinae (*Zonitis flava* Fabricius 1775) to root our phylogeny (Bologna et al., 2008).

125 All taxa included in this study, their locality and GenBank accession and voucher numbers

- are provided in Table 1. All specimens are deposited at the Museo Nacional de Ciencias
- 127 Naturales, Madrid, Spain (MNCN-CSIC), and the Colección Nacional de Insectos of the
- 128 Instituto de Biología, Universidad Nacional Autónoma de México, Mexico (IB UNAM).
- 129

130 2.2. DNA sequencing

131 A tissue sample of each specimen was obtained from thoracic muscle of the hind coxa.

132 Total genomic DNA was extracted using the "DNA Easy extraction Kit" (Qiagen®),

133 following the protocol described the manufacturer. We generated sequences for five gene

134 markers with different molecular evolutionary rates to obtain phylogenetic resolution at

135 different phylogenetic levels. For the mitochondrial (mtDNA) compartment, we sequenced

136 650 bp of the cytochrome oxidase I (*coxI*) marker, and 784 bp of the 16S ribosomal gene.

137 For the nuclear compartment, we sequenced 306 bp of the histone H3 gene, 722 bp of 18S

ribosomal marker, and 598 bp of the 28S nuclear ribosomal gene. These markers were

139 selected based on their proven efficacy in previous phylogenetic studies of beetles, in

140 particular for the superfamily Tenebrionoidea (Baselga et al., 2011; Gunter et al., 2014) and

141 the family Meloidae (Bologna et al., 2008; Alcobendas et al., 2008; Percino-Daniel et al.,

142 2013).

143 The primers and PCR protocols employed in this study are listed in Table S2.

144 Amplification was carried out in a total volume of 15µl, with 3µl of PCR buffer, 0.1-0.2 µl

145 of MgCl2, 0.2 μl of each primer and 0.1μl of MyTaq polymerase (BioLine[©]), 3μl of DNA

template and 8.3µl of ddH2O. Unpurified PCR products were sent for sequencing to the

147 genomics unit at IB UNAM. Sequences of *coxI* and H3 were manually aligned, whereas

148 16s, 18s and 28s sequences were aligned based on their secondary structure models, which

149 were obtained through the online program ViennaRNA Package version 2.0, available at

150 the Institute for Theoretical Chemistry, University of Vienna (<u>http://rna.tbi.univie.ac.at</u>).

151

152 2.3. Phylogenetic and relaxed molecular clock analyses

153 Concatenated Bayesian analyses were performed with MrBayes version 3.2.6 (Ronquist et

al., 2012). Selection of the best substitution model for each marker was carried out in

155 jModeltestet version 2.7.1 (Posada and Crandall, 1998) under the Akaike Information

156 Criterion correction (AIC). The free software PartitionFinder version 1.1.1 (Lanfear, 2012)

157 was used to determine the optimal partition scheme for the examined markers. A total of

nine unlinked partitions were selected: COIpos1, COIpos2, COIpos3, H3pos1, H3pos2,

159 H3pos3, 28s, 18s, 16s. The evolutionary models selected for each analysis and partition

160 with their best-fit model, are listed in Table S3.

MrBayes analysis consisted of two simultaneous runs of 100 million generations
each, sampling trees every 10,000 generations. Mixing and convergence among runs was

evaluated by checking the average standard deviation of split frequencies and the EES
values and Potential Scale Reduction Factor (PSRF) for each parameter. A majority
consensus tree was reconstructed after discarding the first 20,000 sampled trees as burn-in.
This dataset contained 55 terminal taxa and 3059 nucleotide positions; in a few cases, we
merged two specimens of the same population as a single terminal taxon to reduce the
amount of missing data in the dataset.

169 To estimate lineage divergence times within Eupomphini, we used Bayesian relaxed 170 molecular clocks implemented in BEAST version 1.8.2 (Drummond et al. 2012). The 171 analysis used the concatenated mitochondrial-nuclear dataset partitioned by gene but 172 without internal (codon) partitions. Molecular clocks were unlinked across genes, using an 173 uncorrelated lognormal relaxed clock with the mean and standard deviation of substitution 174 rates (subst/site/Ma) for the COI, 16S, and 28S markers following Papadopoulou et al. 175 (2010). The ucld.mean parameter for the coxI marker was assigned a lognormal distribution 176 in real space, with initial value: 0.0168, Log(Mean): 0.0168, Log(Stdev): 0.0018; the 177 ucld.mean for 16S: lognormal distribution in real space, with 0.0054 as initial value, 178 Log(Mean): 0.0054, Log(Stdev): 0.0009; ucld.mean for 28S: lognormal in real space, with 179 initial value (0.0006), Log(Mean): 0.0006, Log(Stdev): 0.0003. For the remaining markers 180 we used uninformative priors: the ucld.mean parameters for 18S and H3 were assigned a 181 gamma distribution in real space, with initial value (0.01), shape parameter (0.01), scale 182 (100), and Offset (0). 183 The birth-death model with incomplete taxon sampling (Stadler, 2009) was used as

a tree prior to account for the effect of extinction and taxon sampling on tree topology and
branch lengths. The analysis was run for 100 million generations, discarding the first
10,000 generations as burn-in. Inspection of the trace plots and effective sample sizes in

mixing of the MCMC runs. All analyses were run in the web public resource CIPRES
Science Gateway version 3.3 (Miller et al., 2010). After discarding the burn-in, the
remaining trees were employed to build a maximum-clade credibility (MCC) tree with 95%
high-posterior density (HPS) credibility intervals of ages using TreeAnnotator version 1.8.2
included in the BEAST package. Phylogenetic trees were visualized with FigTree version
1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Tracer 1.8.0 (Drummond and Rambaut, 2007) was used to assess the convergence and

195 2.4. Tempo and mode of species diversification

187

196 Diversification analyses were based on the MCC timetree, pruned to leave just one 197 specimen per species to avoid bias in speciation rate estimates. We first plotted the number 198 of lineages through time with the function *ltt.plot* in the R package *ape* (Paradis et al., 199 2004) to visually inspect the diversification trajectory. We then statistically evaluated the fit 200 of the MCC tree to alternative birth-death models: rate-constant diversification, density-201 dependent diversification, and discrete time-variable diversification using the whole-tree 202 likelihood algorithms implemented in the R package TreePar (Stadler, 2011B). This 203 method accounts for the effect on the tree topology of incomplete taxon sampling - by 204 incorporating the sampling fraction of the extant taxa - and the "pull-of-the-present" - an 205 artifact of the effect of extinction on recent lineage diversification (Stadler, 2011C). The 206 function bd.shift.optim was used to detect tree-wide rate shifts: changes in speciation and 207 extinction rates that affect all clades in the tree simultaneously at discrete points in time. In 208 particular, we estimated by maximum likelihood the time of the rate shift and the 209 magnitude of the rate of diversification (r = speciation (λ) - extinction (μ)), and the 210 extinction fraction or turnover ($\varepsilon = \mu / \lambda$) before and after the change. Potential mass

211 extinction events (MEEs) - defined as a sampling event that removes part of the standing 212 diversity at a given point in time (parameter ρ) - were also estimated using the option MEE 213 =TRUE; this constrains the magnitude of diversification and turnover to be equal before 214 and after the MEE, since discrete rate shifts in diversification cannot be distinguished from 215 MEE sampling events by likelihood methods (Stadler, 2011C; Sanmartín and Meseguer, 216 2016). We tested four alternative models using likelihood-ratio tests to select the best 217 model at 95% confidence level. 1) a pure birth (Yule) model without conditioning on a 218 particular value of speciation rate, but conditioned on survival of extant taxa (N=26); 2) a 219 birth-death model (BD), where extinction and speciation rates are estimated as constant; 3) 220 an episodic birth-death model with one, two or three rate-shifts (BD-RS), assuming no 221 mass extinction events (ME=FALSE); 4) a mass extinction model (ME=TRUE), estimating 222 the intensity of the mass extinction (ρ) for one, two or three events; and 5) an intermediate 223 episodic birth-death model allowing both MEEs and rate shifts, where the rho parameter 224 values estimated in (4) are used as fixed values for the sampling fraction (survival 225 probability) in the past with ME =FALSE. For all models, we set the sampling fraction to 226 0.85 to account for incomplete taxon sampling (22 out of 26 species), and used a grid of 227 discrete time at every 0.2 Ma intervals to detect potential rate shifts in the episodic birth-228 death models.

Alternatively, we explored the power of the Bayesian Inference framework to estimate simultaneously the timing and magnitude of changes in diversification rates and mass extinction events. We used the CoMET model (Compound Poisson Process of Mass Extinction, May et al., 2015) implemented in the R package TESS (Höhna, 2013), which uses reversible model jumping algorithms to estimate MEEs while accounting for shifts in speciation and extinction rates as nuisance parameters. As in TreePar, CoMET implements 235 an episodic, stochastic-branching process, where speciation and extinction rates are 236 constant between MEEs or rate-shift events (May et al. 2015). The analyses consisted of 237 two chains of 10 millions of iterations, a sampling frequency of 100 and a minimum 238 number of effective sample size of 1000. The shape of the prior distributions for speciation 239 and extinction rates was estimated from the data using the argument "empiricalHyperPriors 240 = TRUE. We set the sampling probability (sampling fraction) to 0.85, and used default 241 values in TESS for the initial speciation rate = 2.0, initial extinction rate = 1.0, and number 242 of expected rate changes and MEEs = two. Mixing and convergence of the two chains was 243 assessed by estimating MCMC diagnostics in TESS (Höhna, 2013) - the Rubin-Gelman 244 statistic and ESS values (> 500) - and by comparing posterior density plots between chains.

245

246 2.5. Morphological disparity patterns and character evolution

247 To explore variation in levels of morphological disparity over time and across clades, we

248 used a set of four morphological characters that vary extensively in Eupomphini:

1) Elytral volume: we adjusted the elytra to an ellipse form, and calculated the volume

250 measuring the three radii of an ellipse (width, length and depth), and then using the volume

251 formula: $V = (4\pi/3)r1r2r3$

252 2) Abdominal volume: we adjusted the abdomen to an elliptical form as above.

253 3) Elytral amplitude: we measured the angle formed by two lines; the first line was

254 measured from the insertion point of the elytra with the prothorax to the medium point of

the elytral curve. The second one was measured from the medium point of the elytral curve

to the posterior apex of the elytra.

4) Elytral convexity: we measured the angle formed by two lines; one from the insertion

258 point of the elytra with the prothorax to the posterior apex of elytra, and the second one

from the insertion point of the elytra with the prothorax to the medium point of the elytralcurve.

A single representative male specimen was measured for each species. All characters were measured with the specimen in lateral view (Figure 3). The measurements were obtained with the program TPS version 1.14 (Rohlf, 2002), and all values logtransformed before the analysis.

265 We fitted various likelihood models for continuous character evolution to our 266 dataset using the function *fitContinuous* in the R package *geiger* (Harmon et al. 2008): 267 Brownian Motion (BM) (Felsenstein, 1973), Ornstein-Uhlenbeck model (OU) (Butler and 268 King, 2004), Early-burst model (EB) (Harmon et al. 2010) and White-noise model (WH). 269 The AIC test with the obtained likelihood scores was used to select the best-fit model. We 270 then performed a morphological-disparity-through-time analysis (Harmon et al., 2003) in 271 geiger to compare levels of phenotypic disparity within the tribe, among clades, and 272 through time. For each character, the function dtt (disparity-through-time) was used to 273 estimate variation in morphological disparity using the average pairwise Euclidean 274 distances between species (Harmon et al., 2003). Values near zero imply that most of the 275 variation is partitioned among subclades, while subclades contain relatively little variation. 276 Conversely, values near one suggest that disparity is high within subclades relative to the 277 total disparity across the entire phylogeny, and that subclades are likely to overlap 278 extensively in morphological space (Harmon et al., 2003). Finally, we calculated the 279 Morphological Disparity Index (MDI), comparing phenotypic disparity simulated under a 280 Brownian motion model - the best-fit model selected by the AIC test - against observed 281 phenotypic disparity among and within subclades relative to total disparity at all time steps 282 in the phylogeny (Rowe et al., 2011).

3. Results

285 3.1. Phylogenetic relationships in Eupomphini

286 The Bayesian phylogram derived from the concatenated dataset (Figure 4) showed

significant support for the monophyly of Eupomphini (PP = 1) and Epicautini as its sister

group (PP = 96). All ingroup genera were recovered as monophyletic with strong support

289 (PP > 95), except *Eupompha*. Members of this genus were instead recovered as a grade of

two separate clades at the base of the tribe. The first of these clades was sister to the

291 remaining species in Eupomphini, and comprises two species pairs: Eupompha edmundsi

292 (Selander 1953) + *E. viridis* (Horn 1883) (PP= 1), and *E. elegans* (LeConte 1851) + *E.*

293 *imperialis* (Wellman 1912). The second clade (PP= 0.88) showed *Eupompha fissiceps*

LeConte 1858 as sister to the clade formed by E. histrionica (Horn 1891) and E. schwarzi

295 (Wellman 1909) + *E sulciphrons* (Champion 1892) (PP= 0.88). This second *Eupompha*

clade was sister to a clade including all remaining species of the tribe (PP = 0.89), all of

which have some degree of elytral deformation. Within this clade, *Phodaga* LeConte 1858

and *Pleuropasta* Wellman 1909 are sister genera (PP= 1) and sister to a clade containing

two subclades, one with Megetra LeConte 1859 + Cordylospasta Horn 1875 (PP= 0.66),

and the other one with *Cysteodemus* LeConte 1851 + *Tegrodera* LeConte 1851 (PP= 1).

301

302 3.2. *Divergence time estimates*

303 Figure 5A shows the MCC tree obtained from the BEAST analysis with mean age

304 estimates and 95% HPD credibility intervals for age estimates. The topology was congruent

305 with the phylogenetic hypothesis based on the MrBayes concatenated analysis. The origin

306 of Eupomphini was dated during the Early Miocene (Mean 17.88, 95% HPD 15.24-20.53

307 Mya). Also, an Early Miocene origin was estimated for the clade whose members have 308 elytral deformation (Mean 16.08, 95% HPD 12.81-17.20 Mya). For most genera, the most 309 recent common ancestor (MRCA) was dated as originating during the Late Miocene 310 (Cordvlospasta, Megetra, Pleuropasta, Phodaga and Cysteodemus), between 7.84 and 5.8 311 Mya. The youngest MRCA estimate belongs to *Tegrodera*, which appears to have 312 originated during the Late Pleistocene (Mean 1.58, 95%HPD 0.76-2.94 Mya). The oldest 313 MRCAs correspond to the two non-sister clades of Eupompha, whose origins are placed in the Middle Miocene between 13.66 Mya (95%HPD 10.93-16.45) and 13.53 Mya (95%HPD 314 315 10.51-16.74).

316

317 3.3. *Diversification analyses*

The LTT plot showed a sigmoidal shape, with initial accumulation in the number of

319 lineages, followed by a slowdown and a final uplift towards the present (Figure 5A right).

320 This is confirmed by the *TreePar* analyses, summarized in Table 1 and Figure 5B.

321 Likelihood ratio tests supported an episodic model with two rate shifts against the constant-

322 rate Yule and BD models. The pattern of diversification shows an increase over time in the

323 background extinction rate, starting with $\varepsilon_0 = 0.99$; then rising to $\varepsilon_1 = 1.81$ at $t_1 = 5.77$ Mya,

and finally peaking at $t_2 = 1.97$ Mya with a very high turnover of $\varepsilon_2 = 7.56$ (Figure 5B)

right). Conversely, the net diversification rate started with a value of $r_0 = 0.24$, then

decreased to a negative value of $r_1 = -1.02$, and showed a slight recovery towards the

327 present ($r_2 = 0.0006$). When the ME = TRUE option was used (modeling mass extinction

328 events as sampling events in the past), a model with one MEE was selected as the best-fit

329 model (Table 1). The survival probability - the fraction of existing lineages that survived

330 the mass extinction event and went to the next diversification rate period - was inferred as ρ

331 = 0.03, indicating that 97% of extant diversity went extinct at 1.97 Mya (Figure 5B right). $332 \text{ A second, older mass extinction event was detected at } 9.37 \text{ Mya with survival probability } \rho$ 333 = 0.155, but this model was not significantly better than the 1-MEE model (Table 1; Figure 334 5B left).

335 Results from CoMET showed a similar pattern (Figure 5A left), though uncertainty 336 in parameter estimation (represented by the 95% HPD) was high: there is an initially high 337 net diversification rate between 20-15 Ma ($r \sim 0.15$), which rapidly decreases towards the 338 present ($r \sim 0.05$); this is concurrent with a decrease in the background extinction rate from 339 an initial value $\varepsilon \sim 0.12$, followed by an increase over time that peaks towards the present (ε 340 ~0.43).. Figure 5B (left) shows the Bayes Factor comparisons for the timing of MEE events 341 ("mass extinction times"): CoMET detects one MEE at c. 2 Mya), with Bayes Factor (lnBF) 342 = 1; other (non-significant) MEEs are detected at 5 Mya and at close to the start of the 343 phylogeny (c. 17 Mya). Figures S6-S9 show the MCMC diagnostics and plots of the other 344 parameters estimated by CoMET: speciation and extinction rates, rate shifts, and MEE time 345 estimates.

346

347 3.4. Morphological disparity patterns and character evolution

348 Our comparison of continuous trait evolutionary models in *geiger* selected the Brownian

349 motion as the best-fit model for all characters (Table S4), which was also the null model

350 used in the MDI analyses (below). The traits elytral and abdominal volume were estimated

to evolve at a rate of 0.172 and 0.177, respectively, whereas elytral convexity and

amplitude evolved with a slower rate of 0.012 and 0.001, respectively.

353 Disparity-through-time (DTT) plots were similar across all four morphological
354 traits, with morphological diversity being higher at the first two thirds of the phylogeny,

indicating that the disparity was equally distributed through subclades. In the last third of
the phylogeny, there is a sharp decrease of values, suggesting that the disparity is
pronounced among subclades but poor at intraclade level (Figure 6). The Morphological
Diversity Index (MDI) was negative for abdominal volume, elytral convexity and elytral
amplitude (-0.10, -0.10, -0.07, respectively); MDI for elytral volume was 0.03 (Figure 6).
The MDI test thus rejected the Brownian model (BM) as the model of trait evolution, albeit
with no significant *p*-values; likelihood and AIC scores are summarized in Table S4.

362

363 4. Discussion

364 4.1. Phylogenetic relationships in Eupomphini

365 Previous phylogenetic studies had suggested the monophyly of the tribe Eupomphini based 366 on a limited taxon sampling and using morphological and molecular information from two 367 gene markers (16S and ITS2) (Pinto, 1984; Bologna and Pinto, 2001). Our phylogeny -368 based on a much larger sample of markers - supports the monophyly of the tribe (PP >369 0.95), and confirms the two morphological and behavioral adult synapomorphies proposed 370 by Pinto (1984): adults with ventral blade of claws shorter than dorsal blade and largely 371 adnate to it, and cleaning of antennae using only forelegs, not mouthparts. 372 Similarly, all genera within Eupomphini excepting Eupompha were recovered as 373 monophyletic with significant support. Species of Eupompha have originally being placed 374 (LeConte, 1862) into two separate genera (Calospasta and Eupompha), though they were 375 subsequently synonymized by Selander (1954). In his revision of the genus, Pinto (1979) 376 proposed two informal sections defined by morphological characters of the first larval and

377 adult stages. These two sections corresponded with LeConte's original division. In our

phylogenetic tree, the two clades grouping the species of *Eupompha* also correspond withthe sections described by Pinto (1979).

Based on the above information, we propose the division of *Eupompha* into two genera. The name *Calospasta* LeConte, 1862 is reestablished for the section 1 of Pinto

382 (1979), since it contains its type species, *C. elegans. Calospasta* is represented by six

383 species: Calospasta decolorata Horn, 1894, Calospasta elegans LeConte, 1851, Calospasta

384 imperialis Wellman, 1912, Calospasta viridis Horn, 1883, Calospasta edmundsi Selander,

385 1953, and Calospasta vizcaina Pinto, 1983. Members of Calospasta are morphologically

386 characterized by having an asymmetrical third segment of the maxillary palpi in the first

larval stage. *Eupompha s. str.*, on the other hand, corresponds to Pinto's (1979) Section 2,

388 which contains its type species, *E. fissiceps*. This genus now comprises *E. histrionica*, *E.*

389 schwarzi, E. terminalis Selander 1957, E. sulciphrons, E. fissiceps and E. wenzeli Skinner,

390 1904; and they differ from members of *Calospasta* by differences in male genitalia as

indicated by Pinto (1979).

Phylogenetic relationships among genera obtained in this study do not correspond
well with those proposed by Pinto (1984) based on morphological characters. The only
point of agreement is the sister relationship between *Pleuropasta* and *Phodaga*: species of
these two genera share the pronotal disk somewhat inflated and bilobed at its basis (Pinto,
1984).

397

4.2. Non-adaptive radiation and dramatic extinction explain patterns of low diversity and
rampant phenotypic disparity in Eupomphini

Eupomphini are distributed within the physiographic "Basin and Range" province in
Mexico. This province underwent a period of intense geological activity from 24 to 12

402 Mya, which ended with its separation from the Colorado Plateau. Initial diversification in 403 Eupomphini (25-18 Mya, Figure 5) might have been promoted by the emergence of new 404 landscapes - arid and semi-arid habitats - after this event, as suggested for other animal 405 groups (i.e., Avise, 1998; Knowles, 2000; Bryson et al., 2013). Though we cannot discard 406 this explanation - we did not analyze climatic niches - our diversification and disparity 407 analyses suggest a different type of scenario, in which diversification is associated to rapid 408 morphological evolution in the absence of ecological release, a "non-adaptive" radiation 409 sensu Gittenberger (1991). Both TreePar and CoMET (Figure 5A-B) inferred a pattern of 410 net diversification rate that decreases over time, concomitant with an increase in 411 background extinction rates that peaks towards the present. However, whereas CoMET 412 recovers the signal of the initial radiation, showing a high diversification rate at the onset of 413 the phylogeny (Fig. 5A left), *TreePar* does not (Fig. 5B). This can be explained by the 414 different inferential framework. TreePar uses a maximum likelihood greedy algorithm in 415 which the time of one rate shift is estimated and fixed before estimating the time of the next 416 rate shift and cannot estimate simultaneously both tree-wide rate shifts and MEEs (Stadler, 417 2011A,B). CoMET uses a hierarchical Bayesian approach and MCMC to jointly estimate 418 the posterior distribution of rate shifts and MEEs, and thus has a higher statistical power to 419 detect these events than TreePar (May et al. 2015).

The pattern of lineage radiation detected here was paralleled by a similar pattern of morphological variation in the four studied body-shape traits. A high initial disparity is observed, indicating that subclades contained early a substantial proportion of the total morphological variation, as expected in a radiation. This proportion then decreases towards the present, with most of the variation partitioned among the extant genera and little variation within them as the morphological space becomes saturated (Figures 5B, 6). We 426 also estimated a negative MDI value for all characters excepting the elytral amplitude

427 (Figure 6), which is also considered evidence of a morphological radiation (Harmon et al.,

428 2003; Cantalapiedra et al. 2017).

429 What could have promoted this initially rapid morphological evolution? The 430 outcome of the evolutionary process is limited by evolutionary constraints (Alberch, 1982; 431 Gould, 1989; Arnold, 1992). Some constraints arise in the epigenetic interactions involved 432 during the developmental process, limiting drastically the possibilities of morphological 433 change and restricting the set of possible bauplans (Alberch, 1982). The extreme 434 diversification of elytral shape observed within the derived "elytral deformation" clade of 435 Eupomphini (i.e., grouping all genera except for Eupompha and Calospasta) (Figures 1, 2), 436 suggests that a probable developmental disturbance affected the common ancestor of this 437 clade. A general disturbance involving the loss of the evolutionary constraint responsible 438 for the relationship between elytral and abdominal shape in Meloidae would result in a 439 dramatic extension of the available morphospace. This morphospace widening would open 440 the gate for wild exploratory morphological experiments, visualized in the form of a fast 441 radiation of morphotypes among which the extant generic forms are included (Figure 1). 442 Though further developmental studies are needed to confirm the hypothesis that the loss of 443 evolutionary constraints in body shape drove the rapid phenotypic evolution of 444 Eupomphini, several lines of evidence support this. 1) Rapid lineage 445 divergence contributes to the maintenance of ancestral polymorphism among the incipient 446 clades, and results in a loss of phylogenetic signal and poorly resolved internal clades 447 (Whitfield and Lockhart, 2007); this is observed in the pattern of lineage accumulation in 448 the tribe, with low support values at the deepest nodes compared to the tip clades, and a 449 topology with short internal versus long external branches (Fig. 4). 2) A fast-evolutionary

450 rate was estimated for elytral and abdominal volume traits under the BM model, suggesting

451 that the new forms produced along the morphological radiation were an array of

452 morphotypes that changed almost randomly across taxa.

453 Evolutionary radiations are expected to show a characteristic trajectory, which 454 corresponds to a density-dependent model for lineage diversification (Etienne et al., 2012) 455 and an "early-burst" model for trait evolution (Harmon et al. 2008), in which initially rapid 456 rates are followed by a slowdown towards the present. Interestingly, the diversification 457 trajectory of Eupomphini does not fit any of these models (Figure 6, Table S3). The reason 458 is that the morphological radiation in Eupomphini was followed by historically high 459 extinction rates, resulting in a tree with initially rapid evolution (17 to 15 Mya), followed 460 by a subsequent slowdown in the rate of diversification as the morphological space became 461 saturated (15 to 5 Mya), and a final uplift in the last 5-2 Mya, as expected for diversity 462 rebounding after a mass extinction event (Figure 5A,B). Both TreePar and CoMET 463 estimated increasingly high background extinction rates. They also detected a dramatic 464 mass extinction event at around 2 Mya, when more than 97% of extant lineages of 465 Eupomphini went extinct (Figure 5, Table 1); the lack of statistical significance for this 466 event in Bayes Factor comparisons in CoMET is probably due to the small size of our 467 phylogeny (May et al. 2015). This MEE could have been caused by the well-known 468 climatic fluctuations of the Pleistocene (Berger, 1984; Bartlein and Prentice, 1989; Webb 469 and Bartlein, 1992). These environmental changes, with alternating glacial and interglacial 470 cycls, considerably altered the geographical ranges of many groups of organisms, including 471 Coleoptera (Coope, 1979), promoting speciation processes (Mayr and O'Hara, 1985; 472 Baselga et al., 2011), but also limiting speciation in several taxa (Zink and Slowinski 473 1995). TreePar and CoMET detected a second, older (albeit non-significant) mass

extinction eventin the Miocene-Pliocene transition (c. 5 Mya, Fig. 5A,B), which apparently 474 475 eliminated c. 90% extant lineages (Table 1). At this time, the proportion of plants with C3 476 metabolism changed dramatically towards C4 plants, affecting the atmospheric temperature 477 and the CO₂ proportion, and causing a deep desertification and the extinction of several 478 living groups (Cerling et al., 1997; Ehleringer et al., 1997; MacFadden et al., 1999; Krause 479 et al., 2008). This event could have extirpated the early branching off lineages within the 480 "elytral deformation" clade, resulting in the deep divergences and extremely different 481 morphotypes observed today across living genera (e.g., Cysteodemus and Tegrodera).

482

483 **5.** Conclusions

484 Changes in speciation and extinction rates have been considered key factors to 485 explain phylogenetic, temporal, and spatial variation in species richness across organisms 486 (Glor, 2010; Paradise, 2011; Morlon et al., 2011; Rabosky, 2014). Our results suggest that 487 phenotypic evolvability – in this case the loss of the evolutionary constraint for elytral 488 shape in Meloidae shortly after the initial divergence of Eupomphini - acted as a trigger 489 driving morphological diversification and accelerated speciation (non-adaptive radiation) in 490 this tribe. They also highlight the role played by historically high extinction rates, driven by 491 abiotic factors such as climate change, to explain the evolutionary riddle posed by groups in 492 which phenotypic disparity is decoupled from patterns of lineage diversification.

493

494 Acknowledgments

495 We thank Mercedes París, curator of the Insect Collection of the Museo Nacional de

496 Ciencias Naturales (MNCN-CSIC), Nico Franz, Matthew Gimmel Andrew Johnston of the

497 University of Arizona Insect Collection at Tucson (Arizona, USA); and William Barner for

- 498 providing additional dry specimens used in this study; to Oscar Pérez Flores, Cristina
- 499 Mayorga, Guillermina Ortega, Andrés Ramírez Ponce, for their help at the CNIN IB-
- 500 UNAM; to Edna G. López Estrada and David Cortés Poza for help with statistics; to Laura
- 501 Márquez for her help in the IB-UNAM laboratory; to David Buckley and Paloma Mas for
- 502 their help with BEAST at the MNCN; to Yolanda Jiménez for her help at the MNCN
- 503 laboratory. Jose Luis Ruiz, Pedro Abellán, and Chiara Settanni helped with the field
- sampling. This work was supported by grants given by the Consejo Nacional de Ciencia y
- 505 Tecnología [CONACyT, Mexico, Proyecto SEP- Ciencia Básica no. 220454; Red Temática
- del Código de Barras de la Vida] and UNAM [DGAPA-PAPIIT no. IN207016] to AZR,
- and Project Grants from Spain to IS and MGP respectively [CGL2015-67849-P
- 508 (MINECO/FEDER) & CGL2015-66571-P (MINECO/FEDER)].
- 509

510	References
511	
512	Adamowicz SJ, Purvis A, Wills MA. 2008. Increasing morphological complexity in
513	multiple parallel lineages of the Crustacea. PNAS. 105(12):4786-4791.
514	
515	Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification
516	correlated with rates of morphological evolution? Proc. R. Soc. Lond., B, Biol. Sci.
517	276(1668):2729-2738.
518	
519	Alberch P. 1982. Developmental constraints in evolutionary processes. 1982. In: Bonner JT
520	(ed.) Evolution and development. Springer-Verlag, Berlin, Heidelberg. pp. 313-332.
521	
522	Alcobendas M, Ruiz JL, Settanni C, García-París M. 2008. Taxonomic status of Euzonitis
523	haroldi (Heyden, 1870) (Coleoptera: Meloidae) inferred from morphological and molecular
524	data. Zootaxa. (1741):59-67.
525	
526	Antonelli A, Sanmartín I. 2011. Mass extinction, gradual cooling, or rapid radiation?
527	Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum
528	(Chloranthaceae) using empirical and simulated approaches. Syst. Biol. 60(5):596-615.
529	
530	Arnold SJ. 1992. Constraints on phenotypic evolution. Am. Nat. 140(Suppl.):S85-S107.
531	
532	Avise JC, Walker D, Johns GC. 1998. Speciation durations and Pleistocene effects on
533	vertebrate phylogeography. Proc. R. Soc. Lond., B, Biol. Sci. 265(1407):1707-1712.
534	
535	Bartlein PJ, Prentice IC. 1989. Orbital variations, Climate and Paleoecology. Trends Ecol.
536	Evol. 4(7):195-199.
537	
538	Baselga A, Recuero E, Parra-Olea G, García-París M. 2011. Phylogenetic patterns in
539	zopherine beetles are related to ecological niche width and dispersal limitation. Mol. Ecol.
540	20(23):5060-73.

5	4	1
J		-

542	Benton MJ. 2009. The Red Queen and the Court Jester: Species diversity and the role of		
543	biotic and abiotic factors through time. Science. 323(5915):728-732.		
544			
545	Berger A. 1984. Accuracy and frequency stability of the Earth's orbital elements during the		
546	Quaternary. In: Berger A, Imbrie J, Hays H, Kukla G, Saltzman B. (Eds.) Milankovitch and		
547	climate: understanding the response to astronomical forcing. Palisades, New York. p. 3.		
548			
549	Bologna MA, Oliverio M, Pitzalis M, Mariottini P. 2008. Phylogeny and evolutionary		
550	history of the blister beetles (Coleoptera, Meloidae). Mol. Phylogenet. Evol. 48(2):679-693.		
551			
552	Bologna MA, Pinto JD. 2001. Phylogenetic studies of Meloidae (Coleoptera), with		
553	emphasis on the evolution of phoresy. Syst. Entomol. 26(1):33-72.		
554			
555	Bryson RW, Riddle BR, Graham MR, Smith BT, Prendini L. 2013. As old as the hills:		
556	montane scorpions in southwestern North America reveal ancient associations between		
557	biotic diversification and landscape history. PlosOne. 8(1):e52822.		
558			
559	Butler MA, King AA. 2004. Phylogenetic comparative analysis: A modeling approach for		
560	adaptive evolution. Am. Nat. 164(6):683-695.		
561			
562	Cantalapiedra JL, Prado JL, Fernández MH, Alberdi MT. 2017. Decoupled		
563	ecomorphological evolution and diversification in Neogene-Quaternary horses. Science.		
564	355(6325):627-630.		
565			
566	Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR.		
567	1997. Global vegetation change through the Miocene/Pliocene boundary. Nature.		
568	389(6647):153-158.		
569			
570	Condamine FL, Hines HM. 2015. Historical species losses in bumblebee evolution. Biol.		
571	Lett. 11(3): 20141049		

572	
573	Coope GR. 1979. Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology.
574	Annu. Rev. Ecol. Evol. Syst. 10:247-267.
575	
576	Darwin, C. 1859. On the Origin of Species by Means of Natural Selection.
577	John Murray, London. pp 1-502.
578	
579	Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling
580	trees. BMC Evol. Biol. 7:214.
581	
582	Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with
583	BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29(8):1969-1973.
584	
585	Easteal S. 1990. The pattern of Mammalian evolution and the relative rate of molecular
586	evolution. Genetics. 124(1):165-173.
587	
588	Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ. 2011. A novel comparative
589	method for identifying shifts in the rate of character evolution on trees. Evolution.
590	65(12):3578-3589.
591	
592	Ehleringer JR, Cerling TE and Helliker BR. 1997. C4 photosynthesis, atmospheric CO2,
593	and climate. Oecologia. 112(3):285-299.
594	
595	Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism.
596	In: Schopf, TJM (ed.). Models in Paleobiology. Freeman & Cooper, San Francisco. pp.
597	305-332.
598	
599	Erwin DH. 2007. Disparity: morphological pattern and developmental context.
600	Palaeontology. 50:57-73.
601	

602	Etienne RS, Haegeman B, Stadler T, Aze T, Pearson PN, Purvis A, Phillimore AB. 2012.	
603	Diversity-dependence brings molecular phylogenies closer to agreement with the fossil	
604	record. Proc. R. Soc. Lond., B, Biol. Sci. 279:1300-1309.	
605		
606	Felsenstein J. 1973. Maximum-Likelihood estimation of evolutionary trees from continuous	
607	characters. Am. J. Hum. Genet. 25(5):471-492.	
608		
609	Gavrilets S, Vose A. 2005. Dynamic patterns of adaptive radiation. PNAS. 102(50):18040-	
610	18045.	
611		
612	Gittenberger E. 1991. What about non-adaptive radiation. Biol. J. Linn. Soc. 43(4):263-	
613	272.	
614		
615	Glor RE. Phylogenetic insights on adaptive radiation. 2010. Annu. Rev. Ecol. Evol. Syst.	
616	41:251-270.	
617		
618	Gould SJ. 1989. A developmental constraint in Cerion, with comments on the definition	
619	and interpretation of constraint in evolution. Evolution. 43(3):516-539.	
620		
621	Gould SJ. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of	
622	cladistics analysis: why we must strive to quantify morphospace. Paleobiology. 17(4):411-	
623	423.	
624		
625	Gunter NL, Levkanicova Z, Weir TH, Slipinski A, Cameron SL, Bocak L. 2014. Towards a	
626	phylogeny of the Tenebrionoidea (Coleoptera). Mol. Phylogenet. Evol. 79:305-312.	
627		
628	Harmon LJ, Schulte JA, Larson A, Losos JB. 2003. Tempo and mode of evolutionary	
629	radiation in iguanian lizards. Science. 301(5635):961-964.	
630		
631	Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating	

evolutionary radiations. Bioinformatics. 24(1):129-131.

634	Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, Kozak KH,
635	McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schlute II JA,
636	Seehausen O, Sidlauskas BL, Torres-Carbajal O, Weir JT, Mooers AØ. 2010. Early bursts
637	of body size and shape evolution are rare in comparative data. Evolution. 64(8):2385-2396.
638	
639	Höhna S. 2013. Fast simulation of reconstructed phylogenies under global time-
640	dependent birth-death processes. Bioinformatics. 29:1367-1374.
641	
642	Knowles LL. 2000. Tests of Pleistocene speciation in montane grasshoppers (genus
643	Melanoplus) from the sky islands of western North America. Evolution. 54(4):1337-1348.
644	
645	Krause J, Unger T, Noçon A, Malaspinas AS, Kolokotronis SO, Stiller M, Soibelzon L,
646	Spriggs H, Dear PH, Briggs AW, Bray SCE, O'Brien SJ, Rabeder G, Matheus P, Cooper A,
647	Slatkin M, Pääbo S and Hofreiter M. 2008. Mitochondrial genomes reveal an explosive
648	radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol. Biol.
649	8(1): 220.
650	
651	Labandeira CC. 1997. Insect mouthparts: Ascertaining the paleobiology of insect feeding
652	strategies. Annu. Rev. Ecol. Evol. Syst. 28:153-193.
653	
654	Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016. The abiotic and
655	biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol.
656	210(4):1430-1442.
657	
658	Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined selection of
659	partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol.
660	29(6):1695-1701.
661	
662	LeConte JL. 1862. Classification of Coleoptera of North America. Prepared for the
663	Smithsonian Institution. Smithson. Misc. Collect. 136:1-286.

665	Lee MSY, Soubrier J, Edgecombe GD. 2013. Rates of phenotypic and genomic evolution
666	during the Cambrian Explosion. Curr. Biol. 23(19):1889-1895.
667	
668	MacFadden BJ, Solounias N and Cerling TE. 1999. Ancient diets, ecology, and extinction
669	of 5-million-year-old horses from Florida. Science. 283(5403):824-827.
670	
671	May MR, Höhna S, Moore BR. 2015. A Bayesian approach for detecting the impact of
672	mass-extinction events on molecular phylogenies when rates of lineage diversification may
673	vary. Methods Ecol. Evol. 7(8):947-959.
674	
675	Mayhew PJ. 2007. Why are there so many insect species? Perspectives from fossils and
676	phylogenies. Biol. Rev. 82(3):425-454.
677	
678	Mayr, E. 1954. Change of genetic environment and evolution. pp. 157-180. In: Huxley J,
679	Hardy AC, Ford EB (Eds.) Evolution as a Process. Allen and Unwin, London. pp. 367.
680	
681	Mayr E, O'Hara RJ. 1985. The biogeographic evidence supporting the Pleistocene forest
682	refuge hypothesis. Evolution. 40(1):55-67.
683	
684	Meyer A, Kocher TD, Basasibwaki P, Wilson AC. 1990. Monophyletic origin of Lake
685	Victoria cichlid fishes suggested by mitochondrial-DNA sequences. Nature.
686	347(6293):550-553.
687	
688	Miller MA, Pfeiffer W and Schwartz T. 2010. Creating the CIPRES Science Gateway for
689	inference of large phylogenetic trees. In: Proceedings of the Gateway Computing
690	Environments Workshop (GCE), New Orleans (Louisiana). pp.1-8.
691	
692	Morlon H, Parsons TL, Plotkin JB. 2011. Reconciling molecular phylogenies with the
693	fossil record. PNAS. 108(39):16327-16332.
694	

696	
697	Papadopoulou A, Anastasiou I, Vogler AP. 2010. Revisiting the insect mitochondrial
698	molecular clock: The Mid-Aegean Trench calibration. Mol. Biol. Evol. 27(7):1659-1672.
699	
700	Paradis E. 2011. Time-dependent speciation and extinction from phylogenies: a least
701	squares approach. Evolution. 65(3):661-672.
702	
703	Paradis E, Bolker B, Strimmer K. 2004. APE: Analysis of phylogenetics and evolution in R
704	language. Bioinformatics. 20(2):289-290. URL [http://cran.r-
705	project.org/web/packages/ape/ape.pdf].
706	
707	Pennell MW, Harmon LJ, Uyeda JC. 2014. Is there room for punctuated equilibrium in
708	macroevolution? Trends Ecol. Evol. 29(1):23-32.
709	
710	Percino-Daniel N, Buckley D, García-París M. 2013. Pharmacological properties of blister
711	beetles (Coleoptera: Meloidae) promoted their integration into the cultural heritage of
712	native rural Spain as inferred by vernacular names diversity, traditions, and mitochondrial
713	DNA. J. Ethnopharmacol. 147(3):570-583.
714	
715	Pigliucci M. 2008. Opinion - Is evolvability evolvable? Nat. Rev. Genet. 9(1):75-82.
716	
717	Pinto JD. 1979. A classification of the genus Eupompha (Coleoptera: Meloidae). T. Am.
718	Entomol. Soc. 105: 391-459.
719	
720	Pinto JD. 1984. Cladistic and phenetic estimates of relationship among genera of
721	Eupomphine blister beetles (Coleoptera, Meloidae). Syst. Entomol. 9(2):165-182.
722	
723	Pinto JD, Bologna MA. 2002. Meloidae. pp 522-529. In. Arnett RH, Thomas MC, Skelley
724	PE, Frank JH (Eds.). American beetles, volume II: Polyphaga: Scarabaeoidea through
725	Curculionidea. CRC Press, Boca Raton, Florida.

Osborn HF. 1902. The law of adaptive radiation. Am. Nat. 36:353-363.

726	
727	Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution.
728	Bioinformatics. 14(9):817-818.
729	
730	Rabosky DL. 2009. Extinction rates should not be estimated from molecular phylogenies.
731	Evolution. 64(6):1816-1824.
732	
733	Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-
734	dependence on phylogenetic trees. PlosOne. 9(2):e89543.
735	
736	Rabosky DL, Adams DC. 2012. Rates of morphological evolution are correlated with
737	species richness in salamanders. Evolution. 66(6):1807-1818.
738	
739	Rabosky DL, McCune AR. 2010. Reinventing species selection with molecular
740	phylogenies. Trends Ecol. Evol. 25(2):68-74.
741	
742	Raup DM. 1991. Extinction: bad genes or bad luck? Acta Geol. Hisp. 16(1):25-33.
743	
744	Rohlf FJ. 2002. tpsTri, version 1.14. State University of New York at Stony Brook.
745	Available from http://life.bio.sunysb.edu/morph.
746	
747	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
748	Suchard LA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic
749	Inference and Model Choice Across a Large Model Space. Syst. Biol. 61(3):539-542.
750	
751	Rowe KC, Aplin KP, Baverstock PR, Moritz C. 2011. Recent and rapid speciation with
752	limited morphological disparity in the genus Rattus. Syst. Biol. 60(2):188-203.
753	
754	Rundell RJ, Price TD. 2009. Adaptive radiation, nonadaptive radiation, ecological
755	speciation and nonecological speciation. Trends Ecol. Evol. 24(7):394-399.
756	

757	Sanderson MJ, Donoghue MJ. 1996. Reconstructing shifts in diversification rates on
758	phylogenetic trees. Trends Ecol. Evol. 11(1):15-20.
759	
760	Sanmartín I, Meseguer AS. 2016. Extinction in phylogenetics and biogeography: From
761	timetrees to patterns of biotic assemblage. Front. Genet. 7:17.
762	
763	Schluter D. 2000. The ecology of adaptive radiation. OUP Oxford.
764	
765	Schluter D. 2001. Ecology and the origin of species. Trends Ecol. Evol. 16(7):372-380.
766	
767	Selander RB. 1954. Notes on the tribe Calospastini, with description of a new subgenus and
768	species of Calospasta (Meloidae). Coleopt. Bull. 8: 11-18.
769	
770	Slater GJ, Price SA, Santini F, Alfaro ME. 2010. Diversity versus disparity and the
771	radiation of modern cetaceans. Proc. R. Soc. Lond., B, Biol. Sci. 277(1697):3097-3104.
772	
773	Stadler T. 2009. On incomplete sampling under birth-death models and connections to the
774	sampling-based coalescent. J. Theor. Biol. 261(1):58-66.
775	
776	Stadler T. 2011A. Inferring speciation and extinction processes from extant species data.
777	PNAS. 108(39):16145-16146.
778	
779	Stadler T. 2011B. TreePar in R - Estimating diversification rates in phylogenies.
780	Available at http://cran.r-project.org/web/packages/TreePar/index.html.
781	
782	Stadler T. 2011C. Mammalian phylogeny reveals recent diversification rate shifts. PNAS.
783	108(15):6187-6192.
784	
785	Webb T, Bartlein PJ. 1992. Global changes during the last 3 million years - climatic
786	controls and biotic responses. Annu. Rev. Ecol. Evol. Syst. 23:141-173.
787	

- Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol.
 22:258–265
- 790
- 791 Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ,
- Jochimsen D, Oswald BP, Robertson J, Sarver BA, Schenk JJ, Spear SF, Harmon LJ. 2010.
- Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23(8):1581-
- 794 1596.
- 795
- 796 Zink RM, Slowinski JB. 1995. Evidence from molecular systematics for decreased avian
- diversification in the Pleistocene epoch. PNAS. 92(13):5832-5835.
- 798

Table 1. List of specimens included in this study, their localities, DNA voucher and GenBank accession numbers for the molecular markers examined.

\mathbf{n}	n	\mathbf{n}
×		
()	1,	_

Voucher	Taxon	Locality	CoxI	16S	18S	28S	Н3
KRN023	Cordylospasta fulleri	USA: California: Inyo Co.: 3 mi NE Big Pine, al inicio de la Death Valley Rd. hacia					
KRN111	Cordylospasta fulleri	Saline Valley. 1204m. USA: California: Inyo Co.: 3 mi NE Big Pine, al inicio de la Death Valley Rd. hacia					
KRN01	Cordylospasta opaca	Saine Valley. 1204m. USA: California: San Bernardino Co.: Summit Valley Rd., a 4 km del cruce con la					
KRN112	Cordylospasta opaca	USA: California: San Bernardino Co.: Summit Valley Rd., a 4 km del cruce con la					
KRN024	Cysteodemus armatus	MÉXICO: Baja California Norte: 14 km al O de Mexicoli, cerca del cementerio					
KRN02	Cysteodemus armatus	MÉXICO: Baja California Norte: 12 km al OSO de Mexicali					
KRN025	Cysteodemus armatus	MÉXICO: Baja California Norte: Municipio Mexicali: Ejido Luchadores del Desierto, en					
KRN026	Cysteodemus wislizeni	USA: New Mexico: Sierra Co.: 4 mi. E Hillsboro, 1593m					
KRN03	Cysteodemus wislizeni	USA: New Mexico: Sierra Co.: 5 mi. N Truth or Consequences					
KRN28	Cysteodemus wislizeni	USA: New Mexico: Cibola Co.: 13 mi. E Laguna, 1702m.					
KRN030	Eupompha elegans	USA: California: Riverside Co.: Desviación de la Hwy. 371 hacia Hemmet, unas 4 mi al					
KRN113	Eupompha elegans	USA: California: Riverside Co.: Desviación de la Hwy. 371 hacia Hemmet, unas 4 mi al					
KRN040	Eupompha elegans	N de Aguanga. 871m. USA: California: Inyo Co.: 5 km N Little Lake cerca de Fossil Falls. 1025m.					
KRN021	Eupompha elegans	USA: California: Inyo Co.: Haiwee Reservoir North. 1191m.					
KRN114	Eupompha elegans	USA: California: Inyo Co.: Haiwee Reservoir North. 1191m.					
KRN038	Eupompha elegans	USA: California: Inyo Co.: Orilla Oeste de Owens Lake. 1100m.					
KRN115	Eupompha elegans	USA: California: Inyo Co.: Orilla Oeste de Owens Lake. 1100m.					
KRN029	Eupompha elegans	USA: California: Inyo Co.: 5 km N Little Lake cerca de Fossil Falls, 1025m.					
KRN054	Eupompha fissiceps	USA: New Mexico: Hidalgo Co.: 19 mi SW Lordsburg					
KRN121	Eupompha fissiceps	USA: New Mexico: Hidalgo Co.: 19 mi SW Lordsburg					
KRN043	Eupompha fissiceps	USA: New Mexico: Grant Co.: 10 mi N Hachita, 1364m.					
KRN044	Eupompha fissiceps	USA: New Mexico: Grant Co.: 10 mi N Hachita 1364m					
KRN108	Eupompha fissiceps	USA: New Mexico: Grant Co.: 10 mi N Hachita 1364m					
KRN045	Eupompha fissiceps	USA: New Mexico: Luna Co.: Rd.26, 4-10 mi NE Deming,					

KRN042	Eupompha imperialis	MÉXICO: Sonora: 3 km al E de San Luis del Río Colorado, 43m
KRN06	Eupompha imperialis	MÉXICO: Baja California Norte: 2 km al NE del Ejido Mérida, unos 8 km al SO de Los
KRN020	Eupompha imperialis	Algodones (Vicente Guerrero). 28m. MÉXICO: Baja California Norte: 12 km al OSO de Mexicali
KRN019	Eupompha sulciphrons	MÉXICO: Guerrero: Mexcala
KRN018	Eupompha viridis	USA: New Mexico: Valencia Co.: ca. 2 mi. al W de Los Lunas
KRN135	Eupompha viridis	USA: New Mexico: Valencia Co.: ca. 2 mi. al W de Los Lunas
KRN059	Eupompha viridis	USA: New Mexico: Luna Co.: 2 mi N Deming 1322m
KRN07	Megetra cancellata	USA: New Mexico: Cibola Co.: 13 mi. E Laguna 1702m
KRN133	Megetra cancellata	USA: New Mexico: Luna Co.: Rd.418, (exit 69), 5-10 mi W Deming 1350msnm 14-VIII- 2006
KRN129	Megetra cancellata	MÉXICO: San Luis Potosí: 8 km al N de Cedral, 1766 m
KRN08	Megetra punctata	USA: New Mexico: Grant Co.: 2 mi al E de Senar 1372m
KRN09	Megetra vittata	USA: New Mexico: McKinley Co.: 8-11 mi. F Pinedale 2221m
KRN010	Phodaga alticeps	USA: California: Inyo Co.: Death Valley Rd. hacia Saline Valley, unas 6 mi E-NE Big Pine 1362m
KRN118	Phodaga alticeps	USA: California: Inyo Co.: Death Valley Rd. hacia Saline Valley, unas 6 mi E-NE Big
KRN052	Phodaga alticeps	MÉXICO: Sonora: 3 km al E de San Luis del Pía Calarada, 43m
KRN014	Phodaga alticeps	MÉXICO: Baja California Norte: Municipio Mexicali: Ejido Luchadores del Desierto, en
KRN050	Phodaga marmorata	USA: New Mexico: Grant Co.: 2 mi al E de
KRN120	Phodaga marmorata	USA: New Mexico: Grant Co.: 2 mi al E de Senar 1372m
KRN107	Phodaga marmorata	USA: New Mexico: Luna Co.: 5-10 mi W Deming 1350m
KRN015	Phodaga marmorata	USA: New Mexico: Luna Co.: 5-10 mi W Deming 1350m
mel06166	Phodaga marmorata	USA: Arizona: Cochise Co.: 2 mi al E de McNeal en Davisn Rd 1299m 12-VIII-2006
KRN047	Pleuropasta mirabilis	USA: California: Inyo Co.: Haiwee Reservoir
KRN119	Pleuropasta mirabilis	USA: California: Inyo Co.: Haiwee Reservoir North 1191m
KRN048	Pleuropasta mirabilis	MEXICO: Sonora: 3 km al E de San Luis del Río Colorado, 43m
KRN049	Pleuropasta mirabilis	MEXICO: Baja California Norte: 12 km al
KRN051	Pleuropasta reticulata	USA: New Mexico: Hidalgo Co.: Granite Gan 1294 m
KRN011	Tegrodera erosa	USA: California: Riverside Co.: Desviación de la Hwy. 371 hacia Hemmet, unas 4 mi al
KRN012	Tegrodera erosa	USA: California: Riverside Co.: Diamond Valley, R3, 2 mi. al S de Hemmet. 512m.

KRN013	Tegrodera latecincta	USA: California: Inyo Co.: 7 mi. NE Olancha, Hwy. 190, orilla SE del Owens Lake 1112 menm
KRN053	Tegrodera latecincta	USA: California: Inyo Co.: Rudolph Rd., 7.5 mi. al NE de Bishop, Hwy. 6. 1272m.
KRN088	Eupompha histrionica	USA: California: Riverside Co. Mouth of the Box Canyon E of Mecca; March 26, 2005; W.B. Warner
KRN089	Eupompha histrionica	USA: California: Riverside Co. Mouth of the Box Canyon E of Mecca; March 26, 2005; W.B. Warner
KRN090	Eupompha histrionica	USA: California: Riverside Co. Mouth of the Box Canyon E of Mecca; March 26, 2005; W.B. Warner
KRN092	Eupompha edmundsi	USA: Utah: Wayne Co. Sr24, 7 mi N. Hanksville 28-V-2014
KRN093	Eupompha edmundsi	USA: Utah: Wayne Co. Sr24, 7 mi N. Hanksville 27-V-2014
KRN096	Tegrodera aloga	USA: Arizona: Mesa E Regina St. April 2014
KRN097	Tegrodera aloga	USA: Arizona: Mesa E Regina St. April 2014
KRN098	Tegrodera aloga	USA: Arizona: Mesa E Regina St. April 2014
KRN100	Tegrodera aloga	USA: Arizona: Mesa E Regina St. April 2014
KRN101	Tegrodera aloga	USA: Arizona: Mesa E Regina St. April 2014
KRN131	Eupompha schwarzi	USA: Arizona: Yuma Co., 1-8 at Telegraph Pass; iii.29.2003; Encelia, Bebbia & mallow fls.: W.B. Warner
MEL038	Epicauta stigmata	MEXICO: Querétaro: 1 km al E de Bellavista del Río, 1964 m, 10-X-2009, M. García-París & N. Percino
mel05073a	Lytta vesicatoria	SPAIN: Ourense: A Acea (Baños de Molgas) 0605583/467522, 489m
mel04015	Lagorina sericea	SPAIN: Cádiz: 3 km al S de Benalup de Sidonia
mel04255	Meloe mediterraneus	SPAIN: Cádiz: Puerto Real
mel06161a	Pyrota akhurstiana	USA: Arizona: Cochise Co.: Willcox, N32º14'68.2''/W109º50'27.4'', 1265 m
mel04190	Zoonitis flava	SPAIN: Guadalajara: Canales de Molina
mel06156	Epicauta tenella	USA: California: Needless, San Bernardino Co. 9-VIII-2006, MGP, JLR, CS

804 Table 1. List of specimens included in this study, their localities, DNA voucher and

805 GenBank accession numbers for the molecular markers examined.

806

808	Table 2. Comparative table of macroevolutionary models tested to identify the
809	diversification pattern and rate shifts.

Macroevolutionary model	LH	°ω	ε- ¹	ε ⁻²	ε.3	r ⁰	r -1	r ⁻²	r ⁻³	t0	ŗ	t ⁻²
Constant rates												
Yule	114.42					0.16						
Birth-Death	110.56	0.83				0.063						
BD-I-S	98.64	1.85	0.99			-0.79	0.23					
BD-2-S	92.6	7.54	1.85	0.99		-0.0006	-1.03	0.23		0.17	5.77	
BD-3-S	90.68	7.56	1.71	0.99	0.99	-0.001	-0.81	0.13	0.1	0.17	5.77	14.77
MEE's or sampling events												
ME-1-S	96.83	0.38				0.063				$\begin{array}{c} 1.97\\ \rho=0.035 \end{array}$		
ME-2-S	94.43	0.0024				0.49				1.97 $\rho = 0.017$	9.37 ρ=0.15	
ME-3-S	93.04	3.3e ⁻⁷				0.56				1.57 ρ=0.13	1.97 р=0.07	9.37 р=0.97
Combined model	96.83	0.83	0.74			0.063	0.15			1.97 p=0.03		
Density-dependent cladogenesis	ΓH	r	ц	ĸ								
	105.38	0.95	0.26	58								

814 Figure legends

815

816 Figure 1. Morphological diversity within Meloidae. Habitus in vivo from

817 representative species. The most speciose tribes of blister beetles retain the typical

- bauplan of the family (A, B, C), or a widespread alternative (D); two genera of Eupomphini
- 819 (E, F) share the general body plan of the family. A) *Mylabris varians* (tribe Mylabrini c.
- 820 700 species, Old World). B) Epicauta terminata (tribe Epicautini c. 500 species, almost
- 821 worldwide). C) Lagorina sericea (Lyttini c. 400 species, almost worldwide). D) Meloe
- 822 tuccia (tribe Meloini c. 200 species, mostly Northern Hemisphere). E) Eupompha elegans
- 823 (tribe Eupomphini: *Eupompha*, six species, western North America). F) *Calospasta*
- 824 *fissiceps* (tribe Eupomphini: *Calospasta*, six species, western North America).
- 825

826 Figure 2. Morphological diversity within Eupomphini. Habitus in vivo from a

827 representative species of each genus. Genera of Eupomphini (26 species, western North

- America) (Fig. 1E and 1F) plus A to E, display an astonishing diversity of body shapes,
- some of them representing markedly divergent evolutionary trends (specially in elytral and
- abdominal shape) with very little intragenus diversification. A) Tegrodera latecincta
- 831 (Tegrodera, three species). B) Cordylospasta opaca (Cordylospasta, two species). C)
- 832 Cysteodemus wislizeni (Cysteodemus, two species). D) Megetra vittata (Megetra, three
- 833 species). E) Phodaga alticeps (Phodaga, two species). F) Pleuropasta reticulata
- 834 (*Pleuropasta*, two species).

835

Figure 3. Morphological characters used as traits in the phenotypic analysis. A)

837 Elytral amplitude and convexity. B) Two of the three ratios measured to calculate the

- abdominal volume. C) Third ratio measured to calculate the abdominal volume.
- 839
- 840 Figure 4. Molecular phylogeny of Eupomphini. Bayesian phylogram obtained in
- 841 MrBayes based on the concatenated mitochondrial-nuclear data set
- 842 (COI+28S+18S+16S+H3). Numbers near branches represent the posterior probabilities of
- 843 clades. Color shades represent different genera; characteristic morphotype of each genus is

represented next to its clade. The MRCA of the "elytral deformation clade" is marked inred.

846

847 Figure 5. Lineage divergence times, phenotypic evolution and diversification

848 trajectories in Eupomphini. (A) The chronogram shows mean ages for lineage 849 divergences as estimated in BEAST using Bayesian relaxed clocks; black circles near nodes 850 indicate a posterior probability (PP) > 0.95; gray horizontal bars show 95% HPD values. 851 Blue vertical bars indicate the time of the two mass extinction events inferred by TreePar. 852 Left: Variation in net-diversification and turnover rates over time as estimated in CoMET 853 using Bayesian episodic birth-death models. Notice the marked decrease in diversification rates and increase in extinction rates close to the present (B) Disparity through time plot 854 855 (black line) as estimated in geiger using four morphological characters linked to elytral and 856 abdominal shape; the X-axis represents relative time, with 0 being the origin of the tribe 857 and 1 being the present. Overlaid is the variation in the turnover rate (red line) and net-858 diversification rate (blue line), as estimated with TreePar using maximum-likelihood 859 episodic birth-death models. Left: Time estimates for mass extinction events as inferred in

- 860 CoMET using Bayes Factor comparisons.
- 861

862 Figure 6. Disparity through time and morphological disparity index (MDI) for

individual morphological characters. The disparity-through-time (DTT) plot for the
empirical data is shown as a solid line against the median DTT based on 1.000 simulations

of trait evolution under Brownian Motion. Gray area denotes 95% range of simulated data.

866 The morphological disparity index is estimated as the difference between the observed,

- 867 empirical DTT and that expected under a Brownian motion model of trait evolution
- 868 (Harmon et al. 2003).
- 869
- 870

871	Supplementary material
872	
873	Table S1. Markers, primer sequences, and protocols used to amplify the gene fragments
874	used in this study.
875	
876	Table S2. Partition schemes and substitution models used for the phylogenetic analyses
877	according to Partition Finder.
878	
879	Table S3. Likelihood and AIC scores for morphological evolutionary models tested for all
880	characters.
881	
882	Figure S1. Effective Sample Sizes for the different parameters estimated with TESS,
883	ESS>500 suggest convergence of the chain.
884	
885	Figure S2. Rubin-Gelman statistic for the different parameters estimated with TESS; blue
886	dots passed the test, red dots failed the test.
887	
888	Figure S3. Posterior density plots of the two chains performed to asses convergence of the
889	MCMC
890	
891	Figure S4. Plots for the other parameters estimated by CoMET: speciation rate, extinction
892	rate, rate shifts, and mass extinction timing.
893	