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Abstract: The breathing honeycomb lattice hosts a topologically non-trivial bulk phase due to
the crystalline-symmetry of the system. Pseudospin-dependent edge states, which emerge at the
interface between trivial and non-trivial regions, can be used for the directional propagation of
energy. Using the plasmonic metasurface as an example system, we probe these states in the near-
and far-field using a semi-analytical model. We provide the conditions under which directionality
was observed and show that it is source position dependent. By probing with circularly-polarised
magnetic dipoles out of the plane, we first characterise modes along the interface in terms of the
enhancement of source emissions due to the metasurface. We then excite from the far-field with
non-zero orbital angular momentum beams. The position-dependent directionality holds true for all
classical wave systems with a breathing honeycomb lattice. Our results show that a metasurface in
combination with a chiral two-dimensional material, could be used to guide light effectively on the
nanoscale.

Keywords: topological nanophotonics; plasmonic metasurface; edge states; pseudospin; chiral

1. Introduction

Topological nanophotonics offers a path towards efficient and robust control over light on the
nanoscale [1]. Concepts borrowed from topological insulators, materials which host protected surface
states for electrons, can also be applied to photonic systems. Following theoretical proposals [2,3],
protected photonic modes, reliant on a explicit time-reversal symmetry breaking component, have been
demonstrated experimentally [4]. However, these require strong magnetic fields or complex
materials with a large magneto-optical response, which makes such systems difficult to miniaturise.
More recently, these effects have been proposed using graphene [5,6], which naturally has a large
magneto-optical response. This is limited to the infrared regime, however, which restricts potential
applications. Methods of achieving topological protection through the crystalline symmetry of
a system whilst preserving time-reversal symmetry are therefore appealing, since they do not require
complex setups and are not restricted to a specific frequency regime. These effects fall into two
main categories: valley effects, which rely on extrema in the band structures of materials [7–9],
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and pseudospin-dependent effects, which rely on the spin angular momentum texture of the
electromagnetic fields [10,11].

First proposed in [12], the pseudospin-dependent effect relies on a triangular lattice of hexamers
to produce states reminiscent of the quantum spin Hall effect (QSHE) in topological insulators.
This breathing honeycomb lattice has two gapped phases: the shrunken phase, where the hexamers
are perturbed inwards, and the expanded phase, where they are perturbed outwards. Despite both
having a trivial Z2 index, the phases of the breathing honeycomb are topologically distinct—while
the shrunken phase is a trivial insulator, the expanded one is an instance of an ”obstructed atomic
limit” phase [13,14], and edge states will appear between regions in either phase. A direct analogy of
the QSHE would produce purely unidirectional edge states, in the absence of spin-mixing impurities.
However, as we showed in a previous work [15], the edge mode directionality for near-field sources is
source-position-dependent and is determined by the spin angular momentum of the modes: it is the
local handedness of the elliptical field polarisation which determines the propagation direction of the
edge modes, rather than an absolute pseudospin quantity as in the QSHE [15]. This result is true for any
bosonic breathing honeycomb lattice [16], since it is rooted in time-reversal symmetry and the absence
of Kramer’s degeneracy for bosons as opposed to fermions. There have been a range of experimental
investigations on the breathing honeycomb photonic crystal [17–20], including the observation of edge
modes in the visible regime [21,22]. Despite this, comprehensive theoretical studies of the directional
excitation of pseudospin edge modes in the breathing honeycomb lattice based on an analysis of
their inhomogeneous electromagnetic angular momentum are scarce; in particular, modelling with
a circularly polarised incident beam, as used in recent experiments [17,21,22] are needed.

In this article, we consider a plasmonic metasurface consisting of a two-dimensional array of
metallic nanoparticles with a breathing honeycomb lattice. We first characterise the optical response of
the bulk modes and then investigate the propagation properties of edge states which emerge at the
interface between trivial and and non-trivial regions. We go beyond our previous work and extend the
understanding of excitation by near-field sources by probing edge states with sources out of the plane.
Furthermore, for the first time we theoretically characterise the directionality behaviour with far-field
beams. We show that, for this regime, the propagation direction of the edge mode is determined by
the interplay between beam polarisation and the electric field phase of the edge eigenmodes. With this,
we unambiguously show that the position of the source or beam is critical in exciting a unidirectional
mode with the breathing honeycomb lattice.

Whilst the results we present are in the plasmonic metasurface, we emphasise that the properties
and behaviour of the edge states are valid for any classical wave system.

2. Methods

We model the system of subwavelength metallic nanoparticles (NPs) using the coupled dipole
method. When the nearest neighbour spacing R and NP radius r satisfied R > 3r, each NP can be
treated as a point dipole [23,24]. To model nanorods, we use spheroidal NPs with a radius r = 10 nm
and height h = 40 nm. For NPs of this size and shape, it is necessary to include depolarization and
radiative effects, so we use the Meier–Wokaun long wavelength approximation (MWLWA) to describe
the the dipolar optical response of an individual NP [25,26]. The MWLWA polarisability α(ω) for
spheroids is,

α(ω) =
αs(ω)

1− k2

lE
Dαs(ω)− i 2k3

3 αs(ω)
, (1)

with the static polarisability αs(ω),

αs(ω) =
V
4π

ε(ω)− 1
1 + L(ε(ω)− 1)

. (2)
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k = εmω/c is the wave number and the environment is a homogeneous vacuum with εm = 1. V is the
NP volume and D and L are dynamic and static geometrical factors, and lE is the spheroid half-axis;
D = 1, L = 1/3 and lE = r for a sphere. The dielectric function ε(ω) is given by the Drude model,

ε(ω) = ε∞ −
ω2

p

ω2 + iωγ
. (3)

We use silver NPs, with ε∞ = 5, ωp = 8.9 eV and γ = 1/17 fs ≈ 38 meV [27]. For a system of
multiple NPs, we write a self-consistent coupled dipole equation, which describes the dipole moment
of a NP due to neighbouring NPs as well as an incident electric field Einc,

1
α(ω)

pi = Einc + Ĝ(dij, ω) · pj. (4)

The interactions between dipoles are characterised by the dyadic Green’s function [28],

Ĝ(dij, ω) = k2 eikd

d

[(
1 +

i
kd
− 1

k2d2

)
Î −

(
1 +

3i
kd
− 3

k2d2

)
n⊗ n

]
, (5)

where dij is the separation between dipole i and j, d = |dij| and n = dij/d. (The ·̂ represents a dyadic
operator.) We only take the zz-component of the Green’s function, which corresponds to interactions
between dipole moments perpendicular to the separation between the NPs (i.e., out-of-plane). This is
a valid approximation since we use spheroidal NPs, causing the in-plane modes to become well
separated in frequency from the out-of-plane modes [29]. For a periodic array of NPs in a plasmonic
metasurface, we can apply Bloch’s theorem and write the following system of equations,(

Î
1

α(ω)
− Ĥ(k‖, ω)

)
· p = Einc. (6)

The vector p contains the out-of-plane dipole moments pz of all NPs in the unit cell. The interaction
matrix Ĥ(k‖, ω) has elements,

Hpq =


∑
R

Ĝ(dpq + R, ω) eik‖ ·R p 6= q

∑
|R|6=0

Ĝ(R, ω) eik‖ ·R p = q
, (7)

where p, q are unit cell indices. The summations run over the lattice sites R = na1 + ma2, with lattice
vectors a1 and a2. The interaction matrix has dimension N × N where N is the number of NPs
in the unit cell. Since the lattice sums are slowly converging, we use Ewald’s method to calculate
them [30,31]. When modelling plasmonic metasurfaces, it is necessary to include the long range,
retarded interactions in the Green’s function in Equation (5). Whilst the quasistatic approximation
can be used to model very subwavelength plasmonic chains and arrays [32,33], it fails to accurately
capture the behaviour of modes at the light line and the radiative broadening and redshifting of modes,
which becomes apparent in NPs with r > 10 nm. Additionally, retarded interactions can affect the
topological properties of some plasmonic systems [34,35].

We calculate dipole moments by varying ω and k‖ for an incident field Einc using Equation (6).
We then calculate the extinction cross section σext using the optical theorem,

σext =
k Im(p · E∗inc)

|E2| . (8)

The incident field satisfies Maxwell’s equations, |k‖|E‖ + kzEz = 0 (we assume E‖ = 1 and

harmonic time dependence e−iωt). When the field is propagating, above the light line, kz =
√

k2 − |k‖|2
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and when it is evanescent, below the light line, kz = i
√
|k‖|2 − k2. We can also solve Equation (6) as

an eigenvalue problem and calculate the spectral function, by letting Einc = 0 and again varying ω

and k‖, which allows us to probe modes whether they are bright or dark. The spectral function σsf is,

σsf = k Im(αeff), (9)

with the effective polarisability αeff = ∑i 1/λ(i) for eigenvalues λ(i) [33]. Finally, the coupled dipole
method can also be applied to finite systems to model electromagnetic scattering [36].

3. Optical Response of Bulk and Edge States

We begin by characterising the optical response of the periodic system, in order to later excite the
finite system at the correct frequencies. The breathing honeycomb lattice setup is shown in Figure 1a,
with a unit cell with six NPs [12]. In a honeycomb lattice, R = R0 = a0/3, where R is the nearest
neighbour spacing, and a0 is the lattice constant. We let R0 = 40 nm, so the lattice constant a0 = 120 nm.
The larger unit cell (compared to the rhombic Wigner–Seitz unit cell) folds the Brillouin zone and
results in a double Dirac cone at Γ (as shown in Appendix A, Figure A1). We note that the Dirac
cone lies below the localised surface plasmon frequency ωlsp due to chiral symmetry breaking and
long-range interactions [15]. By perturbing the nearest neighbour separation with a scale factor s,
such that R = sR0, a band gap is opened at Γ. In Figure 1c,d we plot the extinction cross section σext

across the Brillouin zone for the shrunken (R = 0.9R0) and expanded (R = 1.065R0) lattices. The scale
factors are chosen to ensure that the size of the band gaps for the two lattices are approximately
equal. We plot the bands from the spectral function as blue dots on top of the extinction cross section
as a guide. Below the light line (white dotted line), where modes are confined, the modes have
high quality factors, whereas above the light line the modes are very broad, corresponding to larger
radiative losses.

In the shrunken lattice, for k‖ close to Γ, the NPs in the unit cell hybridise to form hexapoles,
quadrupoles, dipoles and monopoles (from lowest energy to highest energy). The monopolar mode
has dipole moments in phase, forming a bonding mode in the out-of-plane dipole moments across
the whole lattice. As a result, it couples very strongly with the light line and exhibits a polariton-like
splitting. We note that the ordering in this plasmonic metasurface is opposite to the photonic crystal
due to the metallic nature of the NPs [15]. A band inversion occurs around Γ between the shrunken
and expanded phases, causing the dipolar and quadrupolar bands to flip. This is similar to the band
inversion process in the QSHE. Although the bands become much broader above the light line, there is
still a clear signature between shrunken and expanded phases, which is observable in the far-field,
as has been shown previously [15,37]. We plot σext for a fixed wavevector k‖ in Figure 1e, showing how
the dipolar peak shifts between the two phases. The broad peak at the top corresponding to the
monopolar mode does not shift. Unlike the QSHE, neither the shrunken or expanded lattices have
a non-trivial Z2-invariant. Whilst it is possible to define an invariant by taking applying a perturbation
theory about Γ [12], when characterising the topological properties of the system, it is important to
analyse all connected bands in a system. One way of doing this is with the application of topological
quantum chemistry. The two phases of the system are still topologically distinct and are distinguishable
by their Wilson loops [38]. The shrunken lattice is topologically trivial, whilst the expanded lattice
is in an photonic “obstructed atomic limit” phase [13]; it is the C6 symmetry which provides the
topological character.
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Figure 1. Lattice set up and optical response: (a) Unit cell with lattice vectors a1 = (a0, 0) and
a2 = (a0/2,

√
3/2a0), the lattice constant a0 = 120 nm. The honeycomb lattice has nearest neighbour

spacing R = R0 = a0/3. The expanded lattice has R = 1.065R0 and the shrunken lattice R = 0.9R0.
(b) Ribbon interface between expanded (orange) and shrunken (blue) regions. The ribbon is doubly
periodic, with lattice vectors a1 and Na2. The total ribbon length is N = 20, with 10 expanded and 10
contracted unit cells. Extinction cross sections σext for (c) shrunken and (d) expanded lattices. The band
structures, found from the spectral function, are highlighted in blue. (e) σext for the shrunken and
expanded lattices at k‖, shown in (c,d) (Green and blue vertical lines). A band inversion occurs near Γ,
causing the dipolar band to switch with the quadrupolar band (arrow). (f) Spectral function σsf for the
ribbon interface in (e). Drude losses are γ = 10 meV to increase the visibility of the edge states and
they are highlighted (blue dots).

Despite having trivialZ2-invariants, when regions in the shrunken phase are placed next to regions
in the expanded phase, edge states will appear in the band gap due to the topological origin of the band
inversion [15]. These edge states are not topologically protected but do have a pseudospin character,
which allows directional modes to be excited through a similar mechanism to the chiral light matter
interactions in photonic crystals [39]. We model the edge states of the system by setting up a ribbon
with an interface between the two phases, as shown in Figure 1b. The ribbon supercell is N = 20 unit
cells along the a2 direction, with 10 unit cells in the expanded and shrunken phases, respectively.
In Figure 1f, we plot the spectral function σsf for the ribbon for k‖ = 0 to π/a0, with γ = 10 meV,
and we include plots for γ = 38 meV in Appendix B, Figure A2. (The spectral function from k‖ = 0
to −π/a0 is identical.) Edge states appear in the band gap from ω ≈ 2.74 eV to 2.81 eV and a small
minigap appears between ω ≈ 2.77 eV to 2.78 eV. The mini-gap appears due to the interface breaking
C6 symmetry, which is the symmetry that protects the topological phase. We note that we use
an “armchair” interface here but it is also possible to define other terminations for this lattice [40],
including the “zig-zag” interface [11]. In the latter case, the C6 symmetry breaking across the interface
is slightly smaller and results in a smaller mini-gap, but otherwise the behaviour of the edge states
is qualitatively similar. This is evident in the hybridisation of NPs close to the interface: the lower
band has an anti-bonding character whilst the upper band has a bonding character (we show these in
Appendix C, Figure A3). Due to doubly-periodic supercell, we see multiple narrow bands bending
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down and crossing the band gap in Figure 1f. This is due to diffraction orders above the light line
(white dotted line) [41] and does not affect the investigation of edge states, which follows.

4. Circularly-Polarized Point Sources

We begin by extending the investigation of our previous work [15] by exciting the system with
point sources with circularly-polarized magnetic fields, H = Hx ± iHy. The directionality of modes is
well understood for sources in the plane of the metasurface, h = 0: The inhomogeneous spin angular
momentum of the edge eigenmode determines the direction of propagation, rather than the polarization
of the source. This means it is possible to selectively couple to either of the counter-propagating edge
states by moving the source in the plane of the metasurface; a result which holds for any bosonic
system with this lattice, including photonic crystals [16] (we show this explicitly in Appendix D).
In an experimental setup, it would be difficult to place sources in the plane of the metasurface.
For example, a setup may have quantum dots or emitters, or a 2D material, placed on top of a spacing
layer above the NPs in the metasurface. Therefore, it is important to characterise the coupling and
directionality into the edge modes of sources that are outside of the metasurface place.

Experimentally, it is challenging to realise circularly-polarized magnetic dipoles at optical
frequencies and in nanoscale setups, which would be required to excite directional modes in our
metasurface by near-field sources. Previous experiments showed the coupling of Zeeman-induced
circularly-polarized excited states of quantum dots to the directional edge modes in a photonic
crystal [19]. However, the directionality in our metasurface is related to the circular polarisation of
the in-plane magnetic field, meaning a magnetic rather than electric point source is required. At low
frequencies, these sources have been realized by means of coaxial cables [20,42]. On the other hand,
magnetic transitions in the optical regime can be realized with rare earth ions [43], although these
are usually linearly-polarized transitions. A recent proposal makes use of two anti-parallel atomic
dipoles to generate a magnetic dipole at optical frequencies [44,45], which could be extended to circular
polarization, and possibly realized with quantum dots. Alternatively, the magnetic resonance of
split-ring resonators could be engineered to provide the required source. In the following section,
we assume a simple model and use a dielectric NP as source, given that they support a magnetic
dipole mode [46], which could be excited with a circularly polarised wave. Provided the system
can be modelled in the dipole approximation with subwavelength resonators and point dipole
sources, the following results are valid regardless of the physical nature of the source or frequency
regime. Therefore, our main conclusions also apply to metasurfaces made of microwave [20,42] or
Mie resonators [47].

The scattering setup is shown in Figure 2a. The source position is moved to various heights h in
the z-direction and the xy-position is fixed at the centre of the expanded unit cell, as shown in Figure 2a.
The power through the left (PL) and right (PR) channels is calculated, as well as the power radiated by
the source. The material losses along the interface are set to zero to test the directionality behaviour and
they are gradually increased at the edge of the sample to prevent backscattering. Increasing material
losses will not affect the directionality behaviour, but will affect how far the mode propagates. We show
this explicitly in Appendix E, Figure A5.

We define a β-factor to characterise the amount of power coupling into edge modes compared to
the total power radiated by the source,

βi =
Pi

P0PF
, (10)

where i = (L, R) corresponds to power through the left or right channel, respectively. P0 is the power
radiated by the source and PF is the Purcell factor. The total power coupling into the edge is then
βedge = βL + βR. If βedge = 0, none of the energy radiated from the source couples into the edge mode,
whereas if βedge = 1 all of the energy couples into the edge. β accounts for the enhancement of the
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emission of the source due to the environment through the Purcell factor [43]. For a magnetic dipole,
the emitted power in free space,

P0 = µ0
ω4

3c3 |m|
2, (11)

with vacuum permeability µ0 and magnetic dipole moment m.

Figure 2. Single sources at varying heights h and frequencies ω: (a) Schematic showing the layout
of the interface. The system is 40 unit cells along x and 12 unit cells along y, with 6 contracted and
6 expanded unit cells. A left circularly-polarized source (red) is placed at the centre of an expanded unit
cell and moved upwards. The power through the left PL and right PR channels is used to characterise
the directionality. (b) Purcell factor PF of the source. The height of the NPs is shown as a horizontal
dotted line and the edges of the band gap are shown as vertical lines. Beta factors: (c) Power coupling
into the edge βedge (double arrow). Power coupling into the (d) left βL, and (e) right βR channels
(left and right arrows).

The source is placed initially at h = 0 nm and then moved upwards to h = 100 nm. We use a left
circularly-polarized dipole throughout (H = Hx − iHy); which, in combination with the xy-position
at the centre of the expanded unit cell, means we expect it to couple to the left propagating edge
mode. Additionally, we scan over the frequency range of the band gap to investigate whether exciting
in the upper or lower band has an effect on the directionality. We measure the normalised power
through yz-planes perpendicular to both the metasurface and the interface. First, in Figure 2b we
plot the Purcell factor. (A horizontal white dashed line serves as a guide to the height of the NPs in
the metasurface and the band gap is highlighted with vertical dashed lines). We see that the Purcell
factor is greatest near the metasurface, since the array of NPs enhances the emission of the source by
increasing the available local density of states (LDOS). For h > 50 nm, there is almost no coupling
to the metasurface and PF ≈ 1. Scanning across frequencies at h close to zero, we can clearly see the
minigap near 2.77 eV, where no NPs are excited, which causes PF to decrease. Lastly, PF is largest at
ω ≈ 2.81 eV where the source begins to excite bulk modes.
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Next, in Figure 2c we plot βedge where it is clear that it is greatest for the edge state frequencies and
smallest in the minigap and for bulk frequencies; in agreement with the spectral function of the edge
states in Figure 1f. A maximum of approximately 60% of the power emitted by the source couples into
the metasurface at h = 0, and the rest radiates into free space as the source emits in all directions and
the bulk of the metasurface is gapped. As the source is moved upwards, βedge decreases and follows
the same relationship as PF, such that, for h > 50 nm, very little energy couples into the edge state.
This confirms that the increase in PF is due to the source coupling to the edge. Finally, in Figure 2d,e
we plot the beta factors for the left βL and right βR edge channels. As explained previously, since we
use a left circularly-polarized source, which is initially placed at the centre of the unit cell, we expect
and observe power flow predominantly through the left channel [15]—i.e., βL � βR. This pattern of
directionality holds as the source is moved upwards.

Following the understanding of directionality for sources at different heights, we now investigate
the position dependence in a plane parallel to the metasurface. The sources are placed in a range of
positions in the xy−plane at a fixed height, h = 30 nm, close to the interface, as shown in Figure 3a.
We choose this height to ensure a 10 nm gap between the top of the NPs and the excitation layer, and to
ensure enough power couples into the edge. In an experimental setup, this gap will be dependent on
the type of source used. We will excite the system at ω = 2.795 eV and at ω = 2.76 eV, and will refer to
these from now on as the "upper band" and "lower band".

Figure 3. Single sources for varying xy-position across the interface and fixed height h = 30 nm.
(a) Schematic showing the interface and source layout. (b) Hybridisation of out-of-plane dipole
moments in NPs for the the bonding upper band ω = 2.795 eV (above) and anti-bonding lower band
ω = 2.76 eV (below). The maximum electric field is at the star in each case. (c) Purcell factors, for lower
(left) and upper (right) bands. Beta factors for the (d) lower and (e) upper band. Left panels βedge,
power coupling into the edge, middle panels βL, power coupling into the left and right panels βR,
power coupling into the right channels.
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In Figure 3c we plot the Purcell factor for the lower (left) and upper (right) bands: The pattern of
each band is very different. From the ribbon eigenmodes in Figure 1f (and Appendix C, Figure A3),
we showed that the upper and lower bands have a bonding and anti-bonding character, respectively.
In Figure 3b we sketch the out-of-plane dipole moments for the two NPs closest to the edge. This shows
how the electric field maxima and minima will be in different positions. For the anti-bonding mode,
there is a maximum (star) at some position above the NPs and for the bonding mode, the maximum
is between the NPs. This is reflected in the peaks of the Purcell factor. Furthermore, for both bands,
the Purcell factor is the greatest at the interface which, again, is due to the LDOS being the greatest
here. Away from the interface, it approaches unity, but there is still some emission enhancement due
to the proximity to the metasurface. However, this means that sources placed far from the interface
will not excite edge modes.

Finally, in Figure 3d,e we plot the beta factors for the chosen frequencies in the lower and
upper bands. βedge follows the same pattern as the Purcell factor. However, it is interesting to note
that, despite the upper and lower bands having different βedge patterns, the position dependent
directionality can still be seen in βL (middle panels) and βR (right panels). Specifically, for both bands,
the coupling to the left propagating channel for a left circularly-polarized source is maximum when
the source is above the centre of an expanded unit cell (lime star). As soon as the source is moved
outside the hexamer of NPs (magenta star), it couples to the mode travelling in the opposite direction.
For larger h, this pattern will eventually be lost as the source couples less and less to the edge state.

5. Far-Field Circularly-Polarized Excitations

A number of experimental works have investigated the directionality of these edge
states under far-field excitation in a range of frequency regimes [17,21,22]. In each of these
experiments, purely unidirectional modes are observed. Herein, we provide a detailed theoretical
investigation of the directionality of edge modes with far-field excitations. We show that the
position-dependent directionality also holds for far-field beams and that careful beam placement
explains the unidrectionality observed in experiments. We investigate this behaviour by mimicking
a circularly-polarized far-field Gaussian beam excitation with non-zero orbital angular momentum
(OAM) incident on the metasurface. The NPs are excited with an incident electric field with a Gaussian
intensity profile, Einc = (0, 0, Ez) with,

Ez ∝ e−r2/(2w2)eiφ, (12)

where r is centre of the beam, w is the full width at half maximum (FWHM), and φ is the angle in
radians from the centre. The phase vortex in Ez corresponds to a left or right circular polarization.

In Figure 4a, we plot the phase of the z-component of the electric field of the edge eigenmodes:
for the lower band, at kx > 0, and for the upper band, at kx < 0. A phase vortex structure is present
across the interface, with clearly distinct regions at the centres of unit cells and at the edge of unit cells.
Mode matching and maximum directionality occurs when the phase vortex of the beam rotates in the
the same direction as the phase vortex of the edge eigenmode [48]. These positions are highlighted as
clockwise arrows. Mode mismatch occurs when the beam and eigenmode have vortices rotating in
opposite directions, and these positions are shown as anti-clockwise arrows. When there is a complete
mode mismatch, the beam will excite a mode travelling in the opposite direction. The phase vortex
behaviour of directional edge states has previously been studied in the context of valley modes [49–52],
where valleys at K and K′ have vortices rotating in opposite directions.
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Figure 4. Far field excitations: (a) Phase of the z-component of the electric field for edge eigenmodes,
in the (left) lower band for kx > 0 and (right) upper band for kx < 0. An incident beam with
non-zero orbital angular momentum will couple to the phase vortices (black arrows) of the edge modes.
(b) A diagram showing the paths of the beam across the interface between expanded (orange) and
shrunken (blue) regions. The y-value of the centre of the expanded unit cell is shown as a dotted black
line. (c,d) Beams along the red path. Fraction of power to the left PL/Ptot (green) and right PR/Ptot

(purple) channels upper band ω = 2.795 eV and the lower band ω = 2.76 eV. Regions are coloured to
indicate directionality to the left or right. y-values for the centre of the unit cell (vertical dotted line)
and interface (vertical solid line) are highlighted. (e,f) Beam along the blue path. Fraction of power to
the left and right for lower and upper bands. This path is chosen to maximise directionality.

To confirm this behaviour we will probe the finite system with the beam in Equation (12). We let
w = 50 nm, meaning the beam covers approximately one unit cell and the centre of the beam is moved
over the red and blue paths, shown in Figure 4b. As in the previous section, we excite the system at
frequencies in the lower and upper bands at ω = 2.76 eV and ω = 2.795 eV. In Figure 4c,d we plot the
fraction of power through the left (PL/Ptot) and right (PR/Ptot) channels for the two bands (plots of the
total power coupling to the edge modes in each case are shown in Appendix F). Importantly, when the
centre of the beam is at the centre of the expanded unit cell (y = 0 nm), the majority of power is through
the left channel PL � PR, as was the case with point sources. Similarly, when the beam moves across
the interface (y ≈ −50 nm) the majority of power switches to the right channel PL � PR. Although we
have only demonstrated this for two specific frequencies here, the position dependent directionality
holds for frequencies across the band gap (as we show in Appendix F, Figure A6). The vortex map
in Figure 4a shows that it is possible to choose a path which maximises directionality, by avoiding
traversing over phase singularities. In Figure 4d we plot the power for the blue path shown in Figure 4a.
This path is similar to scanning perpendicularly across a zig-zag interface, as in [21]. Compared to the
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red path, there is wider range of y-values that yield the expected directionality. Finally, we emphasise
that it is the relationship between the FWHM and the lattice constant, rather than the FWHM value
itself, which is important. For beams with a FWHM which is much larger than the lattice constant,
directionality is mostly lost since the beam expands to cover and excite the majority of the interface.

In an experimental setup, edge modes in the metasurface could be excited with a combination of
a 2D layer and far-field beam. For example, valley-selective modes can be excited using a transition
metal dichalcogenide on top of plasmonic metasurface [53–55]. Along with the results from Section 4,
the directionality observed for far-field excitations suggests that a similar method could be employed
to excite directional modes in the breathing honeycomb lattice.

6. Conclusions

In this article, we have provided a comprehensive study of the excitation of edge modes in
a plasmonic metasurface with a breathing honeycomb lattice arrangement. The 2D lattice of metallic
NPs hosts subwavelength pseudospin edge modes which arise due to the topology of the bulk.
The plasmonic metasurface is a versatile system for testing the directionality of these modes through
the coupled dipole method.

Motivated by the excitation of chiral and valley selective modes in plasmonic metasurfaces with
2D layers, we probe the edge states of our system in the near- and far-field. With circularly-polarised
magnetic dipole sources, we map the directionality of modes for sources out of the plane and show
how, provided the source still couples to the interface, the pattern of directionality predicted by spin
angular momentum is preserved. Additionally, we probe edge modes with far-field beams with
non-zero orbital angular momentum. Here, the direction of propagation is predicted by the phase of
the Ez field of the edge eigenmodes.

Through our analysis, we show that the unidirectionality observed for experiments probing
edge states in the breathing honeycomb lattice are reliant on careful placement of the source or
beam excitation. Importantly, although we have particularized to the plasmonic metasurface,
the directionality behaviour of the edge modes is applicable to any classical wave system possessing
the same breathing honeycomb lattice.
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Appendix A. Honeycomb Lattice: Optical Response of Bulk Modes

Figure A1. (a) Spectral function σext. There is a double Dirac cone degeneracy at Γ due to the folded
Brillouin zone, (b) Extinction cross section σext.

Appendix B. Edge States with Losses

With the parameters in the main text, it would be difficult to observe edge states in a plasmonic
metasurface ribbon with material losses γ = 38 meV. In Figure A2a, we plot the spectral function σsf
as in Figure 1f for γ = 38 meV. On the right, we plot σsf for fixed parallel wavevector k‖, shown as
a vertical dotted line in the left panel. However, by tuning the shrunken and expanded perturbation
factors, it is possible to increase and size of the band gap and have edge states which are distinguishable
from the bulk. In Figure A2b, we plot σsf for Rshr = 0.85 and Rexp = 1.1. With the larger band gap,
the edge states are possible to distinguish from the bulk, as shown in the right panel.

Figure A2. Spectral functions σsf for ribbons with material losses γ = 38 meV, with geometrical
parameters (a) Rshr = 0.9 and Rexp = 1.065 and (b) Rshr = 0.85 and Rexp = 1.1.

Appendix C. Edge State Eigenmodes

The system of equations in Equation (6) for the ribbon interface is solved as an eigenvalue problem
by letting Einc = 0. Additionally, the Green’s function is linearised by letting ω = ωlsp, the localized
surface plasmon frequency, in order to calculate dipole moments p. The dipole moments for the
armchair and zig-zag interfaces are shown in Figure A3.
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Figure A3. Hybridisation of NPs at interface: (a) Armchair interface, (b) Zig-zag interface.

Appendix D. Directionality of Modes in a Photonic Crystal

In the main text, we particularise to the subwavelength, plasmonic metasurface. We will show
that the near-field position dependent directionality also holds in a photonic crystal, with constant
permittivity, dielectric elements. We perform finite element simulations in COMSOL [56] on the same
breathing honeycomb interface. The contracted region has s = 0.967 and the expanded s = 1.041,
and the dielectric pillars are silicon with ε = 11.7 [12].

A left circularly-polarized magnetic dipole is used to excite modes at the three positions shown
in Figure A4a. The electric field intensity |E|2 of the interface for the three source positions is shown
Figure A4b. When the source is at the centre of the expanded unit cell (magenta star), it couples to
a left propagating mode, whereas when the source is directly at the interface (green and cyan stars),
it couples predominantly to a right propagating mode.

Figure A4. Breathing honeycomb photonic crystal interface. (a) Left circularly-polarised sources are
placed at three positions near the interface. (b) Electric field intensity |E|2 for the different source
positions, demonstrating source position dependent directionality.

Appendix E. Propagation along the Interface with Losses

Position-dependent directionality is not affected by near-field source position. To demonstrate
this qualitatively, we excite the same interface as in the main text but with increasing material losses
γ. For a left circularly polarised magnetic dipole source, in Figure A5a,b, we plot dipole moments at
the lossless interface (for comparison), Figure A5c,d for γ = 10 meV and Figure A5e,f for γ = 38 meV
(material losses). We see that, whilst increasing losses affects the propagation length of the modes,
the directionality behaviour still holds. That is, for sources at the centre of the expanded unit cell
Figure A5a,c,e the propagation direction matches polarisation, and when the source is at the interface
Figure A5b,d,f the propagation direction switches.
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Figure A5. Propagation along lossy interfaces: Increasing material losses does not affect the
directionality behaviour along the interface.

Appendix F. Far Field Excitations: Power through Left and Right Channels

Power through the left and right channels is calculated in the same way as in Section 5; however,
here we plot the total power through the edge (normalised to the maximum) rather than the fraction
left/right. As the beam moves downwards, we see how peaks in Ptot follow a qualitatively similar
pattern to the beta factors calculated in Figure 3b,d, which reflect the incident beam coupling to the
edge modes. A maximum in Ptot for the lower band occurs as the centre of the beam passes through
the centre of two particles immediately at the interface, whereas for the upper band, Ptot peaks either
side of this.
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Figure A6. Far field excitations: (a) P∆ = PL − PR for the red path in Figure 4b and frequencies across
the band gap. (b) Directionality along the red path: Power through the edge Ptot, left PL and right
channels PR for lower and upper bands. (The lower and upper band line plots are equivalent to the
vertical lines in (a).) (c) Directionality along the blue path.
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