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Abstract 9 

Language simplification in scientific works that use electromagnetic induction (EMI) will 10 

promote this technique in soil and water-related research and applications. One way of 11 

fostering easy understanding and communication of ideas is by omitting the usage of the term 12 

“apparent electrical conductivity” (ECa) when dealing with EMI techniques. Herein we justify 13 

that the use of ECa terminology in many EMI sensor applications is unnecessary and can create 14 

confusion due to issues on units and dimensions of ECa. While the concept of a relative 15 

electrical conductivity within a soil system may have merit, it is our opinion that the use of the 16 

term ECa is not of primary importance in many applications of EMI to the pedosphere and 17 

hydrosphere, thus, omission of the term is warranted. 18 
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1. Introduction 24 

Electromagnetic induction (EMI) sensors are used in many areas of sciences, such as 25 

geophysics and soil science, to understand variabilities in soil properties without direct contact 26 

to the soil (Corwin, 2008). In soil science, one particular application of EMI sensors is to assess 27 

soil salinity. Soil salinity is typically expressed as the electrical conductivity (EC) of soil-water 28 

extracts at saturation (ECe) or at some other fixed ratio of soil and water (Herrero et al., 2015). 29 

Electrical conductivity of such soil extracts measures the conduction of electricity through the 30 

solvent facilitated by the ions of the solute. Such proxies are now commonly accepted 31 

expressions of soil salinity, because they have a physical meaning: they are repeatable and can 32 

be verified by testing for errors or biases. On the other hand, ECa would be the true EC if the 33 

soil “is perfectly homogeneous and deep (regular distributed pores and substance, no 34 

heterogeneity with increasing depth)”, as stated by Heil and Schmidhalter (2019). In practice, 35 

the predicted EC cannot be validated, since field soils are not homogeneous. ECa, therefore, is 36 

a construct with an ambiguous physical meaning. It can be mentioned that the widely used 37 

―and useful― concepts of field capacity and permanent wilting percentage have fallen out of 38 

favor for the same reason. In the same way, the ECa construct is useful under the condition of 39 

avoiding its deep discussion as do most published articles achieving in this way a not 40 

complicated argumentation. This contribution aims to show that the concept of ECa is not 41 

needed in many soil studies using EMI sensors. 42 

2. Soil features studied with EMI sensors 43 

Many soil properties can be characterized by using the results from EMI surveys (Corwin 44 

et al., 2003). The reviews by Corwin and Scudiero (2019), Doolittle and Brevik (2014) or Heil 45 

and Schmidhalter (2017) provide abundant references for many targeted subsurface 46 

characteristics. Table 1 illustrates with some examples the assortment of soil–related features 47 

studied with EMI data, either alone or combined with other sensors. The sole condition is that 48 

the target feature renders an observable contrast in the electrical or magnetic properties 49 

influencing the EMI signal. For this purpose, several authors have stressed the drifting effects 50 

of the temperature of both the soil (McKenzie et al., 1989, 1997) and the EMI instrument 51 

(Robinson et al., 2004). 52 

From a single EMI survey, several correlations can be made between the signal and 53 

different targeted features. Correlations that have been reported in many studies include the 54 

correlation of different soil features at several depths (Díaz and Herrero, 1992; Doolittle et al., 55 

2001; Herrero et al., 2003) or with a specific soil layer only. For example, Nogués et al. (2006) 56 
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determined the correlation of the EMI signal from a single survey with salinity: (i) in the 57 

surface layer, (ii) in the subsurface layer, (iii) in both layers together, and (iv) the ECe value that 58 

was agronomically limiting. Herrero and Hudnall (2014) mapped the salinity of a specific soil 59 

surficial layer of a paddy in spite of the presence of a saline shallow water table. Ganjegunte et 60 

al. (2014) also used EMI survey to map the ECe and sodium adsorption ratio distribution in two 61 

cotton fields. Another study that dealt with correlations of EMI survey was done by Playán et 62 

al. (2008), which separately correlated signals from EMI for soils with contrasting 63 

characteristics. Correlations with remotely sensed data were performed by Rudolph et al. 64 

(2015), Casterad et al. (2018), and Nouri et al. (2018). 65 

Recurrent soil salinity mapping is valuable for measuring the suitability of agricultural 66 

practices and environmental protection measures. An example is the use of legacy maps of 67 

salinity from irrigated areas (Castañeda et al., 2020). The use of EMI for recurrently mapping 68 

these soil characteristics is foreseeable as the EMI instruments enable researchers to 69 

overcome the effects of the localization paradox (Herrero et al., 2011) that is exacerbated by 70 

the popularity of global positioning systems (GPS) with increasing accuracy and precision. In 71 

practice, this paradox would invalidate the repeated monitoring by invasive methods along 72 

broad extensions. 73 

3. To use or not to use ECa, that is the question 74 

The physical bases of EMI responses were established in geophysics in the 19th century 75 

(Friedman, 2005) based upon the laws governing electromagnetic fields as discussed by Wait 76 

(1962). Valuable physical models of EMI responses to soil salinity have been developed, e.g., 77 

the models of the three paths of electrical conduction in unsaturated soil (Rhoades et al., 78 

1989, 1999). Of course, these and other deterministic approaches and models (Friedman, 79 

2005) involving ECa have been useful and necessary. 80 

However, as far as we can determine and as can be tracked throughout the references in 81 

the above Section, many EMI studies of soil salinity have adopted a stochastic rather than a 82 

deterministic approach. Probably, the same is true for other earth features studied in the field 83 

by EMI or by other techniques relying on electrical properties of the soil. Routinely, most EMI 84 

studies have invoked apparent electrical conductivity (ECa), then it seems worth to examine its 85 

definitions. 86 

After Spies and Eggers (1986), the reciprocal of ECa, i.e., apparent electrical resistivity, has 87 

been traditionally defined as “the resistivity of a homogeneous half-space which will produce 88 

the same response as that measured over the real earth with the same acquisition parameters 89 
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(position, transmitted current, etc.)”. This should include the dependence of the ECa of soils 90 

upon the frequency of the instrument (Moghadas et al., 2010). 91 

Some other definitions of ECa found in the literature are the following: 92 

“a complicated average of spatially distributed localized electrical conductivities in the 93 

subsurface” (Callegary et al., 2007); 94 

“ a complex physicochemical property resulting from the interrelationship and interaction 95 

of these soil properties. [… salinity, water content, clay content and mineralogy, organic 96 

matter, bulk density, and temperature]” (Corwin, 2008); 97 

 “depth weighted average of the electric conductivity of a column of material to a specific 98 

depth … expressed in mS m-1” (Tromp-van Meerveld and McDonnell, 2009), this definition is 99 

almost the same as the one by Greenhouse and Slaine (1983); 100 

“the average EC associated with variable subsurface layers included in the EMI 101 

measurement support volume, weighted by their relative thickness and their contribution to 102 

the signal, which depends on the tool and acquisition configuration…” (Dafflon et al., 2013). 103 

“… an integrated average of the electrical conductivity distribution over a certain soil 104 

volume.” (Saey et al., 2015). 105 

“the integrated contribution of soil physical and chemical properties and conductivity due 106 

to dissolved electrolytes in soil water and conductive minerals.” (Munnaf et al., 2020). 107 

Clearly, these are operational definitions and provide little information about the often 108 

not fully-known mechanisms involved in the generation of the “average EC” measure. 109 

Furthermore, from the point of view of logic, why has ECa been used and not “apparent gravel 110 

content” or other similar expressions for clay, water table or petrocalcic depth, etc., when 111 

these are the target characteristics? 112 

Specifically, the usage of ECa is unnecessary as has been shown by several studies using 113 

EMI correlations with soil salinity measurements (Lesch et al., 1992; Lesch et al., 1998; Nogués 114 

et al., 2006; López-Lozano et al., 2010; Herrero and Hudnall, 2014; Casterad et al., 2018; Filippi 115 

et al., 2018; Nouri et al., 2018), with other soil features (Campbell et al., 2015), and by 116 

modelling approaches (López-Bruna and Herrero, 1996) in which ECa was not used. The 117 

widespread unnecessary use of ECa led to this term or concept being attributed to papers in 118 

which it was not mentioned. For example, 25 out of the 51 articles not authored by us that 119 

quote the paper of Lesch et al. (1998) wrongly attribute the use of ECa to this paper. This 120 

routine use suggests that the meaning of “apparent EC” or “ECa” has evolved into an idiomatic 121 
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expression perhaps with a banal use as a substitute term for the EMI signal. Examples of this is 122 

in the way McKenzie et al. (1989) explicitly used ECa as synonym of EMI reading or in the way 123 

Benavides et al. (2009) used EMI signal, EMI response, and EMI data interchangeably. 124 

Everett (2005) discussed what EMI sensors measure. However, the nature and physical 125 

dimensions of the EMI signal are not invoked in each article involving soil features mapping. 126 

Once again, ECa seems to be often used as a superfluous term. Our argument for the present 127 

proposal is that the concept of ECa is not needed, at least when a stochastic approach is used. 128 

In these cases, one looks for the “direct” relationship between the EMI signal and the targeted 129 

soil characteristic (salinity or other). In fact, EMI readings which are a measure of the magnetic 130 

flux that results in an electromotive force moving the needle on a dial or other quantitative 131 

record such as a digital display do not reflect their true physical nature. Expressing the EMI 132 

readings as ECa, i.e., as S m-1 or its derivatives, implies an inappropriate change in physical 133 

dimension, from electromotive force to electrical conductivity. This change should perhaps be 134 

reviewed critically by physicists or other specialists. 135 

The EMI output can be used ―and, in fact, is used under the name of ECa― as a 136 

dimensionless signal which correlation with the targeted feature is quantified by non-137 

deterministic procedures. This is evident when correlating the EMI output of a single survey 138 

with several soil features, as in the examples provided in the second paragraph of the above 139 

section. The underlying hypothesis implying a physical dimension for ECa can be accepted or 140 

rejected, but in practice, this is an irrelevant question for many users when correlating the EMI 141 

signal against the targeted soil feature(s). In this way, the following two quotations: “Often, 142 

the use of ECa is restricted to its application as a covariate or the use of the readings in a 143 

relative sense rather than as absolute terms” by Heil and Schmidhalter (2017) when discussing 144 

the measuring of absolute values of ECa, and (ii) “[It] could be argued that it is no longer 145 

necessary to think too deeply about the cause of EMI signals” by Everett (2005), capture the 146 

essence of our proposal. In the same way Greenhouse and Slaine (1983) recommend to work 147 

in dimensionless units when displaying the data. 148 

4. Prospects for the EMI sensors use 149 

The quest for linguistic simplicity in aesthetics, philosophy, and natural sciences has 150 

persisted for centuries as shown by the widely-known William of Ockham’s (1285-1347) 151 

Occam’s razor as formulated by Constable et al. (1987) in their paper on electromagnetic 152 

sounding data “it is vain to do with more what can be done with fewer”. 153 
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Some years ago, Korsaeth (2006) reported the commercial availability of the EM38 device 154 

in several countries. Hopefully, with future improvements in EMI technology, more kinds of 155 

EMI instruments will be designed and produced by different manufacturers, with this 156 

technology becoming increasingly popular for archeologists, consultants, farmers, engineers, 157 

environmentalists, soil mappers, and other users. It seems reasonable that most of them will 158 

embrace the use EMI sensors in the same way that scientists and other people use many 159 

laboratory or field instruments, such as conductivity and pH meters, GPS devices, etc. without 160 

explaining the physical or chemical laws governing these instruments in their reports. 161 

For many practical users, EMI sensors are instruments that under easily determined 162 

conditions, e.g., a range of temperatures, no nearby metallic objects, plus the adjustments 163 

prescribed by the manufacturer, only deliver a signal, i.e., an EMI reading. Although a single 164 

EMI reading is ambiguous because it does not express the complex physical and chemical 165 

constitution of the soil of interest, a batch of EMI readings can provide clarity through 166 

correlations with the target measurements. Heil and Schmidhalter (2019) stated, “EM38 is 167 

useful because the readings can reflect many different soil parameters,” a conclusion that 168 

supports our considerations. 169 

It seems highly unrealistic that the researchers in EMI applications would presume that 170 

the above types of users will need to have detailed knowledge of half space, quadrature phase 171 

magnetic field component, Maxwell’s equations, or similar concepts pertaining to the 172 

foundations of EMI methods. In fact, the mention of ECa in many soil prospection reports is 173 

accompanied with poor ─often because unnecessary─ discussion about the physics behind the 174 

method. The EMI signals can be designated with specific abbreviations for each kind of field 175 

reading, e.g., EMh and EMv for horizontal and vertical position of the coils, respectively, when 176 

the EMI sensor has parallel coplanar coils, or with similar adequate letters/subscripts for 177 

perpendicular coils or other configurations in multi-receiver sensors, or for different elevations 178 

of the sensor above-ground, etc. 179 

5. Final remarks 180 

Most of the articles cited by Doolittle and Brevik (2014) and Heil and Schmidhalter (2017) 181 

use the term ECa or similar, even if their approach is stochastic. On the other hand, we have 182 

not found in the literature any misgivings in the use of ECa. Both ECa and apparent resistivity 183 

have long been used, with no difficulties, in diverse research and application domains. Our 184 

concern treated in this Note is a semantic one, or ―perhaps more exactly― an urge to use for 185 

each concept a distinctive word even if it differs from the traditional or routine term. In this 186 
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way, as science is not based upon consensus or upon opinion polls, we advocate that the 187 

mention of ECa or apparent electrical conductivity is often unnecessary for correlating the EMI 188 

signal with the target’s magnitude and for its subsequent mapping. Avoiding its use is an 189 

application of Occam’s razor. As Gracián (1647) stated in his Aphorism no. 105, “The good, if 190 

short, is doubly good”. 191 
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Table 1 Some examples of soil-related features studied using EMI sensors either alone or 425 
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Characteristics studied References 

Archeological and civil structures de Smedt et al., 2013; Saey et al., 2013 

Available water content Hezarjaribi and Sourell, 2007 

Buried metal objects 
Nelson and McDonald, 2001; de Smet et al., 

2012 

Crop growth Stadler et al., 2015 

Crude oil contamination Cassiani et al., 2014 

Depth to argillic horizon Sudduth et al., 2010; Xue et al., 2020 

Different features for delineation of 

management zones 

Morari et al., 2009; López-Lozano et al., 2010; 

Dennerley et al., 2018 

ECe, exchangeable Ca, exchangeable Mg, 

and cation exchange capacity 
McBride et al., 1990 

Exchangeable Ca and Mg Li et al., 2019 

Olive trees trunk growth Aragüés et al., 2005 

Organic matter García-Tomillo et al., 2017; Huang et al., 2017 

Potato tubers Farooque et al., 2020 

Shoreline structure Weymer et al., 2018 

Site-specific seeding Munnaf et al., 2020 

Soil depth and pasture Bork et al., 1998; Serrano et al., 2010 

Soil organic carbon Jaynes, 1996 

Soil taxa delineation Ammons et al., 2015 

Soil water content 
Sheets and Hendrickx, 1995; Martínez et al., 

2018 

Soil water dynamics Huang et al., 2018 

Tridimensional distribution of soil salinity Von Hebel et al., 2014; Zare et al., 2015 

Vineyard terroir study Priori et al., 2019 
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