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ABSTRACT 

SnO2-based glass-ceramics activated by rare earth ions have been extensively investigated because of the need to 

develop reliable fabrication protocols and clarify some interesting optical, structural, and spectroscopic features of the 

system. There is one important weakness in glass photonics when the rare earth ions are employed as luminescent 

sources. This is the low absorption cross section of the electronic states of the rare earth ions. A sensitizer is therefore 

requested. In the last years, we demonstrated that SiO2-SnO2 glass ceramics, presenting a strong absorption cross section 

in the UV range due to the SnO2 nanocrystal, are effective rare earth ions sensitizers. Another interesting property of the 

SiO2-SnO2 system is its photorefractivity. The high photorefractivity of sol-gel-derived SnO2-SiO2 glass-ceramic 

waveguides has been demonstrated in several papers published by our consortium. It has been shown that the UV 

irradiation induces refractive index change allowing the direct writing of both channel waveguides and Bragg gratings.  

The results presented in this communication not only demonstrate the viability and outstanding properties of the SiO2-

SnO2 glass-ceramics for photonic applications but also put the basis for the fabrication of solid state and integrated 

lasers. The next steps of the research are the fabrication of the channels and mirrors exploiting the photorefractivity as 

well as to draw glass ceramic fiber, checking the lasing action and corresponding functional characteristics. Finally, it is 

worth noting that the dynamic of the energy transfer from the nanocrystals to the rare earth ions is still an exciting open 

question. 

   

Keywords: SiO2-SnO2, photonic glass-ceramics, rare earth ions, luminescence sensitizers, photorefractivity, sol-gel 

technology, glass photonics, nanocrystals. 

 

1. INTRODUCTION  

 

In the current Age of Light, Photonics is a key enabling technology1 for different segments: life science and health, 

industrial manufacturing and quality, information and communication, emerging light, electronics and displays. And, for 

the development of optical devices, i.e. the heart elements of photonic applications, glass-based rare-earth-activated 

optical structures play an essential role2. In this area of glass photonics, photonic glass-ceramics have become a strategic 

choice because they combine the optical and glass-manufacturing processing properties of the amorphous phase and the 

single-crystal-like optical and spectroscopic properties of the crystalline phases, which is important in luminescent 

materials activated species, e.g. rare-earths3-6. Following this strategy, photonic glass-ceramics based on SnO2 

nanocrystals have drawn much special attention since they exhibit two innovative and unique characteristics: (i) 

luminescence sensitizing and (ii) photorefractivity. Furthermore, SnO2 based glass-ceramics gives a solution to two 

crucial points which are decisive in the development of an optically pumped rare-earth-based laser: (i) the low absorption 

cross section of the rare-earth ions; (ii) the writing of channels and mirrors in the case of waveguide integrated laser. The 

role of SnO2 nanocrystals as rare-earth ion luminescence sensitizers allows to overcome the low absorption cross section 

of the Er3+ ion7,8. The photorefractivity of sol-gel derived SnO2 glass-ceramics allows applying the robust direct laser 

photoinscription technique on the systems to fabricate Bragg gratings and channel waveguides for waveguide integrated 

laser9,10,11. The results presented in this communication not only demonstrate the viability and outstanding properties of 

the SiO2-SnO2 glass-ceramics for photonic applications but also put the basis for the fabrication of solid state and 

integrated lasers.  

Considering the limitation of low SnO2 content or the presence of nonstoichiometric SnOx encountered by several 

fabrication methods (MCVD, melt-quenching and ion-implantation), sol-gel has been a profitable alternative to produce 

SiO2-SnO2 photonic glass-ceramics with higher SnO2 content thanks to its low temperature and melt-free synthesis2,5. 

High content of SnO2 nanocrystals in the sol-gel derived SiO2-SnO2 glass-ceramic systems gives advantages not only to 

obtain effective rare earth luminescence sensitization but also high photorefractivity as indicated in our recent 

works8,11,12. However, to achieve this, the first research demand is to develop reliable fabrication protocols and 

controlling the ion-ion interaction7,13. In this work, we show the viability of sol-gel technology for fabricating transparent 
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SiO2-SnO2 glass-ceramics in different forms of monoliths and planar waveguides containing high SnO2 nanocrystal 

contents in silica matrix: 10 mol% for the monoliths and 30 mol% for the planar waveguides. Afterwards, by the 

spectroscopic properties of the 90SiO2-10SnO2:0.5Er3+monoliths, we confirm the effective role of SnO2 nanocrystal as 

Er3+ luminescence sensitizer. Furthermore, our recent results on the photorefractivity of the sol-gel derived SiO2-SnO2 

glass-ceramics are presented in comparison with other substitutional tin-doped silica glasses showing the viability of the 

development of not only Bragg gratings and channel waveguides but also active optical integrated devices, e.g. light 

sources and monolithic optical integrated circuits based on REs-doped SiO2-SnO2 glass-ceramics.   

 

2. FABRICATION PROCESSES 

2.1 Sol-gel derived fabrication processes for SiO2-SnO2 glass-ceramics 

In this session, the fabrication of SiO2-SnO2:Er3+ planar waveguides and monoliths using sol-gel method is described. In 

general, both sol-gel routes used for the planar waveguides and monoliths fabrication started from the solution syntheses 

in which all hydrolysis and condensation reactions could occur. Concerning the chemical reactants, tetraethyl 

orthosilicate (TEOS), tin(II) chloride (SnCl2.2H2O) and erbium(III) nitrate pentahydrate (Er(NO3)3.5H2O) were used as 

the precursors of SiO2, SnO2 and Er3+ respectively and HCl was used as a catalyst to promote the reactions.  

At the beginning, all these precursors were dissolved in Ethanol (EtOH) and mixed together. Then, a proper amount of 

de-ionized water containing HCl catalyst was poured into the mixture to proceed the hydrolysis and condensation 

reaction to obtain the final solution. The quantities of all the chemicals used for the SiO2-SnO2:Er3+ syntheses were 

calculated based on the fundamental ratios of TEOS/H2O/HCl which were 1/10/0.009 for the monoliths14,15 and 

1/2/0.0037 for the planar waveguides8,11,12.  

 Afterwards, depending on the structural geometry of each system, the viscosity, reactant ratios and treatment for the 

solutions were established specifically. In monoliths, to obtain 3D structure xerogel, the synthesized solutions were 

transferred into molds and left to finish aging, being dried and eventually heat-treated. In planar waveguides, i.e. 2D- 

structures, for the dip-coating deposition, low viscosity of the solutions for the waveguides was required11,16 which was 

much lower than the ones for the monoliths and thus, the aging time was also limited in several hours. The solutions then 

are used for dip-coating to deposit the planar waveguides. The chemicals and synthesized solutions played principal role 

in defining texture and consequent properties of the final sol-gel derived products. Therefore, the development of 

synthesis protocols, with appropriate thermal treatment was the first demand to obtain homogeneous and transparent 

SiO2-SnO2 glass-ceramics.  

 

Figure 1. Flow chart of sol-gel derived fabrication processes of SiO2-SnO2:Er3+ glass-ceramic monoliths and planar waveguides 
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Concerning the heat-treatment, after the continuously consolidated works14,15,11,12,8, optimal heat-treatment processes for 

obtaining optically qualified SiO2-SnO2:Er3+ glass-ceramic systems were defined. Based on the study on thermal 

analyses14,15, a multi-step heat-treatment up to 900ºC for a prolonged annealing time, e.g. 100h12,11,8 has recently shown 

the best performance in terms of water removal and densification for the monoliths. Referring to the planar waveguides, 

the optimal heat-treatment was 1000ºC for 1h11,12. Briefly, the fabrication protocols for both SiO2-SnO2:Er3+ glass 

ceramic monoliths and planar waveguides are described in Figure 1.  

 

2.2 Obtained SiO2-SnO2 glass-ceramics 

Sol-gel technology provides versatility of fabricating multicomponent materials with controlled composition, shape, 

morphological and textual properties of the final products8,11,12. One can see that from Table 1 which summarizes all the 

details concerning the composition (SnO2 content and Er3+ dopant concentration), and geometry of the SiO2-SnO2:Er3+ 

glass-ceramic monoliths and planar waveguides obtained by sol-gel fabrication protocols described in Figure 1. 

 

Table 1. Composition and geometrical details of the fabricated transparent SiO2-SnO2:Er3+ glass-ceramic systems including monoliths 

and planar waveguides 

System 

Composition (100-x)SiO2-xSnO2:yEr3+ 

Geometrical details of fabricated transparent SiO2-

SnO2 glass-ceramics 
SnO2 content 

x (mol%) 

Er3+ concentration 

3

2 2

Er

SiO SnO

n
y

n n

+

=
+

 (mol%) 

Monoliths 0, 5, 7.5 and 10 0.25, 0.50, 0.75 and 1.00 

• Monolithic squares: 1×1 cm2 cross section and 

0.3 cm height 

• Cylinders: 0.4 cm diameter and 1.5 cm height 

• Big pillars: 1 cm diameter and 3.3 cm height 

Planar 

waveguides 

0, 5, 10, 15, 20, 

25 and 30 
0.5, 1.0 and 1.5 Thickness: ~1.2 µm 

 

From Table 1, we have demonstrated that sol-gel is a profitable route for obtaining transparent SiO2-SnO2 glass-ceramics 

containing high SnO2 nanocrystal contents: up to 10 mol% for the monoliths and 30 mol% for the planar waveguides. 

After the final heat-treatment, i.e. 900°C for 100h in case of the monoliths and 1000°C for 1h in case of the planar 

waveguides, all the glass-ceramics are crack-free and densified. Furthermore, these sol-gel protocols allow controlling 

the size of SnO2 nanocrystals of less than 10 nm as demonstrated in the structural characterization in our recent 

publication12. All obtained compositional planar waveguides have thickness of around 1.2 µm and with this thickness, 

the SiO2-SnO2 glass-ceramic planar waveguides  containing higher than 10 mol% SnO2 nanocrystals supports single TE 

and TM mode propagation at 1.5 µm.  Different geometries of the monoliths were fabricated with the attention to the 

oriented applications. The monolithic squares (cross section of 1×1 cm2 and height of 0.3 cm) were produced for writing 

channel waveguides.  

 

 

Figure 2. Photo of the fabricated 95SiO2-5SnO2:0.5Er3+ big pillar (1 cm diameter and 3.3 cm length) obtained after heat-treatment at 

900 °C for 100h11. 
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3. SnO2 NANOCRYSTAL AS AN EFFECTIVE Er3+ LUMINESCENCE SENSITIZER 

With the strong absorption cross section in the UV, SnO2 nanocrystals has been demonstrated to be effective sensitizers 

for the rare-earth luminescence7,8,11. The strategy of exploiting SnO2 nanocrystals as rare earth luminescence sensitizers 

provides the solution for the low absorption cross section issue of the electronic states of the rare earth ions arising from 

the parity-forbidden 4f–4f transitions with naturally weak intensity2,8. In Figure 3a, the absorption spectrum in the UV-

Vis region of the 90SiO2-10SnO2:0.5Er3+ monoliths showed an optical absorption band edge centered at around 3.5 eV 

(~ 340 nm) corresponding to the UV absorption of the interband transition of SnO2 nanocrystals7,17,18. Several absorption 

bands corresponding to the transitions of Er3+ from the ground state 4I15/2 to other excited states such as 4G11/2, 4F5/2, 4F7/2, 
2H11/2, 4S2/3 and 4F9/2 are also assigned. From this figure, one can see that the UV interband absorption of SnO2 

nanocrystals is much stronger than the absorption bands corresponding to the transitions of Er3+ from the ground state 
4I15/2 to the other excited states. Therefore, from Figure 3b, i.e. the excitation spectrum of the 90SiO2-10SnO2:0.5Er3+ 

monoliths obtained by recording the luminescence signal at 1530 nm, the fingerprint of the 4I13/2 → 4I15/2 transition of 

Er3+, the more intense 1530 nm emission from the Er3+ metastable state 4I13/2 is evidently achieved by exciting in the 

SnO2 band gap at around 340 nm in comparison with directly exciting Er3+ to its electronic states such as 4F5/2, 4F7/2, 
2H11/2, 2F9/2 and 4I11/2. These results demonstrate the role of SnO2 as an effective Er3+ luminescence sensitizer as well as 

the promising of an efficient laser exploiting this luminescence sensitization as a pumping scheme. 
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Figure 3. a) Room temperature absorption spectrum (blue line) and b) room temperature excitation spectrum (red line) obtained by 

detecting at 1530 nm emission of the 90SiO2-10SnO2:0.5Er3+ glass-ceramic monolith. The SnO2 nanocrystal bandgap absorption and 

the electronic transitions from the ground state 4I15/2 of the Er3+ ion are indicated. 

 

 

The 1.5 µm emission spectrum of the 90SiO2-10SnO2:0.5Er3+ glass-ceramic monolith under the excitation at 340 nm in 

the SnO2 bandgap shown in Figure 4 which exhibits Stark splitting and narrow peaks confirms (i) the energy transfer 

from SnO2 nanocrystals to Er3+ ions and (ii) the evidence of Er3+ ions locating in the crystalline environment, i.e. SnO2 

nanocrystals7,11,12,15. Although the mechanism of energy transfer from SnO2 to Er3+ can be proposed to be mediated by 

exciton and defects as in the works13,19,8, the dynamic of the energy transfer from the nanocrystal to the rare earth ion is 

still an exciting open question which needs to be clarified by detailed sets of experiments.  
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Figure 4. Room temperature 4I13/2→4I15/2 emission spectrum of Er3+ ions of the 90SiO2-10SnO2:0.5Er3+ glass-ceramic 

monolith obtained upon excitation at 340 nm in the SnO2 nanocrystal bandgap.  

 

4. HIGH PHOTOREFRACTIVITY OF SiO2-SnO2 GLASS-CERAMICS 

The photorefractivity potential of tin dioxide-based transparent materials was first realized in tin-codoped 

germanosilicate20,21 and phosphosilicate21,22 optical fibres. By introducing tin in such silicate glasses, strong 

photorefractive gratings with enhanced refractive index change up to ~1.2-1.4×10-3 were obtained. Thanks to Sn 

presence, the refractive index change was even 3 times larger than in the case of pure germanosilicate20,21. Therefore, the 

photorefractivity of the binary tin dioxide-silica materials has attracted numerous of researches8,9,11.  

In substitutional tin-doped silica glasses, in which a very small content of tin (less than 0.5 mol%23) was introduced into 

silica, the refractive index change is positive and in the order of 10-4. The photorefractivity was demonstrated to relate to 

laser induced bleaching of the Sn-oxygen deficient centres (ODC) absorption24, and Sn-(SiO4)n rings structural units of 

which the dimensions were reduced during UV exposure25-28. 

 

Table 2. Photorefractivity of SiO2-SnO2 binary materials 

SnO2 content 

(mol%) 

Fabrication 

method 

Irradiation process Induced refractive 

index change 

(Δn) 

The work 
UV laser 

Cumulative 

fluence 

0.15 MCVD 248 nm KrF excimer  lasers 20 kJ/cm2 Δn = + 3.0×10-4 Brambilla et.al.24 

0.4 Sol-gel 
266 nm pulsed the 4 

harmonic Nd-YAG laser 
0.17 kJ/cm2 Δn = + 4.0×10-4 Chiodini et.al.26 

5 Sol-gel 
266 nm pulsed the 4 

harmonic Nd-YAG laser 
0.15 kJ/cm2 

Δn = - 6.0×10-4 

 
Chiodini et.al.23,26 

25 Sol-gel 248 nm KrF excimer  lasers 7.6 kJ/cm2 Δn = - 1.6×10-3 
Berneschi et.al.10 

Lukowiak et.al.9 

30 Sol-gel 248 nm KrF excimer  lasers 0.3 kJ/cm2 Δn = - 2.8×10-3 Tran11 
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If the content of SnO2 in SiO2 matrix is high (more than 0.5 mol%), after proper heat-treatments, a segregation of SnO2 

nanocrystals occurred and formed the tin dioxide-silicate glass-ceramics11,23. In this case, the photorefractivity of SiO2-

SnO2 glass-ceramics is demonstrated to be negative8-11,23. In the works8-10, the mechanism was suggested to involve two 

factors: (i) the volume expansion which is compensated by (ii) the material polarizability. However, due to the 

complexity and diversity of photorefractive manifestation depending on glass composition, fabrication history and 

irradiation condition, defining the origin of the photorefractivity of such glass-ceramics needs further experimental 

investigation to be completely understood. Nevertheless, we have demonstrated that the values of refractive index 

change of the sol-gel derived tin dioxide-based glass-ceramics are one order of magnitude higher than the ones of tin-

doped silica glasses, and they increase with the increasing SnO2 content in SiO2 matrix8,11 as evidenced from Table 2. In 

other words, the high SnO2-containing glass-ceramics that have been achieved using sol-gel technology give the 

advantage of greater UV induced refractive index changes. Moreover, with the high refractive index change in the order 

of 10-3, the sol-gel derived SiO2-SnO2 glass-ceramics are potential for the UV direct writing of channel waveguides and 

gratings. Therefore, it is compelling for the development of active optical integrated devices, e.g. light sources and 

monolithic optical integrated circuits based on REs-doped SiO2-SnO2 glass-ceramics8-11.   

 

5. CONCLUSION 

In summary, this work shows the consolidated results and recent advances in Er3+-activated SnO2-SiO2 transparent glass-

ceramics, putting basis for the fabrication of solid state and integrated lasers. Concerning the fabrication, reliable sol-gel 

synthesis protocols with defined thermal processes have been developed to prepare both the compositional photonic 

monoliths and planar waveguides. The homogeneous and transparent glass-ceramic monoliths were obtained with SnO2 

content up to 10 mol%. Three different bulk forms were produced for the desired applications: the cylinders for solid 

state laser construction, the monolithic squares for writing channel waveguides and big pillars for the usages for fiber 

preform preparation. Referring to the planar waveguides, high SnO2 content up to 30 mol% was successfully introduced 

in SiO2 matrix. The spectroscopic measurements demonstrate: (i) energy transfer from SnO2 to Er3+ and (ii) the role of 

SnO2 nanocrystal as an effective Er3+ luminescence sensitizer as well as the promising of an efficient laser exploiting this 

luminescence sensitization as a pumping scheme. The photorefractivity investigation shows that the sol-gel derived 

SiO2-SnO2 glass-ceramics with high negatively induced refractive index change (in the order of 10-3) is viable for the UV 

direct writing of Bragg gratings and channel waveguides. With the two demonstrated unique characteristics, REs-doped 

SiO2-SnO2 glass-ceramics are compelling candidates for the development of active optical integrated devices, e.g. light 

sources and monolithic optical integrated circuits.  

The consolidated steps of the research are fabricating the channels and mirrors exploiting the obtained photorefractivity 

with a proper pumping scheme and checking the lasing action and corresponding functional characteristics. Referring to 

the SiO2-SnO2:0.5Er3+ monoliths, the current results are reasonably qualified for the checking of lasing action with the 

designed lateral pumping scheme as a proof of concept. An elaboration for the big pillars preparation for fiber preforms 

and consequently, drawing the SiO2-SnO2:Er3+ glass-ceramic fibers is demanded. The dynamic of the energy transfer 

from the nanocrystals to the rare earth ions deserves further experiments to be completely explored. 
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