SOME CHARACTERIZATIONS OF c-PARACOMPACT AND c-COLLECTIONWISE NORMAL SPACES BY CONTINUOUS SELECTIONS

by

JUAN MARGALEF ROIG and ENRIQUE OUTERELO DOMÍNGUEZ

(Conclusion)

3. A CHARACTERIZATION OF THE c-COLLECTIONWISE NORMAL SPACES BY MEANS OF SELECTIONS

A topological space X is said to be c-collectionwise normal, where c is an infinite cardinal, if for every discret family $\{C_i\}_{i \in I}$ of closed subsets of X with $\text{card} (I) \leq c$, there exists a family $\{G_i\}_{i \in I}$ of pairwise disjoint open subsets of X such that $C_i \subseteq G_i$ for all $i \in I$.

It is well-known that the S_c-collectionwise normal spaces are the normal spaces ([0], Thm. 1.12). Hence, every c-collectionwise normal space is normal.

Lemma 8.—Let X be a topological space, c an infinite cardinal. The following are equivalent:

a) X is c-collectionwise normal.

b) For every discrete family $\{C_i\}_{i \in I}$ of closed subsets of X with $\text{card} (I) \leq c$, there exists a family $\{G_i\}_{i \in I}$ of open subsets of X such that $C_i \subseteq G_i$ for all $i \in I$.

Proof.—a) \implies b).

By the hypothesis, there is a family $\{G'_i\}_{i \in I}$ of open subsets of X such that $C_i \subseteq G'_i$ for all $i \in I$ and $G'_i \cap G'_j = \emptyset$ for all $i, j \in I$ with $i \neq j$.
Now $C = \bigcup_{i \in I} C_i$ is a closed subset of X since $\{C_i\}_{i \in I}$ is a locally finite family of closed subsets of X. So $C \subset \bigcup_{i \in I} G'_i$ and as X is normal, there exists an open $A \subset X$ such that

$$C \subset A \subset \overline{A} \subset \bigcup_{i \in I} G'_i$$

It is enough to take $G_i = G'_i \cap \Lambda$ for all $i \in I$.

b) \implies a).

Trivial.

Lemma 9.—Let F be a closed subset of a c-collectionwise normal space X and $\mathcal{U} = \{U_i \mid i \in I\}$ a locally finite open cover of F such that $\text{card}(I) \leq c$. Then there exists a locally finite open cover

$$\mathcal{V} = \{V_i \mid i \in I\}$$

of X such that $F \cap V_i \subset U_i$ for all $i \in I$.

Proof.—As F is closed in X, F is normal. Hence there exists $\phi = \{\phi_i\}_{i \in I}$ continuous partition of the unity subordinated to \mathcal{U}. Then $\mathcal{W} = \{W_i\}_{i \in I}$, where $W_i = \sup_i \phi_i$ for all $i \in I$, is an open cover of F. For every $i \in I$, W_i is an F-space in F and then in X. Also $W_i \subset U_i$.

Let \leq be a well-ordering of I. For every $i \in I$, let

$$C_i = W_i - \bigcup_{j < i} W_j.$$

We have:

a) For all $i \in I$, C_i is an F-space in F, and therefore in X.

b) $\mathcal{C} = \{C_i\}_{i \in I}$ is a cover of F.

c) For all $i, j \in I$, $i \neq j$, $C_i \cap C_j = \emptyset$.

For each $i \in I$, by a),

$$C_i = \bigcup_{n \in N} C_i^n$$

where for every $n \in N$, C_i^n is closed in X.

It follows from c) that $\{C_i^n \mid i \in I\}$ is a discrete family of closed
subsets of X, for all $n \in \mathbb{N}$, since $C_i^n \subset C_i \subset U_i$ and \mathcal{U} is locally finite in F. By the above lemma and X being ϵ-collectionwise normal, for every $n \in \mathbb{N}$ there is a discrete family of open subsets of X \{ $G_i^n \mid i \in I$ \} such that $C_i^n \subseteq G_i^n$. Then

$$C_i^n \subseteq G_i^n \cap (X - (F - U_i)).$$

So, by the Urysohn lemma, there exists an open and F_σ set in X, M_i^n, such that

$$C_i^n \subseteq M_i^n \subseteq G_i^n \cap (X - (F - U_i))$$

for all $i \in I$ and $n \in \mathbb{N}$.

Let

$$M = \bigcup_{i \in I} M_i^n.$$

It is clear that M is an open subset of X which includes F. So, by the Urysohn lemma again, there is an open and F_σ set M_0 in X such that

$$X - M \subseteq M_0 \subseteq X - F.$$

Let i_0 be the first member of (I, \ll). We consider

$$P_i^i = M_0 \cup M_i^n \quad \text{and} \quad P_i^i = M_i^n \quad \text{if} \quad (i, n) \not\ll (i_0, 1).$$

Then \{ $P_i^n \mid i \in I, n \in \mathbb{N}$ \} is an open cover of X, its elements are F_σ and such that

$$C_i^n \subseteq P_i^n \subseteq X - (F - U_i).$$

Also \{ $P_i^n \mid i \in I$ \} is locally finite in X for all $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, consider

$$P_n = \bigcup_{i \in I} P_i^n.$$

Then \{ $P_n \mid n \in \mathbb{N}$ \} is an open cover of X and P_n is F_σ for all $n \in \mathbb{N}$. So \{ $P_n \mid n \in \mathbb{N}$ \} has a locally finite open refinement \{ $Q_n \mid n \in \mathbb{N}$ \}.

Let $V_i^n = P_i^n \cap Q_i$ and

$$V_i = \bigcup_{n \in \mathbb{N}} V_i^n.$$

Then:

1) $\mathcal{V} = \{V_i \mid i \in I\}$ is an open cover of X.

2)

$$F \cap V_i \subset F \cap \left(\bigcup_{n \in \mathbb{N}} P_i^n \right) \subset F \cap (X - (F - U_i)) \subset U_i.$$

3) \mathcal{V} is locally finite.

Lemma 10 ([12]).— Let X be a normal space and $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ a pointwise finite open cover of X. Then \mathcal{U} admits a locally finite open refinement

$$\mathcal{V} = \{V_n \mid n \in \mathbb{N}\}$$

such that $V_n \subset U_n$ for all $n \in \mathbb{N}$.

Lemma 11.—Let X be a \mathcal{C}-collectionwise normal space and $\mathcal{U} = \{U_i\}_{i \in I}$ a pointwise finite open cover of X with $\text{card}(I) \leq \mathcal{C}$. Then \mathcal{U} has a locally finite open refinement of cardinal less or equal than \mathcal{C}.

Proof.—By induction we will construct a sequence

$$\{\mathcal{W}_n \mid n \in \mathbb{N} \cup \{0\}\}$$

of families of open subsets of X, verifying:

a) For each $n \in \mathbb{N} \cup \{0\}$ and each $W \in \mathcal{W}_n$, there exists $U \in \mathcal{U}$ with $W \subset U$.

b) For each $n \in \mathbb{N} \cup \{0\}$, \mathcal{W}_n is locally finite and of cardinal $\leq \mathcal{C}$.

c) If x belongs at most to n members of \mathcal{U},

$$x \in \bigcup \{W \mid W \in \mathcal{W}_k, \quad 0 \leq k \leq n\}.$$

d) For each $n \in \mathbb{N} \cup \{0\}$, every

$$x \in \bigcup \{W \mid W \in \mathcal{W}_n\}$$

belongs at least to n elements of \mathcal{U}. Let $\mathcal{W}_0 = \{\emptyset\}.$
Suppose that we have obtained \(\mathcal{W}_1, ..., \mathcal{W}_m \) with the conditions a), b), c) and d). We will construct \(\mathcal{W}_{m+1} \). Let

\[
\mathfrak{A} = \{ \mathcal{U} \subset \mathcal{U} \mid \text{card} (\mathcal{U}) = m + 1 \}.
\]

It is clear that \(\text{card}(\mathfrak{A}) \leq c \). For each \(\mathcal{U} \in \mathfrak{A} \), let

\[
\Lambda (\mathcal{U}) = (X \setminus \bigcup \{ W | W \in \mathcal{W}_k, 0 \leq k \leq m \}) \cap (X \setminus \bigcup \{ U | U \in \mathcal{U} \setminus \mathcal{U} \}).
\]

\(\Lambda (\mathcal{U}) \) is closed and the family

\[
\{ \Lambda (\mathcal{U}) \mid \mathcal{U} \in \mathfrak{A} \}
\]

is discrete.

Applying the lemma 8 to the above family we see that there is a discrete family of open subsets of \(X \),

\[
\{ V (\mathcal{U}) \mid \mathcal{U} \in \mathfrak{A} \}
\]

such that

\[
\Lambda (\mathcal{U}) \subseteq V (\mathcal{U})
\]

for all \(\mathcal{U} \in \mathfrak{A} \). Also \(\Lambda (\mathcal{U}) \subseteq U \) for all \(U \in \mathcal{U} \).

For each \(\mathcal{U} \in \mathfrak{A} \), let

\[
P (\mathcal{U}) = V (\mathcal{U}) \cap \{ \cap \{ V | V \in \mathcal{U} \} \}.
\]

It is clear that \(P (\mathcal{U}) \) is open and \(\Lambda (\mathcal{U}) \subseteq P (\mathcal{U}) \) for all \(\mathcal{U} \in \mathfrak{A} \).

Consider

\[
\mathcal{W}_{m+1} = \{ P (\mathcal{U}) \mid \mathcal{U} \in \mathfrak{A} \}.
\]

One can check that \(\mathcal{W}_0, ..., \mathcal{W}_{m+1} \) verify a), b), c) and d) and the construction of the sequence \(\{ \mathcal{W}_n \}_{n \in \mathbb{N} \cup \{ 0 \}} \) is complete.

For each \(n \in \mathbb{N} \cup \{ 0 \} \), let

\[
\mathcal{W}_n = \bigcup_{W \in \mathcal{W}_n} W.
\]

\(\{ \mathcal{W}_n \mid n \in \mathbb{N} \cup \{ 0 \} \} \) is a pointwise finite open cover of the normal
space X. So by the above lemma, there exists $\mathcal{V} = \{V_n\}_{n \in \mathbb{N} \cup \{0\}}$ locally finite open refinement of $\{W_n \mid n \in \mathbb{N} \cup \{0\}\}$ such that $V_n \subseteq W_n$ for all $n \in \mathbb{N} \cup \{0\}$. Then, by a) and b)
\[
|V_* \cap W \mid W \in \mathcal{W}_*, \quad n \in \mathbb{N} \cup \{0\}\]
is a locally finite open refinement of \mathcal{U} of cardinal $\leq c$.

Lemma 12.—Let X be a c-collectionwise normal topological space, Y a metrizable real or complex topological vector space with separability degree $\leq c$, M a non-empty convex subset of Y, and $\hat{\psi} : X \to 2^M$ lower-semicontinuous such that $\hat{\psi}(x) \subseteq M$ for all $x \in X$.

Suppose that either $\hat{\psi}(x)$ is convex relatively compact in Y or $\hat{\psi}(x) = M$ for all $x \in X$. Let V be a convex open neighborhood of O in Y and f a continuous map of X into Y with $f(X) \subseteq M$. Suppose that
\[
\theta(x) = \hat{\psi}(x) \cap (f(x) + V) \neq \emptyset
\]
for all $x \in X$.

Then, given any convex open neighborhood W of O in Y, there exists a continuous map g of X into Y such that $g(x) \in \theta(x) + W$ for all $x \in X$, and $g(X) \subseteq M$.

Proof.—Let U be an convex symmetric open neighborhood of O in Y such that $U + U \subseteq W$. Consider
\[
G = \{x \in X \mid f(x) \in \theta(x) + U\} = \{x \in X \mid \theta(x) \cap (f(x) - U) \neq \emptyset\}.
\]
By lemma 1 applied to
\[
|\{(x,y) \mid x - y \in V\}|
\]
and f, we have that θ is lower-semicontinuous. Hence G is open. In fact: let $x_0 \in G$. Then there exists
\[
x_0 \in \theta(x_0) \cap (f(x_0) - U)
\]
and
\[
x_1 = x_0 - f(x_0) \in U
\]
So there are an symmetric open neighborhood U_1 of O and an open neighborhood V^x of z, such that

$$U_1 + V^x \subset U.$$

By the continuity of f and the lower-semicontinuity of θ there is an neighborhood V_{x_0} of x_0 such that

$$f(V_{x_0}) \subset f(x_0) - U_1$$

and

$$\theta(x') \cap (V_{x_0} + f(x_0)) \neq \emptyset$$

for all $x' \in V_{x_0}$. So, for all $x' \in V_{x_0}$,

$$\theta(x') \cap (f(x') - U) \neq \emptyset$$

and hence $V_{x_0} \subset G$.

It is clear that $\mathcal{P} = \{y - U_j\}_{j \in J}$ is an open cover of \overline{M}. But Y is paracompact and hence there exists a locally finite family $\mathcal{W} = \{W_j\}_{j \in J}$ in Y of open subsets of Y such that

$$\overline{M} \subset \bigcup_{j \in J} W_j,$$

and for every $j \in J$, $W_j \cap \overline{M} \neq \emptyset$ and there is $y_j \in \overline{M}$ with $W_j \subset y_j - U$. Y is metrizable and its separability degree is $\leq \varsigma$, then Y is ς-Lindelöf and there is an $I \subset J$, card $I \leq \varsigma$ and

$$\overline{M} \subset \bigcup_{i \in I} W_i.$$

For every $i \in I$, consider

$$U_i = \{x \in X \mid \theta(x) \cap W_i \neq \emptyset\}.$$

As θ is lower-semicontinuous, U_i is an open subset of X for all $i \in I$.

Let $\mathcal{U} = \{U_i \mid i \in I\}$. It holds that \mathcal{U} is an open cover of X. In fact, let $x \in X$. From $\theta(x) \neq \emptyset$ there exists $y \in \theta(x) \subset M$, and therefore there exists $i \in I$ such that $y \in W_i$. So, $x \in U_i$.

Consider the closed subset of X, $A = X - G$. Now then open cover

$$\mathcal{H} = \{ A \cap U_i \mid i \in I \}$$

of A of cardinality less or equal than c, is pointwise finite: If $x \in A$, then

$$f(x) \notin \emptyset (x) + U = [\emptyset (x) \cap (f(x) + V)] + U$$

which implies

$$\emptyset (x) \neq M (f(x) \in M \text{ for all } x \in X).$$

So $\emptyset (x)$ is relatively compact in Y and hence $\emptyset (x)$ is compact for all $x \in A$. On the other hand $x \in U_i$ if and only if

$$\emptyset (x) \cap U_i \neq \emptyset.$$

So \mathcal{H} is pointwise finite since $\{ W_i \mid i \in I \}$ is locally finite.

A is a closed in the c-collectionwise normal space X, so A is c-collectionwise normal. By lemma 11, there is a locally finite open refinement $\{ H_\lambda \}_{\lambda \in \Lambda}$ of \mathcal{H} in A with $\text{card} (\Lambda) \leq c$. By lemma 9 there is a locally finite open cover $\{ A_\lambda \mid \lambda \in \Lambda \}$ of X such that $A_\lambda \cap \Lambda \subseteq H_\lambda$ for all $\lambda \in \Lambda$.

For every $\lambda \in \Lambda$, let $i_\lambda \in I$ such that $H_\lambda \subseteq U_{i_\lambda}$ and

$$B_\lambda = A_\lambda \cap U_{i_\lambda}.$$

Then

$$\mathcal{M}_1 = \{ B_\lambda \mid \lambda \in \Lambda \}$$

is a locally finite family of open subsets of X which cover $X - G = A$.

On the other hand,

$$\mathcal{M}_2 = \{ f^{-1} (W_i) \cap G \mid i \in I \}$$

is a locally finite family of open sets in X which cover $G (f (X) \subseteq M)$ since $\{ W_i \mid i \in I \}$ is a cover of M locally finite in Y. So

$$\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 = \{ M_\tau \mid \tau \in \Gamma \}$$
where $\Gamma = \Lambda + I$ is a locally finite open cover of X. X is normal and so there is a locally finite continuous partition of the unity $\{h_{\gamma} \mid \gamma \in \Gamma\}$ subordinated to \mathcal{M}. If $\gamma = \lambda \in \Lambda$, let $y_\gamma \in \overline{M}$ such that

$$M_\gamma = B_\lambda \subset U_\lambda \quad \text{and} \quad W_\lambda \subset y_\gamma - U.$$

If $\gamma = i \in I$, let $y_\gamma \in \overline{M}$ such that $W_i \subset y_\gamma - U$.

Consider $g : X \to Y$ defined by

$$g(x) = \sum_{\gamma \in \Gamma} h_\gamma(x) y_\gamma.$$

We have:

a) g is continuous, since $\{\sup (h_\gamma) \mid \gamma \in \Gamma\}$ is locally finite.

b) For every $x \in X$, $g(x) \in \theta(x) + W$.

In fact, let $x \in X$.

CASE 1. $x \in G$.

The $h_\gamma(x) \neq \emptyset$ implies either

$$x \in M_\gamma = B_\lambda \subset U_\lambda$$

if $\gamma = \lambda \in \Lambda$ or $x \in M_i = f^{-1}(W_i) \cap G$

if $\gamma = i \in I$.

In the case of

$$x \in B_\lambda \subset U_\lambda \quad \theta(x) \cap W_\lambda \neq \emptyset$$

and hence

$$\theta(x) \cap (y_\gamma - U) \neq \emptyset.$$

So

$$y_\gamma \in \theta(x) + U \subset \theta(x) + W.$$

If

$$x \in f^{-1}(W_i) \cap G, \quad f(x) \in W_i \subset y_\gamma - U$$
\[f(x) \in \theta(x) + U. \]

So
\[y_\gamma = f(x) + u_k = v + u_\delta + u_\gamma \in \theta(x) + W \quad (v \in \theta(x); \ u_\delta, u_\gamma \in U). \]

In this way we conclude
\[g(x) \in \theta(x) + W \]

since \(\theta(x) + W \) is convex and
\[\sum_{\gamma \in I'} h_\gamma(x) = 1. \]

Case 2.—\(x \in G. \)

Then \(h_\gamma(x) \neq 0 \) implies \(x \in M_\gamma \) where \(\gamma = \lambda \in \Lambda \). Then
\[\theta(x) \cap W_{ij} \neq \emptyset \]

and hence
\[\theta(x) \cap (y_\gamma - U) \neq \emptyset. \]

So
\[y_\gamma \in \theta(x) + U \subset \theta(x) + W. \]

We have
\[g(x) \notin \theta(x) + W \]

since \(\theta(x) + W \) is convex and
\[\sum_{\gamma \in I'} h_\gamma(x) = 1. \]

c) \(g(X) \subset \overline{M} \), since \(y_\gamma \in \overline{M} \) for all \(\gamma \in I' \) and
\[\sum_{\gamma \in I'} h_\gamma = 1 \]

(\(\overline{M} \) is convex).
Corollary 13.—Let X be a c-collectionwise normal space, Y a metrizable real or complex topological vector space with separability degree $\leq c$, M a non-empty convex subset of Y, and $\varphi: X \to 2^Y$ lower-semicontinuous such that $\varphi(x) \subseteq M$ for all $x \in X$. Suppose that either $\varphi(x)$ is convex relatively compact in Y or $\varphi(x) = M$ for all $x \in X$. Then given any convex open neighborhood W of O in Y, there is a continuous map g of X into Y such that

$$g(x) \in (\varphi(x) + W)$$

for all $x \in X$ and $g(x) \subseteq M$.

Proof.—It is enough to take in the lemma $V = Y$ and f a constant map of X into M.

Theorem 14.—Let X be a topological space and c an infinite cardinal. The following are equivalent:

a) X is c-collectionwise normal.

b) For every set A of cardinality less or equal than c, every convex closed non-empty subset M of $l_1(A)$ and every lower-semicontinuous

$$\varphi : X \to 2^{l_1(A)}$$

such that either $\varphi(x)$ is a convex compact subset of M or $\varphi(x) = M$ for all $x \in X$, it holds that φ admits a selection.

c) If Y is a real or complex Banach space with separability degree less or equal than c and M is a convex closed non-empty subset of Y, then every $\varphi : X \to 2^Y$ lower semicontinuous such that either $\varphi(x)$ is a convex compact subset of M or $\varphi(x) = M$ for all $x \in X$, admits a selection.

d) If Y is a real or complex Frechet space with separability degree less or equal than c, and M is a convex closed non-empty subset of Y, then every lower-semicontinuous $\varphi : X \to 2^Y$ such that either $\varphi(x)$ is a convex compact subset of M or $\varphi(x) = M$ for all $x \in M$, admits a selection.

e) If Y is a metrizable locally convex real or complex topological vector space of separability degree less or equal than c and M is a convex complete non-empty subset of Y, then every lower-semicon-
tinuous $\phi : X \to 2^\mathcal{Y}$ such that either $\phi (x)$ is a convex compact subset of \mathcal{M} or $\phi (x) = \mathcal{M}$ for all $x \in X$, admits a selection.

Proof. a) \Rightarrow d).

As Y is a Frechet space, there exists a metric d on Y such that d describes the topology of Y and d is translations invariant. Let \{\{V_n\}_{n \in \mathbb{N}}\} a countable base of convex symmetric open neighborhoods of 0 in Y such that

$$V_{n+1} \subseteq \frac{1}{2} V_n$$

and

$$2V_n \subseteq \left\{ y \in Y \mid d(y, 0) < \frac{1}{2^n} \right\} = B_{\frac{1}{2^n}}(0)$$

for all $n \in \mathbb{N}$.

We will show by induction that there exists a sequence of continuous maps \{\{f_n\}_{n \in \mathbb{N}}\} of X into Y such that:

a) $f_n (x) \in f_{n-1} (x) + 2V_{n-1}$ for all $x \in X$ and $n \in \mathbb{N} - \{1\}$.

b) $f_n (x) \in \phi (x) + V_n$ for all $x \in X$ and $n \in \mathbb{N}$.

c) $f_n (X) \subseteq \mathcal{M}$ for all $n \in \mathbb{N}$.

Let $n = 1$. By the above Corollary applied to \mathcal{M}, ϕ and V_1, it holds that there is a continuous map $f_1 : X \to Y$ such that

$$f_1 (x) \in \phi (x) + V_1$$

for all $x \in X$ and $f_1 (X) \subseteq \mathcal{M}$.

Suppose that we have $f_2, ..., f_n$ continuous maps of X into Y satisfying a), b) and c). By b),

$$f_n (x) \in \phi (x) + V_n$$

for all $x \in X$. Then

$$\phi (x) \cap (f_n (x) + V_n) \neq \emptyset$$

for all $x \in X$ since V_n is symmetric. So, by the Lemma 12 applied to \mathcal{M}, ϕ, V_n, f_n and V_{n+1}, there is a continuous map f_{n+1} of X into Y such that

$$f_{n+1} (x) \in [\phi (x) \cap (f_n (x) + V_n)] + V_{n+1} \subseteq \phi (x) + V_{n+1}$$
for all \(x \in X \) and \(f_{n+1}(X) \subseteq M \). On the other hand

\[
f_{n+1}(x) \in f_n(x) + V_n + V_{n+1} \subseteq f_n(x) + V_n + \frac{1}{2} V_n \subseteq f_n(x) + V_n + V_n + V_n \subseteq f_n(x) + 2V_n.
\]

This completes the construction of the sequence \(\{f_n\} \subseteq M \). Let \(x \in X \).

We show that \(\{f_n(x)\} \subseteq M \) is a Cauchy sequence in \((Y, d) \). Let \(\varepsilon > 0 \) and \(n_0 \in \mathbb{N} \) such that

\[
\sum_{m=n_0}^{n} \frac{1}{2^m} < \varepsilon.
\]

The for every \(m, n \geq n_0 \) if \(m = n + r \ (r > 0) \), by a), we have

\[
d(f_m(x), f_n(x)) \leq d(f_m(x), f_{m-1}(x)) + \ldots + d(f_{n+1}(x), f_n(x)) < \frac{1}{2^{m-1}} + \ldots + \frac{1}{2^n} < \varepsilon,
\]

So for every \(x \in X \) there exists

\[
a(x) = \lim_{n \to \infty} f_n(x) \in N
\]

Furthermore the above proof shows that \(\{f_n\} \subseteq M \) converges uniformly to \(a \). So \(a \) is a continuous map of \(X \) into \(Y \).

On the other hand given \(x \in X \), for every \(n \in \mathbb{N} \) there are \(v_n \in V_n \) and \(z_n \in \phi(x) \) such that

\[
f_n(x) = z_n + v_n.
\]

But

\[
\lim_{n \to \infty} |v_n| = 0,
\]

so

\[
a(x) = \lim_{n \to \infty} |z_n| \in \phi(x).
\]

d) \(\implies \) c).

Consequence that every Banach space is a Frechet space.

c) \(\implies \) b).
This is a consequence of the fact that for every set \(A \) such that \(\text{card}(A) \leq c \), \(l_1(A) \) is a real Banach space with separability degree less or equal than \(c \).

b) \(\iff \) a).

Let \(A \) be a set, \(\text{card}(A) \leq c \). Let \(F \) be a closed in \(X \) and \(g \) a continuous map of \(F \) into \(l_1(A) \). Consider the map

\[\phi : X \to 2^\lambda(A) \]

defined by

\[\phi(x) = \begin{cases} 1 & \text{if } x \in F \\ l_1(A) & \text{if } x \notin F. \end{cases} \]

Then \(\phi \) is lower-semicontinuous. By the hypothesis with \(M = l_1(A) \), there exists a selection \(\bar{g} \) of \(\phi \). It is clear that \(\bar{g} \) is a continuous map of \(X \) into \(l_1(A) \) such that \(\bar{g} |_F = g \).

Let \(\{C_i\}_{i \in I} \) be a discrete family of closed subsets of \(X \) such that \(\text{card}(I) \leq c \). Consider the real Banach space \(l_1(A) \), and the map:

\[g : \bigcup_{i \in I} C_i \to l_1(I) \]

defined by

\[g(C_i) = |x_i| \]

where

\[x_i(j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases} \]

\(g \) is a continuous map of \(\bigcup_{i \in I} C_i \) into \(l_1(I) \) since \(\{C_i\}_{i \in I} \) is locally finite. So, there exists a continuous map \(\tilde{g} \) of \(X \) into \(l_1(I) \) such that

\[\tilde{g} |_{\bigcup_{i \in I} C_i} = g. \]

For every \(i \in I \), let

\[G_i = \tilde{g}^{-1}(B_{\frac{1}{2}}(x_i)) \]

The \(G_i \) is open and \(C_i \subset G_i \).
Finally if \(i, j \in I \) are such that \(i \neq j \), then

\[
G_i \cap G_j = \widetilde{g}^{-1}\left(B_{\frac{1}{2}}(x_i) \cap B_{\frac{1}{2}}(x_j) \right) = \emptyset.
\]

This shows that \(X \) is \(c \)-collectionwise normal.

e) \iff d).

This is a consequence of the facts that every Frechet space is metrizable, complete and locally convex and that every closed subset of a complete space is complete.

d) \iff e).

Let \(\mathcal{U} \) be the uniformity associated to \(Y \) and let \((\tilde{Y}, \tilde{\mathcal{U}})\) the \(T_2 \) completion of \((Y, \mathcal{U})\). The immersion \(i \) of \(Y \) into \(\tilde{Y} \) is a linear homeomorphism onto the image. Furthermore, as \(Y \) is an metrizable locally convex topological vector space with separability degree less or equal than \(c \), \(\tilde{Y} \) is a Frechet topological vector space \((\| \|)\), with separability degree less or equal than \(c \). On the other hand, \(\tilde{M} = i(M) \) is convex and complete. Hence \(\tilde{M} \) is convex and closed in \(\tilde{Y} \).

Finally \(\tilde{\phi}(x) = i(\phi(x)) \) is lower-semicontinuous and either \(\tilde{\phi}(x) \) is a convex compact subset of \(\tilde{M} \) or \(\tilde{\phi}(x) = \tilde{M} \) for all \(x \in X \). By hypothesis there exists a selection \(\tilde{f} \) of \(\tilde{\phi} \). It is clear that \(f = i^{-1} \circ \tilde{f} \) is a selection of \(\phi \).

Corollary 15.—Let \(X \) be a topological space. The following are equivalent:

a) \(X \) is collectionwise normal.

b) For every set \(A \), every closed convex non-empty subset \(M \) of \(l_1(A) \) and every

\[
\phi : X \to 2^{l_1(A)}
\]

lower-semicontinuous such that either \(\phi(x) \) is a convex compact subset of \(M \) or \(\phi(x) = M \) for all \(x \in X \), it holds that \(\phi \) has a selection \((\| \|)\).

c) If \(Y \) is a real or complex Banach space and \(M \) is a closed convex non-empty subset of \(Y \), every \(\phi : X \to 2^Y \) lower-semicontinuous such that either \(\phi(x) \) is a convex compact subset of \(M \) or \(\phi(x) = M \) for all \(x \in X \), admits a selection \((\| \|)\).
d) If Y is a real or complex Fréchet space and M is a closed convex and non-empty subset of Y, every $\phi : X \rightarrow 2^Y$ lower-semicontinuous such that either $\phi(x)$ is a convex compact subset of M or $\phi(x) = M$ for all $x \in X$, admits a selection.

e) If Y is a metrizable locally convex topological vector space and M is a convex complete non-empty subset of Y, every $\phi : X \rightarrow 2^Y$ lower-semicontinuous such that either $\phi(x)$ is a convex compact subset of M or $\phi(x) = M$ for all $x \in X$, admits a selection.

Corollary 16.—Every c-paracompact normal space is c-collectionwise normal.

Proof.—Consequence of Thm. 5 and 14.

The converse of Corollary 15 is not true: [23] provides an example of a collectionwise normal space non S_c-paracompact.

Proposition 17.—Let X be a topological space and c an infinite cardinal. The following are equivalent:

a) X is c-collectionwise normal.

b) For every set A with $\text{card}(A) \leq c$, every closed C in X and every continuous map g of C in $l_1(A)$, there exists a continuous map \tilde{g} of X in $l_1(A)$ such that

\[\tilde{g} |_C = g \quad \text{and} \quad \tilde{g}(X) \subset \overline{\text{Conv}}(g(C)). \]

c) For every real or complex Banach space Y with separability degree less or equal than c, every closed subset C of X and every continuous map g of C into Y, there exists a continuous map \tilde{g} of X into Y such that

\[\tilde{g} |_C = g \quad \text{and} \quad \tilde{g}(X) \subset \overline{\text{Conv}}(g(C)). \]

d) For every real or complex Frechet topological vector space Y with separability degree $\leq c$, every closed C in X and every continuous map g of C into Y, there exists a continuous map \tilde{g} of X into Y such that

\[\tilde{g} |_C = g \quad \text{and} \quad \tilde{g}(X) \subset \overline{\text{Conv}}(g(C)). \]

e) For every metrizable locally convex real or complex topological vector space Y with separability degree $\leq c$ every closed C in X and
every continuous map g of C into Y such that $\overline{\text{Conv} \ g \ (C)}$ is complete, there exists an extension such that its image is contained in $\overline{\text{Conv} \ g \ (C)}$.

Proof. a) \implies e).

Consider $\phi : X \to 2^Y$ defined by

$$\phi (x) = \begin{cases} \frac{\|g(x)\|}{\overline{\text{Conv}} \ g \ (C)} & \text{if } x \notin C \\ g(x) & \text{if } x \in C \end{cases}$$

Then ϕ is lower-semicontinuous. By

Theorem 14 with $M = \overline{\text{Conv} \ g \ (C)}$ there exists a selection \bar{g} of o.

It is clear that \bar{g} is a continuous map of X into Y,

$$\overline{\bar{g} \mid C} = g \quad \text{and} \quad \overline{\bar{g} \ (X)} \subseteq \overline{\text{Conv} \ g \ (C)}.$$

e) \implies d).

This is a consequence of the facts that every Frechet space is metrizable locally convex and complete, and that every closed in a complete space is complete.

d) \implies c).

This is a consequence of the fact that every Banach space is a Frechet space.

c) \implies b).

This is consequence of that for every set A with $\text{card} \ (A) \leq c$, $l_1 \ (A)$ is a real Banach space with separability degree less or equal than c.

b) \implies a).

Let $\{C_i\}_{i \in I}$ be a discrete family of closed subsets of X with $\text{card} \ (I) \leq c$. Consider the real Banach space $l_1 \ (I)$ and the map

$$g : \bigcup_{i \in I} C_i \to l_1 \ (I)$$

defined by $g \ (C_i) = \{x_i\}$, where

$$x_i \ (f) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
Since \(\{ C_i \}_{i \in I} \) is locally finite, \(g \) is continuous and, since \(\bigcup_{i \in I} C_i \) is closed in \(X \), by hypothesis there exists a continuous map \(\tilde{g} \) of \(X \) into \(l_1 \) (I) such that

\[
\tilde{g} \mid \bigcup_{i \in I} C_i = g.
\]

For every \(i \in I \), let

\[
G_i = \tilde{g}^{-1}(B_{1/2}(x_i))
\]

Then \(G_i \) is open and \(C_i \subset G_i \). Moreover for every \(i, j \in I \) with \(i \neq j \),
\(G_i \cap G_j = \emptyset \) since

\[
B_{1/2}(x_i) \cap B_{1/2}(x_j) = \emptyset.
\]

So, \(X \) is \(c \)-collectionwise normal.

References

Instituto «Jorge Juan»
Facultad de Ciencias Matemáticas
del C. S. I. C.
Serrano, 123, Madrid
Universidad Complutense
Madrid-3