1	EUROPEAN JOURNAL OF AGRONOMY
2	
3	Type of manuscript: Regular paper
4	
5	Title: Soil management in semi-arid vineyards: combined effects of organic mulching
6	and no-tillage under different water regimes
7	
8	Authors: Ignacio Buesa ^{1,2,*} , José M. Mirás-Avalos ^{2,3} , José M. De Paz ¹ , Fernando Visconti ¹ ,
9	Felipe Sanz ^{1,2} , Antonio Yeves ^{1,2} , Diego Guerra ^{1,2} , Diego S. Intrigliolo ^{1,2}
10	
11	Affiliations:
12	¹ Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro Desarrollo Agricultura
13	Sostenible (CEDAS), Unidad asociada al CSIC "Riego en la agricultura mediterránea",
14	Apartado Ofcial, 46113 Moncada, Valencia, Spain.
15	² Dept. Riego. Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC),
16	Campus Universitario de Espinardo, PO Box 164, 30100 Murcia, Spain.
17	³ Unidad de Suelos y Riegos (asociada a EEAD-CSIC). Centro de Investigación y Tecnología
18	Agroalimentaria de Aragón (CITA), 50059, Montañana, Zaragoza, Spain.
19	
20	
21	* Corresponding author:
22	Instituto Valenciano de Investigaciones Agrarias (IVIA): Unidad asociada al CSIC "Riego
23	en la agricultura mediterránea"
24	Carretera CV-315, Km 10,7, 46113
25	Moncada, Valencia, Spain
26	Phone: +34 650578152
27	E-mail: igbuepue@gmail.com
28	
29	Word count: 9782 (from abstract to references, both included)
30	Number of tables: 6
31	Number of figures: 3

Abstract

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Optimizing water use in vineyards is crucial for ensuring the sustainability of viticulture in semi-arid regions, and this may be achieved by minimizing direct water evaporation from the soil through the use of mulching. In this context, the current study aimed at assessing the combined effects of the vine-row application of an organic mulch (vine prunings) and notillage under two water regimes on soil properties, plant water and nutritional status, yield and must composition of grapevine (Vitis vinifera L.) cv. Bobal grown under semi-arid conditions. For this purpose, a field experiment in a split-plot design was carried out for three years (2016-2018) in a mature Bobal vineyard located in Eastern Spain. Two soil management strategies (tillage and organic mulching with no-tillage) were assessed under two water regimes (rainfed and deficit drip irrigation) with four replications per combination. Vine responses were determined by measuring midday stem water potential, leaf nutrient concentrations, pruning weight, yield components and grape composition. Soil properties were assessed at the end of the experiment. Mulching and no-tillage positively affected vine water status under both water regimes, resulting in reductions in grape phenolic composition. Interactive effects of both water regime and soil management on water use efficiency were found. Regardless of soil management practice, irrigation increased yield and pruning weight when compared to rainfed conditions. Soil management had slight effects on vine nutritional status. At the end of the experiment, soil compaction increased and infiltration decreased as a consequence of mulching and no-tillage. Organic mulch and no-tillage improved vine water status, however, considering the final soil surface compaction and low water infiltration rate, longer-term studies are necessary to assess the sustainability of combining both practices.

55 Keywords: Drip irrigation; Soil management; Sustainable viticulture; Vitis vinifera L.;

56 Water relations.

Abbreviations: DO (Designation of Origin); ET₀ (Reference evapotranspiration); WR (Water regime); SM (Soil Management); RT (Rainfed tilled); RM (Rainfed mulched and notilled); IT (Irrigated tilled); IM (Irrigated mulched and notilled); EU (experimental unit); Ψ_{stem} (midday stem water potential); CCE (Calcium carbonate equivalent); TSS (Total

soluble solids); TA (Total acidity); ANOVA (Analysis of variance).

1. Introduction

In the current scenario of global change, sustainability is becoming a serious concern in viticulture due to the large extension of this crop in many different environmental conditions. Especially in semi-arid regions, vine water requirements generally exceed the average annual rainfall, making water the most important resource for the sustainability of viticulture (Medrano et al. 2015). Grapevine (*Vitis vinifera* L.) water requirements range between 300 and 700 mm to complete its growing cycle (López-Urrea et al. 2012; Medrano et al. 2015), which, under the Mediterranean climate, coincides with the driest months of the year, making irrigation scheduling and timing critical for vine performance and grape composition (Intrigliolo et al. 2012). In dry regions, irrigation competes for water with other uses and could result in an overexploitation of surface and groundwater resources, thus compromising the sustainability of viticulture (Chaves et al. 2007). Furthermore, evaporative demand is expected to rise due to the increased global air temperature and intensity of climatic anomalies, such as droughts and heat waves (Fraga et al. 2016). In response to the increase in temperature and evaporative demand, greater vine transpiration rates are

expected, leading to further depletion of soil water content and/or increased vine water stress (Dayer et al. 2020; Flexas et al. 2010). In addition, to ensure viticulture sustainability, a balance between inputs and outputs of nutrients within the farm system is crucial, as grapevines strongly react to nutrient deficit in terms of vine yield and particularly grape composition (Keller et al. 2005). In this regard, soil nutrient storage capacity and accessibility are influenced by soil texture, rooting depth, and organic matter content, but the nutrient availability is modified by soil moisture and pH.

Nowadays, in most of the semi-arid regions of grapevine production, as well as many of the "new world" viticulture areas, minimum water and nutrition requirements are not met (García-Escudero et al. 2013; Medrano et al. 2015). Therefore, optimizing water use in vineyards and its interaction with vine nutrition is a subject of paramount importance to secure sustainability in viticulture (Quemada and Gabriel 2016). As a consequence, a great research effort has been made to determine the best strategies of irrigation (timing, schedule, rates) and its relation with crop nutrition that allow reasonable yields with good organoleptical quality (Buesa et al. 2017; Gaiotti et al. 2017; Intrigliolo et al. 2012; Jackson and Lombard 1993; Keller et al. 2005; Romero et al. 2013; Schreiner et al. 2013; Vos et al. 2004; Pérez-Álvarez et al. 2017). However, other agricultural practices besides irrigation and fertilization might improve water use efficiency (WUE) and increase soil nutrient availability in vineyards by reducing soil water evaporation and runoff, thus maximizing green water use (Medrano et al. 2015; Vos et al. 2004).

In this context, soil management (SM) practices allowing the control of weeds, the alleviation of soil compaction, the reduction of soil erosion, the enhancement of nutrients and water uptake, and the modulation of vine vigour and yield, amongst others (Celette et al. 2009; Guerra and Steenwerth 2012; Steenwerth and Belina 2008) are of special importance

for grapevine performance and, consequently, for wine quality (Lopes et al. 2011; Trigo-Córdoba et al. 2015). Several SM practices can be used in vineyards to achieve the aforementioned goals, including tillage, application of herbicides, cover crops and organic/inorganic mulches (Gaudin et al. 2010; Guerra and Steenwerth 2012; Salomé et al. 2016). Whatever the case, to choose the best practice for each location the following factors have to be taken into account: vine age, vineyard plantation design, soil type, environmental regulations, objectives of the winery, and climatic conditions (Ripoche et al. 2011; Steinmaus et al. 2008).

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

In this regard, tillage is the most traditional soil management technique in vineyards worldwide because it is an effective way of controlling weeds (Guerra and Steenwerth 2012) and, at least initially, increasing water infiltration into the loosened soil and decreasing capillary continuity (Triplett and Dick 2008). In spite of this benefit, tillage has also several disadvantages including soil compaction and thus loss of structure, cumulative shrink of fertility and soil organic matter, increased risk of soil erosion and damage to vine roots as well as directional spread of soil pests and pathogens (Hamza and Anderson 2005; Steenwerth and Belina 2008; Garcia et al. 2019; Bordoni et al. 2019). The use of herbicides is another choice and though herbicides has been proven easy to use, cost-effective and more efficient than tillage for controlling weeds, the risk of toxicity and the potential of herbicide residues leaching into waterbodies (Tourte et al. 2008) limit their use for managing the soil in the vineyard inter-rows. As a third alternative, in the last decades, the use of cover crops has become a common vineyard SM practice because of its many benefits including soil protection against erosion, regulation of vine growth, weed suppression, habitat for beneficial predators and improved soil fertility and water-holding capacity (Gaudin et al. 2010; Fourie 2011; Linares-Torres et al. 2018; Morlat and Jacquet 2003; Pérez-Álvarez et al. 2015, Virto

et al. 2012). Despite these advantages, the adoption of cover crops as a SM strategy in Mediterranean vineyards is limited by the concern of an excessive competition for nutrients and water between these crops and the grapevines (Celette et al. 2008, 2009; Monteiro and Lopes 2007). Finally, mulching may be an alternative for overcoming all these concerns and provide additional benefits to the soil and grapevines (Morlat et al. 2008; Prosdocimi et al. 2016). Indeed, organic mulching is a sustainable agronomic practice that is widely used for weed control, preventing soil erosion and improving general soil properties, including the minimization of water loss through evaporation and runoff, thus improving infiltration of water into the soil and increasing vineyard biodiversity (Morlat and Chaussod 2008; Pinamonti 1998; Varga and Májer 2004; Medrano et al. 2015). Moreover, this organic mulching has been reported to be positive not only for soil but also for grapevine yield and must composition (Mundy and Agnew 2002; Pinamonti 1998). Furthermore, mulching could contribute to a circular economy (recycling of pruning residues), increasing soil organic matter content and nutrients, water-holding capacity and inhibiting the growth of weeds (Ferrara et al. 2012; Montanaro et al. 2017). In addition, the use of pruning waste on soil would avoid the presently used, more conventional practice of burning pruning waste, and therefore, reduce emissions of CO2 and other greenhouse gases into the atmosphere by increasing CO₂ capture into the soil (Montanaro et al. 2017). Other alternatives for the application of vine prunings are to compost them together with manure or winery wastes or even to carbonize them to obtain biochar (Mundy and Agnew 2002; Baronti et al. 2014; Gaiotti et al. 2017). In any case, increases in nutrient recirculation and release are interesting possible effects of mulching (Montanaro et al. 2017). Nonetheless, vine pruning waste's decomposition could compete with grapevines for nitrogen in the soil (Thomsen et al. 2008).

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Furthermore, nutrient uptake is more influenced by the physical conditions of the soil, namely moisture and temperature, than by nutrient availability in the soil (Pinamonti 1998).

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Recently, López-Urrea et al. (2020) determined in a weighting lysimeter the shortterm effects of covering the entire vineyard floor with vine pruning waste (organic mulching) on the evapotraspiration of a fully irrigated vineyard and found that water use can be reduced by 17%. This moderate decrease in water use could be particularly relevant under rainfed conditions where vines normally experience more water stress that under irrigation and its alleviation could be more important for improving vine physiology (Romero et al. 2010). However, in rainfed vines, the effect of mulching on soil evaporation at mid-summer, when there is a lack of rainfall and the soil is dry, may be minimal. Thus, the reduction effect of mulching on ET is expected to be low in this period (Yunusa et al. 1997). In this sense, previous studies under mulching have been carried out mainly under a standard watering regime because they were more focused on exploring different soil management techniques (Guerra and Steenwerth 2012; Bavougian and Read 2018; Gil et al. 2018). Nonetheless, under a semi-arid climate, where vine water relations are a predominant factor affecting vine performance (Mirás-Avalos et al. 2017), it is important to determine how soil management with mulching is influenced by the watering regime, considering that drip irrigation only wets a small portion of the entire soil allotted to each vine.

In this context, the aim of the current study was to assess the effects of the application of an organic mulch (vine prunings) under no-tillage as compared to tillage, under two water regimes (WR, rainfed and deficit irrigation) on soil physical properties, plant water and nutritional status, yield and must composition of grapevine (*Vitis vinifera* L.) cv. Bobal grown under the semi-arid hot-summer Mediterranean climate of Eastern Spain. The working hypothesis was that mulching could improve vine water status and, particularly under rainfed

conditions, increase yield and WUE. In parallel, the potential effects of mulching on the vineyard's nutrient balance were assessed at the grapevine level by determining leaf nutrient status and grape composition. Since the grapevine's nutrient uptake varies according to growth requirements, the response to the SM practice may differ between the different WR. Moreover, SM could cause microclimatic changes which affect the vineyard water and energy balances, and hence the grapevine's response to water regime. Therefore, the possible interaction between WR and SM was also explored.

2. Materials and Methods

2.1 Plant material and study site

The experiment was carried out during three consecutive seasons (2016 to 2018) in a commercial vineyard located in Requena (39° 29' N, 1° 13' W, elevation 750 m, Valencia, Spain) within the Designation of Origin (DO) Utiel-Requena. The vineyard was planted in 2002 with *Vitis vinifera* (L.) cv. Bobal on 110-R rootstock at a spacing of 2.6 by 1.4 m (2671 vines ha⁻¹). Vines were trained to a bilateral cordon system leaving six two-bud spurs per vine. Shoots were vertically trellised with a pair of steel catch wires. Rows were oriented from north to south and followed the slope of the ground which was on average 3.2%. The soil at this site was classified as a Typic Calciorthid according to the Soil Taxonomy (Soil Survey Staff, 1999), with a clay loam to clay texture according to USDA classification, highly calcareous (200 – 380 g kg⁻¹), with a pH of around 8.5, an electrical conductivity around 0.2 dS m⁻¹, and low in organic matter (3 – 20 g kg⁻¹) and nitrogen (0.4 g kg⁻¹). The available water capacity was \approx 200 mm m⁻¹ and the bulk density was 1.43 to 1.55 g cm⁻³. The soil depth to the unaltered hard parent material (R horizon) exceeded 2 m. The climate of the area was classified as semi-arid hot-summer Mediterranean (de Paz et al., 2004; Rodríguez-

Ballesteros, 2016). The historical average annual rainfall was 390 mm and the reference evapotranspiration (ET_o) was 1120 mm (Supplementary Figure 1). Approximately 65% of rainfall occurs during the dormant period. Budbreak for Bobal in this area usually occurs by the end of April, flowering by June, veraison is reached by mid-August with harvest at the beginning of October (Salón et al. 2005).

2.2 Experimental design

Two treatments were established in the vineyard following a split-plot design. A given water regime (WR), either rainfed (R) or deficit-irrigated (I), was assigned to the mainplots, whereas a given soil management (SM), either tillage without mulching (T) or mulching with no tillage (mulch, M), was assigned to the sub-plots with four replicates per combination. Therefore, the combined treatments applied were RT, RM, IT and IM. Each subplot or experimental unit (EU) consisted of five rows with nine vines per row. The vines located in the center of the middle rows were used for measurements and samplings (21 vines), while the rest were left as buffers.

Deficit irrigation was applied in an attempt to maintain the midday stem water potential (Ψ_{stem}) of the IT treatment above the threshold values of -0.80 and -1.20 MPa at pre- and post-veraison, respectively. These degrees of water stress were considered as targets based onprevious research carried out in the area by Salón et al. (2005). The same irrigation regime was applied to the M and T treatments. Organic mulching consisted in the application, both in the rows and the inter-rows, of mechanically-chopped vine prunings corresponding to the theoretical amount that would be produced over 10 years by each vine (Supplementary Figure 2). That is, 4-5 kg of crushed pruning waste were spread over the 3.64 m² of vine

spacing. Mulch was first applied in 2016 just before vine budburst and was seasonally reapplied in small quantities to maintain a 3-5 cm thick homogeneous layer without soil tillage. Treatments without mulch application were tilled using a cultivator twice per season, in autumn and spring. The ploughing depth was at most 15 cm during the experiment and also for at least 10 years before it began. The space between vines was manually weeded if necessary without applying herbicide, as was the occasional weed control in mulching treatments, since these were not tilled. All treatments received the same fertilization. At the beginning of the experiment, as a common practice in the area, buried manure was applied to the entire vineyard, containing 116, 93, 139 kg ha⁻¹ of N, P₂O₅, K₂O, respectively. In addition, mineral fertilization was applied each season at a rate of 52.5-35-105 kg ha⁻¹ year⁻¹ of N, P₂O₅, K₂O, respectively. In the rainfed treatments, mineral nutrition was applied manually in solid form, whereas I treatments were fertigated. In addition, the rainfed treatments received 0.62 kg ha⁻¹ of magnesium sulfate (Epsom salt) to compensate the Mg content of the irrigation water. Irrigation water was of adequate quality, with an EC 25°C of 0.79 dS m⁻¹ and Magnesium content of 4.69 meq L⁻.

2.3 Field measurements

Weather data were recorded at an automated meteorological station located within the vineyard studied. Reference evapotranspiration (ET_o) was calculated with the Penman-Monteith equation (Allen et al. 1998). The amount of water applied to the I treatments was measured with in-line water meters. Midday stem water potential (Ψ_{stem}) was determined on seven dates each growing season using a pressure chamber (Model 600, PMS Instruments Company, Albany, OR, USA) on bag-covered leaves from four representative vines per EU

at midday (measurements were made between 11:30 and 12:30 solar time). Leaves were located on the west side of the row and were enclosed in hermetic plastic bags covered with aluminium foil for at least 1 h prior to measurement (Choné et al. 2001). The water stress integral, from June to October, that expresses the severity according to the duration of the stress above a minimum value was calculated for each treatment and year as defined by Myers (1988) using the Ψ_{stem} data.

The soil saturated hydraulic conductivity was measured in three places per EU only in the R treatments at the end of the experiment, specifically in January-February 2019, by using a single-ring infiltrometer and the calculation methods from Wu et al. (1999).

2.4 Leaf, berry and soil samplings

Twenty-one complete, disease-free and non-senescent leaves were taken in each EU (one per experimental grapevine) after veraison each year. The leaves were collected opposite to the second bunch from fruit-bearing shoots of average vigor (Romero et al. 2010).

Yield, number of clusters per vine and average cluster weight were determined at harvest on each experimental vine. In winter, pruning weight was recorded in four grapevines per EU (16 grapevines per treatment). Water use efficiency (WUE) was calculated as the ratio between grape yield and the amount of total rainfall plus irrigation applied to each EU.

The soil was characterized at the end of the experiment in the rainfed treatments only, specifically in January-February 2019, by taking disturbed and undisturbed soil samples and analyzing them in the laboratory. For the disturbed samples, three representing places were selected per EU and the soil was drilled with a Riverside auger to sample the 0-20 cm depth layer. Then, a composite sample was obtained from each EU by thorough manual mixing.

For the undisturbed samples two sets of soil cores per EU were taken from the 0-5, 10-15 and 40-45 cm depth layers. Specifically, two points close to the center of each EU were selected. A large cylinder ($\emptyset = 12$ cm, h = 6 cm) was used for the soil surface, and small cylinders ($\emptyset = 5$ cm, h = 5 cm) at depth by operating a 0753SA sampling equipment (Eijkelkamp, Giesbeek, The Netherlands).

2.4.1 Soil analyses

The disturbed soil samples were air-dried and gently deagregated to pass a 2 mm mesh sieve for determining the textural fractions with the hydrometer method (Gee and Or, 2002), the organic matter with the Walkley-Black method (Nelson and Sommers, 1996) and the calcium carbonate equivalent (CCE) with the volumetric calcimeter method (Loeppert and Suarez, 1996). In addition, the percentage of sand-sized (0.05 – 2 mm) stable aggregates was determined according to Holz et al. (2000).

The undisturbed soil cores were weighed, then oven-dried at 105 °C for 24 h and afterwards weighed again. Next, the soil cores were gently deaggregated to pass a 2-mm mesh sieve and the coarse elements (> 2 mm) were weighed and their volume measured by water displacement into a graduated cylinder. In this way, the fine-earth bulk density and soil water content were determined. Finally, the bulk density that would have been obtained using the large cylinder (ρ_{bL}) at the 10-15 and 40-45 cm depths was calculated from the small cylinder density (ρ_{bS}) by means of a previously calibrated equation ($\rho_{bL} = (\rho_{bS} - 0.9)/0.41$) (Visconti et al. 2014).

2.4.2 Leaf analyses

Leaves were thoroughly washed with tap water, rinsed with deionized water, and oven-dried in a Dry Big oven (J.P. Selecta, Barcelona, Spain) at 70°C for 48 h. Then, they were ground with a disc mill enough to pass a 1-mm mesh and stored at room temperature. The nitrogen content was determined by the automated combustion method (Horneck and Miller, 1998) using a TruSpec CHNS (LECO TruSpec Micro Series, St. Joseph, MI, USA). For the determination of P, K, Ca, Mg, Fe, Mn, Cu, S, B, and Zn concentrations, the dryashing method was used (Miller, 1998) followed by inductively coupled plasma-optical emission spectroscopy in an Optima 4300DV (PerkinElmer, Norwalk, CT, USA). Deionized water was used for all dilutions. Concentrations were expressed in terms of dry weight.

2.4.3 Berry analyses

Berry fresh weight was determined from a random sample of 200 berries per EU. Then, 150 berries were crushed and hand-pressed through a metal screen filter to assess must characteristics including total soluble solids (TSS), pH, total acidity (TA), and malic and tartaric acid concentrations. Must TSS were determined by refractometry with a PR-101 refractometer (Series Palette, Atago, Tokyo, Japan), pH and TA were measured in an automatic titrator (Metrohm, Herisau, Switzerland), this latter one using 0.1 N NaOH to an end point of pH 8.2 following the official methods of the Office International de la Vigne et du Vin (OIV 1990). Berry ripening was assessed using the TSS to TA ratio at harvest as the maturity index (Al-Kaisy et al. 1981). The concentrations of tartaric and malic acids were measured via infrared spectroscopy with a Bacchus II IR spectrometer (Tecnología Difusión Ibérica, Barcelona, Spain) according to García-Romero et al. (1993).

The remaining 50 berries were homogenized with a blender (Ultraturrax T25, IKA-Werke, Staufen, Germany) for determining phenolic maturity. Anthocyanin and phenolic

substances (expressed in malvidin equivalents) were determined in duplicate by UV/VIS spectrophotometry (Iland et al. 2004).

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

314

315

2.5 Statistical analyses

Data were checked for normality using the Shapiro-Wilk test and homogeneity of variances of the residuals using the Bartlett's test. A logarithmic transformation of the original data was used when the requirements of normality and homogeneity of variance were clearly not met, i.e., at a 99% confidence level. A three-way analysis of variance (ANOVA) was used to assess the effects of the factors (water regime, soil management and year), along with their interactions, on the plant variables. From this first analysis, we detected that year exerted a significant influence on all the variables studied (leaf nutrient contents, pruning, yield components and berry composition), and showed significant interactions with either soil management or water regime for many of the variables considered (Supplementary Table 1). Therefore, data from each year was analysed separately using a split-plot ANOVA with water regime and soil management and their interaction, namely a factorial experiment but with two plot sizes and two different error variances, one for each plot size. Note that when analizing data about soil properties, there was only one treatment, i.e., soil management, at two levels, i.e. tillage and mulching and, therefore, Student's two-means comparison t-test was used instead of ANOVA for the different soil layers separately. All the statistical analyses were performed with the R software v.3.4.1 (R Core Team 2017).

334

335

336

3 Results

3.1 Vine water and nutritional status

The results presented correspond to 2 dry seasons, 2016 and 2017, and a wetter one, 2018. Rainfall and irrigation amounts applied from April 1st to September 30th each year are displayed in Table 1, showingthat deficit irrigated (I) vines received 2.86, 2.01 and 1.30 times more water than rainfed (R) vines in 2016, 2017 and 2018, respectively. Off-season rainfall was much higher in 2017 than in 2016 and 2018 (Table 1).

Water stress integral values (Figure 1) differed seasonally, being lower in 2018 than in the dryer seasons. This indicator differed significantly in response to both factors, WR and SM, without interaction between them. Nonetheless, irrigation improved vine water status compared to rainfed to a greater extent than mulching compared to tillage.

Differences in vine water status between both water regimes were observed during the entire growing season in 2016 (Figure 2a). In contrast, these differences were observed later in the season in 2017 and 2018 (Figure 2b and c). Minimum values were observed by the end of August, and there was a recovery towards the end of the season with the decrease of evaporative demand and the occurrence of rainfall events. Vine water status was better in M treatments from mid-August in all seasons studied (Figure 2). In 2016, IM vines showed less negative Ψ_{stem} values over the growing season, which were significantly different from the values of IT vines (Figure 2a). In that year, mulching seems to have significantly improved the vine water status in the R treatments only on some dates.

In general, differences in leaf contents of N, K and Mg among treatments were very small (Table 2). In the first season, the Ca content was significantly increased by both irrigation and mulching, but in subsequent seasons there was an interaction between factors on this nutrient. In contrast, both irrigation and mulching tended to increase the contents of P in leaves (Table 2).

In general, the contents of B, Cu, Fe, Mn and Zn in leaves did not show significant differences between either the SM or WR treatments (Table 3), with some remarkable exceptions depending on the season for specific elements. For instance, the contents of Mn were higher under irrigation in two out of the three seasons studied. In contrast, the B and Zn contents were lower in the vine leaves under irrigation in 2016. Note that in that season, the leaf contents of both microlements were the highest in the whole trial. Differences in the response to the SM were barely significant with the sole exception of B and Fe. The latter was significantly higher in the mulching treatments in 2016 and 2017, whereas B was higher only in 2016, when there was an interactive effect between factors for this element (Table 3).

3.2 *Vine performance and berry composition*

Pruning weight was greater in vines from the I treatments in most of the years studied. However, no effect of the SM on pruning weight was observed (Table 4). The number of clusters per vine was significantly greater in I than in R vines in 2017, while no differences among treatments were observed in 2016 and 2018. In addition, cluster weight was significantly higher in the I treatments, leading to higher yields. Cluster weight was also significantly higher in the M treatments in 2017, although in 2018 the opposite was observed. Berry weight was higher in the I treatments in 2016 but not in 2017 and 2018. No significant differences were observed regarding SM practices. In 2017, WUE was significantly affected by both SM and WR. In this season, significant interactions between SM and WR were detected for cluster weight, yield and WUE (Table 4).

Berry composition differed primarily depending on the WR and secondarily on the SM (Table 5). The TSS were lower in the irrigation treatments, while no differences were found between SM treatments. In contrast, total acidity (TA) and pH behaved differently

depending on the season. The malic acid concentration was higher in the irrigation treatments and also in the mulched ones in 2017. Tartaric acid concentration in berries was lower in the I treatments in 2016 but higher in 2017, while no clear effects were observed in 2018. On the other hand, SM caused a consistent reduction in tartaric acid concentration over the whole study period. The maturity index (TSS-to-TA ratio) was significantly lower in 2017 in response to I and M. Concentrations of phenolic compounds (total polyphenols and anthocyanins) in most seasons were lower in both the I and M treatments. No significant interactions between SM and WR were detected for any of the berry compositional traits (Table 5).

3.3 Effects of mulching on soil properties

No significant differences were observed in soil surface basic properties such as textural fractions and organic matter content between tillage and mulching under rainfed conditions at the end of the experiment (Table 6).

Contrary to the basic soil properties, the bulk density, water content and saturated hydraulic conductivity did differ between SM practices. The bulk density was significantly higher under mulch at the soil surface by the end of the experiment with negligible differences in deeper layers (Figure 3a and Supplementary Table 2). Also, the soil water content was significantly higher under mulch in the surface layer with differences again vanishing with depth (Figure 3b and Supplementary Table 2). The aggregate stability in the soil surface layer was the same regardless of the soil management (Figure 3c). Interestingly, the saturated hydraulic conductivity was the soil property for which differences between the T and M treatments were larger. Specifically, its value under mulching was found to be one order of magnitude lower than under tillage (Figure 3d).

4 Discussion

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

In this three-year study we focused on the effects of the soil and irrigation management mainly on vine performance, plant water and nutrient status considering that at the vine level it is possible to integrate both the effect of the soil resources availability and the vine-environment interactions. While the effects of irrigation on the soil water balance are easy to predict and assess, the implications that soil mulching and no tillage may have on the vineyard water balance are more difficult to predict. This is because the soil management strategies tested here can affect many components of the soil water balance including evaporation, water infiltration, soil water holding capacity, vine microclimate, vineyard energy balance and also vine root growth and activity and therefore the vine plant water and nutrient uptake capacity. Indeed, the mulch application seemed to be effective for improving grapevine water status, both under R and I conditions (Figure 2). This can be due to the fact that mulching increased the soil water content at a depth of 0-5 cm as revealed by the measurement made at the end of the experiment under rainfed conditions (Figure 3). This can be attributed to the lower water losses through soil evaporation (Davies et al. 2011; Myburgh 2013; Cao et al. 2012). Montoro et al. (2016), using a weighing lysimeter, estimated that direct soil evaporation accounts for 26-31% of the vineyard evapotranspiration under drip-irrigated conditions in a semi-arid region from South-Eastern Spain. Consequently, employing mulches for covering vineyard soil surface may provide substantial water savings (López-Urrea et al. 2020). Nonetheless, research on the assessment of the effects of mulching on crop water use efficiency in grapevines provided contrasting results (Montoro et al. 2016). In the case of vineyards, Pinamonti (1998) reported 2% increments of soil water availability under mulching when compared to bare soil in a Merlot vineyard. Agnew et al. (2002) found

that mulches allowed for retaining soil moisture early in the season, reporting soil water contents 5% higher under mulch in the first 30 cm of the soil profile. In our study, the increase was as high as 35% on average in the first 20 cm. In Mediterranean vineyards, Medrano et al. (2015) indicated that direct soil evaporation may account for 20% of water consumption, so the reduction in evaporation observed in mulched soil could result in a greater water availability for vines (Davies et al. 2011). In the current study, the water stress integral values reflected an average improvement of 5% in vine water status over the growing season when mulch was applied, in comparison with vines under tilled soil (Figure 1). Under irrigation, the improvement was even higher: 13% on average for the three studied years. As expected, greater improvements were observed in dry seasons (2016 and 2017). In addition, the 2017 season in which rainfall was highest during the off-season period, WUE was improved by 11% in mulch treatments (Table 4). These results are in accordance with previous research on the effects of organic mulching on crop water use efficiency (Buckerfield and Webster 2001; Fourie 2011; Guerra and Steenwerth 2012; Nguyen et al. 2013). Moreover, an improved vine water status coud be also due to differences in the root system provoked by mulching, mainly due to the proliferation of fine roots (Gaiotti et al. 2017; Morlat 2008; Linares-Torres et al. 2018).

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

On the other hand, both mulching and irrigation regimes can affect vine performance by modifying the vineyard nutrient balance (Keller et al. 2005). In the present research, we focused on determining the end effects at the vine level via a detailed analysis of the leaf macro- and micro-nutrient status. Despite other authors reported improvements in vine nutrient status in response to mulch application (Agnew et al. 2005; Nguyen et al. 2013), leaf nutrients did not show a consistent response to the treatments imposed in the current work (Table 2). In fact, the effect of WR and SM on vine nutrition was minimal and not fully

consistent over the study period. For instance, deficit irrigation did not lead to nutritional deficiencies due to increased vigor as compared to rainfed treatments. Only the slight increases detected in P in response to the application of mulch may be linked to improved soil water content in these treatments (Mpelasoka et al. 2003), rather than to any effect on the incorporation of nutrients into the soil from pruning waste. This increase in P contents allowed for correcting a nutritional deficiency in the soil that existed prior to the application of mulching (Poni et al. 2003; Romero et al. 2005; Navarro et al. 2008; García-Escudero et al. 2013). Leaf micronutrients behaved inconsistenly with SM and WR. It should be noted that in 2017, the Cu values must have been affected by fungicide residues so they have no physiological meaning. On the other hand, the high levels of B found in the first experimental season, which were far from optimal (García-Escudero et al. 2013), may be due to the application of manure in this season. Although the nutrient levels in the manure were standard (Supplementary Table 3), it cannot be ruled out that the trial conditions favoured a high absorption of B, which is an essentially passive nutrient in contrast with other compounds such as Fe (Reid 2001). However, in some seasons, leaf contents of both nutrients were increased by the effect of mulching, most likely due to the increased soil water content (Keller et al. 2005). Other studies assessing the effect of vine pruning mulch on foliar nutrient status showed similar results in Cabernet franc on 3309C rootstock in the medium-term (Morlat 2008). Nevertheless, in the long-term (28 years) a trend towards a favorable influence of mulching on grapevine nutrition was observed (Morlat 2008), likely due to the increase of the soil organic matter content (Morlat and Chaussod 2008) which increased, in turn, the soil water holding capacity and, consequently, improved nutrient uptake by plants.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

In our study, the worsened soil hydrophysical properties under mulching were the consequences of soil compaction, which was reflected in the increased bulk density at 0-5

cm (Figure 3), similar to the response to non-tillage reported by other authors (Álvaro-Fuentes et al. 2008a; Hansen et al. 2011). Contrary to the upper topsoil, the soil layers below the depth reached by the cultivator's tines, i.e., 10 cm, tended to be more compact under tillage, which is an undesirable effect known to be caused by repeatedly ploughing at the same depth (Tripplett and Dick 2008). The differences in bulk density in the 0-5 cm layer of the soil were reflected in differences in the saturated hydraulic conductivity of the soil surface (Figure 3), in accordance with previous studies (Curtis and Claassen 2009). However, in treatments where infiltrability was increased, this had no consequences on the soil water content below the surface layer (Figure 3).

Aggregate stability was not affected by soil management (Figure 3). The stability of aggregates increase with the build-up of binding agents (Álvaro-Fuentes et al. 2008b; Virto et al. 2012). In the Typic Calciorthid soil featured in the current study these binding agents are mainly calcium carbonate and organic matter. Nevertheless, on the one hand, the calcium carbonate content of soils under semi-arid Mediterranean climate only significantly changes in the very long-term and, on the other hand, even though the organic matter had increased due to mulching, as observed in other vineyards (Ferrara et al. 2012; Peregrina et al. 2012), it may be also a very short time for structural stability to increase (Table 6). In order to be able to change this parameter in a soil with poor aggregate stability as this, the mulching should definitely increase the organic matter content more than 2 g kg⁻¹. Perhaps it takes a much longer time for the mulching to incorporate into the soil, since the functioning of calcareous soils does not rapidly change in Mediterranean vineyards, thus limiting the effects of soil improving practices (Salomé et al. 2016).

In addition to the effects on plant water and nutrient status, the present research carried out a comprehsive agronomic assessment of vine performance and grape composition

in order to integrate the effects of the soil mulching and irrigation on soil characteristics and vine physiology at the whole vine level. Although previous research showed that employing mulches increased vine vegetative growth (Gaiotti et al. 2017; Pinamonti 1998; Agnew et al. 2002), no clear effects were observed in the current study (Table 4). Despite the reports indicating that the use of organic mulches increases grape yields (Fourie 2011; Guerra and Steenwerth 2012; Nguyen et al. 2013), in the current study, yield increased by irrigation but not by the application of mulching. Nonetheless, cluster weight did increase in M treatments in 2017, but the contrary was observed in 2018, with no effect in 2016. In 2017, there was an interactive effect between SM and WR in yield and WUE, suggesting that the increase in soil water content under mulching during the off-season period of 2017 was enough for enhancing vine performance and WUE in the most stressed vines (rainfed) but not in irrigated vines. It is noteworthy that this interactive effect did not occur in all seasons (Supplementary Table 1). These irreproducible effects indicate that the environmental conditions the grapevines must cope within this semi-arid region are rather restrictive and the improvements generated by mulching and no-tilling are not sufficient for having a consistent impact on grapevine performance, at least in a three-year span. In addition, the beneficial increase in the soil water content promoted by mulching could be offset by the detrimental soil surface compaction effect due to no tillage methods (Figure 3). Although these findings contradict previous research on which mulching clearly increased vine yield (Porter 1999; Agnew et al. 2002), they may be explained by the different environmental conditions in which these studies were conducted. Environmental conditions are of paramount importance on grapevine response to management practices (Jackson and Lombard 1993) and, in fact, other studies reporting no significant effects on vineyard yield are not rare. For instance, Ferrara et al. (2012) did not

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

observe significant effects of mulching application on grapevine yield after two years of research, in accordance with the results found in the current study.

Grape composition parameters were more clearly affected by WR than by SM (Table 5). For instance, irrigation decreased TSS and increased malic acid concentration, which is in accordance with previous research on irrigation effects on this variety (Salón et al. 2005). In contrast, SM only consistently affected the concentration of tartaric acid in the grapes which in turn showed an increased pH in 2016 and 2017. This contradicts previous works in which the application of mulch significantly increased TSS and TA (Mundy and Agnew 2002; Varga and Májer 2004). These contrasting results among studies may depend on the cultivar and the pedoclimatic conditions (Ferrara et al. 2012; Salomé et al. 2016). Notably, both WR and SM affected grape phenolic composition, with deficit irrigation and mulching reducing the concentration of polyphenols and anthocyanins in some seasons (Table 5). This can be explained by the effects that I and M had on alleviating vine water stress (Fig.1) and thus on regulating phenolic ripening (Castellarin et al. 2007; Romero et al. 2010). The observed effect of mulching on phenolic compounds was in agreement with previous evidences showing that organic amendments, such as crushed pruned vine-wood, decreased grape phenolic compounds in the long-term (Morlat and Symoneaux 2008).

5 Conclusions

Yield components were mostly unaffected by the combined effects of mulching with vine prunings and no-tillage under both water regimes. Vine nutritional status was not consistently affected. However, vine water status was enhanced under mulching, leading to water stress integral values over the season that were 5 and 13% lower than those from the tilled soil under rainfed and irrigation regimes, respectively. This enhancing effect, which is

a result of the higher soil water content under mulching and no-tillage, resulted in reductions in grape phenolic composition. In one of the studied seasons, the soil management and water regime had an interactive effect on water use efficiency, highlighting the importance of environmental conditions on vine response to management practices. At the end of the experiment, however, soils from the mulched and no-tilled treatments also showed a higher bulk density in the shallower soil layer, along with a lower saturated hydraulic conductivity. According to these results, combining an organic mulch and no-tillage seems to have been useful in reducing direct soil water loss and limiting early transpiration losses, which were eventually revealed by the better vine water status. Nevertheless, the final higher compaction and lower infiltration ability of soils under mulching and no-tillage suggests that these positive effects may be unrepeatable along different seasons and therefore, complementary soil improvement practices should be adopted. Furthermore, the amount of material needed for mulching and its cost of establishment are additional factors that might constrain the use of pruning waste as organic mulching.

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) with FEDER co-financing [grant number AGL2017-83738-C3-3] and the EU by H2020 project SHui [grant number 773903]. Cajamar and Lucio Gil de Fagoaga for facilitating the experimental field.

Conflict of interest

The authors declare that they have no conflict of interest.

575 References 576 Agnew RH, Mundy DC, Spiers TM (2002) Mulch for sustainable production. Malborough 577 District Council Sustainable Management Fund Project 4123. 52 pp. Christchurch, 578 New Zealand. 579 Agnew RH, Mundy DC, Spiers TM, Greven MM (2005) Waste stream utilization for 580 sustainable viticulture. Water Sci Technol 51(1):1-8. 581 https://doi.org/10.2166/wst.2005.0001 582 Al-Kaisy AM, Sachde AG, Ghalib HA, Hamel SM (1981) Physical and chemical changes 583 during ripening of some grape varieties grown in Basrah. Am J Enol Vitic 32:268-271. 584 Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for 585 computing crop water requirements: Irrigation and Drainage No. 56, FAO, Rome, Italy. 300 pages. http://www.fao.org/docrep/X0490E/X0490E00.htm. 586 587 Álvaro-Fuentes J, López MV, Cantero-Martinez C, Arrúe JL (2008a) Tillage effects on soil 588 organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci Soc Am J 589 72(2): 541-547. https://doi.org/10.2136/sssaj2007.0164 590 Álvaro-Fuentes J, Arrúe JL, Cantero-Martínez C, López MV (2008b) Aggregate breakdown 591 during tillage in a Mediterranean loamy soil. Soil Till Res 101:62-68. 592 https://doi.org/10.1016/j.still.2008.06.004 Baronti S, Vaccari FP, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, 593 594 Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinifera 595 (L.). Eur J Agron 53:38-44. https://doi.org/10.1016/j.eja.2013.11.003 596 Bavougian CM, Read PE (2018) Mulch and groundcover effects on soil temperature and

management. PeerJ 6:e5082 https://doi.org/10.7717/peerj.5082

moisture, surface reflectance, grapevine water potential, and vineyard weed

597

598

599	Bordoni M, Vercesi A, Maerker M, Ganimede C., Reguzzi M.C., Capelli E., Wei X, Mazzoni
600	E, Simoni S., Gagnarli E, Meisina C (2019). Effects of vineyard soil management on
601	the characteristics of soils and roots in the lower Oltrepo Apennines (Lombardy, Italy).
602	Sci Total Environ, 693: 133390. https://doi.org/10.1016/j.scitotenv.2019.07.196 .
603	Buckerfield J, Webster K (2001) Responses to mulch continue: results from five years of
604	field trials. Australian and New Zealand Grapegrower and Winemaker 453:71-78.
605	Buesa I, Pérez D, Castel J, Intrigliolo DS, Castel JR (2017) Effect of deficit irrigation on vine
606	performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Aust
607	J Grape Wine Res, 23:251–259. https://doi.org/10.1111/ajgw.12280.
608	Cao J, Liu Ch Zhang W, Guo Y (2012) Effect of integrating straw into agricultural soils on
609	soil infiltration and evaporation. Water Sci Technol., 65:12.
610	https://doi.org/10.2166/wst.2012.140
611	Castellarin SD, Matthews MA, Gaspero GD, Gambetta GA (2007) Water deficits accelerate
612	ripening and induce changes in gene expression regulating flavonoid biosynthesis in
613	grape berries. Planta 227(1):101-112. https://doi.org/10.1007/s00425-007-0598-8
614	Celette F, Gaudin R, Gary C (2008) Spatial and temporal changes to the water regime of a
615	Mediterranean vineyard due to the adoption of cover cropping. Eur J Agron 29(4):153-
616	162. https://doi.org/10.1016/j.eja.2008.04.007
617	Celette F, Fielding A, Gary C (2009) Competition for nitrogen in an unfertilized
618	intercropping system: the case of an association of grapevine and grass cover in a
619	Mediterranean climate. Eur J Agron 30:41-51.
620	https://doi.org/10.1016/j.eja.2008.07.003
621	Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP,
622	Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while

623	controlling vigour and production quality. Ann Appl Biol 150:237-252.
624	https://doi.org/10.1111/j.1744-7348.2006.00123.x
625	Choné X, van Leeuwen C, Dubourdieu D, Gaudillère JP (2001) Stem water potential is a
626	sensitive indicator of grapevine water status. Ann Bot 87(4):477-483.
627	https://doi.org/10.1006/anbo.2000.1361
628	Curtis MJ, Claassen VP (2009). Regenerating topsoil functionality in four drastically
629	disturbed soil types by compost incorporation. Restor Ecol 17(1):24-32.
630	https://doi.org/10.1111/j.1526-100X.2007.00329.x
631	Davies WJ, Zhang J, Yang J, Dodd IC (2011) Novel crop science to improve yield and
632	resource use efficiency in water-limited agriculture. J Agric Sci 149(S1):123-131.
633	https://doi.org/10.1017/S0021859610001115
634	Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H,
635	Gambetta GA (2020) The sequence and thresholds of leaf hydraulic traits underlying
636	grapevine varietal differences in drought tolerance. J Exp Bot 71(14): 4333-4344.
637	https://doi.org/10.1093/jxb/eraa186
638	De Paz JM, Visconti F, Zapata R, Sánchez J (2004) Integration of two simple models in a
639	geographical information system to evaluate salinization risk in irrigated land of the
640	Valencian Community, Spain. Soil Use Manage 20:333-342.
641	https://doi.org/10.1079/SUM2004265
642	Ferrara G, Fracchiolla M, Al Chami Z, Camposero S, Lasorella C, Pacifico A, Aly A,
643	Montemurro P (2012) Effects of mulching materials on soils and performance of cv.
644	Nero di Troia grapevines in the Puglia Region, Southeastern Italy. Am J Enol Vitic
645	63(2):269-276. https://doi.org/10.5344/ajev.2011.11092

646	Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbo M, Tomàs M, Medrano H (2010)
647	Improving water use efficiency in grapevines: potential physiological targets for
648	biotechnological improvement. Aust J Grape Wine Res 16: 106-121.
649	https://doi.org/10.1111/j.1755-0238.2009.00057.x
650	Fourie JC (2011) Soil management in the Breede River Valley wine grape region, South
651	Africa. 3. Grapevine performance. S Afr J Enol Vitic 32(1):60-70.
652	https://doi.org/10.21548/32-1-1367
653	Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA (2016) Modelling climate
654	change impacts on viticultural yield, phenology and stress conditions in Europe. Global
655	Change Biol 22(11):3774-3788. https://doi.org/10.1111/gcb.13382
656	Gaiotti F, Marcuzzo P, Belfiore N, Lovat L, Fornasier F Tomasi D (2017) Influence of
657	compost addition on soil properties, root growth and vine performances of Vitis vinifera
658	cv Cabernet sauvignon. Sci Hortic 225:88-95.
659	https://doi.org/10.1016/j.scienta.2017.06.052
660	Garcia L, Damour G, Gary C, Follain S, Le Bissonnais Y, Métay A (2019) Trait-based
661	approach for agroecology: contribution of service crop root traits to explain soil
662	aggregate stability in vineyards. Plant Soil, 435(1-2):1-14.
663	https://doi.org/10.1007/s11104-018-3874-4.
664	García-Escudero E, Romero I, Benito A, Domínguez N, Martín I (2013) Reference levels for
665	leaf nutrient diagnosis of cv. Tempranillo grapevine in the Rioja Appellation. Comm
666	Soil Sci Plant Anal 44(1-4): 645-654. https://doi.org/10.1080/00103624.2013.745385
667	García-Romero E, Sánchez-Muñoz G, Martín-Álvarez PJ, Cabezudo-Ibáñez MD (1993)
668	Determination of organic acids in grape musts, wines and vinegars by high-

669	performance liquid chromatography. J Chromatogr A 655:111-117.
670	https://doi.org/10.1016/0021-9673(93)87018-H
671	Gaudin R, Celette F and Gary C (2010) Contribution of runoff to incomplete off season soil
672	water refilling in a Mediterranean vineyard. Agric Water Manag 97(10): 1534-1540.
673	https://doi.org/10.1016/j.agwat.2010.05.007
674	Gee GW, Or D (2002) Particle-size analysis. In: Campbell G, Horton R, Jury WA, Nielsen
675	DR, van Es HM, Wierenga PJ, Dane JH, Topp GC (eds.). Methods of Soil Analysis.
676	Part 4. Physical Methods. SSSA, ASA, Madison, WI, pp. 255 – 294.
677	Gil P, Lobos P, Duran K, Olguin J, Cea D, Schaffer B (2018) Partial root-zone drying
678	irrigation, shading, or mulching effects on water savings, productivity and quality of
679	'Syrah' grapevines. Sci Hortic 240:478-483.
680	https://doi.org/10.1016/j.scienta.2018.06.050
681	Guerra B, Steenwerth K (2012) Influence of floor management technique on grapevine
682	growth, disease pressure, and juice and wine composition: a review. Am J Enol Vitic
683	63(2):149-164. https://doi.org/10.5344/ajev.2011.10001
684	Hansen EM, Munkholm LJ, Olesen JE (2011) N-utilization in non-inversion tillage systems.
685	Soil Till Res 113(1): 55-60. https://doi.org/10.1016/j.still.2011.01.004
686	Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: A review of the
687	nature, causes and possible solutions. Soil Till Res 82(2):121-145.
688	https://doi.org/10.1016/j.still.2004.08.009
689	Holz SC, Ingelmo F, Canet R (2000) Long term effects of the application of sewage sludge
690	and vegetal cover on some physical and physicochemical properties of a degraded arid
691	soil. Agrochimica 44(3-4):132-139.

692	Horneck DA, Miller RO (1998) Determination of total nitrogen in plant tissue. In: Kalra YP
693	(Ed.), Handbook of Reference Methods for Plant Analysis. CRC Press, Boca Raton,
694	Florida, pp. 75–83.
695	Iland P, Bruer N, Edwards G, Weeks S, Wilkes E (2004) Chemical analysis of grape and
696	wine: techniques and concepts. Patrick Iland Wine Promotions, Campbelltown, SA,
697	Australia.
698	Intrigliolo DS, Pérez, D, Risco D, Yeves A, Castel JR (2012) Yield components and grape
699	composition responses to seasonal water deficits in Tempranillo grapevines. Irrig Sci
700	30(5):339-349. https://doi.org/10.1007/s00271-012-0354-0
701	Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape
702	composition and wine quality – A review. Am J Enol Vitic 44(4):409-430.
703	Keller M (2005) Deficit irrigation and vine mineral nutrition. Am J Enol Vitic 56(3):267-
704	283.
705	Linares Torres R, De La Fuente Lloreda M, Junquera Gonzalez P, Lissarrague García-
706	Gutierrez J, Baeza Trujillo P (2018) Effect of soil management strategies on the
707	characteristics of the grapevine root system in irrigated vineyards under semi-arid
708	conditions. Aus J Grape Wine Res 24:439-449. https://doi.org/ <u>10.1111/ajgw.12359</u>
709	Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Sparks DL, Page AL, Helmke
710	PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds).
711	Methods of soil analysis. Part 3. Chemical methods. SSSA, ASA, Madison, WI, pp.
712	437–474.
713	Lopes CM, Santos TP, Monteiro A, Lucilia Rodrigues M, Costa JM, Manuela Chaves M
714	(2011) Combining cover cropping with deficit irrigation in a Mediterranean low vigor
715	vineyard. Sci Hortic 129(4):603-612. https://doi.org/10.1016/j.scienta.2011.04.033

López-Urrea R, Sánchez JM, Montoro A, Mañas F, Intrigliolo DS (2020) Effect of using 716 717 pruning waste as an organic mulching on a drip-irrigated vineyard evapotranspiration 718 under a semi-arid climate. Agric For Meteorol 291:108064. 719 OIV, 1990. Recueil des Methodes Internationales d'Analyses des Vins et Dos Moûts. Office 720 Internationale de la Vigne et du Vin, Paris. 721 Medrano H, Tomás M, Martorell S, Escalona JM, Pou A, Fuentes S, Flexas J, Bota J (2015) 722 Improving water use efficiency of vineyards in semiarid regions. A review. Agron 723 Sustain Dev 35:499-517. https://doi.org/10.1007/s13593-014-0280-z 724 Miller RO (1998) High-temperature oxidation: dry ashing. In: Kalra YP (Ed.), Handbook of 725 Reference Methods for Plant Analysis. CRC Press, Boca Raton, Florida, pp. 53 – 56. 726 Mirás-Avalos JM, Buesa I, Llacer E, Jiménez-Bello MA, Risco D, Castel JR, Intrigliolo DS 727 (2017) Water versus source–sink relationships in a semiarid Tempranillo vineyard: 728 Vine performance and fruit composition. Am J Enol Vitic 68:11-22. 729 https://doi.org/10.5344/ajev.2016.16026 730 Montanaro G, Xiloyannis C, Nuzzo V, Dichio B (2017) Orchard management, soil organic 731 carbon and ecosystem services in Mediterranean fruit tree crops. Sci Hortic 217:92-732 101. https://doi.org/10.1016/j.scienta.2017.01.012 733 Monteiro A, Lopes CM (2007) Influence of cover crop on water use and performance of 734 vineyard in Mediterranean Portugal. Agric Ecosys Environ 121:336-342. 735 https://doi.org/10.1016/j.agee.2006.11.016 736 Montoro A, Mañas F, López-Urrea R (2016) Transpiration and evaporation of grapevine, two components related to irrigation strategy. Agric Water Manage 177:193-200. 737 https://doi.org/10.1016/j.agwat.2016.07.005 738

739 Morlat R, Jacquet A (2003) Grapevine root system and soil characteristics in a vineyard 740 maintained long-term with and without interrow sward. Am J Enol Vitic 54(1):1-7. 741 Morlat R (2008) Long-term additions of organic amendments in a Loire Valley vineyard on 742 a calcareous sandy soil. II. Effects on root system, growth, grape yield, and foliar 743 nutrient status of a Cabernet franc vine. Am J Enol Vitic 59(4):364-374. 744 Morlat R, Chaussod R (2008) Long-term additions of organic amendments in a Loire Valley 745 vineyard. I. Effects on properties of a calcareous sandy soil. Am J Enol Vitic 59(4):353-746 363. 747 Morlat R, Symoneaux R (2008) Long-term additions of organic amendments in a Loire 748 Valley vineyard on a calcareous sandy soil. III. Effects on fruit composition and 749 chemical and sensory characteristics of Cabernet franc wine. Am J Enol Vitic 750 59(4):375-386. 751 Mpelasoka BS, Schachtman DP, Treeby MT, Thomas MR (2003) A review of potassium 752 nutrition in grapevines with special emphasis on berry accumulation. Aus J Grape Wine 753 Res 9(3):154-168. https://doi.org/10.1111/j.1755-0238.2003.tb00265.x 754 Mundy DC, Agnew RH (2002) Effects of mulching with vineyard and winery waste on soil 755 fungi and Botrytis bunch rot in Marlborough vineyards. N Z Plant Protec 55:135-138. 756 https://doi.org/10.30843/nzpp.2002.55.3942 757 Myburgh PA (2013) Effect of shallow tillage and straw mulching on soil water conservation 758 and grapevine response. Afr Plant Soil 30(4):219-225. 759 https://doi.org/10.1080/02571862.2013.867459 760 Myers BJ (1988) Water stress integral a link between short-term stress and long term growth.

Tree Physiol 4:315-323. https://doi.org/10.1093/treephys/4.4.315

761

762	Navarro S, León M, Roca-Pérez L, Boluda R, García-Ferriz L, Pérez-Bermúdez P, Gavidia I
763	(2008) Characterisation of Bobal and Crujidera grape cultivars, in comparison with
764	Tempranillo and Cabernet Sauvignon: Evolution of leaf macronutrients and berry
765	composition during grape ripening. Food Chem 108:182-190.
766	https://doi.org/10.1016/j.foodchem.2007.10.060
767	Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks
768	DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT,
769	Sumner ME (eds). Methods of soil analysis. Part 3. Chemical methods. SSSA, ASA,
770	Madison, WI, pp. 961 – 1010.
771	Nguyen TT, Fuentes S, Marschner P (2013) Effect of incorporated or mulched compost on
772	leaf nutrient concentrations and performance of Vitis vinifera cv. Merlot. J Soil Sci
773	Plant Nutr 13(2):485-497. https://doi.org/10.4067/S0718-95162013005000038
774	Peregrina F, Pérez-Álvarez EP, Colina M, García-Escudero E (2012) Cover crops and tillage
775	influence soil organic matter and nitrogen availability in a semi-arid vineyard. Arch
776	Agron Soil Sci 58:SS95-SS102. https://doi.org/10.1080/03650340.2011.648182
777	Perez-Álvarez EP, Garde-Cerdán T, Santamaría P, García-Escudero E (2015) Influence of
778	two different cover crops on soil N availability, N nutritional status, and grape yeast-
779	assimilable N (YAN) in a cv. Tempranillo vineyard. Plant Soil 390(1-2):143-156.
780	https://doi.org/10.1007/s11104-015-2387-7
781	Pérez-Álvarez EP, Garde-Cerdán T, García-Escudero E, Martínez-Vidaurre JM (2017) Effect
782	of two doses of urea foliar application on leaves and grape nitrogen composition during
783	two vintages. J Sci Food Agric 97(8):2524-2532. https://doi.org/10.1002/jsfa.8069

784	Pinamonti F (1998) Compost mulch effects on soil fertility, nutritional status and
785	performance of grapevine. Nutr Cycl Agroecosys 51:239-248.
786	https://doi.org/10.1023/A:1009701323580
787	Poni S, Quartieri M, Tagliavini M (2003) Potassium nutrition of Cabernet Sauvignon
788	grapevines (Vitis vinifera L.) as affected by shoot trimming. Plant Soil 253(2):341-351.
789	https://doi.org/10.1023/A:1024832113098
790	Porter C (1999) California wineries take major steps to improve vineyards. BioCycle: Journal
791	of Composting Recycling 1:59-62.
792	Prosdocimi M, Tarolli P, Cerdà A (2016) Mulching practices for reducing soil water erosion:
793	A review. Earth-Sci Rev 161:191-203. https://doi.org/10.1016/j.earscirev.2016.08.006
794	Quemada M, Gabriel JL (2016) Approaches for increasing nitrogen and water use efficiency
795	simultaneously. Glob Food Sec. 9: 29-35. https://doi.org/10.1016/j.gfs.2016.05.004
796	R Core Team (2017) R: A language and environment for statistical computing. R Foundation
797	for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
798	Ripoche A, Metay A, Celette F, Gary C (2011) Changing the soil surface management in
799	vineyards: inmediate and delayed effects on the growth and yield of grapevine. Plant
800	Soil 339:259-271. https://doi.org/10.1007/s11104-010-0573-1
801	Reid RJ (2001) Mechanisms of micronutrient uptake in plants. Funct Plant Biol 28(7):661-
802	668. https://doi.org/10.1071/PP01037
803	Rodríguez Ballesteros C (2016) Clasificación climática de Köppen-Geiger (para España).
804	Periodo de referencia 1981–2010. [Online]. Available in:
805	https://climaenmapas.blogspot.com/p/pagina-koppen.html (7 October 2019).
806	Romero I, García C, Villar MT, López D, Ibáñez S, Arroyo MC, Martín-Rueda I, García-
807	Escudero E (2005) Utilización del análisis de limbo y pecíolo para el diagnóstico

808	nutricional de la vid (Vitis vinifera L.) variedad Tempranillo. I Jornadas del Grupo de
809	Fertilización de la Sociedad Española de Ciencias Hortícolas. Actas de Horticultura.
810	Ramos C, Bautista I, Belda R, de Paz JM and others (Eds.). Moncada, Valencia.
811	(44):56-63.
812	Romero I, García-Escudero E, Martín I (2010) Effects of leaf position on blade and petiole
813	mineral nutrient concentration of Tempranillo grapevine (Vitis vinifera L.). Am J Enol
814	Vitic 61:544-550. https://doi.org/10.5344/ajev.2010.09091
815	Romero P, Fernández-Fernández JI, Martinez-Cutillas A (2010) Physiological thresholds for
816	efficient regulated deficit-irrigation management in winegrapes grown under semiarid
817	conditions. Am J Enol Vitic 61(3):300–312.
818	Romero P, Gil-Muñoz R, del Amor F, Valdés E, Fernández JI, Martínez-Cutillas A (2013)
819	Regulated deficit irrigation based upon optimum water status improves phenolic
820	composition in Monastrell grapes and wines. Agric Water Manage 121:85-101.
821	https://doi.org/10.1016/j.agwat.2013.01.007
822	Salomé C, Coll P, Lardo E, Metay A, Villenave C, Marsden C, Blanchart E, Hinsinger P, Le
823	Cadre E (2016) The soil quality concept as a framework to assess management
824	practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol
825	Indic 61:456-465. https://doi.org/10.1016/j.ecolind.2015.09.047
826	Salón JL, Chirivella C, Castel JR (2005) Response of cv. Bobal to timing of deficit irrigation
827	in Requena, Spain: water relations, yield, and wine quality. Am J Enol Vitic 56(1):1-
828	8.
829	Schreiner RP, Lee J and Skinkis PA (2013) N, P, and K Supply to Pinot noir Grapevines:
830	Impact on Vine Nutrient Status, Growth, Physiology, and Yield. Am J Enol Vitic 64(1):
831	26-38.

832	Soil Survey Staff (1999) Soil Taxonomy: A Basic System of Soil Classification for Making
833	and Interpreting Soil Surveys. USDA-NRCS, Washington.
834	Steenwerth K, Belina KM (2008) Cover crops enhance soil organic matter, carbon dynamics
835	and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40:359-369.
836	https://doi.org/10.1016/j.apsoil.2008.06.006
837	Steinmaus S, Elmore CL, Smith RJ, Donaldson D, Weber EA, Roncoroni JA, Miller PR
838	(2008) Mulched cover crops as an alternative to conventional weed management
839	systems in vineyards. Weed Res 48(3):273-281. https://doi.org/10.1111/j.1365-
840	3180.2008.00626.x
841	Thomsen IK, Petersen BM, Bruun S, Jensen LS, Christensen BT (2008) Estimating soil C
842	loss potentials from the C to N ratio. Soil Biol Biochem 40(3):849-852.
843	https://doi.org/10.1016/j.soilbio.2007.10.002
844	Tourte L, Smith R, Bettiga L, Bensen T, Smith J, Salm D (2008) Post-emergence herbicides
845	are cost effective for vineyard floor management on the Central Coast. Calif Agric
846	62(1):19-23. https://doi.org/10.3733/ca.v062n01p19
847	Trigo-Córdoba E, Bouzas-Cid Y, Orriols-Fernández I, Díaz-Losada E, Mirás-Avalos JM
848	(2015) Influence of cover crop treatments on the performance of a vineyard in a humid
849	region. Span J Agric Res 13(4):e0907. https://doi.org/10.5424/sjar/2015134-8265
850	Triplett GB, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Agron
851	J 100:S153-S165. https://doi.org/10.2134/agronj2007.0005c
852	Varga P, Májer J (2004) The use of organic wastes for soil-covering of vineyards. Acta Hortic
853	652:191-197. https://doi.org/10.17660/ActaHortic.2004.652.23
854	Virto I, Imaz MJ, Fernández-Ugalde O, Urrutia I, Enrique A, Bescansa P (2012) Soil quality
855	evaluation following the implementation of permanent cover crops in semi-arid

856	vineyards. Organic matter, physical and biological soil properties. Span J Agric Res							
857	10(4):1121-1132. https://doi.org/10.5424/sjar/2012104-613-11							
858	Visconti F, de Paz JM, Martínez D, Molina MJ (2014) Laboratory and field assessment of							
859	the capacitance sensors Decagon 10HS and 5TE for estimating the water content of							
860	irrigated soils. Agric Water Manage 132:111-119.							
861	https://doi.,org/10.1016/j.agwat.2013.10.005							
862	Vos RJ, Zabadal TJ, Hanson EJ (2004) Effect of Nitrogen Application Timing on N Uptake							
863	by Vitis labrusca in a Short-Season Region. Am J Enol Vitic 55(3):246-252.							
864	Wu L, Pan L, Mitchell J, Sanden B (1999) Measuring saturated hydraulic conductivity using							
865	a generalized solution for single-ring infiltrometers. Soil Sci Soc Am J 63:788-792.							
866	https://doi.org/10.2136/sssaj1999.634788x							
867	Yunusa, IAM, Walker, RR, Guy, JR (1997) Partitioning of seasonal evapotranspiration from							
868	a commercial furrow-irrigated Sultana vineyard. Irrig Sci 18(1):45-54.							

Tables

Table 1. Total amount of water received by rainfall and irrigation during the growing season (from 1st April to 30th September) in Bobal onto 110-R vines in Requena, Valencia, Spain, along with off-season rainfall (from 1st October of previous season to 31st March of the current season). RT, Rainfed Tilled; RM, Rainfed Mulched and no-tilled; IT, Deficit Irrigated Tilled; IM, Deficit Irrigated Mulched and no-tilled.

Treatment	nt 2016		2	017	2018		
	Rainfall	Irrigation	Rainfall	Irrigation	Rainfall	Irrigation	
RT	166.0	0	118.6	0	231.9	0	
RM	100.0	U	116.0	U	231.9		
IT	166.0	259.8	118.6	120.4	4 231.9 68.	68.9	
IM	166.0 M		110.0	120.4	231.9	00.9	
Off-season	109.0	-	383.8	-	175.3	-	

Table 2. Contents of N, Ca, K, Mg and P at veraison in leaf blades from *Vitis vinifera* (L.). cv. 'Bobal' onto 110-R under two different soil management and water regime strategies during 2016, 2017 and 2018. RT, Rainfed and Tilled; RM, Rainfed and Mulched and notilled; IT, Deficit Irrigated and Tilled; IM, Deficit Irrigated and Mulched and notilled.

		V	Vater Reg	gime (WR)			
Parameter	Year	R	I	R	I	Sign	ificance of	feffects
1 drameter	1 cui		_	ement (SI	*			
		T			M	WR	SM	$WR \times SM$
	2016	19.4 20.	21.8 6	19.3	21.7	0.007	0.854	0.941
N (g kg ⁻¹ DW)	2017	17.9 18.	18.1 0	18.7 19	19.7 9.2	0.311	0.009	0.241
<u>.</u>	2018	18.0 18.	19.0 5	18.9	19.6 9.2	0.178	0.282	0.858
	2016	26.3 28.	30.5 4	27.8	32.5 0.1	0.003	0.004	0.491
Ca (g kg ⁻¹ DW)	2017	29.0 32.	35.6 3	33.3	32.2 3.3	0.116	0.678	0.008
-	2018	27.9 26.	24.9 4	24.7 2'	31.0 7.8	0.610	0.279	0.008
	2016	6.7 6.4	6.1 4	6.6	6.8	0.684	0.279	0.150
K (g kg ⁻¹ DW)	2017	4.5 5.0	5.4	6.4	6.3	0.247	0.006	0.203
-	2018	6.1	6.4	5.8	7.8	0.097	0.412	0.237
	2016	3.3 3.6	3.9	3.2	4.1	0.009	0.663	0.577
Mg (g kg ⁻¹ DW)	2017	3.7	4.2	3.6	3.4	0.358	0.078	0.145
-	2018	2.9	3.0	2.8	3.2	0.540	1.000	0.098
	2016	0.9 1.1	1.2	0.9 1	1.3	< 0.001	< 0.001	< 0.001
P (g kg ⁻¹ DW)	2017	0.6	0.9	0.8	1.1	0.005	0.006	0.834
	2018	0.7	0.8 7	0.7	1.0	0.087	0.033	0.331

Statistical significance effect of SM, WR and their interaction is also indicated by means of p-values. SM = Soil Management; WR = Water regime.

Table 3. Contents of B, Cu, Fe, Mn and Zn at veraison in leaf blades from *Vitis vinifera* (L.). cv. 'Bobal' onto 110-R under two different soil management and two water regime strategies during 2016, 2017 and 2018. RT, Rainfed and Tilled; RM, Rainfed and Mulched and notilled; IT, Deficit Irrigated and Tilled; IM, Deficit Irrigated and Mulched and notilled.

		Water Re	gime (WR)			
Parameter	Year	R I	Ř I	Sign	ificance o	f effects
rarameter	1 Cai		gement (SM)			
		T	M	WR	SM	$WR \times SM$
	2016	129.5 102.6 116.0	161.1 110.0 135.5	0.004	0.002	0.020
B (mg kg ⁻¹ DW)	2017	21.3 22.5 21.9	22.4 24.3 23.3	0.081	0.118	0.671
	2018	20.9 19.8 20.3	18.4 24.4 21.4	0.269	0.028	0.418
	2016	4.6 5.0 4.8	5.0 6.0 5.5	0.142	0.105	0.389
Cu (mg kg ⁻¹ DW)	2017	41.5 63.9 52.7	57.1 48.5 52.8	0.475	0.992	0.055
-	2018	4.5 3.9 4.2	3.1 5.6 4.3	0.433	0.874	0.111
	2016	139.1 134.0 136.6	443.7 193.8 318.7	0.099	0.023	0.088
Fe (mg kg ⁻¹ DW)	2017	101.7 124.6 113.2	130.8 135.5 133.1	0.246	0.029	0.244
	2018	115.1 78.5 96.8	86.3 105.4 95.8	0.648	0.964	0.235
	2016	97.7 146.3 122.0	99.3 167.0 133.1	0.004	0.157	0.215
Mn (mg kg ⁻¹ DW)	2017	93.2 146.9 120.1	124.5 130.3 127.4	0.021	0.511	0.062
-	2018	91.4 94.1 92.8	76.5 112.9 94.7	0.144	0.795	0.053
	2016	20.1 13.7 16.9	18.5 14.4 16.4	0.015	0.553	0.139
Zn (mg kg ⁻¹ DW)	2017	14.5 19.3 16.9	18.2 18.7 18.4	0.018	0.285	0.151
· -	2018	13.5 12.4 13.0	13.5 13.3 13.4	0.660	0.832	0.825

Statistical significance effect of SM, WR and their interaction is also indicated by means of p-values. SM = Soil Management; WR = Water regime.

894

895

896

897 898

		Water Reg	rime (WR) R I	C:	:£	faffaata
Parameter	Year	Soil Manage		_ Sign	ificance o	1 effects
		T	M	WR	SM	$WR \times SM$
	2016	0.30 0.61 0.46	0.30 0.73 0.52	0.023	0.204	0.181
Pruning weight (kg/vine)	2017	0.52 0.76 0.64	0.55 0.89 0.73	0.043	0.071	0.341
•	2018	0.58 0.77 0.68	0.51 0.80 0.65	0.114	0.671	0.323
	2016	10.3 12.6 11.3	9.7 12.4 10.9	0.108	0.265	0.845
Clusters per vine	2017	7.3 13.1 10.0	8.0 12.4 10.0	0.004	0.963	0.145
	2018	8.7 10.4 9.5	9.1 9.6 9.3	0.356	0.622	0.172
	2016	2.1 6.7 4.2	2.3 7.1 4.4	0.044	0.623	0.896
Yield (kg/vine)	2017	2.5 6.3 4.3	3.3 6.0 4.5	0.010	0.134	0.013
•	2018	3.1 4.5	2.9 4.0 3.4	0.088	0.133	0.594
	2016	211.7 538.3 361.7	234.2 591.0 393.4	0.029	0.283	0.629
Cluster weight (g)	2017	337.7 479.6 403.8	404.6 494.4 444.9	< 0.001	0.005	0.038
	2018	354.7 431.6 390.2	312.5 396.6 349.1	0.046	0.025	0.761
	2016	1.41 3.20 2.30	1.47 3.56 2.51	0.001	0.117	0.252
Berry weight (g)	2017	3.44 3.26 3.35	3.55 3.49 3.52	0.323	0.114	0.578
	2018	2.63 3.04 2.84	2.66 3.21 2.94	0.069	0.450	0.581
	2016	3.5 4.4 3.9	3.8 4.6 4.1	0.069	0.706	0.945
WUE (kg/m³)	2017	5.8 7.3 6.5	7.5 6.9 7.3	0.035	0.025	0.008
	2018	3.7 4.1 3.9	3.5 3.7 3.5	0.160	0.160	0.773

Statistical significance effect of SM, WR and their interaction is also indicated by means of p-values. SM = Soil Management; WR = Water regime.

in, Denen ing.	area arra .	Water Reg				
D	V	R I	R I	Sign	nificance of	feffects
Parameter	Year	Soil Manage	` /			
		T	M	WR	SM	$WR \times SM$
Total soluble	2016	22.5 19.7 21.1	22.1 19.5 20.8	0.011	0.264	0.773
solids	2017	22.7 18.5 20.6	21.5 18.4 20.0	0.004	0.119	0.132
(°Brix)	2018	21.9 20.2 21.0	21.7 19.7 20.7	0.036	0.466	0.762
Total acidity	2016	7.2 5.7 6.4	7.0 5.7 6.4	0.071	0.735	0.481
(g L ⁻¹ as tartaric	2017	5.1 5.7 5.4	5.6 5.9 5.8	0.012	0.062	0.520
acid)	2018	6.0 6.0	5.7 6.1 5.9	0.426	0.886	0.576
	2016	2.72 2.88 2.80	2.75 2.95 2.85	0.011	0.024	0.213
рН	2017	3.48 3.30 3.39	3.50 3.41 3.46	0.011	0.014	0.063
	2018	3.57 3.59 3.58	3.62 3.64 3.63	0.482	0.186	0.971
	2016	1.0 5.3	1.1 4.8 2.9	0.001	0.127	0.050
Malic acid	2017	2.6 2.7 2.7	2.8 3.2 3.0	0.014	0.008	0.112
(g L ⁻¹)	2018	2.1 2.2	2.2 2.6 2.4	0.018	0.067	0.304
	2016	9.7 7.3 8.5	9.2 7.0 8.1	0.002	0.008	0.266
Tartaric acid (g L ⁻¹)	2017	7.1 8.0 7.6	6.8 7.5 7.2	0.009	< 0.001	0.186
	2018	7.9 8.0 8.0	7.5 7.6 7.5	0.054	0.009	0.992
	2016	3.2 3.5 3.3	3.2 3.4	0.448	0.599	0.544
Ratio TSS/TA	2017	4.4 3.3 3.9	3.9 3.1 3.5	0.004	0.041	0.166
	2018	3.7 3.4 3.5	3.8 3.2 3.5	0.101	0.887	0.403
T	2016	4.9 3.8	4.7 3.5 4.1	0.006	0.270	0.698
Total polyphenolic	2017	4.9 4.7 4.8	4.5 4.4 4.5	0.100	0.009	0.953
index	2018	4.2 5.1 4.6	3.9 4.9 4.4	0.003	0.026	0.901

	2016	1.9 1.	0.7	1.7 1.	0.6 .1	0.003	0.218	0.830
Anthocyanins (g L ⁻¹)	2017	1.0	0.7	0.9	0.6	0.011	0.023	0.725
	2018	1.2 1.	0.9	1.1 1.	0.8	0.029	0.356	0.620

Statistical significance effect of SM, WR and their interaction is also indicated by means of p-values.

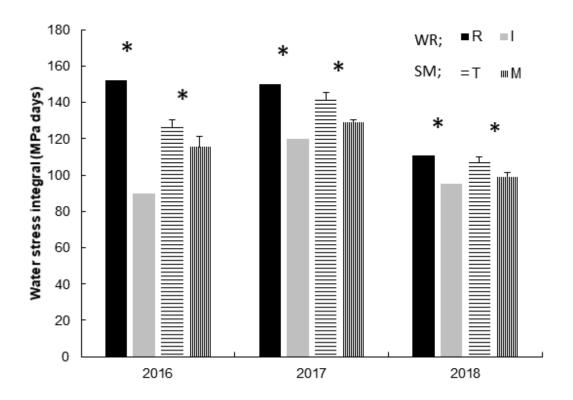

SM = Soil Management; WR = Water regime; TSS = Total soluble solids; TA = Total acidity.

Table 6. Statistical summary of the comparison of the 0-20 cm soil layer basic properties
 under rainfed conditions at the end of the experiment between tillage and mulching

	USDA	textural fra	Organic matter	Calcium carbonate				
Parameter	Clay (g kg ⁻¹)	Silt (g kg ⁻¹)	Sand (g kg ⁻¹)	content (g kg ⁻¹)	equivalent (g kg ⁻¹)			
Tillage treatment descriptive statistic	es							
Count	4	4	4	4	4			
Mean	199	306	496	9.7	320			
Standard deviation	30	18	43	7.4	80			
Maximum value	237	326	552	19.9	379			
Minimum value	165	284	452	2.8	202			
Mulching treatment descriptive stati	stics							
Count	4	4	4	4	4			
Mean	218	298	484	11.7	296			
Standard deviation	33	42	56	4.4	45			
Maximum value	247	351	529	15.2	355			
Minimum value	190	251	403	5.4	258			
Student's t-test of the comparison of tillage against mulching								
Weighted Standard Deviation	31	30	49	5.9	62			
Std. Error of the Difference of Means	22	21	35	4.2	44			
t value	-0.88	0.36	0.34	-0.46	0.54			
p value	0.41	0.73	0.75	0.66	0.61			

Figures

Figure 1. Effects of the soil management and water regime on the water stress integral over the three studied growing seasons. Values reported are treatment means \pm standard error of 8 experimental units per factor. Asterisks on the columns indicate significant differences between levels within each factor. WR, Water Regime: R, Rainfed and I, Irrigated; SM, Soil Management: T, Tillage and M, Mulched and no-tilled.

Figure 2. Seasonal (2016-2018) variations of midday stem water potential in a Bobal vineyard subjected to two different types of soil managements and two water regimes. Values reported are treatment means ± standard error of 16 determinations. RT, Rainfed and Tilled; RM, Rainfed and Mulched and no-tilled; IT, Deficit Irrigated and Tilled; IM, Deficit Irrigated and Mulched and no-tilled.

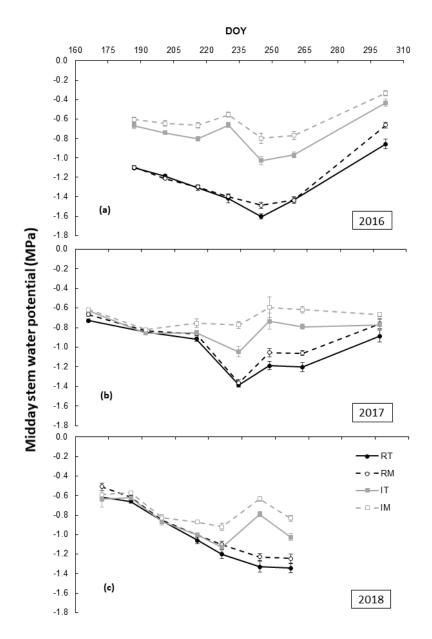
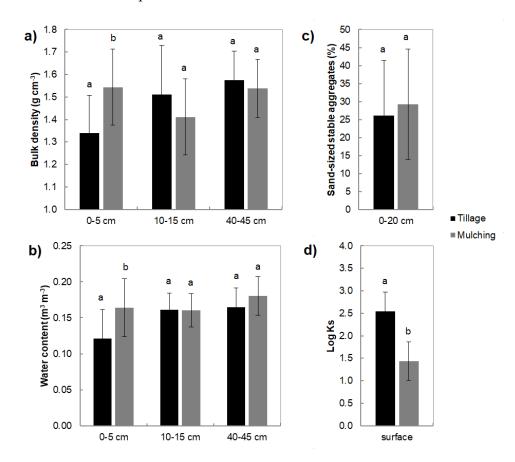
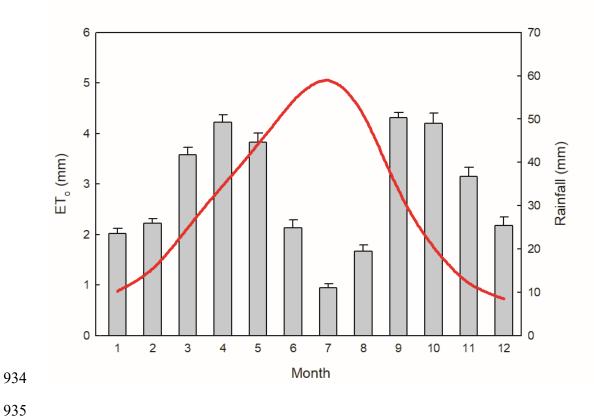




Figure 3. Effect of soil management on bulk density (a), water content (b), aggregate stability (c) and surface saturated hydraulic conductivity (d) at the end of the experiment under rainfed conditions. Values reported are treatment means \pm 95% confidence intervals for the difference of means in the pairwise comparisons for the same depth. Different letters indicate significant differences at the 95% confidence level according to the Student's t-test between treatments for the same depth.

Supplementary material

Supplementary Figure 1. Monthly averages of reference evapotranspiration and total rainfall in Requena, Valencia, Spain for the 2001-2015 period.

Supplementary Figure 2. Detail of the soil mulching applied in the cv. Bobal vineyard located in Requena, Valencia, Spain.

Supplementary Table 1. Results of the ANOVA (p value) conducted to assess the effects of the soil management (SM), water regime (WR), year of study and their interaction on the parameters assessed on *Vitis vinifera* (L.). cv. 'Bobal' grafted onto 110-R.

	Variable	SM	WR	Year	SM x WR	SM x Year	WR x Year	SM x WR x Year
	N	0.073	< 0.001	< 0.001	0.721	0.249	0.052	0.797
	Ca	0.951	0.002	0.026	0.832	0.339	0.428	0.001
	K	0.066	0.111	< 0.001	0.919	0.062	0.204	0.110
	Mg	0.185	0.007	< 0.001	0.390	0.342	0.185	0.350
Elements in leaves	P	< 0.001	< 0.001	< 0.001	0.770	< 0.001	0.074	0.278
Elements in leaves	В	0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	0.016
	Cu	0.977	0.607	< 0.001	0.387	0.998	0.873	0.384
	Fe	0.010	0.049	< 0.001	0.024	< 0.001	0.014	0.031
	Mn	0.898	< 0.001	< 0.001	0.266	0.300	0.008	0.006
	Zn	0.301	0.155	< 0.001	0.224	0.806	< 0.001	0.383
	Pruning weight	0.216	< 0.001	< 0.001	0.100	0.383	0.250	0.981
Viold components and	Clusters per vine	0.483	< 0.001	< 0.001	0.229	0.840	< 0.001	0.438
Yield components and vegetative growth	Yield	0.937	< 0.001	< 0.001	0.201	0.198	< 0.001	0.226
vegetative growth	Cluster weight	0.224	< 0.001	< 0.001	0.866	< 0.001	< 0.001	0.161
	Berry weight	0.082	< 0.001	< 0.001	0.319	0.875	< 0.001	0.907
	WUE	0.197	0.005	< 0.001	0.038	0.041	0.460	0.047
	TSS	0.073	< 0.001	0.047	0.452	0.857	0.009	0.434
	TA	0.578	0.070	< 0.001	0.574	0.375	< 0.001	0.645
	pН	0.002	0.156	< 0.001	0.187	0.895	< 0.001	0.539
Berry composition	Malic acid	0.155	< 0.001	< 0.001	0.912	0.018	< 0.001	0.045
Berry composition	Tartaric acid	< 0.001	< 0.001	< 0.001	0.891	0.883	< 0.001	0.560
	TSS/TA	0.115	< 0.001	0.008	0.902	0.236	< 0.001	0.252
	Total Polyphenols	< 0.001	0.006	< 0.001	0.688	0.619	< 0.001	0.732
Bold values indicate statistically significate	Anthocyanins	0.001	< 0.001	< 0.001	0.861	0.344	< 0.001	0.803

Bold values indicate statistically significant effects for each factor on a given parameter. WUE = Water use efficiency; TSS = Total soluble solids; TA = Total acidity

Supplementary Table 2. ANOVAs conducted to assess the effect of the soil management, soil depth and their interaction on the bulk density and soil water content under the rainfed treatment in the plantation of *Vitis vinifera* (L.). cv. 'Bobal' grafted onto 110-R

Source of variance	Sum of squares	Degrees of freedom	Mean squares	F	p-value
Bulk density					
Soil management	0.0062	1	0.0062	0.2124	0.647
Soil depth	0.1217	2	0.0609	2.0899	0.136
Interaction	0.2060	2	0.1030	3.5373	0.038
Residual	1.2233	42	0.0291		
Total	1.5572	47			
Soil water content					
Soil management	0.0045	1	0.0045	5.1641	0.028
Soil depth	0.0072	2	0.0036	4.1693	0.022
Interaction	0.0039	2	0.0020	2.2729	0.116
Residual	0.0362	42	0.0009		
Total	0.0518	47			

Supplementary Table 3. Nutritional composition of the buried manure applied at the beginning of the experiment in a *Vitis vinifera*(L.). cv. 'Bobal' vineyard grafted onto 110-R.

Parameter	Manure
N (% DW)	2.5
P (% DW)	1.35
K (% DW)	2.79
Ca (% DW)	6.3
Mg (% DW)	1.33
Na (% DW)	0.58
B (mg kg ⁻¹ DW)	53.4
Fe (mg kg-1 DW)	4036
Cu (mg kg-1 DW)	50,0
Mn (mg kg-1 DW)	198
Zn (mg kg-1 DW)	273