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We study the possibility to obtain cosmological late-time acceleration from a geometry changing with
the scale, in particular, in the so-called multifractional theories with q-derivatives and with weighted
derivatives. In the theory with q-derivatives, the luminosity distance is the same as in general relativity and,
therefore, geometry cannot act as dark energy. In the theory with weighted derivatives, geometry alone is
able to sustain a late-time acceleration phase without fine tuning, while being compatible with structure-
formation and big-bang nucleosynthesis bounds. This suggests to extend the theory, in a natural way, from
just small-scale to also large-scale modifications of gravity. Surprisingly, the Hausdorff dimension of
spacetime is constrained to be close to the topological dimension 4. After arguing that this finding might
not be a numerical coincidence, we conclude that present-day acceleration could be regarded as the effect of
a new restoration law for spacetime geometry.
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I. INTRODUCTION

To date, all cosmological observations agree on the fact
that general relativity, incarnated in the so-called ΛCDM
model, gives a valid and accurate description of the history
of the universe and of the astrophysical objects within, from
early times [1,2] until today [3]. Despite the success reaped
by Einstein theory, however, there is still room for
theoretical speculation. In particular, late-time acceleration
and the nature of dark energy are unsolved enigmas that do
not quite fit in the picture. On one hand, even if cosmic
acceleration is compatible with a plain cosmological
constant Λ, its origin and small value do not find a
convincing explanation in general relativity and ordinary
particle physics, for several reasons (see, e.g., [4], chapter 7
for an overview on the cosmological constant problem). On
the other hand, the value of the Hubble parameter today H0

computed from the cosmic microwave background in the
PLANCK Legacy release [2] is incompatible with the one
found in local (Cepheids-based) observations [5] by more
than three standard deviations, a fact that might be imputed
to the underlying assumption of the ΛCDM model.
Our aim in this work is to add another contender to the

enormous amount of exotic dark-energy models already
proposed in the literature, but with a new twist. It is well
known that deviations from general relativity with a
canonical scalar field can easily generate accelerating
phases which, with the appropriate motivation, can provide

an alternative explanation to dark energy. Performing this
trick once again would only contribute to pile up phenom-
enological models while we wait for more precise mea-
surements of the late-time expansion, for instance from
EUCLID [6]. However, instead of proposing a phenomeno-
logical model of dark energy, here we take a class of
gravitational theories, named multifractional spacetimes
[7,8], originally presented as deviations from general
relativity at the fundamental level and check what they
have to say about late-time acceleration. This class of top-
down approaches may be more appealing than ad hoc
models because the requirement they have to satisfy to
recover a four-dimensional geometry at post-microscopic
scales usually make their theoretical predictions at all scales
rigid and, therefore, more easily falsifiable. This also
happens for the macroscopic constraints on the models
considered here, that will select one among several pos-
sibilities. The ensuing cosmological scenario will turn out
to be worth investigating because it illuminates an unsus-
pected relation between late-time acceleration and space-
time geometry.
In all known theories of quantum gravity, the dimension

of the effective spacetimes originated from quantum
geometry changes with the probed scale, a phenomenon
called dimensional flow related to the renormalizability of
quantum gravity at short scales [7,9–12]. Multifractional
spacetimes implement this feature kinematically in the
spacetime measure, which admits a universal parametriza-
tion [7,13], and in the dynamics via a model-dependent
kinetic operator. Taken as independent theories, there are
only four types of multifractional scenarios: with ordinary,
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weighted, q- or fractional derivatives in the dynamical
action. The first three have received much attention [7],
while the fourth, which we will ignore from now on, is still
under construction [7,14]. Unfortunately, the renormaliz-
ability of perturbative quantum gravity was shown not to
improve in the theories with q- and weighted derivatives
[7,15], a result which indicated that these theories do not
provide a fundamental microscopic description of Nature.
However, the results of this paper will point out that one of
these scenarios (the theory with weighted derivatives) can
be a very interesting infrared (IR), rather than (or on top of)
ultraviolet (UV), modification of gravity. It is important to
stress that this extension of multifractional theories is
admitted by a general theorem governing the form of the
spacetime measure [13] and, therefore, it is not introduced
by hand. In fact, this holds for any theory of quantum
gravity admitting dimensional flow in the Hausdorff
dimension and a continuum approximation [7,13]. The
main implication of this result is that, even if the theories
we will study here are not fundamental in the sense
specified above, the feature responsible for late-time
acceleration is expected to be present in other theories
of quantum gravity with a scale-dependent Hausdorff
dimension.1 Therefore, our findings may be interesting
not only because they complete the study of multifractional
spacetimes and enrich their phenomenology to unsuspected
directions, but also because they could be kept in mind
when exploring the cosmology of quantum gravities with
dimensional flow. The very idea to link dark energy to
quantum gravity goes against the grain of effective field
theory, since it is usually believed that quantum gravity can
only have Planck-size corrections, which cannot possibly
have an impact on the late-time universe. However, dimen-
sional flow is essentially a nonperturbative phenomenon
where other elements apart form the UV/IR divide enter the
game, such as the discrete scale invariance responsible for
the cosmic log-oscillations we will describe in due course.
The starting point for the study of the cosmology of these

theories are the Friedmann–Lemaître–Robertson–Walker
(FLRW) equations obtained from the full background-
independent equations of motion [16,17]. While there are
some studies about inflation [18,19] and gravitational-wave
propagation [20,21] that constrain or propose possible
effects in the cosmic microwave background and in
gravitational-wave signals in multifractional spacetimes,
the problem of dark energy has received less attention,
except in the case with ordinary derivatives. The absence of
cosmological vacuum solutions in the theory with ordinary
derivatives [16] led some to explore scenarios with more or
less exotic dark-energy components [22–29] (see also
[30,31] for a thermodynamical approach). However, our

point of view is that a sensible theory beyond Einstein
should be able to describe cosmic acceleration without
introducing dark-energy fields by hand. In the case of
multifractional spacetimes, this acceleration should come
only from geometry [17]. The theory with ordinary
derivatives is less attractive than the others due to some
technical issues [7]; for this reason, we will turn to the
theories with q-derivatives and with weighted derivatives,
which admit a more rigorous structure.
In particular, we will show that geometry alone in the

theory with q-derivatives is unable to sustain a dark-energy
phase, contrary to the more interesting case with weighted
derivatives. We will place constraints on the parameter
space of this theory and find its compatibility with
observations only when the Hausdorff dimension of space-
time is kept at the constant value dH ¼ 4, i.e., the number of
topological dimensions. We interpret this result as the
manifestation of something we might call a restoration
law, not apparent in previous works. It is as if late-time
acceleration was the expression of the tendency of the
Hausdorff spacetime dimension to stay close, or at least get
back, to 4. The value of 4 is not conserved exactly but it is
restored asymptotically. We give an argument why this
might not be just a numerical coincidence, although it is too
weak to establish a full-fledged physical principle yet.
In Secs. II A–II D, we briefly introduce some well-

known cosmological quantities and review multifractional
theories, quoting their main features on a homogeneous
background. The reader interested in an in-depth discussion
can consult [7] and references therein. In Sec. II E, we
extend the spacetime measure of the theories to include
beyond-general-relativistic correction terms, which will
play a crucial role in the interpretation of our numerical
results. The cosmological equations of the theory with
q-derivatives are reviewed in Sec. III A, while in Sec. III B
we show that geometry alone cannot accelerate the universe
in this theory. This result is exact. The FLRW equations of
the theory with weighted derivatives are presented in
Sec. IVA, while in Sec. IV B we encode all the effects
of multiscale geometry into an effective dark-energy
component obeying standard Friedmann equations. The
numerical analysis and its discussion are presented in
Secs. IV C–IV E, while Sec. V is devoted to conclusions.

II. GENERAL SETUP

A. Cosmology

We work in four topological dimensions (D ¼ 4) and
with signature ð−;þ;þ;þÞ. The Hubble parameter is

H ≔
_a
a
; ð1Þ

where a dot denotes a derivative with respect to cosmic time
t. The evolution of the universe can be parametrized by the
redshift 1þ z ¼ a0=a, where a0 ¼ að0Þ ¼ 1 is the scale

1An example is the class of theories based on pre-geometric
structures with discrete labels, such as group field theory and loop
quantum gravity.
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factor today. We use a subscript 0 for any quantity
evaluated today: the Hubble constant H0, the age of the
universe t0, and so on.
The universe is assumed to be filled by perfect fluids

with energy-momentum tensor

Tμν ¼ ðρþ PÞuμuν þ gμνP ð2Þ

and equation of state P ¼ wρ. In all models, the content of
the universe will be nonrelativistic matter (dust, ρ ¼ ρm,
w ¼ 0) plus a radiation component (w ¼ 1=3). Both
curvature and the cosmological constant are set to zero,
K ¼ 0 ¼ Λ, the first from observations [1,2] and the second
because we want to get acceleration purely from geometry.
The latter will give an effective contribution we will dub as
ρDE, where DE stands for dark energy.
For each matter component, we will use the dimension-

less energy-density parameter

Ωm ≔
ρm
ρcrit

; ΩDE ≔
ρDE
ρcrit

; ρcrit ≔
3H2

κ2
; ð3Þ

where κ2 ¼ 8πG is Newton’s constant. The late-time
standard Friedmann equation in general relativity in the
absence of curvature is

H ≃H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þ ΩDE;0ð1þ zÞ3ð1þwDEÞ

q
; ð4Þ

for a dark-energy component with constant barotropic
index wDE. This equation is modified in multifractional
spacetimes, as we will see below.
To compare the theory with supernovæ data, we will use

the luminosity distance dL, defined by imposing that the
flux F of light reaching an observer is the power L emitted
by a distant source per unit of area, measured on a sphere of
radius dL:

F ≕
L

4πd2L
: ð5Þ

This is a definition and it is completely model independent.
The flux F is measured from Earth, while L is determined
by the astrophysical properties of the source. Standard
candles such as supernovæ are sources for which L is
known. From this, one finds dL. In turn, the luminosity
distance can be expressed in terms of the dynamics and, in
particular, of the dark-energy equation of state. It is this last
part that depends on the specific cosmological model.
In standard general relativity, the luminosity distance a

photon traveled from some source at redshift z to Earth
(z ¼ 0) is a0r, as measured by the observed at t0. Since
dτ2 ¼ dr2 on the light cone, dL is proportional to con-
formal time τ0 − τðzÞ. Taking into account the redshift of
power L ¼ ðenergyÞ=ðtimeÞ ∝ a=ð1=aÞ ¼ a2 of photons
reaching the observer at different times, one gets [32]

dL ¼ a0
a
r ¼ ð1þ zÞ½τ0 − τðzÞ� ð6Þ

¼ ð1þ zÞ
Z

t0

tðzÞ

dt
a
¼ ð1þ zÞ

Z
1

aðzÞ

da
Ha2

¼ ð1þ zÞ
Z

z

0

dz
H

: ð7Þ

Observations of standard candles such as type I supernovæ
allow one to determine the luminosity distance dL, the local
Hubble parameter H0 and, from (4), a constraint on the
dark-energy barotropic index wDE.
In multifractional theories, the redshift law for time

intervals and frequencies is the same and (6) does not
change, but the relation between conformal time and the
dynamics is modified and (7) receives several corrections,
which we will discuss in due course.

B. Metric and geometric-harmonic structures

LetD ¼ 4. Multifractional spacetimes are endowed with
two mutually independent structures, a metric one and a
geometric-harmonic one. The metric structure is given by
the metric gμν, in this work the flat FLRW metric with
components

g00 ¼ −1; gii ¼ a2ðtÞ; i ¼ 1; 2; 3: ð8Þ

The geometric-harmonic structure is the integro-
differential structure of the theory and is determined by
the choice of spacetime measure

d4qðxÞ ¼ d4xvðxÞ ð9Þ

in the action and by the type of derivatives in kinetic terms.
In standard general relativity, v ¼ 1 and the action measure
is d4x (times the

ffiffiffiffiffijgjp
volume weight, which is determined

by the metric structure). The action measure weight vðxÞ is
the easiest to understand. The Hausdorff dimension of
spacetime is defined as the scaling of the Euclidean-
signature volume VðlÞ ¼ R

l
ball;cube d

4xvðxÞ of a 4-ball or
4-cube with linear size l,

dspacetime
H ≔

d lnhVðlÞi
d lnl

; ð10Þ

where h·i means average over the harmonic structure (see
below). In ordinary spacetime, the volume scales as l4, so
that dspacetime

H ¼ 4. However, when the Hausdorff dimen-
sion of spacetime varies with the probed scale and this
variation is slow and smooth at large scales or late times, its
form is given by a unique parametrization [7,13], that we
present here only in the time direction because we will be
interested in homogeneous solutions on a homogeneous
metric background. The full homogeneous measure weight
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vðtÞ ¼ _qðtÞ ð11Þ

is, in the most general case, an infinite superposition of
complex powers of time, qðtÞ ¼ P

l γljt=tljαlþiωl , where
αl;ωl ∈ R and γl ∈ C are dimensionless constants and
tl ∈ R are fundamental time scales of the geometry.
However, reality of the measure constrains the parameters
γl and ωl of this sum to combine into a real-valued
expression, a generalized polynomial deformed by loga-
rithmic oscillations:

vðtÞ ¼
Xþ∞

l¼0

���� ttl
����
α�;l−1

FlðtÞ; ð12aÞ

FlðtÞ ¼ A0;l þ
Xþ∞

n¼1

F̃n;lðtÞ; ð12bÞ

F̃n;lðtÞ ¼ An;l cos

�
nωl ln

���� ttl
����
�
þ Bn;l sin

�
nωl ln

���� ttl
����
�
;

ð12cÞ

where l runs over the number of fundamental scales of
geometry and 0 < An;l; Bn;l < 1 are constant amplitudes.

C. UV binomial approximation

The most common approximation of (12) used in
physical applications includes only two terms: (i) one
corresponding to the general-relativistic limit v ¼ 1 (obvi-
ously necessary to get viable phenomenology) and (ii) a
correction term.

(i) Since, as we will see in Sec. II D, the theory is
defined in such a way that the dimensionality of
spacetime coordinates is the one of our standard
clocks and rulers (½xμ� ¼ −1 in energy dimensions),
then the l ¼ 0 term corresponding to the general-
relativistic limit has α�;0 ¼ 1. In other words, gen-
eral relativity is the asymptotic IR limit of the theory.

(ii) In a scale hierarchy of spacetime made of only one
scale t� (l takes only two values l ¼ 0, 1, where t0 is
not a physical scale because it is undetermined, since
α�;0 ¼ 1), the correction term is the UV limit of the
measure. If other fundamental scales are also present
(l takes many values), then t� ≡ t1 corresponds to
the shortest scale around which general relativity
breaks down and UV anomalous scaling effects
become visible.

Taking only these terms and denoting α� ≡ α�;1, one gets
the binomial (two-term generalized polynomial) expression

vðtÞ ≃ 1þ
���� tt�

����
α�−1 ð13Þ

in the absence of log oscillations, or

vðtÞ ≃ 1þ
���� tt�

����
α�−1

FωðtÞ; ð14aÞ

FωðtÞ ¼ A0 þ
Xþ∞

n¼1

F̃nðtÞ; ð14bÞ

F̃nðtÞ¼Ancos

�
nω ln

���� tt�
����
�
þBn sin

�
nω ln

���� tt�
����
�
; ð14cÞ

in their presence. The positive parameter α� is related to the
Hausdorff dimension of spacetime in the UV,

dspacetime
H ≃UVα� þ

X3
i¼1

αi; ð15Þ

where αi are the fractional exponents in the spatial
directions. The full measure is dDxvðx0ÞQD−1

i¼1 viðxiÞ,
where each profile viðxiÞ along the spatial directions has
the same parametric form as Eq. (14) with t replaced by xi

and different parameters α� → αi, t� → li, and so on. For a
fully isotropic measure, α� ¼ αi. In virtually all the
literature on the subject, the range of values is chosen as
0 < α� < 1 because these theories are thought of as UV
modifications of ordinary field theories or of general
relativity where, as in most quantum gravities, the dimen-
sion of spacetime decreases in the UV. In this case, (15) is
the Hausdorff dimension of spacetime at early times t ≪ t�.
In the presence of log oscillations, the time scale inside

the logarithms in Eq. (14c) was originally denoted as t∞
and regarded as independent from t�. Usually, it was set to
the Planck time tPl ≈ 5.3912 × 10−44 s if 0 < α� < 1, but
later theoretical arguments led to the identification t∞ ≡ t�
[13]. Therefore, in this paper we will not consider any such
extra scale. The frequency

ω ¼ 2πα�
lnN

; N ¼ 2; 3; 4;… ð16Þ

takes one among a countable set of values; it appears as a
consequence of a fundamental discrete scale invariance and
parametrizes the typical time length of the discrete scale
symmetry

t → λωt ≔ e−
2π
ω t: ð17Þ

Thus, at scales of order of the log oscillations the time
direction takes values on a deterministic fractal constructed
with N similarity maps with similarity ratios all equal to
λω [33].
The constant A0 in (14b) is the zero mode of the

modulation factor and can acquire two values A0 ¼ 0, 1
that can be understood as follows. The mesoscopic-to-
large-scale form of the measure can be obtained with a
coarse-graining procedure consisting in taking the average
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over a log oscillation [34]. Restricting to a homogeneous
background and denoting as

hfðtÞi ≔ 1

2π

Z
2π

0

dνfðeν
ωtÞ ð18Þ

the average of a log oscillating function, one has

hFωi ¼ A0; hF2
ωi ¼ A2

0 þ
X
n>0

A2
n þ B2

n

2
: ð19Þ

The case A0 ¼ 0, never explored in the cosmological
phenomenology of these theories, corresponds to a zero
average: starting from mesoscopic temporal scales t ≫ tPl,
both the log-oscillatory pattern and the power-law contri-
bution begin to disappear. In the case A0 ¼ 1, the only one
considered in the cosmology literature so far [17,18], the
power-law contribution survives longer, up to and beyond
scales t≳ t�.

D. Physical frame

The form of the kinetic operators in the action is
determined by the choice of symmetries and the require-
ment that, just like the Hausdorff dimension, in quantum
gravity also the spectral dimension dS (the scaling of
dispersion relations) changes with the probed scale.
Thus, the system is defined by a nontrivial dimensional
flow (varying dH and/or dS) and certain action symmetries.
In general, the metric is nonminimally coupled with matter
fields due to the anomalous (i.e., nonconstant) geometric-
harmonic structure, which leads to complicated equations
of motion where Lorentz invariance is explicitly broken by
the time scale t� (and the spatial scale l�, which we do not
consider here) appearing in the measure weight v.
However, the problem is greatly simplified in two of the
admissible cases, the theory with q-derivatives and the
theory with weighted derivatives. We briefly recall their
main points [7].
In the theory with q-derivatives, the original system is

recast into a simpler one which is identical to the Standard
Model of particle physics where all coordinates are the
geometric profiles qμðxμÞ. When gravity is turned on, the
original system becomes equivalent to general relativity in
q coordinates, plus matter fields. To perform calculations,
one can temporarily forget that the qμ are composite
coordinates and work in this integer frame until the
construction of physical observables, at which point one
must revert to the physical (or fractional) frame where the
geometry is multiscale. In this theory, the fractional frame
is such that clocks and rods do not adapt with the
observation scale, while they do in the integer frame.
Consequently, in the fractional frame we can observe
dimensional flow through its imprint on certain physical
observables, while in the artificial integer frame the
geometry is constant. The mapping xμ → qμðxμÞ connects

the two frames and is not a coordinate transformation in the
sense of general relativity.
In the theory with weighted derivatives, the integer frame

is defined by field transformations ϕμν��� → ϕ̃μν���ðϕ; vÞ
involving v. In the absence of gravity, the electroweak-
strong model of quantum interactions in the fractional
frame is mapped into the standard Standard Model on
Minkowski spacetime. In the presence of gravity, the
dynamics in the fractional frame is very similar to a
scalar-tensor theory where v plays the role of the scalar,
but only in a superficial visual analogy at the level of the
equations of motion: v is not a field, since it is given by the
nondynamical fixed profile (12) and its spatial generaliza-
tion. In the unphysical integer frame, the theory is mapped
into general relativity plus a purely geometric, v-dependent
contribution.
We insist that in these theories the integer and fractional

frame are not physically equivalent and that we live in the
latter, while the integer frame is just a convenient trick to
simplify calculations. The multifractional theory with frac-
tional derivatives does not admit a frame mapping, which is
the reason why it has been studied much less than the other
two. In general, having a multiscale geometry selects a
preferred frame, at least in multifractional theories. Other
multiscale scenarios such as string theory, asymptotically
safe quantum gravity, nonlocal quantum gravity and group
field theory (which includes spin foams and loop quantum
gravity) have a higher degree of symmetry (Lorentz and
diffeomorphism invariance are preserved or deformed in a
controlled way) and do not require a frame choice, once
a low-energy or semi-classical notion of spacetime is
recovered.

E. Infrared extension of the measure

Equations (13) and (14) are the profiles typically
considered in the literature. The constant unit term corre-
sponds to the measure at the scales on which general
relativity holds, hence its normalization to 1. The physical
picture usually advocated is that multiscale spacetimes and
the dynamics therein are anomalous at short scales t≲ t�
and reduce to ordinary spacetimes and general relativity at
large scales t ≫ t�. Therefore, the general-relativistic
regime and its measure weight v ¼ 1 constitute the terminal
regime of dimensional flow at large scales.
However, this is only one of the possible applications of

the dimensional-flow theorem [13] giving rise to the most
general profile (12). In principle, ultra-IR terms dominating
the measures at scales larger than those of the general-
relativistic regime are possible. For example, ignoring log
oscillations for the sake of the argument, the measure
weight (13) can be replaced by a three-term profile

vðtÞ ≃
���� tt�

����
α�−1 þ 1þ

���� ttc
����
αc−1

; ð20Þ
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where t� is close to Planck time tPl and 0 < α� < 1, while
tc ≫ t� and

αc > 1: ð21Þ

The subscript “c” stands for cosmological. According to
this extended measure, general relativity is only a transient
regime between a deep-UV limit, where microscopic
quantum-gravity effects are important, and an ultra-IR
regime which deviates from standard Einstein theory at
cosmological scales. In other words, our clocks (and rulers,
in an inhomogeneous setting) not only changed in the past,
but they will also change in the future. We will see that
dark energy can be interpreted as a manifestation of this
deviation.
Therefore, here we will explore a model where the

correction to general relativity is not a UV term but a “post-
IR” one. The UV correction, with 0 < α� < 1 and t� ∼ tPl,
is totally negligible at late times and can be ignored. The
final expression for the measure is therefore identical to
(14) but with a new set of parameters with prior (21):

vðtÞ ≃ 1þ
���� ttc

����
αc−1

FωðtÞ; ð22aÞ

FωðtÞ ¼ A0 þ
Xþ∞

n¼1

F̃nðtÞ; ð22bÞ

F̃nðtÞ ≃ An cos

�
nω ln

���� ttc
����
�
þ Bn sin

�
nω ln

���� ttc
����
�
; ð22cÞ

ω ¼ 2παc
lnN

; N ¼ 2; 3; 4;…: ð22dÞ

In this paper, we will consider the following cases in
increasing order of difficulty:
(1) Binomial measure without log oscillations:

A0 ¼ 1; F̃nðtÞ ¼ 0: ð23Þ

(2) Binomial measure with log oscillations up to a finite
number of harmonics:

FωðtÞ ¼ A0 þ
Xnmax

n¼1

F̃nðtÞ: ð24Þ

2a. One harmonic (nmax ¼ 1) with N ¼ 2 [smallest N in
(22d)] and A0, A1 and B1 free parameters. In turn, this
and the following can be divided into two subcases,
A0 ¼ 0 (no zero mode) and A0 ¼ 1.

2b. One harmonic with very large N. We choose the
arbitrary value N ¼ e10 to get a suppression factor
1=10 in ω (small frequency).

(3) Binomial measure with many harmonics (nmax > 1).

3a. Many harmonics with N ¼ 2. Different theoretical
choices for the n-dependence of An and Bn indicate
that higher modes are rapidly suppressed and that it is
sufficient to consider nmax ≲ 10 [19]. We take
nmax ¼ 10. Also, to maximize the effect we take all
amplitudes constant and equal to one another: A1 ¼
A2 ¼ … ¼ Anmax

and B1 ¼ B2 ¼ … ¼ Bnmax
. This

configuration can be regarded as a multiharmonic
measure where only the first Oð10Þ harmonics
dominate.

3b. Many harmonics with N ¼ e10.

III. THEORY WITH q-DERIVATIVES

A. Action and FLRW dynamics

In the theory with q-derivatives, the dynamical action is
the same as in general relativity, except that all the
coordinates xμ are replaced by the multifractional profile
qμðxμÞ ¼ R

dxμvμðxμÞ, where the index μ is not contracted.
As we commented in Sec. II D, this is not a coordinate
transformation because measurement units differ in the
fractional and integer frame. Physical clocks and rulers,
used for actual measurements, are defined on the manifold
spanned by the coordinates xμ. In this fractional frame, the
action measure dDqðxÞ ¼ Q

D−1
μ¼0 dq

μðxμÞ reflects the basic
postulate of the theory, namely, that spacetime geometry
changes with the scale. On the other hand, in the integer
frame the qμ are regarded as noncomposite coordinates and,
therefore, the spacetime measure is the standard Lebesgue
measure dDq, with no dimensional flow.
In the fractional frame, the gravitational action in the

absence of a cosmological constant is [17]

Sq ¼
1

2κ2

Z
dDxv

ffiffiffiffiffi
jgj

p
qRþ Smatter; ð25Þ

where the Ricci scalar qR ≔ gμν qRμν, the Ricci tensor
qRμν ≔ qRρ

μρν and the Riemann tensor

qRρ
μσν ≔

1

vσ
∂σ

qΓρ
μν −

1

vν
∂ν

qΓρ
μσ

þ qΓτ
μν

qΓρ
στ − qΓτ

μσ
qΓρ

ντ;

qΓρ
μν ≔

1

2
gρσ

�
1

vμ
∂μgνσ þ

1

vν
∂νgμσ −

1

vσ
∂σgμν

�

are all made with q-derivatives (no summation over μ)

∂
∂qμðxμÞ ¼

1

vμðxμÞ
∂
∂xμ : ð26Þ

The matter action is constructed according to the same
criterion.
The Friedmann equations in D ¼ 4 topological dimen-

sions in the presence of a perfect fluid are [17]
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H2 ¼ κ2

3
v2ρ; ð27Þ

ä
a
¼ −

κ2

6
v2ðρþ 3PÞ þH

_v
v
: ð28Þ

The continuity equation for a perfect fluid is compatible
with the Friedmann equations:

_ρþ 3Hðρþ PÞ ¼ 0: ð29Þ

Multiscale geometry effects may be implicit in the energy
density and pressure. For instance, for a homogeneous
scalar field

ρϕ ¼ 1

2v2
_ϕ2 þWðϕÞ; Pϕ ¼ 1

2v2
_ϕ2 −WðϕÞ; ð30Þ

and its continuity equation is modified both in the friction
and in the potential term:

ϕ̈þ
�
3H −

_v
v

�
_ϕþ v2W;ϕ ¼ 0: ð31Þ

B. No dark energy from geometry

In the multifractional theory with q-derivatives, the
geometry of spacetime is such that it eases the slow-roll
condition in inflation [17,18] and, similarly, it could
enhance the (usually insufficient) acceleration triggered
by a quintessence field, i.e., it could relax the fine tuning
in the initial conditions. However, we do not wish to
straighten a general-relativistic model with some extra
exotic ingredient. A genuine alternative explanation of
dark energy should work without relying on a quintessen-
tial component. Therefore, we would like to get late-time
acceleration from pure geometry.
Unfortunately, this is not possible in the theory with

q-derivatives because geometry effects cancel out in the
luminosity distance. The latter receives two corrections,
one from the definition of conformal time and one from the
dynamics. Distances, areas and volumes all must be
calculated with the nontrivial multiscale measure weight
vðxÞ and, in particular, integration along the time direction
includes a factor vðtÞ. In particular, the luminosity distance
dL is still proportional to the comoving distance (times the
same redshift factor as in general relativity), but now the
latter is

R
0
−qðrÞ dqðxÞ. The FLRW line element

ds2 ¼ gμνdqμðxμÞdqνðxνÞ ¼ −dq2ðtÞ þ a2dq2ðxÞ
¼ −v2ðtÞdt2 þ a2v2ðxÞdx2; ð32Þ

where vðxÞ ≔ v1ðx1Þv2ðx2Þv3ðx3Þ is the spatial measure
factorized in the coordinates, vanishes for light rays, so that
the comoving distance is given by the integration of the

weighted conformal time dtvðtÞ=a.2 Thus, the luminosity
distance is

dL ¼ ð1þ zÞ
Z

t0

tðzÞ

dtvðtÞ
a

¼ ð1þ zÞ
Z

z

0

dzv
H

: ð33Þ

On the other hand, the Friedmann equation with only dust
and no dark-energy component reads

H ¼ vH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3

q
; ð34Þ

so that

dL ¼ 1þ z
H0

Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3

q ; ð35Þ

exactly as in the cold dark matter (CDM) model of Einstein
gravity without cosmological constant. The conclusion is
that this expression cannot possibly fit supernovæ data and
that the theory with q-derivatives cannot make the late-time
universe accelerate just from pure geometry.

IV. THEORY WITH WEIGHTED DERIVATIVES

For the cosmologist, the theory with weighted deriva-
tives may result more intuitive than the previous one
because here the line element is the usual of general
relativity and the only change in the expression for the
luminosity distance (7) is in the profile HðzÞ.

A. Action and FLRW dynamics

Weighted derivatives are ordinary derivatives with mea-
sure-weight factors inserted to the left and to the right:

D ≔
1

vβ
∂ðvβ·Þ; β ¼ 2

D − 2
: ð36Þ

The gravitational action in the fractional (physical) frame
is [17]3

Sv ¼
1

2κ2

Z
dDxv

ffiffiffiffiffi
jgj

p
½R − γðvÞDμvDμv

− 2ðD − 1ÞUðvÞ� þ Smatter; ð37Þ

where γ and U are functions of the weight v, Smatter is the
minimally coupled matter action, R ≔ gμνRμν, Rμν ≔
Rρ

μρν and

2Note that this time redefinition does not make the line element
conformally flat, unless vðxÞ ¼ 1. However, we keep the mis-
nomer “conformal” for the sake of an easier comparison with
general relativity.

3HereU has been rescaled by a factor of 2ðD − 1Þ with respect
to [7,17] in order to make the Friedmann equations simpler.
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Rρ
μσν ≔ ∂σ

βΓρ
μν − ∂ν

βΓρ
μσ þ βΓτ

μν
βΓρ

στ − βΓτ
μσ

βΓρ
ντ;

βΓρ
μν ≔

1

2
gρσðDμgνσ þDνgμσ −DσgμνÞ:

To avoid confusion with ordinary curvature tensors R…, we
used the curly symbolR… to denote tensors written in terms
of the derivative (36). The metric is covariantly conserved
with respect to the weighted covariant derivative ∇−

σ gμν ≔
∂σgμν − βΓτ

σμgτν − βΓτ
σνgμτ ¼ 0, implying that these space-

times areWeyl integrable and that the metric is not conserved
in the ordinary sense, ∇σgμν ¼ ðβ∂σ ln vÞgμν.
As we said in Sec. II D, in the integer frame the theory

resembles a scalar-tensor model in the Einstein frame.
Denoting with a bar coordinates and metric quantities
evaluated in this frame, the Friedmann equations in D ¼ 4
dimensions are [17]

H̄2 ¼ κ2

3
ρ̄þ Ω

2

ð∂ t̄vÞ2
v2

þ UðvÞ
v

; ð38Þ

∂2
t̄ ā
ā

¼ −
κ2

6
ðρ̄þ 3P̄Þ þUðvÞ

v
; ð39Þ

where derivatives are with respect to time t̄ and Ω ¼
−3=2þ 9v2γðvÞ=4 is a function of the measure weight.
One can get the second Friedmann equation (39) either
directly from the equations of motion or by using the
continuity equation

∂ t̄ρ̄þ 3H̄ðρ̄þ P̄Þ ¼ 0: ð40Þ

While, in general, U is required to be nonzero for
consistency of cosmological solutions, the function γ
was originally introduced to make an analogy with sca-
lar-tensor models, with the difference that v is not a
dynamical field. However, this term is neither dictated
by symmetries nor by consistency of the solutions and it
can be dropped without loss of generality or creating any
theoretical or conceptual problem. Since our goal is to test
the most minimalistic model with weighted derivatives, i.e.,
with log-oscillating measure and no kinetic-like term, we
can set γ to vanish, so thatΩ ¼ −3=2 (this was done only in
the numerical code; the equations written here are valid in
general).
Two major points of departure with respect to scalar-

tensor theories are, first, that v is not a scalar field but a time
profile fixed a priori [by (12) in the fractional frame; see
below]. And, second, that the “potential” term UðvÞ is
neither chosen ad hoc nor reconstructed from observations,
but it is determined from the dynamics itself. In fact,
combining (38) and (39) to eliminate the last term in the
right-hand side, one gets the master equation

∂2
t̄ ā
ā

− H̄2 þ κ2

2
ðρ̄þ P̄Þ ¼ −

Ω
2

ð∂ t̄vÞ2
v2

: ð41Þ

Thus, given the matter content one obtains āðt̄Þ and, from
(38) or (39), UðvÞ.
These equations are in the integer (Einstein) frame,

which is unphysical in this theory. The dynamical equations
in the physical (fractional, Jordan) frame, which we write
here for the first time, are obtained by recalling that the
Jordan and Einstein metric are related to each other by

ḡμν ¼ vgμν; ā ¼ ffiffiffi
v

p
a; ð42Þ

where v ¼ vðtÞ is the temporal part of the measure weight.
Also, having chosen the FLRW metric in the integer frame
implies that the same metric holds in the fractional frame
provided −dt̄2 ¼ −vdt2, i.e.,

d
dt̄

¼ 1ffiffiffi
v

p d
dt

; ð43Þ

hence

H̄ ¼ 1ffiffiffi
v

p
�
H þ 1

2

_v
v

�
;

1

ā
d2ā
dt̄2

¼ 1

v

�
ä
a
þ 1

2

�
v̈
v
þH

_v
v
−
_v2

v2

��
; ð44Þ

where dots are derivatives with respect to t. To these
expressions, one must add those for the energy density and
pressure of the perfect fluid:

ρ̄ ¼ ρ

v2
; P̄ ¼ P

v2
; ð45Þ

where the factor 1=v2 stems from the conformal rescaling
(42), ðenergyÞ=ðvolumeÞ ¼ ½ðenergyÞ= ffiffiffi

v
p �=½v3=2ðvolumeÞ�.

Therefore, the Friedmann equations and the master
equation in the physical frame read

H2 þH
_v
v
¼ κ2

3v
ρþ 1

2

�
Ω −

1

2

�
_v2

v2
þU; ð46Þ

ä
a
þ 1

2

�
v̈
v
þH

_v
v
−
_v2

v2

�
¼ −

κ2

6v
ðρþ 3PÞ þ U; ð47Þ

_H ¼ −
κ2

2v
ðρþ PÞ þ 1

2

��
3

2
− Ω

�
_v2

v2
−
v̈
v
þH

_v
v

�
: ð48Þ

It is in these equations, not in (38)–(41), where vðtÞ is given
by (11) and (22). Notice that the contributions of the
measure weight mimic both a running effective back-
ground-evaluated Newton’s constant

Geff ¼
G
v
< G ð49Þ

and a phantom “scalar” with negative kinetic energy.
Combined together, these features can sustain cosmic
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acceleration, without the theoretical inconvenience of
phantom fields (v is not a dynamical degree of freedom
and is not associated with classical instabilities or negative-
norm quantum states).
Finally, the continuity equation (40) becomes

0 ¼ _ρþ 3Hðρþ PÞ − 1

2

_v
v
ðρ − 3PÞ: ð50Þ

Radiation (w ¼ 1=3), which is the only conformal invariant
perfect fluid, is conserved also in this frame, while any
other fluid experiences an effective dissipation.

B. Effective dark-energy component

The running of the Hausdorff dimension dH in this
theory can drive one or more phases of acceleration. It is
convenient to recast the contribution of the multiscale
geometry and dynamics as a dark-energy component in
standard general relativity. Thus, the first Friedmann
equation (46) is written as

H2 ¼ κ2

3
ðρm þ ρDEÞ; ð51aÞ

ρDE ≔
3

κ2

�
1

2

�
Ω −

1

2

�
_v2

v2
þ U −H

_v
v

�
−
�
1 −

1

v

�
ρm;

ð51bÞ
or, equivalently, as

Ωm ¼ 1 −ΩDE; ð52Þ
where the dimensionless energy densities were defined in
(3). This equation replaces (4). Since dust matter does not
obey the standard continuity equation, Ωm ≠ Ωm;0ð1þ zÞ3.
The effective dark-energy pressure PDE is obtained by
reformulating the master equation (48) as its Einstein-
gravity counterpart:

_H ¼ −
κ2

2
ðρm þ ρDE þ PDEÞ;

PDE ≔ −
1

κ2

�
1

2

�
3

2
þ Ω

�
_v2

v2
− 2H

_v
v
−
v̈
v
þ 3U

�
; ð53Þ

which allows us to find the dark-energy barotropic index

wDE ≔
PDE

ρDE
; ð54Þ

a complicated function of the Hubble parameter, the
measure weight v and its time derivatives. For
Ω ¼ −3=2, the first term in the pressure (53) vanishes.
Note that (54) differs from the effective barotropic index
coming from the contribution of all (matter and dark
energy) components, defined as weff ≔ −1þ 2ϵ=3, where

ϵ ≔ −
_H
H2

¼ 3

2v
ð1 −ΩDEÞ þ

v̈ −H _v
2H2v

−
1

2

�
3

2
−Ω

�
_v

H2v2
ð55Þ

is the first slow-roll parameter. Another quantity of interest
is the deceleration parameter q (not to be confused with the
composite coordinates q)

q ≔ −
ä

aH2
¼ −1þ ϵ; ð56Þ

related to weff by weff ¼ ð−1þ 2qÞ=3.

C. Solving the dynamics

The dynamics can be solved numerically from a minimal
set of differential equations. We choose the number of e-
foldings as the main time variable, together with other
dimensionless varying or constant parameters:

N ≔ ln
a0
a
; y ≔

t
t0
; h ≔

H
H0

;

b ≔ t0H0; yc ≔
tc
t0
¼ tcH0

b
: ð57Þ

Since v is a given function of time, it is also a given
function of y. Therefore, one could consider y as the
independent variable of integration. However, we find it
useful to have an autonomous system of differential
equations. In this case, we consider N to be the indepen-
dent variable. On doing so, the system of equations can be
written as

h0 ¼ −
2bhvv;y − 6b2h2vΩm − 2v2;yΩ − 2vv;yy þ 3v2;y

4b2v2h
;

ð58Þ

Ω0
m ¼ Ωm

2b2h2v2
ð6b2h2v2 − 6b2h2vΩm þ bhvv;y

−2v2;yΩ − 2vv;yy þ 3v2;yÞ; ð59Þ

y0 ¼ −
1

bh
; ð60Þ

where a prime denotes the derivative with respect toN . We
also remind the reader that here we will consider
Ω ¼ −3=2. In the most general case (12), several dimen-
sionless parameters appear, while in the trinomial case (20)
vðyÞ ¼ 1þ bcyαc−1 þ � � �, where the ellipsis is the UV
correction, negligible at cosmic scales. This is the profile
vðyÞ considered here, y being a function of N . Among the
three dynamical equations (58)–(60), the first corresponds
to the second (modified) Einstein equation, whereas the
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second one is determined by using the continuity equation.
Finally, the third equation is a direct consequence of the
definition of the e-folds number. It is also simple to show
that

q ¼ −1þ h0

h
; ð61Þ

wDE ¼ 1 − 2q
3ðΩm − 1Þ : ð62Þ

We can integrate the equations of motion fromN ¼ 0 up to
N ¼ 6, giving the following initial conditions:

yð0Þ ¼ 1; hð0Þ ¼ 1; Ωmð0Þ ¼ Ωm0: ð63Þ

In any case, we find that the system goes to matter
domination at N ¼ 6, i.e., Ω → 1 and q → 1=2. Further
equations are for z and for the luminosity distance:

d̃0 ¼ d̃þ ð1þ zÞ2
h

; d̃ ≔ H0dL; z0 ¼ 1þ z:

ð64Þ

Let us give some time scales for reference. t0 ≈ 14 ×
109 yr ≈ 1017 s is the age of the universe today and
H0 ¼ Hðt0Þ. The onset of big-bang nucleosynthesis is at
t ≈ 200 s, corresponding to y ≈ 4.5 × 10−17 and N ≈ 21,
while matter-radiation equality happens at t ≈ 7 × 104 yr,
y ≈ 5 × 10−6,N ≈ 8. Our numerical integration starts from
today and ends atN ¼ 6, at the peak of matter domination.
This choice is due to having focused our attention only to
late-time data and, in particular, to data which do not need a
description in terms of perturbation dynamics. In particular,
we will use the constraints from type Ia supernovæ (Union

2.1 set) [35], today’s value of H0 (given in [5]) and, finally,
the constraint on the age of the universe t0 coming from
studying the globular cluster NGC 6752 [36]. This choice
of data sets is given by the fact that we only focus on the
late-time evolution of the models we are considering. High-
redshift information, both from the background (necessary,
e.g., for baryon acoustic oscillations) and perturbation sides
(necessary, e.g., for PLANCK data), require an investigation
of the multifractional theory which goes beyond the scope
of this study. In particular, we want to see if the model
introduced here could be compatible with data which only
require knowledge of the dynamics at low redshift. As we
will show, although the above data sets are limited, they
will be enough to constrain considerably the parameter
space of our model. The reason is that the acceleration of
the universe is realized by means of the measure vðyÞ, but
the latter does not represent itself a dark-energy component,
i.e., a cosmological constant. Since the function vðyÞ is
given a priori by the dimensional-flow theorem [13], it is
not surprising that some of its approximated forms may not
succeed to make the universe accelerate.
Regarding the time scales appearing in vðyÞ, the UV

scale t� received strong bounds from several observations
and experiments [7,8], ranging from Standard Model forces
time scales to the Planck scale:

10−61 ≤ y� ¼
t�
t0
≤ 10−47: ð65Þ

The lower bound in (65) corresponds to the Planck scale
t� ¼ tPl, while the upper bound was obtained under the
assumption that 0 < α� < 1 [8]. These constraints apply
only to the UV part of the trinomial measure weight (20), in
a regime (particle-physics scales) where the ultra-IR
correction in (20), the most important correction in the
cosmological model we will consider here, is negligible.

TABLE I. Preferred values of the parameters h, b and Ωm0 with 2σ (95% confidence level) errors. For αc we
indicate the preferred value and the 2σ lower bound αmin

c , while for yc we only show the lower bound ymin
c . The

values of A1 and B1 are not shown due to strong degeneracy. The shaded row corresponds to the only case
reproducing the observed late-time Hubble parameter.

Case nmax N A0 αc (αmin
c ) ymin

c h b Ωm0

1 0 — 1 5.1 (0.6) 1.7 0.70þ0.01
−0.01 1.04þ0.21

−0.17 0.278þ0.200
−0.400

2a 1 2
0 7.0 (3.4) 3.2 0.70þ0.01

−0.01 1.05þ0.20
−0.17 0.270þ0.040

−0.040
1 6.7 (0.3) 2.0 0.70þ0.01

−0.01 1.04þ0.22
−0.16 0.275þ0.200

−0.040

2b 1 e10
0 5.7 (0.4) 1.7 0.70þ0.01

−0.01 1.05þ0.20
−0.17 0.270þ0.050

−0.080
1 5.6 (1.0) 1.9 0.70þ0.01

−0.01 1.04þ0.21
−0.17 0.276þ0.130

−0.050

3a 10 2
0 3.8 (3.7) 3.9 0.73þ0.01

−0.03 1.05þ0.21
−0.17 0.276þ0.036

−0.040
1 3.8 (3.6) 4.1 0.73þ0.02

−0.04 1.05þ0.22
−0.17 0.276þ0.040

−0.044

3b 10 e10
0 7.2 (3.7) 4.0 0.70þ0.01

−0.01 1.05þ0.22
−0.17 0.273þ0.04

−0.04
1 7.1 (3.4) 4.0 0.70þ0.01

−0.01 1.05þ0.21
−0.17 0.273þ0.046

−0.038
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Conversely, the UV correction at near-Planckian scales ∼t�
is completely negligible at late times and we will ignore
it here.
The general procedure we followed to obtain the

numerical constraints below was to sample the back-
ground-evolution parameter space for the chosen data sets.
We performed an MCMC sampling on the parameters
of the theory, letting the sampler (EMCEE [37]) finding
the minima of the χ2 distribution together with the
2σ constraints for each parameter. In order to double check
the MCMC results, we also performed a numerical

minimization of the χ2 (via different methods such as
the Newton one) and verified that results were compatible
with the MCMC sampling.

D. Results

(i) Case 1: no oscillations. In the absence of
log oscillations, A0 ¼ 1 and the model has only
five free parameters: αc, yc, b, h ≔ H0=
ð100 km s−1 Mpc−1Þ and Ωm0. As priors, we used
−3 ≤ αc ≤ 10, 10−5 ≤ yc ≤ 20, 0.1 ≤ b ≤ 3,

FIG. 1. Marginalized constraints on the parameters Ωm0, αc, b, yc, h, A1 and B1 for the theory with weighted derivatives with
multiharmonic modes, N ¼ 2 and A0 ¼ 0. Although there is degeneracy in some of the parameters, this model is able to reach higher
values of h.
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0.6 ≤ h ≤ 0.8, 0.1 ≤ Ωm 0 < 0.5. The marginalized
likelihood 2σ contours in the parameter space
(2σ preferred values of the parameters) are shown
in Table I. We will discuss the physical implications
of the results of this and the other cases in Sec. IV E.
For the time being, note that the value of h is in
tension with the local observations of H0.

(ii) Case 2a: one harmonic, N ¼ 2. The above results
do not change in the presence of only one harmonic
mode. As priors, we used the same as above plus
0 < A1; B1 < 1. The results for A0 ¼ 0 and A0 ¼ 1
are in Table I. For some data, there is a large
degeneracy, especially in the parameters of the v
function, namely yc, αc, A1 and B1. On the other

hand, the value of h is strongly constrained and it is
still in tension with the local observations of H0.
This situation seems not to depend on the value ofN.
When A0 ¼ 1, the upper bound on Ωm 0 slightly
increases.

(iii) Case 2b: one harmonic,N ¼ e10. Having chosen the
same priors as before, we find the results of Table I.
Again, the value of h is in tension with today’s value
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FIG. 2. Behavior of H=H0 for the multiharmonic best fit with
N ¼ 2 and A0 ¼ 0. Oscillations start at low redshift values. The
plot for A0 ¼ 1 is the same.
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FIG. 3. Behavior of H=H0 for the multiharmonic best fit with
N ¼ 2 and A0 ¼ 0 at low redshifts. The plot for A0 ¼ 1
is the same.
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FIG. 4. Behavior of the deceleration parameter q for the
multiharmonic best fit with N ¼ 2 and A0 ¼ 0. We can see
the “heartbeat” of dark energy playing a nontrivial role at late
times. The plot for A0 ¼ 1 is the same.
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FIG. 5. Behavior of wDE for the multiharmonic best fit with
N ¼ 2 and A0 ¼ 0. The plot for A0 ¼ 1 is the same. Thanks to the
last oscillation, the universe is able to increase H to values close
to the measured value H0 today. Here a dark-energy epoch is
reached due to oscillations which make the universe accelerate
and decelerate alternatively. Acceleration becomes then a tran-
sient but today the universe does undergo a period of accelerated
expansion.
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of the Hubble parameter and the upper bound ofΩm0

increases when A0 ¼ 1.
(iv) Case 3a: many harmonics, N ¼ 2. This is the most

promising case. The likelihood contours for A0 ¼ 0
are shown in Fig. 1. Notice in Table I the higher
value of h and the lower bound at 2σ for αc. In order
to explore this better fit more in detail, we tried to
enlarge the prior for A1 and B1 to 0 < A1; B1 < 3.
However, this resulted in a large degeneracy for
these two parameters. The χ2 for this case
(χ2min ¼ 555) is significantly smaller than the one

for all the previous cases (values approximately
equal to 565). The behavior of the Hubble factor
is shown in Fig. 2, while a more detailed dynamics
for H=H0 at low redshifts is depicted in Fig. 3. At
the same time, it is interesting to show also the
deceleration parameter q (Fig. 4) and wDE (Fig. 5).
Thanks to the oscillations, we are able to get a higher
value for H0, although acceleration might be tran-
sient, i.e., existing today but stopping some time in
the future. The results for A0 ¼ 1 are given in Fig. 6.
The dynamics of this case in terms of the Hubble

FIG. 6. Marginalized constraints on the parameters Ωm0, αc, b, yc, h, A1 and B1 for the theory with weighted derivatives with
multiharmonic modes, N ¼ 2 and A0 ¼ 1.
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factor, H=H0 at low redshifts, q and wDE is virtually
indistinguishable from that shown in Figs. 2–5.

(v) Case 3b: many harmonics, N ¼ e10. Here one can
appreciate a difference between the N ¼ 2 and the
N ¼ e10 results, the latter getting considerably
worse. Once more, the χ2 for the minimum shifts
to values close to 565.

E. Consequence: Extending multiscale spacetimes

All of the above cases share some common features. The
value of the parameter b is close to 1, which means that
the inverse Hubble parameter today is approximately equal to
the age of the universe, just like in the standardΛCDMmodel:
t0H0 ≈ 1. Similarly, Ωm0 is close to the ΛCDM value.
The value of h is the most important discriminator

selecting viable models. Only those with many harmonics
and N ¼ 2 (case 3a) are able to recover the estimated value
from late-time observations.4 Concentrating only on case
3a, the lower bound on yc is

yc ¼
tc
t0
> 3.9; ð66Þ

which means that the characteristic time tc is always much
larger than the age of the universe t0. On one hand, this is
compatible with the finding that the value of A0 has little
impact on the numerical analysis, i.e., that the zero mode is
strongly suppressed and hence it does not affect cosmology.
On the other hand, the bound (66) is not in contradiction
with the fact that multifractional effects can explain
observations at times Oðt0Þ, since the modulation of
superposing log oscillations of the highest frequency ω
takes place at much shorter scales. Note the specifications
of “superposing” and “highest frequency”: in the absence
of log oscillations (case 1), in the presence of only one
harmonic (nmax ¼ 1, cases 2a and 2b), or when the
harmonics frequency is too low (large N, cases 2b and
3b), the theory is unable to recover the observed late-time
value of the Hubble parameter. Note the importance of
having a theoretical upper limit on ω. Without it, it would
have been more difficult to find a modulation comparable
with the observable patch of the universe and compatible
with late-time data.
Concerning the value of the oscillation amplitudes A1

and B1, as one can see in Figs. 1 and 6 their distribution is
uniform inside the prior 0 < A1; B1 < 3. Therefore, there is
a strong degeneracy in the parameter space and it is not
possible to establish a preferred value with the late-time
data we used.
Our results indicate that the theory with weighted

derivatives can serve not only as a microscopic (UV)
modification of gravity, but also as a cosmological (IR)

one. However, unlike other IR modifications of standard
cosmology, this theory does not rely on the typical UV/IR
divide through a characteristic scale. When the multifrac-
tional geometry is of this type (no log oscillations), it fails
to fit data, since the scale tc is larger than the age of the
universe. Thus, we do not end up with the typical model
where general relativity is an adequate description of the
cosmos during most of the history of the universe and the
recent acceleration is triggered around a certain IR scale.
Rather, multifractional effects embodied in logarithmic

oscillations are endemic to the cosmological picture of the
theory and mimic, in a subtle way, a standard cosmology
with a late-time dominating dark-energy component. Here
the characteristic scale is very large (actually, beyond the
Hubble horizon) but, nevertheless, it modifies the evolution
of the universe via the harmonic structure of the geometry.
The last piece of information gathered about the geom-

etry of the cosmos reserves a surprise and is about the
Hausdorff dimension of spacetime. Just as in the case of yc,
the distribution of values of αc is flat past the peak
(preferred value) and one cannot establish an upper bound.
However, while the peak of yc is rather mild, the one for αc
is very pronounced and allows us to clearly establish a
preferred value. In case 3a, the latter is

αc ≈ 3.8; ð67Þ
with a very small error bar. The preferred value of αc is
larger in the other cases. This means that the theory with
weighted derivatives cannot accommodate at the same time
particle-physics constraints and explain the late-time accel-
eration of the universe if we consider only the binomial
measure (13) [for which t� ¼ tc and (66) would be in gross
contradiction with (65)], while the case with many har-
monics of maximal frequency can if we allow for an ultra-
IR term as in (20).
The result (67) has a clear geometric interpretation based

on the calculation of the Hausdorff dimension in a perfectly
homogeneous FLRW background. On this spacetime, the
measure weight is (12) but, by definition (10), the time
Hausdorff dimension dtime

H is computed after averaging over
log oscillations [7,33], i.e., we must take (20) instead of its
version with log oscillations. When A0 ¼ 0, the averaged
measure is v ¼ 1 and dtime

H ¼ 1 at all times. However, when
A0 ¼ 1 the Hausdorff dimension of time is no longer
constant. With a FLRW metric and A0 ¼ 1, the effective
action is one-dimensional,

SFLRW ¼
Z

dtvðtÞa3ðtÞL ð68Þ

and the volume from (20) (omitting the metric density term,
i.e., curvature effects5) is

4Since we have not used early-universe data, we are not in a
position to say anything about the H0 tension.

5These are always excluded when computing the Hausdorff or
spectral dimension.
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VðtÞ ¼
Z

t
dt0vðt0Þ ¼ 1

α�

���� tt�
����
α� þ tþ 1

αc

���� ttc
����
αc
; ð69Þ

so that

dtime
H ¼ jt=t�jα� þ tþ jt=tcjαc

ð1=α�Þjt=t�jα� þ tþ ð1=αcÞjt=tcjαc
: ð70Þ

Assuming 0 < α� < 1 and αc > 1, when t ≪ t� one has
dtime
H ≃ α�. At intermediate scales t� ≪ t≲ tc, the

Hausdorff dimension of time coincides with the topo-
logical dimension, dtime

H ≃ 1. This is the regime character-
izing most of the history of the universe. In a late-time
regime t ≫ tc posterior to the present epoch, one has
dtime
H ≃ αc.
Our finding is that αc ≈ 4 in order to reproduce the

observed late-time acceleration. Here, dark energy is not an
extra matter component in the universe: it is the manifes-
tation of a dimensional flow where the limiting value of the
time Hausdorff dimension is the topological dimension 4,
as if dimensional flow were recovering the spatial dimen-
sions “lost” in the symmetry reduction from a generic
background to a perfectly homogeneous spacetime. Of
course, the FLRW dynamics is not really blind to the value
of the topological dimension: the value αc ¼ 4 is implicitly
induced by the D ¼ 4 factors hidden in the Friedmann and
continuity equations. However, the source of this numerical
coincidence is not obvious.
We hereby propose the following picture. At times of

order of the Planck scale, the universe is dominated by
quantum-gravity effects of UV type. In general, quantum
gravity is associated with dimensional flow, which, in turn,
is described by a generalized polynomial measure weight
(12) [7,13]. In the literature, only UV terms have been
considered in this polynomial expansion, but quite gen-
erally also IR terms can be conceived. Therefore, the time
part vðtÞ of the spacetime measure weight vðxÞ ¼
vðtÞv1ðx1Þv2ðx2Þv3ðx3Þ would be (20) instead of (13).
Similar expressions hold in the spatial directions with t,
t�, α�, tc and αc replaced by xi, a spatial scale l�, a set of
fractional exponents αi, and so on.
To study the dimension of spacetime (10) we have to

average out the log oscillations according to the definition
(18), which is valid only in the presence of one frequency.
In the case of the trinomial measure, we have two sets of
frequencies governed by the fractional exponents in (16)
and (22d). According to the regime considered, one will use
one or the other frequency.
At very early times t≲ t�, vðtÞ ≃ jt�=tj1−α� , short-scale

quantum-gravity effects dominate and the Hausdorff
dimension of spacetime is given by (15). This is the usual
regime where multifractional theories have been studied
[7,8]. Here we are in an early, pre-inflationary regimewhere
our causal patch of the universe is inhomogeneous and

anisotropic. These effects quickly die away before or
during inflation: the residual IR correction in (20) survives
but is negligible at times t� < t ≪ tc and the universe is
described by general relativity to a good approximation,
vðtÞ ≃ 1. If this transition occurs before inflation or in
inhomogeneous regions, the local Hausdorff dimension of
spacetime is dspacetime

H ¼ 4. The onset of inflation makes the
causal patch approximately homogeneous and isotropic
until our times, where, however, IR multiscale effects
become more and more important and vðtÞ ≃ jt=tcjαc−1.
The evolution of the effective Hausdorff dimension of
spacetime in these three snapshots of the universe (quan-
tum-gravity dominated, general-relativistic and late-time
accelerating) is summarized in Table II.
Notice that the third phase in the table (general relativity

on a FLRW background) is not necessary. In fact, the
extended multifractional model with weighted derivatives
accounts for the whole history of the universe from post-
inflation until today, without adding any dark-energy
component by hand. However, if tc ≫ t� the intermediate
general-relativity phase will show up anyway during the
history of the universe. An example is given by the profile
(70) of the Hausdorff dimension of time shown in Fig. 7.
The fourth and last phase (late-time multifractional FLRW
evolution) restores the value dspacetime

H ¼ 4 of the Hausdorff
dimension of spacetime. Thus, even if dspacetime

H is not

TABLE II. Time and spacetime Hausdorff dimension in differ-
ent regimes, after averaging out log oscillations.

Regime vðtÞ dtime
H dspacetime

H

Quantum gravity jt�=tj1−α� α� α� þ
P

3
i¼1 αi

General relativity
(general background)

1 1 1þ 3 ¼ 4

General relativity
(FLRW)

1 1 1

Late times (FLRW) jt=tcjαc−1 αc ¼ 4 αc ¼ 4

FIG. 7. Hausdorff dimension of time (70) (solid curve) in the
theory with weighted derivatives, for t� ¼ 1, α� ¼ 1=2, tc ¼ 600

and αc ¼ 4. The Hausdorff dimension of time dtime
H ¼ ðjt=t�jα� þ

tÞ=½ð1=α�Þjt=t�jα� þ t� in the absence of the ultra-IR term (dashed
curve) is shown for comparison.
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conserved during the evolution of the universe (there would
be no dimensional flow in that case), it is restored
asymptotically if the universe stays exactly homogeneous.
Note that the regimes listed in Table II are phenomeno-

logically mismatched with respect to the observability
window of multifractional effects. That is, since tc ≫ t0,
we cannot observe time dimensional flow now because we
are in the general-relativity plateau, far away both from the
UVand the ultra-IR regimes of the profile dHðtÞ. However,
the inception of cosmic acceleration happens well before
the establishment of the ultra-IR regime. We are not aware
of similar mechanisms in any other models of dark energy.

V. CONCLUSIONS

Multifractional spacetimes have been previously
explored in a range of settings and regimes, from particle
physics to cosmology. Here we applied them to the late-
time universe in order to see what they can say about the
dark-energy problem and, conversely, how supernovæ
data can constrain such models. While the theory with
q-derivatives cannot explain late-time acceleration, the
theory with weighted derivatives has a chance. To do so,
we considered a term in the spacetime measure that
describes a sort of ultra-IR regime beyond Einstein gravity.
This term was not added ad hoc in the measure expansion:
it was already there, admitted by the dimensional-flow
theorem [13], but in the literature it had been overlooked
because this theory was studied mainly in a microscopic
particle physics setting (e.g., [8]) where such term is
completely negligible. In this sense, we are not proposing
a “new” class of models but simply continuing the study of
old ones in previously untapped regimes.
The result is that none of the simplified versions of the

multifractional theory with weighted derivatives explored
more frequently in the literature, the one with monotonic
measure (no log oscillations) and the one with only one
harmonic, can explain late-time data. Only when enough
undamped harmonics are present can the theory explain the
late-time acceleration of the universe without fine tuning
and without invoking extra dynamical degrees of freedom.

For both αc and yc we only have an Oð1Þ lower bound for
all the models, that is, a large degeneracy on those two
variables. A fine tuning in this context would correspond
either to lower bounds αc; yc ≫ 1 or to an allowed region
with negligible area in the two-dimensional parameter
space. In contrast, to explain dark energy with a cosmo-
logical constant in general relativity a fine tuning of tens of
digits on the value of Λ is required.
If the oscillation amplitudes are sufficiently large, the

effective dark energy density log periodically dominates
over the matter energy density, while the effective baro-
tropic index wDE log periodically oscillates between pos-
itive and negative values infinitely many times during the
history of the universe. The last oscillation causes a late-
time acceleration period (Fig. 5), but not as an isolated
event: it is the last but the most pronounced of an infinite
sequence of acceleration epochs (Fig. 4).
In turn, data suggest that the preferred value of the

Hausdorff dimension of spacetime in the ultra-IR regime is
tantalizingly close to 4, which stimulates further theoretical
research on the spacetime geometry of this theory along the
lines discussed in Sec. IV E. It will be worth investigating
further the geometric interpretation presented therein, due
to its important phenomenological consequences as an
alternative explanation of late-time acceleration. The
absence of any fine tuning in the parameters of the theory
could make it an appealing alternative to other geometry-
driven or matter-field-driven explanations of dark energy.
Future experiments in addition to the search of other
constraints for these model will shed further light into
the restoration law proposed here.
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