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Abstract: Circular DNAs, such as most prokaryotic and phage genomes, are a frequent form of nucleic
acids, whereas circular RNAs had been regarded as unusual macromolecules until very recently.
The first reported RNA circles were the family of small infectious genomes of viroids and circular
RNA (circRNA) satellites of plant viruses, some of which contain small self-cleaving RNA motifs,
such as the hammerhead (HHR) and hairpin ribozymes. A similar infectious circRNA, the unique
human hepatitis delta virus (HDV), is another viral satellite that also encodes self-cleaving motifs
called HDV ribozymes. Very recently, different animals have been reported to contain HDV-like
circRNAs with typical HDV ribozymes, but also conserved HHR motifs, as we describe here. On the
other hand, eukaryotic and prokaryotic genomes encode sequences able to self-excise as circRNAs,
like the autocatalytic Group I and II introns, which are widespread genomic mobile elements. In the
1990s, the first circRNAs encoded in a mammalian genome were anecdotally reported, but their
abundance and importance have not been unveiled until recently. These gene-encoded circRNAs are
produced by events of alternative splicing in a process generally known as backsplicing. However,
we have found a second natural pathway of circRNA expression conserved in numerous plant and
animal genomes, which efficiently promotes the accumulation of small non-coding RNA circles
through the participation of HHRs. Most of these genome-encoded circRNAs with HHRs are the
transposition intermediates of a novel family of non-autonomous retrotransposons called retrozymes,
with intriguing potential as new forms of gene regulation.
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1. Introduction

Covalently closed circular RNA molecules (circRNAs) have been historically regarded as a
peculiar form of nucleic acids. However, circular DNAs, such as plasmids or many bacteriophage,
viral, plastid and prokaryotic genomes, are ubiquitous molecules among all areas of life. This view
has changed dramatically in recent years with the discovery of new examples of circRNAs of diverse
origin, with intriguing regulatory and biotechnological capabilities. Now, we know the existence
of several types of circRNAs, such as infectious agents with circRNA genomes, self-excising Group
I and II introns, the circRNA intermediates of non-autonomous retrotransposons with ribozymes
(retrozymes) or the intronic/exonic circRNAs [1]. It is somehow surprising that, despite their original
discovery more than 40 years ago [2], the abundance and roles of circRNAs in biology have remained
poorly studied. Probably, their discovery as an atypical family of minimal subviral genomes, together
with the unique biochemical and biophysical features of circRNAs compared with classic linear RNAs,
had hindered the interest in the study of RNA circles until recently. We recognize that circRNAs are
frequent in most cell transcriptomes, showing differential properties that cannot be found in linear
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RNAs, such as a high stability against exonucleases, a more definite fold, or their capability for an
efficient replication by a rolling circle mechanism.

2. The Discovery of the First CircRNAs

The first circRNAs were discovered in the 1970s as a group of minimal infectious agents named
viroids and viroid-like circRNA satellites [2,3]. These subviral organisms infect some flowering plants,
either autonomously (viroids), or in the presence of a helper virus (virus satellite circRNAs). There is
even an exceptional example of a viroid-like circRNA integrated in the genome of carnation plants [4,5],
indicating the heterogeneity of this group of mobile genetic elements. They all have a small (220–400 nt)
non-protein-coding genome of circular RNA [6]. Except for the members of one of the viroid families
(Pospiviroidae), these circRNAs encode small self-cleaving RNA motifs or ribozymes in either one or
both of the genomic polarities (Figure 1A) [7].
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Figure 1. (A) Infectious circular RNAs of flowering plants such as viroids (left) and viral satellite
circular RNAs (circRNAs) (right). (B) Examples of hepatitis delta virus (HDV) circRNAs detected in
humans, amniotes, a toad and a termite. An example of the antigenomic ribozyme of each HDV-like
circRNA is shown. (C) Examples of genome-encoded circRNA retrozymes in plants (left, long terminal
repeat (LTR) retrozymes) and animals (rigth, non-LTR retrozymes). The global RNA conformations,
typical sizes, and ribozyme classes are indicated for each example.
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These nucleolytic ribozymes, such as the hammerhead (HHR) and the hairpin (HPR) ribozymes
(see below), catalyze a transterification reaction in a specific point of the RNA sequence, which promotes
the cleavage of the multimeric copies during their rolling circle RNA replication. A somewhat similar
infectious agent with a circRNA genome is a satellite RNA associated with the human hepatitis B virus
(HBV), the so-called hepatitis delta virus (HDV) (Figure 1B) [8]. The circRNA genome of the HDV
also encodes small self-cleaving ribozymes in both RNA polarities (the HDV ribozymes), required
for the processing of the multimeric RNAs during HDV replication. A particular feature of the larger
circRNA genome of the HDV (~1680 nt) is the presence of an open reading frame in one of the
polarities (the so called delta antigen) [9], an exceptional capability among most infectious circRNAs
of plants [10]. The HDV agent has only been detected in humans so far, and it has been, for decades,
the sole representative of the genus Deltavirus. Very recently, however, the presence of divergent
HDV-like circRNAs have been detected in the transcriptomes of diverse animals, both invertebrates
and vertebrates, including mammals [11–14]. Remarkably, no hepadnavirus co-infection has been
detected for any of these novel HDV-like RNAs, although the participation of other helper viruses
in the lifecycle of these circRNAs cannot be ruled out [15]. The HDV-like circRNAs of amniotes
such as birds [11], snakes [12], and a rodent [13] contain the characteristic HDV ribozyme motifs,
which show a similar sequence and genomic location to the ribozymes present in the human HDV
deltavirus (Figure 1B). However, HDV-like circRNAs reported in other unrelated metazoans, such as
termites or amphibians [14], do not seem to contain sequences compatible with HDV ribozymes.
Following some structure-based bioinformatic searches, we have detected the conserved presence
of HHR sequences in both polarities of the HDV-like circRNAs of toads and termites (Figure 1B)
(de la Peña et al., in preparation). These HHRs are novel type III variants, which share intriguing
similarities, such as longer than usual helixes or conserved pseudoknot interactions (Figure 1B).

Altogether, and with the sole exception of plant Pospiviroids, the heterogeneous group of infectious
circRNAs shares the presence of small self-cleaving motifs (either HHR, HPR or HDV ribozymes
that can somehow be regarded as interchangeable motifs) as a common key feature among these
mobile genetic elements. These data, together with the discovery of genome-encoded circRNAs with
ribozymes in eukaryotes, open a more complex scenario than that previously imagined for the family
of infectious circRNAs such as viroid-like and HDV-like agents. In this regard, the classical association
of HDV with HBV would likely be specific to humans, whereas new metazoan HDV-like agents could
be either examples of viral satellite RNAs or even a novel family of autonomous viroid-like agents
in animals.

Among other open questions regarding these minimal infectious agents, an especially intriguing
one relates to their evolutionary origins. Historically, they were reported almost 50 years ago as
minimal replicating entities at the frontiers of life. This uniqueness, followed by the hypothesis of
ribozymes as the most ancient biocatalysts, fueled the theory that infectious circRNAs could be “living
fossils” from the prebiotic RNA world [16–19]. However, the absence of a reasonable evolutionary
path that could only account for the presence of these putative RNA fossils only in a few eukaryotes
(either angiosperms or metazoans), clashes with the assumption of these circRNAs as direct survivors of
the prebiotic RNA world. Moreover, we know now that small self-cleaving RNA motifs are widespread
in all domains of life, from bacteriophages to humans [7,20], indicating that the presence of nucleolytic
ribozymes in many subviral RNA agents is in fact a very frequent phenomenon in DNA genomes.
These observations, together with the discovery of novel circRNAs with ribozymes in disparate
organisms, reinforce a more parsimonious hypothesis, where infectious circRNAs in eukaryotes could
have emerged de novo several times during evolution from the more frequent genome-encoded
circRNAs with ribozymes [21].

3. Genome-Encoded CircRNAs

The first example of a natural circRNA encoded in a DNA genome was the intervening sequence
of the rRNA precursor of Tetrahymena thermophila [22]. The characterization of the splicing mechanism
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of this intervening sequence allowed the discovery of the first catalytic RNA: the self-splicing Group I
intron [23]. Group I introns are widespread mobile genetic elements that follow a patchy distribution
among bacteria, eukaryotes, and viruses and phages [24]. Although the circular RNA forms of Group I
introns still lack a clear functional significance, the formation of full-length intron circles is a general
feature of this family of transposable elements [25]. Another family of self-splicing ribozymes capable
of generating RNA circles in vivo is the Group II introns. They are also transposable elements present
in some bacteria and eukaryotic organelles, which show a small proportion of circRNAs during their
splicing, without any clear role [26,27].

In 1993, the first examples of circRNAs derived from protein-coding genes were reported in
mammals [28,29], which contributed to the understanding of previous observations on “scrambled
exons” [30,31], although these discoveries were regarded as anecdotical. Twenty years later, different labs
found out that numerous splicing-derived circRNAs occur in most eukaryotes [32–34]. These circRNAs
are expressed in different tissues and at different levels, which in some cases are much higher than the
main linear transcript [33]. Most gene-encoded circRNAs come from pre-mRNA splicing through the
spliceosome, wherein a downstream 5′- splice site is joined to an upstream 3′- splice site through a process
known as “backsplicing” [35]. Among the diverse biological functions proposed for these circRNAs,
the regulation of splicing [36] and transcription [37], small RNAs biology [38] or even RNA-mediated
inheritance [39] have all been suggested (for a review see [40]).

There is a second natural pathway of circRNA production in eukaryotes. In our lab, we have
reported the expression of abundant circular RNAs encoded in the genomes of plants [21,41] and
metazoans [42], which does not require the splicing machinery of the cell. These genome-encoded
RNA circles all contain small self-cleaving motifs of the HHR family [20], which occur in tandem copies
capable of self-processing the RNA during its transcription (Figure 2).
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Figure 2. Model for the life cycle of long terminal repeat (LTR) and non-LTR retrozymes. Schematic
representation (top) of genomic retrozymes from plants (left) and animals (right), with their particular
features (target site duplications, TSDs; long terminal repeats, LTR; primer binding site, PBS; polypurine
tract, PPT). Transcription of these elements followed by hammerhead ribozyme (HHR) self-cleavage
results in linear monomeric RNAs with 5′-OH and 2′-3′-cyclic phosphate ends (middle). Monomer
circularization (bottom) results in circRNAs that can be reverse-transcribed as multimeric copies due to
their circular nature, and resulting cDNAs integrated in new genomic loci.
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4. Autocatalytic RNA Cleavage in Diverse RNA Circles

More than 30 years ago, the laboratories of Tom Cech and Sydney Altman reported the
ground-breaking discovery of catalytic RNAs or ribozymes [23,43]. This change of paradigm boosted
the field of RNA biology, which has resulted in numerous discoveries regarding the roles and
capabilities of this macromolecule. The finding of natural ribozymes also reinforced the hypothesis of
the prebiotic RNA world [44], where the RNA molecule carried out both catalytic (ribozymes) and
genetic (RNA genomes) roles. This hypothesis is strongly supported by the presence of RNA genomes
among the simplest organisms (RNA viruses, RNA satellites and viroids), but also by the existence of
key ribozymes such as the ribosome, the central machine of life [45], which catalyzes the peptide bond
formation in all living organisms.

Among natural ribozymes, the family of small self-cleaving RNAs (50–200 nt) is likely the
most enigmatic group of catalytic RNAs. These motifs catalyze a sequence-specific intramolecular
transesterification that promotes the breakage (or ligation) of the RNA chain. There are so far nine
different classes of small self-cleaving ribozymes described, such as the HHR [46,47], HPR [48],
HDV [49], Varkud-satellite (VS) [50], GlmS [51], twister [52], twister sister, hatchet and pistol [53]
ribozymes. The HHR is probably the most studied and frequent small ribozyme. It is composed of a
conserved catalytic core of 15 nucleotides surrounded by three helixes (I to III). The whole motif adopts
a γ-shaped fold where helix I usually interacts with helix II through loop–loop interactions required
for efficient in vivo activity [54–56]. Three circularly permuted topologies are possible for the HHR,
named type I, II or III, depending on the open-ended helix (Figure 3). As mentioned above, the HHR
was originally discovered in the circRNA genomes of plant viral RNA satellites and viroids [46,47],
but then, they were also reported in the genomes of unrelated eukaryotes such as newts, trematodes,
plants, and some mammals [57–61].
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Figure 3. Three-dimensional diagrams of the three possible HHR topologies (Type I, II and III).
Black boxes indicate the conserved nucleotides at the catalytic core. Dotted and continuous lines refer
to non-canonical and Watson–Crick base pairs, respectively. The three topologies have been reported in
the genomes of bacteriophages and prokaryotes. Type I HHRs are mostly found in metazoan genomes,
whereas Type III motifs are found in plants and infectious circRNAs, such as viroid-like and some
HDV-like agents. N stands for any nucleotide, whereas R stands for purines (A or G), Y for pyrimidines
(U or C), and H for either A, U or C.

More recently, different labs have reported that HHR motifs are widespread from prokaryotic to
eukaryotic genomes [62–65], including the human genome [20,66–68]. Type I HHR motifs are typically
found in metazoan genomes, type III HHR motifs mostly occur in plants and in the circRNA agents that
infect them, whereas prokaryotic and bacteriophage genomes show the presence of either type I, II or III
HHRs (Figure 1). A similar widespread occurrence of genomic HHRs has been reported for two other
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catalytic RNAs such as the HDV [69,70] and twister ribozymes [52]. The biological roles of most of these
genomic self-cleaving RNAs seem to be involved in the biology of retrotransposons and other mobile
genetic elements. In this way, HDV-like ribozymes have been reported as conserved motifs in the family
of R2 retrotransposons [71] and other LINE retroelements [72,73]. Similarly, we have recently detected
that truncated but catalytically competent versions of the twister ribozyme are conserved in the 5′- end
of retrotransposons of the RTE superfamily (Martin and de la Peña, in preparation). The most likely role
for all these self-cleaving motifs would be to carry out proper 5′-end processing of the retrotransposon
RNA from upstream transcripts, but also to promote translation initiation [72]. On the other hand,
the families of Penelope-Like Elements (PLEs) [74] and Terminon retrotransposons [75] show the
conserved presence of type I HHR motifs, although they correspond to minimal variants of this
ribozyme lacking the helix III or the characteristic tertiary loop–loop interactions, and yet with an
unknown role.

Finally, classical type I and III HHRs (Figure 3), abundant in animal and plant genomes, respectively,
have been involved in the processing of a novel family of non-autonomous retrotransposons,
the so-called retrozymes—for retrotransposons with hammerhead ribozymes, which spread through
small circRNA transposition intermediates (Figure 2).

5. Hammerhead Ribozymes in the Genomes of Flowering Plants: The Family of LTR Retrozymes

In 2005, Hammann’s group reported the existence of two canonical type III HHRs in the genome
of the plant A. thaliana [57]. Both motifs are located within 5 kb on the plant chromosome 4; one placed
at the 3′ end of an open reading frame (antisense) and the second in an intergenic non-protein-coding
region. Molecular analysis in various plant tissues confirmed that at least one of the motifs is transcribed
and self-cleaves. The in vivo expression and activity of these HHRs, together with their sequence
conservation, suggest an unidentified biological function for these motifs in the plant [57]. Later on,
bioinformatic searches unveiled the occurrence of numerous type III HHR motifs in the genomes
of diverse angiosperms [62]. The ribozymes were mostly found in dicot plants, and following a
patchy distribution (i.e., they occur frequently in some plant species, but they are absent in others).
The genomic HHRs in plants are usually found as either monomers or dimer repeats separated by a few
hundred base pairs (600–1000 bp), although some examples of trimer and even tetramer repeats can
be also detected [41]. Comparative analysis of the sequences flanked by the dimeric HHRs indicated
that they have almost no identity among different plant species. However, they all show a similar
topology, as described in Figure 2. The HHR-containing elements are delimited by a variable 4 bp
repeat that matches typical target side duplications (TSDs). The HHR motifs are found embedded
in direct repeats of ~350 bp, which can be regarded as long terminal repeats (LTRs). Both LTRs
delimit a central non-protein-coding region (~300–700 bp), which begins with the sequence of a primer
binding site (PBS) corresponding to the complementary tRNAMet of the plant, and finishes with a
poly-purine tract (PPT), which are both characteristic elements of LTR-retrotransposons [76]. Altogether,
these elements were classified as a new family of non-autonomous retrotransposons with hammerhead
ribozymes or retrozymes, similar to other small and non-autonomous retrotransposons of plants
such as the terminal-repeat retrotransposons in miniature (TRIMs) [77] or small LTR retrotransposons
(SMARTs) [78]. There are clear similarities between the PBS and the 5′- and 3′- ends of plant retrozymes
and those of retrotransposons of the Ty3-Gypsy family, suggesting that these autonomous LTR
retrotranposons may carry out the mobilization of the retrozymes [41] (Figure 2).

Our analyses of diverse somatic and reproductive plant tissues revealed a high accumulation
(~0.1–1 ng/µg of total plant RNAs) of circular and, to a lesser extent, linear RNAs corresponding to the
sequence encompassed by the HHR motifs. These results confirmed that retrozymes are transcribed
in most plant tissues, but also that the HHRs self-cleave in vivo, followed by RNA circularization.
This step of circularization is efficiently carried out in vitro by a chloroplastic isoform of a plant tRNA
ligase [21], in a similar way as described for viroids with HHRs of the family Avsunviroidae [79].
Moreover, despite the low sequence identity between most plant retrozymes, their secondary structure
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predictions result in a similar highly branched RNA architecture, which resembles the structures
predicted for some infectious circRNAs of plants such as viroids and viral RNA satellites (Figure 4).
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Figure 4. Minimum free energy secondary structure predictions for (A) a retrozyme circRNA of Jatropha
curcas (Entry KX273075.1) and (B) the viroid CChMVd (Entry AJ878085.1). HHR sequences are shown
in purple (positive polarity) and green (negative polarity). The corresponding structure of the HHRs
motifs are shown under each circRNA structure. Dotted lines indicate the predicted tertiary interactions
between HHR loops based on previous models [80,81]. Self-cleavage sites are indicated with arrows.
Kissing-loop interactions described for CChMVd [82] are shown. Numbering for each circRNA starts
at the self-cleavage site.

6. Diverse Type I HHRs Occur in Autonomous and in Non-autonomous Metazoan Retrotransposons

Type I HHRs (Figure 3) were originally reported in the repetitive DNA (so called satellite DNA)
of a few animals, both vertebrates [57] and invertebrates [58,59]. More recent studies extended the
occurrence of similar type I HHRs to a large collection of metazoan genomes, from cnidarians to
mammals [62,67]. These metazoan ribozymes usually occur as multiple copies in tandem repeats,
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suggesting that the sequence repeats with type I HHRs in animal genomes constitute a new family of
retrozymes similar to the plant LTR retrozymes with type III HHRs. However, plant and metazoan
retrozymes show specific differences, such as the size of the sequence repeats encompassed by the
HHRs (~150–300 bp in animals vs. ~700 bp in plants), different GC content (below 50% in metazoans),
and the absence in metazoan retrozymes of LTRs, PBS or PPT motifs. Moreover, most type I HHRs
show a characteristic set of tertiary interactions different to the ones found in type III HHRs, as well as
a weak helix III that, in many cases, prevents the self-cleavage as monomeric but not as dimeric
motifs (Figure 3) [46,83]. The characterization of these metazoan non-LTR retrozymes from three
disparate organisms, such as a cnidarian (the coral Acropora millepora), a mollusc (the mussel Mytilus
galloprovincialis) and an amphibian (the axolotl Ambystoma mexicanum), confirmed the accumulation
of high levels of circRNAs in all the tissues analyzed [42]. These circRNAs are predicted to adopt
stable and highly self-paired secondary structures (Figure 5). Moreover, we confirmed in vitro that
most of the type I HHRs in invertebrate genomes are able to adopt a stable helix III and, consequently,
to self-cleave efficiently as monomeric motifs. Amphibian motifs, on the other hand, lack a clear helix
III, and require dimeric constructs to self-cleave efficiently.
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On the other hand, previous bioinformatic searches reported that many metazoan genomes contain
thousands of minimal type I HHRs [74], which usually lack any of the non-conserved nucleotides
of the helix III (Figure 3). Most of these atypical ribozymes were found as dispersed motifs in
non-coding regions of the animal genomes, but in some cases, they mapped to the pseudo-LTRs of
Penelope-like retroelements (PLEs) [74]. Analysis of PLE sequences from diverse animal taxa confirmed
the conserved occurrence of similar minimal type I HHRs in tandem, which may self-cleave through
dimeric motifs [74,84]. More recently, a new family of giant retrotransposons attached to telomeric
repeats, the so called Terminons, have been found to contain PLE-like HHRs conserved in diverse
regions of their sequence [75]. The in vivo activity and role of these minimal type I HHRs in the
biology of these retrotransposons are still a mystery. In any case, the presence of type I HHRs in both
PLEs/Terminons and in non-LTR retrozymes, as well as their co-occurrence in all the genomes analyzed,
indicate that autonomous PLEs/Terminons retrotransposons are likely candidates to complete the
mobilization of non-autonomous non-LTR retrozymes (Figure 2) [42].

7. A general Model for Retrozyme Spreading in Plant and Animal Genomes

The family of plant LTR retrozymes is similar to other small non-autonomous LTR-retrotransposons
of plants, such as TRIMs [77] and SMARTs [78], whereas metazoan non-LTR retrozymes could
be regarded as a novel family of single interspersed nucleotide elements (SINEs). However,
their constitutive expression as small circRNAs in all analyzed organisms indicates that they are
an exceptional family of eukaryotic retrotransposable elements. As with many non-autonomous
retrotransposons, plant and animal retrozymes show no protein-coding regions, but self-cleaving
ribozymes responsible for circRNA formation. This RNA motif seems to be a key element in the
spreading of retrozymes (Figure 2), which would start with the transcription of the genomic copies
by a cellular polymerase. Neither plant nor metazoan retrozymes seem to harbour transcriptional
promoters, suggesting that retrozymes may undergo Pol-driven (either I, II or III) read-through
transcription depending on tissues and/or their genomic location. Nascent RNA transcripts would
follow co-transcriptional self-processing by either monomeric or dimeric HHR ribozymes, producing
linear RNAs with 5′-OH and 2′-3′-cyclic-phosphate ends. Finally, the circularization of the self-cleaved
RNAs would be carried out by a host RNA ligase factor [41,42]. In the case of plants, the resulting
circRNAs could bind cellular tRNAMet through their PBS motifs, which would prime the reverse
transcriptases encoded by LTR-retrotransposons of the Ty3-Gypsy family. In the case of metazoan
non-LTR retrozymes, the sequence repeats do not show any conserved motif that could help deduce the
autonomous retrotransposon whose transpositional machinery they may utilize. In any case, the most
likely pathway for both retrozyme families implies a reverse transcriptase that, properly primed and
thanks to the circular nature of the RNA template, would produce cDNAs of more than one unit
in length. Finally, the resulting cDNAs would be integrated in new genomic locations through the
machinery of the autonomous retrotransposons (Figure 2).

A last question to be addressed is related to the high levels of circRNAs with HHRs detected in
most organisms analyzed, which suggest that these RNA circles may have other biological functions
different from their own mobilization. The discovery of splicing-derived circRNAs involved in diverse
forms of gene regulation [40] offers new hints about the potential roles of circRNAs with HHRs present
in the cell. On the other hand, genomic retrozymes are frequently found in many copies (depending
on the organism, from dozens to thousands of repeats), which suggests that even low transcription
activity would result in abundant levels of circRNAs. However, most of the data obtained in plants
indicate that only a few retrozyme copies may be transcriptionally active [38], which suggests that the
higher stability of these structured circRNAs, as compared to linear RNAs, could be the reason for
their high levels of accumulation in vivo. Moreover, the presence of a high sequence heterogeneity
in any given population of circRNAs in both plant and metazoan species, together with examples
of retrozyme RNAs of the negative polarity, also suggests the intriguing possibility of RNA-to-RNA
replication by endogenous polymerases.



Cells 2020, 9, 2555 10 of 14

8. Concluding Remarks

Selfish mobile genetic elements, such as transposons, viruses and other subviral agents, can be
found in virtually every cellular life form. These genetic parasites and their interaction with their hosts
are a major feature of life evolution [85]. On the one hand, parasite–host coevolution allows a continuous
arms race that has resulted in sophisticated pathways of defense and counter-defense. At the same time,
these parasites provide an source of new genetic material, which can be domesticated by the host
genome to perform new molecular functions [85,86]. In this regard, the heterogeneous group of
circRNAs with ribozymes could be considered another player in the evolutionary history of many
organisms. Eukaryotic retrozymes are expressed as abundant RNA circles in most tissues, and future
research will help us to understand whether these circRNAs and ribozymes play novel biological
roles in the cell. Moreover, these widespread genome-encoded circRNAs show clear similarities with
infectious circRNAs such as the HDV and some plant virus satellites and viroids: such as small size,
highly structured RNAs and the presence of small self-cleaving motifs such as the HHR and HDV
ribozymes [21]. This latter characteristic, the presence of small ribozymes, is also found in other
autonomous retrotransposons (PLEs, R2, RTEs and other LINEs), which establishes an evolutionary
connection between all these elements through these RNA motifs. The recent examples of different
HDV-like circRNAs harbouring unrelated catalytic RNAs such as HHRs and HDV ribozymes, indicate
that this key feature has a modular nature that may have arisen independently several times during the
origin and evolution of these elements. Moreover, similarly to the many known examples of co-option
or domestication of sequences from transposable elements by their hosts [86], small ribozymes seem
to have followed a similar process. It has been previously reported that the presence of a few highly
conserved small ribozymes in vertebrate genomes, such as the mammalian 3′-UTR HHR [61] and
diverse intronic HHRs [68] or HDV ribozymes in amniotes [70], has likely been preserved during the
evolution of these organisms to perform new and conserved biological functions.

Regarding the origin of this group of circRNAs with ribozymes in eukaryotes, multiple options
are possible. We have already proposed a likely scenario where plant LTR retrozymes may have given
rise to infectious circRNAs such as viroids and viral satellites with ribozymes [21]. Regarding the
origin of genomic LTR retrozymes themselves, one possible explanation could be found in events of
horizontal transfer from other organisms containing elements with type III HHRs, such as bacteria or
insects [62] (de la Peña, in preparation). Similarly, we can envisage that HDV-like circRNAs could
have originated several times during evolution from a eukaryotic RNA encoding a Delta-like antigen,
having acquired either HDV or HHR ribozymes from any of the ubiquitous genomic retrotransposons.
Altogether, these data strongly suggest that we are just beginning to scratch the surface, and new
self-cleaving ribozymes and their circRNAs will be likely discovered in the future.
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