February, 13rd -15th 2013 Madrid, Spain

Physics of Aggregates
Reaction Dynamics
Quantum Chemistry
Surface Physics
Atomic and Molecular Collisions

Ultracold Atoms and Molecules
Nanomaterial Science
Spectroscopy and Excited States
Quantum Information

http://www.ucm.es/centros/webs/j2ifamv/

Salón de actos
Facultad de Ciencias Químicas
UCM
Low-order harmonic generation in nanosecond laser ablation plasmas of carbon containing materials

I. López-Quintás¹, M. Oujja¹, M. Sanz¹, M. Martín¹, R.A. Ganeev², M. Castillejo¹

¹Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
²Voronezh State University, Voronezh 394006, Russia
E-mail: ilopez@iqfr.csic.es

In order to understand and control harmonic generation (HG) processes in laser ablation plasmas [1], knowledge about the species responsible for frequency up-conversion is extremely important. HG emerges as a diagnosis tool to study the nonlinear optical properties of the emitters and in some cases to follow the spatiotemporal behaviour of the species generated in the ablation plume.

In this work, the nonlinear behaviour of laser plasmas produced from carbon containing materials (graphite and boron carbide) was investigated by ablating the targets with a nanosecond Q-switched Nd:YAG laser. The generation of low-harmonics (3rd and 5th) of the fundamental wavelength of a second nanosecond Nd:YAG driving laser, propagating perpendicularly to the ablation beam at a given temporal delay, was observed. Optical emission spectroscopy and time-of-flight-mass spectrometry measurements of the ablation plume revealed details on plasma composition and its spatiotemporal evolution. In particular, in the case of graphite targets, evidence of C_7 up to C_{32} clusters was found.

In agreement with these findings, deposits collected by on-line pulsed laser deposition showed the presence of carbon based nanoaggregates. This holistic approach to ablation plume analysis allows discussing the identity of the nonlinear emitters in laser ablation plasmas and facilitates the investigation of efficient, nanoparticle-enhanced, coherent short wavelength generation processes.

![Figure 1: Third harmonic emission at 355 nm observed in graphite ablation plasma.](image)