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Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals

F. J. Garca de Abajot* A. Rivacobal N. Zabalal? and P. M. Echeniqde
1Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Aptdo. 1072, 20080 San ®elSysiia
°Departamento de Electricidad y Electiica, Facultad de Ciencias, UPV/EHU, Aptdo. 644, 48080 Bilbao, Spain
(Received 3 June 2003; revised manuscript received 24 July 2003; published 19 November 2003

The band structure and density of states of two-dimensional photonic crystals are shown to be directly
related to the loss spectra of electrons moving parallel to the direction of translational symmetry. Both broad
electron beams and focused beams passing through crystals composed of cylindrical holes in a dielectric host
are considered. Energy losses originate in Cherenkov light emission by coupling to radiation modes of the
crystal. The angular distribution of transmitted electrons is shown to map quite closely the band structure of the
crystal when broad beams are employed, and in particular, Van Hove singularities give rise to peaks in the loss
probability. Finally, the degree of convergence towards the infinite crystal results is studied for finite crystals of
increasing size.
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I. INTRODUCTION It is important to emphasize thatis always larger than
the momentum of light in vacuumy/c, so that electrons
The optical properties of bulk materials and small par-offer the possibility to study regions of the ) plane be-
ticles have been routinely determined by electron energy loslew the light cone(i.e., evanescent waves in vacuuthat
spectroscopyEELS).>? This is usually performed in elec- cannot be easily accessed by external light.
tron microscopes using fast electrai29—300 keV that can A 2D array of infinitely long cylindrical holes drilled in a
be focused on spots below 1 nm in diamétd@he passing dielectric will be investigated in this work as a characteristic
electrons perturb the sample with their electric field, which isexample of photonic crystal. An actual realization of this
evanescent in vacuum, where it extends a distance awaype of structure is provided by photonic crystal fibers,
from the trajectory of the order of the electron velocity di- where cylindrical holes running along optical fibers are made
vided by the excitation frequency/w. This makes of EELS g confine light in the core region for gap frequencies of the
an excellent technique to probe the excitation modes of th@rystal?
sample near the electron trajectory up to distances below "pnhotonic bands and EELS for broad electron beams are
~vlo. o _discussed using plane-wave expansions to solve Maxwell's
When the electrons move inside a transparent material Qiquations in Sec. Il, where numerical calculations of loss
close to its boundary, Cherenkov radiation can be produced Epectra and electron angular distributions are offered. How-
the electron velocity exceeds the speed of light in theever, plane waves are not adequate to describe localized tra-
medium. However, the intensity of the emitted light can be jectories and fail to converge for focused beams. This prob-
strongly modulated by the presence of boundaries. In paflem is solved in Sec. Ill by using multiple-scattering theory
tiCUlal’, the Cherenkov radiation pattern suffers severe modif'or e|ectrons trave"ng inside one Of the Cy"nders Of the Crys_

fications in a photonic crystal, as reported recently for twoa|. The results are then compared with finite crystals de-
dimensional (2D) crystals and electron trajectories scriped within multiple scattering as well.

perpendicular to the direction of translational symmethg- Gaussian atomic unitdi.e., A=m=e=1) are used
tually, one would expect that the emission of Cherenkov rathroughout the paper unless otherwise specified.
diation would be suppressed within gap regions of photonic
crystals® and the emission outside the gaps could be inter-
preted as originating in the coupling of the electron to al-
lowed propagation modes inside the crystal. In this sense,
both EELS and the analysis of the emitted light can provide
useful information on the band structure of this type of A 2D periodic array of infinitely long parallel cylindrical
materials’ air cavities drilled in a host medium of dielectric functieg

The purpose of this work is to establish a connection bewill be considered in what follows. The electrons will be
tween EELS and the photonic band structure in photoniassumed to move with constant velocityparallel to the
crystals. Here, we will focus on the case of 2D crystals andranslational direction of symmetry, taken along thaxis.
electron trajectories that are parallel to the axis of transla- When broad beams are employed, electrons can move
tional symmetry. Then, the excitation frequensyand elec-  with all possible impact parametebsperpendicular to the
tron velocityv determine the parallel momentum of the rel- axis. A quantum-mechanical treatment of this problem would
evant radiation modesj=w/v, and the response of the involve calculating transition probabilities between plane
crystal can be actually studied separately for each point ofvaves representing the fast electrons. However, this has been
the (g,w) plane by tuning appropriately the electron veloc- shown to be fully equivalent to describing the electrons by
ity. point charges that follow classical trajectories and then aver-

IIl. ENERGY LOSS AND ANGULAR DISTRIBUTION
IN BROAD ELECTRON BEAMS
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aging over 2D impact parametdss’ This is the scheme that (6',¢’) are the polar angles ofJ+G’,q), ande;’lG, is the
we will follow here. inverse matrix of the Fourier transform efr,w). In our
A natural representation for this type of beam consists irspecific geometry, one has

expanding the electromagnetic field in terms of plane waves.

Plane-wave expansions have been intensively used to study 2m(1—€y) (|6-G'|DI2
photonic band structuré$:!* A previous analysis will be ex- €6,6'=€ndg,c 6o Al

tended here to include the external charge of the electron. | |
One can start from Maxwell’s equations to show that thewhere A is the unit cell area an® is the diameter of the

{dZJo(),

magnetic field obeys the equation cylindrical holes.
The eigenvalues of N correspond to the valuesséfc?
1 w? Qa7 1 for which light can propagate inside the crystal, that is, the
VX ZVXH - §H= TVX;J, (1) photonic band structure. This is shown in Figa)lfor air

holes in Si €,=11.9) with a diameter to lattice constant
wheree(r, ) is the position-dependent, local dielectric con- ratio D/a=0.8. The region actually probed by the electron
stant,j(r,t) = —v8(R—b) 8(z—wvt) is the external current of lies in thew=qu plane, which has been represented as well

the electron, and:(Ryz)_ In frequency space, the cur- for v=0.7c. These reSUltS, as well as the loss probablllty
rentj can be recast as discussed below for broad beams, have converged using a

few hundred plane waves.
A d?Q . The energy loss experienced by the electron can be calcu-
j(rw)y=—2>, f ——¢l(QtGo)(R=b)glaz  (2)  Jated from the work exerted by the induced electric field
1

Go J1Bz (27)? acting back on the probe. Integrating this quantity over the
whereGg runs over 2D reciprocal lattice vectors of the crys- \‘fv'ﬁt‘;‘erg{; trajectory o(t) = (b,vt), the energy losa E can be

tal under consideratiory= w/v is the momentum of the ra-

diation along thez direction, and the integral is extended A P

over the first Brillouin zong(1BZ). The linearity of Max- AE=f dtv-E'“d[re(t),t]sz wdwP(w),
well's equations permits solving ead@+ G, component 0
separately. Then, invoking Bloch's theorem in virtue of thewherelL is the length of the trajectory and
periodicity of e(r,w), one can show that the transversal field

' ' 1 . :
H admits the expansion P(w)= TerJ dtRe(e “ty- ENr (1), 0]} )

H=>, >, hZb,el(Qte) Reiaz (3) s the electron energy loss probability per unit of path length.
G o=sp Only thez component of the induced field is needed, which
can be derived from Ampe’s law to yield an expansion

wherebs=(cosgcose,costsing,—sinf) andby=(—sine, — Gou o Eq.(3) in which theG component reads

cose,0) form a set of orthogonal vectors together witQ (

+G,q), and (@,¢) are the polar angles of the latter. Insert- R -1 .
ing this expression into Eq1), one obtain¥ z-Egg,= w_/c{E eG,G,hg,|(Q+ G’,q)|sine’
G!
PP ps [P
Nee:  Neer 2 hG’ 47i .
2 sp ss _§5G76, s +TEG'GO .
G NGG’ NGG’ L hG’

This is actually the total field, since the contribution of the

4ari sind bare electron field to the loss probability cancels out in the
= €6.6(QTG.0)] o | formula given below. Notice that onlp components of
- contribute to the loss. Now, inserting this result into E4.
where the elements of N are and summing over alD andG, components as we did in Eq.

(2), the loss probability per unit of path length is found to be
NER, =F[cosd cosh’ cog o— ') +sindsing'],

P(w)= d’Q Re{z- Egg €(¢Co)by,
NEG, = —F cosésin(e—¢'), () 4w GGy J18z QRez Fecy }
o L , Finally, the average over 2D impact parametbrgan be
Ngg: =F cosé’sin(¢—¢"), easily performed to yield
NS, =F cogg—¢), E(w>=f ?QP(Q,0),
1BZ
F=e56/(Q+G.0)[(Q+G.a)l, where
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FIG. 1. (Color) (a) Photonic band structure of a triangular 2D crystal made of cylindrical air holes drilled in siligen1(1.9) for a
diameter to lattice constant ratitz/a=0.8. g is the component of the photon momentum parallel to the cylinders axes. Only the four lowest
bands are displayed for the sake of clarifly) Intersection of these bands with the=qu plane forv=0.7c (solid blue curves The
underlying density plot shows the loss probabiRR{Q, w) averaged for all possible electron impact parameters as a function of both photon
frequencyw and momentum transfer perpendicular to the cylinders aQeslong the excursioffMKI'. A small imaginary part equal to
0.1i has been added g in the calculation ofP in order to improve readabilityic) Similar to (b), but the density plot represents now the
loss probability resolved in perpendicular momentuR{Q, w) ] for a focused electron moving along the axis of one of the cylinders. It
should be noted that the momentum spread necessary to focus the electron inside one of the holes is larger than the inverse of the diameter
so in realistic experiments one would use broad beams with minimum momentum spread, and the electrons would pass only through the
holes giving rise to distributions upon transmission somewhere bet(l¢emd (c).

1 A The electron trajectory will be tilted an angle proportional
23 E Re{z- Egg} to the change in perpendicular momentQnafter scattering.
o ¢ Actually, P(Q,w) has been measured in the past for elec-
is the averaged loss probability resolved in lost enesggnd  trons transmitted through thin films by recording selected
perpendicular-momentum transfer energy losses as a function of deflection angté.In pho-

P(Qw)=

0 (arb.»unils) 1

FIG. 2. (Color) (a) Comparison of the photonic band structgselid blue curvesand the electron energy loss probability averaged over
impact parameter®(Q, ), under the same conditions as in Figh)l Each hexagon represents the first Brillouin zone for a given value of
w, as shown by labels. Notice that the perpendicular-momentum traQsifeiproportional to the electron deflection angle, and therefore,
these plots represent the actual angular distributions of transmitted electrons for specific energy losses in a broad beam cofifjguration.
Same aga), but the density plot represents now the loss probability resolved in perpendicular monm&{@Qna) ] for a focused electron
moving along the axis of one of the cylinders.
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FIG. 3. (a) (Color) Photonic density of statd®0YS) of the crystal considered in Fig(d as a function of photon energy and parallel

momentumg. The DOS is strictly zero in the lower yellow regiofin)

Energy loss probability for a 100-keV electron= 0.55c) moving

along the axis of one of the pores in this crystal, as compared to the DOS along-the line (shaded areaThe dashed curve represents
the loss probability?(w) for a localized axial trajectory, whereas the solid curve stands for the probability in the case of a broad electron

beam,ﬁ(w). A small imaginary part equal to 0.1i has been addeg,tim order to improve readabilityc) Same agb) for 200-keV electrons

(v=0.7c).

tonic crystals, this measurable quantity provides the key tdDOS) is given for comparison in Fig.(8), as calculated

directly sampling photonic bands, as shown in Figb)1
where P(Q,w) is represented for the crystal of Fig(al

using the procedure described in Ref. 11. It shows gaps
(white region$ and intense maximéblack regiong that are

(density plo; and compared with the band structure within sampled by the electrons along te=qu lines for the two

the w=qu plane. The band structure curvdéue curvegare

velocities under consideration. The loss spectra are compared

closely mapped by the regions of high loss probability. Itwith the DOS along these lindshaded areas in Figs(l8

should be noticed, however, that the second lowest piaggl
the curves in Figs. (b) and Xc) coming from the intersec-
tion of the w=qu plane with the green surface in Fig.al]
does not contribute to the energy loss.

and 3c)]. The features of the loss spectra follow quite
closely those of the DOS. In particular, this is the case of
peaksA-D, which can be interpreted as originating in the
coupling of the electron to modes that contribute to DOS

A different sampling of the band structure is offered in Peaks at frequencies such that some bands cross dinelM
Fig. 2(a), where each hexagon represents the 1BZ for a fixed0ints, where they are quite flat, so that the DOS is strongly
value of w. Again, the band structure and regions of high€nhhanced.

loss probability are in good agreement, except for the second The lowest band in Fig. (&) gives rise to a smooth but
lowest band, which goes largely unnoticed by the electrongelatively high probability in the lows region of Figs. 8)
The reason for this behavior can be found in the fact thatand 3c). Actually, the light cannot resolve the holes in the

first, this band has a pusecharacter in they=0 limit, where
s andp modes do not mix! and second, onlp components
contribute to the loss, as pointed out above.afid s polar-
izations for q=0 have also been denoteE and H,

w—0 limit, so that these energy losses must be interpreted
as originating in the emission of Cherenkov radiation within
an effective homogeneous medium. Finally, some bands do
not couple to the electron, like the second lowest beree

respectively) above, which introduces a peak in the DOS but does not

When the host material is transparent, all energy losseaffect P(w).
must be converted into radiation, so tHtw) can be also
interpreted as a light emission probability. This can be con-
nected to recent studies of light emission induced by fast lll. ENERGY LOSS IN FOCUSED BEAMS
e|eCtr0nS Used to Chal’aCtel’ize CO”eCtiVe M|e eXCitationS Of The Convergence of the above plane_Wave forma"sm is
nanoparticles? Therefore,P(w) can be obtained not only sjower when one considers an electron beam that is focused
via EELS but also by measuring photon emission spectr@side one of the cylindrical holes. Then, the interaction of
induced by the passage of the electrons. the electron with the photonic crystal becomes small, so that
P(w) is shown in Fig. 3 for electrons moving at two contributions to the loss probability coming from spurious
different velocities in the same crystal as in Fig[sblid host components are dominant, unless a large number of
curves in Figs. &) and 3c)]. The photonic density of states plane waves is used. Convergence for broad beams was
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achieved with 61 plane waves in the previous sectionputgoing waves centered around each cylindet o can be
whereas focused beams take around 151 waves for the etranslated to a given cylindet, where they behave like
amples under consideration; that is, the computation of th@assing standing waves. These waves are in turn scattered by
involved matrix inversions is 15 times slower. cylinder «, giving rise to outgoing waves that add up to the

However, thisaloof configuration has practical impor- coefficientsy, . Putting this together, in a way similar to
tance, since electrons will be able to move with minimumstandard techniques of multiple-scattering thédrihe fol-
loss along large distances inside the selected hole. Actuallypwing self-consistent relation is obtained:
an analysis of an experiment that uses this type of geometry
has been recently given by the authors with no details of the 0
calculation®® so that we will develop the required theory Vo= thatt E TaarPar s @
next, along with some examples. @ ra

Multiple scattering will be used to speed the calculationwhere matrix notation has been used such thatepresents
for focused beams. The electric field within each medjum the vector of components, .,,, and matrix-vector products
(j=1 for air andj=h for the host materialwill be ex- involve a sum overrfig) indices. The first term on the right-
panded in terms of outgoing and standing cylindrical waveshand side of this equation stands for the field components in
Ej*fqm(,(r,w) and Ef’qmg(r,w), respectively, where (=s or  the absence of multiple scattering, . The remaining sum is
p) is the polarization andn runs over azimuthal quantum the contribution to the field in site coming from the electric
numbers. Detailed expressions for this type of waves aréield propagated from every other sit¢ to o by means of
given in Appe_nd|x A. In practice, convergence is achievedihe translation matrix—raa’,m(r,m/(r’:5(7'()"T:1L’¥Lm [see Eq.
for m=4, which results in 1818 secular matrices, much ) ) o . !
smaller as compared with the plane-wave expansion formalA4) in Appendix A for explicit expressions of,, _ ] and
ism. Nevertheless, the latter is still convenient for broadscattered atr via the cylinder scattering matriky, mr
beams, since it permits integrating over impact parameters Smnmvtm.oo' [@ detailed derivation ofy, ., is offered in
analytically, as shown in Sec. II. Appendix B; see EqgB1) and(B2) in particula.

First of all, we shall consider a single cylindrical cavity ~ The translational symmetry of the crystal permits writing
inside of which the electron is moving. The external field ofthe electric field components in the 2D perpendicular mo-
the electron can be expressed in termg-@larized cylin- Mentum representatio as
drical waves, as shown in Appendix A. Near the cylinder
boundary, the bare electron field is composed of outgoing .
waves, as described b Vo= f d*Qyige'¥ e, ®

, y EGA5). These waves are reflected (2m)2) 182 Q
at the cylinder boundary to produce standing waves inside
the cylinder, so that the electric field can be written,dn«) which admits the inverse Fourier transformation
space, as

Yo=2 . ¥R ©)
E= % lp?nx T,qmp—'— z lp:ﬁfrEiqma 5 “«
. . L . Inserting this expressions into EJ), one finds that different
within that region, whereas the electric field outside the cyI—Q compgonents Sre decoupled E(IgllZ)re precisely
inder consists of transmitted outgoing waves, ' '

1
— 0

E: mz l/’g'l(rE;',qm(r ) (6) l/jQ_ 1_ tTQ I/IQ ' (10)

Here, 2 are the coefficients of the expansion of EA5) where aQ-dependent translation matrix has been defined as
»Pm
[see Eq(A6)], whereas/®,, and 4/ are determined by the
boundary cond_itions at the cylinder wall according to Eq. Tomem o= Oper 2 Tg?fme*iQRa:500,3m7m,(_Q)
(B3) of Appendix B. a#0
For crystals we will use a 2D Korringa-Kohn-Rostoker 11

(KKR) descriptio® consisting in expressing the electric
field inside the host medium in terms of cylindrical waves
centered around the cylinders:

and one has choseRy=0. Analytical expressions for the
lattice sumS,,,(Q) are given in Appendix C.
The inhomogeneous part of Ed7) takes the form
Y2 o= Oa0¥,, Wherea=0 has been chosen as the cylin-
E(N=2 2 YameEham(R—Ra), der inside of which the electron is moving arf,, is given
@ me by Eq. (B3) for the electron source under consideratisae
where R, runs over 2D lattice sites. Outgoing cylindrical Eg. (6) as well. Then one has, according to E§), ¢/ m,
wavesEE’qu have been chosen in order to guarantee that the= ¢/, , which is independent o®.
electric field has the correct far-field behavior. The induced electric field near the electron trajectory is
The coefficientsy, m, can be determined from the self- made up of the result of internal scattering inside the cylin-
consistent interaction among cylinders. More precisely, theler, as described by/¢' in Egs.(5) and(B3), plus the trans-

mo
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mission into thea=0 cylinder of outgoing waves coming peaksB and D occur near a sudden rise of the DOS for

from the rest of the cylinders. One finds localized beamsdashed curves
The position of the loss peaks with respect to the DOS
gind— g e L SAL L Touths , features can be understood by analyzing the two-dimensional
%r 1'qm"l Yo ; m g’o 0t/ . Van Hove singularitiesVHS’s) associated with our DOS

(12 [the third dimension is actually fixed by the conditien
=qu, which applies to all curves in Figs(l3—3(c)]. The
effect of VHS’s on the electronic density of states has been
Yobserved via EELS features assigned to electron interband
transitions:® but here we are concerned instead with the pho-
tonic density of states.

Van Hove singularities are associated with the vanishing
of the group velocity for specifi@ points of photonic bands

where Ap, ., represents the transmission coefficient of a
standing wave into the cylinder inner region, as defined b
Egs.(B1) and(B2), and,, is the solution of Eq(7).

Finally, the energy loss probability per unit of path length
is calculated by inserting Eq12) into Eq. (4). Here P(w)
can be decomposed as

P(0)=P4(®)+Py(o) n [i.e., Vowna(Q,q)=0].2°"?* This is translated into charac-
teristic features in the density of states, D@%(
where =3,.[18,02Q8[ 0 — w,(Q,q)]. In our two-dimensional mo-
mentum case, there are two different kinds of VHSIS:
_ €1 extref those coming from either minina or maxima of the bands
Palw) Em: Rer(wkl)z m l’bmp] (13 0,(Q,q), where the DOS becomes discontinuous, &ind

. I ) _ . those arising from saddle points, which yield logarithmic di-
is the loss probability in the presence of a single cyl|ndr|calvergences in the DOS. This behavior has to emerge in the
cavity (see Ref. 18 for more detailed expressions loss probability, since it involves an integral ov@rsimilar

e{ to the one in the DOS.

Pl(w)=2> R

€1 ext One can clearly observe the presence of saddle points in
m Am,pa’ = TOawa
mo’ a

the band structure near tivpoint atwa/27wc~0.3 and 0.45
(14) in Figs. 1(b)—1(c), which should give rise to VHS’s of type
(i) in the DOS[Fig. 3(c)]. Also, there is a minimum at th¢
point nearwal/2mc~0.41, which corresponds to VHS'’s of
type (i). Now, for broad beams Fig.(i) indicates that these

(ky)?

mo’

is the contribution to the loss probability originating in the
rest of the crystal, ang%" is defined by Eq(A6).

Using Eq.(8), one can write regions of the band structure are sampled by the electrons, so
that logarithmic divergences show up in the loss probability
P(w)= f d’QP(Q,w), at those energigpeaksC andD for 200-keV broad beam_s in
1BZ Fig. 3(c)]. However, the saddle point neama/27c~0.45 is

not efficiently sampled by the localized central trajectory of

100-keV electrons can be understood in the same way as
andD, respectively.
is the crystal contribution revolved in perpendicular momen-  Therefore, EELS features in the localized trajectories un-
tum Q and ¢q m, is the solution of the multiple-scattering der consideration occur in coincidence with VHS's of type
equations as given by E¢L0). (i) in peaks neaB andD and of type(ii) in peaksA andC.
P(Q,w) is represented in Fig. (&) (density plof and  For broad beams, all peaks coincide with VHS of tyjpé
compared with the photonic band structure of the crystabnd the effect of the VHS of typ@) nearB andD is shad-
under discussion within the=qu plane(blue curves The  owed under dominant typ@) VHS'’s.
data shown in the figure correspond to an axial trajectory In the low-energy end, the spectrum for localized beams
(b=0), but very similar results are obtained for off-center converges to the result obtained for broad beams, which is an
trajectories. A more reduced region of the band structure iadditional manifestation of Cherenkov radiation for an effec-
contributing to the loss, as compared with the case of a broative medium whose porous structure cannot be resolved by
beam[Fig. 1(b)]. In particular, regions near thel and K  radiation of much larger wavelength.
points at aroundva/27c=0.3 and 0.4, respectively, seem to  Finite-size effects are studied in Fig. 4, where we show
be emphasized. The effect is very apparent in Fi@n),2 the loss probability for crystals composed of a finite number
whereQ maps are presented for selected energy losses. Thif cylinders. The electron is moving in the central cylinder in
has direct consequences in the loss spectra shown in Figall cases. The loss probability has been calculated from Egs.
3(b) and 3c). For instance, the loss peaks-D lie on top of  (13) and (14), wherey, has been obtained by direct inver-
maxima in the DOS for broad beantsolid curve$, but  sion of Eq.(7).2 The results have also been reproduced by

r
m' o

where Fig. 1(c), so that no peak appears in the loss probability near
A 6 that frequencydashed curve in Fig.(8)]. However, the lo-
P(Qw)= > Rel —— ext calized trajectory exhibits a feature neaa/27c~0.41 that
(2m)% m (mky)? should be attributed to VHS’s of typ@) and that is shad-
owed by the more intensea/2mc~0.45 peak in the case of
% ’/’:r?L“L D Am,pngmmf(—Q)wQ,mfofH the broad beam. The origin of peaksandB in Fig. 1(b) for
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R R N L BN The energy loss probability has been separated into the

8 7 contribution of different momentum transfers perpendicular
- 1 to the trajectories. This quantity can be directly measured
7F | . from the angular distribution of broad electron beams trans-

mitted through the crystal for selected energy losses, and it
provides a direct mapping of the band structure as shown in
Figs. 1b) and Z2a).

The loss probability presents some peaks that can be as-
_holes sociated to Van Hove singularities of different types: saddle
points, giving rise to logarithmic divergences, and band
maxima and minima, which produce smoother features.
These types of peaks are sampled differently by localized
— electrons and broad beams. Measuring the electron deflection
1 angle is not possible for localized beams transmitted trough
~—t cylindrical holes in these crystals, since the momentum

1000 ¢ x P(w)

\ | spread of the incoming beam needed to focus it within the
unit cell is of the order of the momentum transfer 1/a).
infinite However, if the materials involved have real dielectric con-
. N\J ICTIYStalI B stants, all Io_s_ses are converted into emitted light, so_that the
0.1 0.2 03 0.4 loss probability can be equally measured from the induced
’ ' ' ’ hoton emission probability.
wa/2mc P

Finally, finite crystals have been considered as well. The

FIG. 4. Energy loss spectra for an electron moving along theSiZe Of the crystal for which the loss probability approaches
axis of a cylindrical hole drilled in silicone,=11.9) when the hole  the value of the infinite crystal has been shown to depend on
is isolated(dashed curveor surrounded by a different number of the lost energy, and in particular, peaks of higher-energy con-
holes, as indicated by labels. The electron velocity4s0.7c. The  verge faster as a result of diffusive propagation of the elec-
ratio of the cylinder diameter to the lattice constanDisa=0.8. A tromagnetic signal far away from the beam.
small imaginary part equal to 0.1i has been addedpt@and con-
secutive curves have been shifted upwarddB@0 cP=1 in or- ACKNOWLEDGMENTS
der to improve readability.
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tion spectrum with no salient features, one can observe that a

relatively large num_be_r _of cylinders is necessary to approach APPENDIX A: CYLINDRICAL WAVES
the results of the infinite crystal. The peak neaa/2wc
~0.4 is the first to convergee.g., for 1+ 18 cylinders, and Analytical expressionsThe electric field inside a homo-

this is consistent with the fact that this is a relatively higher-geneous materiglfree of external charges and currents and
energy feature where diffusive propagation is achieved for @haracterized by a dielectric functien and a magnetic per-
smaller number of cylinders. The low-energy region of themeability u; can be decomposed into cylindrical waves that
spectrum takes considerably more cylinders to converge amare labeled by their azimuthal quantum numberthe mo-

it exhibits size-dependent oscillations with, suggesting mentumq along a given directiorz, and the polarization.

that successive reflections at the different layers of cylindergore explicitly, using cylindrical coordinates= (R, ¢,2),
around the central one are taking place.

J _
IV. CONCLUSIONS B qmd )=

im R A
@Jm@jR)R—JMQ,»Rw}e'm@e'qz
The central message of this work is that fast electrons can (A1)
be used to probe photonic crystal band structures. This hggr s polarization and
been shown for electrons moving along the translational di-
rection of symmetry of 2D crystals both for broad electron ; al.., . m -
beams and for localized beams. Efqme )= | Im(Q;RIR— ﬁ\]m(Qj R)¢

Some of the features of the band structure are directly ' )
translated into the electron loss spectra. In particular, the loss
probability follows to some extent the profile of the photonic
density of states in the case of broad beése® solid curves
in Figs. 3b) and 30¢)]. for p polarization. Herek;= \/ej,u,j(wlc)z,

gimeglaz (A2)

+ %Jm(QjR)i
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— N2_ i
Qj_ kJ q2+ |O+' (AS) EeXt(r,w)z f dteithexl(r,t)

the square roots must be chosen to have positive real parts,

and the prime denotes differentiation with respect to the ar- 1 |wm

gument. =|—V- 2 Im(Q1R<)
Equations(Al) and (A2) are easily derived from the €1

Hertz vectof® I1=(0,0J,,(Q:R))e™*e'%? according to Xanl)(QlR>)eimcpeiqz'

) me=(LUQ)VXIT and EJ amg= (1 Q) VX (V x1I).

These are transversal waveg- CEl qme—=0) that satisfy the . .
relation where R.=min{R,b}, R.=maxXR,b}, Q. is the perpen-

dicular momentum given by EqA3), and q=w/v is the
momentum component of the electron field parallel to the

J _ . K . . . .
Ej qme k_VX E, qmo’ direction of motion. Upon inspection, one finds
for o# o', which is convenient to obtain the magnetic field
from the electric field using Faraday’s lawH ex ext—H
_—(IC/w,uJ)VXE E t(r w)= 2 m 1qmp(r) (A5)

Cylmdncal waves with real values dp= \/kz—q and
\/kz—q’2 satisfy the following orthogonahty relation at \yith

z 0:
27 . Q
f Rde d(,DEJ qmo” i qrmr(,.r) l,breinXt € m(le) (A6)
1 !
=27r5mm,5(m,aﬁ(q—q ). for b<R, and a similar expression is obtained for R.

Notice that the field of the electron is entirely composeg of

The above waves are standing in the sense that they dgaves.
not transport any energy along the radial direction, a property
that is reflected in the fact that any combination of these
waves results in a Poynting vector whose radial component
is zero in a lossless medium. A complete basis of cylindrical

waves requires us to define outgoing waves as well, Scattering of external standing wavd$e scattering of a
El'qme(R), which are given by the same expressions asstanding wave by a cylinder gives rise to scattered outgoing
above after substituting the Hankel functio#f?) for the  waves. Since outgoing waves diverge at the origin, the field
Bessel functiord,,,. With this choice, outgoing waves vanish transmitted inside the cylinder has to be a combination of
in the far-field Iimit. only standing waves. Besides, the azimuthal quantum num-
Translation formulaAn outgoing wave centered around bermis conserved during scattering due to the symmetry of
the positionR . will behave like a combination of standing the cylinder. Thus, the electric field can be written, for fixed
waves passing by a different positiéty,. This is actually values ofo, m, g, andw, as
reflected in the identity

APPENDIX B: THE SCATTERING MATRIX
OF A CYLINDER

E=Am s El amet Am o ES
H aa m,so 1qms m,poc=1gmp
Eh'qm,U(R—Ra,)=% T mEp qme(R—RL),

where inside the cylinder, occupied by material 1, and

Toe _H(l) (Qh|Ra_Ra,|)ei(m’—m)¢aa’, (A4) E= Eh qmo + 1

m’'—m m,saEh,qms m,paEI};‘,qmp

subject to the conditiofR,— R ol Here, @, is

the azimuthal angle of vectd®® ,—R,.. This can be easily in the surrounding host materia) where the first term in the

proved from Graf’s addition theorem for Bessel functihs last expression represents the external standing wave of po-

and from the detailed form of the cylindrical waves given larization o.

above. Notice that polarization is conserved during this Using the expression@\1l) and (A2) of Appendix A for

translation process. the cylindrical waves and imposing the continuity of the
Field of a moving electrorAn electron moving inside an components of the electric field and magnetic field parallel to

infinite, homogeneous mediufsay medium Lalong a tra- the cylinder surfacé.e., ¢ andz components; the continuity

jectory parallel to the axis and described bR=Db, ¢=0, of the perpendiculaR component of both the magnetic in-

andz=wvt will set up an electric field that reads, in frequency duction and the electric displacement is automatically guar-

spacew,? anteed by these conditionone finds

205105-8
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[ Qn ] [ 0 ]
_ - 7 JIm(an) _ -
Am'ss kh m( h Am,sp
tmss ‘Jr,n(ah) tm,sp Knan e
=M1 (B1) =M1 , (B2)
A 0 A
mes e f—:Jmmh)
_tmps_ mq _tmpp_
' —Jn(a ’ /
| Ko 2 | In(an)
and where
[ (Q, -Qy T
=== Jn(ay) HO(ay) O 0
ky ke,
’ ’ mq _mq
Jm(ay) -H® (a) EJm(al) mHE‘nl)(ah)
M: [}
Q; —Qn
0 0 —Jn(a)  ———HM(ay)
K, K,
{mq —mq / /
| fga, (@) g, Han) Onla)  —HE (e |

{=eunlenpy, a;=Qja, anda s the radius of the cylin- matrix inversion numerically, since the bulk of the computa-
der. It is important to stress that the scattering by the cylindefional demand comes from the calculation of the lattice sums
mixes s and p components in general, except fqr=0 or  discussed next.
m=0.

Scattering of internal outgoing wave&n electron mov- APPENDIX C: LATTICE SUMS
ing inside a cylinder produces outgoing waves according to
Eqg. (A5), which are scattered at the cylinder boundary to
generate an electric field as the one described by Byjand
(6). Applying the customary boundary conditions for the
electromagnetic fieldsee abovg the coefficients of these

The lattice sum in Eq(11) can be converted into rapidly
converging sums using Ewald’s method. For completeness,
we quote the results of Leung and Gfu:

equations can be expressed in terms of méitias Sn(Q)= >, HY (QuR,)e MPaiQRa
R,#0
- 0 - )
" Ums mg _IHmﬂ'Dm_&mO’
— TH®)g )
wo ko, M (ay where
— exta g —1
o [ TN (B3 Dp=D{+DR+DP,
Ymp k_lHEnl)(al)
1
0 |ml
L mp- ay a)_ 2m D [G+Ql £(Q2- 16+ QA rg-imeq
{Hp' (a) AQM T |G+Q|2-Q?
where &' has been defined in EGAB). (2)= —_Zi " S RIMEQ Reg-ime,
Analytical but quite involved results can be obtained by m Qn R70 ¢
inversion of the 4«4 matrix M, and in particular, the oscil-
lation modes of the isolated cylinder are derived from the % f"’ %gzme*RiﬁzeQﬁ"‘ﬁz
zeros of deM}.?’ Instead, we have chosen to carry on this W27 '
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S0 Qﬁ 1 % n respectivelyR,, runs over the sites of the 2D real-space lat-
D®=—"C| y+in| — | + —I(—) , tice andG over the reciprocal latticé) is the unit cell area,
2 7/ =17 y=0.5772... is theEuler constant, and the result is inde-
pendent of7, which is adjusted in order to speed up the
¢, and ¢ are the azimuthal angles of vectd®g and G, calculation.
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