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Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals
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The band structure and density of states of two-dimensional photonic crystals are shown to be directly
related to the loss spectra of electrons moving parallel to the direction of translational symmetry. Both broad
electron beams and focused beams passing through crystals composed of cylindrical holes in a dielectric host
are considered. Energy losses originate in Cherenkov light emission by coupling to radiation modes of the
crystal. The angular distribution of transmitted electrons is shown to map quite closely the band structure of the
crystal when broad beams are employed, and in particular, Van Hove singularities give rise to peaks in the loss
probability. Finally, the degree of convergence towards the infinite crystal results is studied for finite crystals of
increasing size.
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I. INTRODUCTION

The optical properties of bulk materials and small p
ticles have been routinely determined by electron energy
spectroscopy~EELS!.1,2 This is usually performed in elec
tron microscopes using fast electrons~20–300 keV! that can
be focused on spots below 1 nm in diameter.3 The passing
electrons perturb the sample with their electric field, which
evanescent in vacuum, where it extends a distance a
from the trajectory of the order of the electron velocity d
vided by the excitation frequency,v/v. This makes of EELS
an excellent technique to probe the excitation modes of
sample near the electron trajectory up to distances be
;v/v.

When the electrons move inside a transparent materia
close to its boundary, Cherenkov radiation can be produce
the electron velocity exceeds the speed of light in
medium.4 However, the intensity of the emitted light can b
strongly modulated by the presence of boundaries. In
ticular, the Cherenkov radiation pattern suffers severe m
fications in a photonic crystal, as reported recently for tw
dimensional ~2D! crystals and electron trajectorie
perpendicular to the direction of translational symmetry.5 Ac-
tually, one would expect that the emission of Cherenkov
diation would be suppressed within gap regions of photo
crystals,6 and the emission outside the gaps could be in
preted as originating in the coupling of the electron to
lowed propagation modes inside the crystal. In this sen
both EELS and the analysis of the emitted light can prov
useful information on the band structure of this type
materials.7

The purpose of this work is to establish a connection
tween EELS and the photonic band structure in photo
crystals. Here, we will focus on the case of 2D crystals a
electron trajectories that are parallel to the axis of tran
tional symmetry. Then, the excitation frequencyv and elec-
tron velocityv determine the parallel momentum of the re
evant radiation modes,q5v/v, and the response of th
crystal can be actually studied separately for each poin
the (q,v) plane by tuning appropriately the electron velo
ity.
0163-1829/2003/68~20!/205105~10!/$20.00 68 2051
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It is important to emphasize thatq is always larger than
the momentum of light in vacuum,v/c, so that electrons
offer the possibility to study regions of the (q,v) plane be-
low the light cone~i.e., evanescent waves in vacuum! that
cannot be easily accessed by external light.

A 2D array of infinitely long cylindrical holes drilled in a
dielectric will be investigated in this work as a characteris
example of photonic crystal. An actual realization of th
type of structure is provided by photonic crystal fibe
where cylindrical holes running along optical fibers are ma
to confine light in the core region for gap frequencies of t
crystal.8

Photonic bands and EELS for broad electron beams
discussed using plane-wave expansions to solve Maxw
equations in Sec. II, where numerical calculations of lo
spectra and electron angular distributions are offered. H
ever, plane waves are not adequate to describe localized
jectories and fail to converge for focused beams. This pr
lem is solved in Sec. III by using multiple-scattering theo
for electrons traveling inside one of the cylinders of the cr
tal. The results are then compared with finite crystals
scribed within multiple scattering as well.

Gaussian atomic units~i.e., \5m5e51) are used
throughout the paper unless otherwise specified.

II. ENERGY LOSS AND ANGULAR DISTRIBUTION
IN BROAD ELECTRON BEAMS

A 2D periodic array of infinitely long parallel cylindrica
air cavities drilled in a host medium of dielectric functioneh
will be considered in what follows. The electrons will b
assumed to move with constant velocityv parallel to the
translational direction of symmetry, taken along thez axis.

When broad beams are employed, electrons can m
with all possible impact parametersb perpendicular to thez
axis. A quantum-mechanical treatment of this problem wo
involve calculating transition probabilities between pla
waves representing the fast electrons. However, this has
shown to be fully equivalent to describing the electrons
point charges that follow classical trajectories and then av
©2003 The American Physical Society05-1
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aging over 2D impact parametersb.9 This is the scheme tha
we will follow here.

A natural representation for this type of beam consists
expanding the electromagnetic field in terms of plane wav
Plane-wave expansions have been intensively used to s
photonic band structures.10,11A previous analysis will be ex-
tended here to include the external charge of the elect
One can start from Maxwell’s equations to show that
magnetic field obeys the equation

¹3S 1

e
¹3HD2

v2

c2
H5

4p

c
¹3

1

e
j , ~1!

wheree(r ,v) is the position-dependent, local dielectric co
stant,j (r ,t)52vd(R2b)d(z2vt) is the external current o
the electron, andr5(R,z). In frequency spacev, the cur-
rent j can be recast as

j ~r ,v!52 ẑ(
G0

E
1BZ

d2Q

~2p!2
ei(Q1G0)•(R2b)eiqz, ~2!

whereG0 runs over 2D reciprocal lattice vectors of the cry
tal under consideration,q5v/v is the momentum of the ra
diation along thez direction, and the integral is extende
over the first Brillouin zone~1BZ!. The linearity of Max-
well’s equations permits solving eachQ1G0 component
separately. Then, invoking Bloch’s theorem in virtue of t
periodicity ofe(r ,v), one can show that the transversal fie
H admits the expansion

H5(
G

(
s5s,p

hG
s b̂sei(Q1G)•Reiqz, ~3!

whereb̂s5(cosu cosw,cosu sinw,2sinu) and b̂p5(2sinw,
cosw,0) form a set of orthogonal vectors together with (Q
1G,q), and (u,w) are the polar angles of the latter. Inse
ing this expression into Eq.~1!, one obtains10

(
G8

H FNGG8
pp NGG8

ps

NGG8
sp NGG8

ss G2
v2

c2
dG2G8J F hG8

p

hG8
s G

5
4p i

c
eG,G0

21 u~Q1G,q!uF2sinu

0
G ,

where the elements of N are

NGG8
pp

5F@cosu cosu8cos~w2w8!1sinu sinu8#,

NGG8
ps

52F cosu sin~w2w8!,

NGG8
sp

5F cosu8sin~w2w8!,

NGG8
ss

5F cos~w2w8!,

F5eG,G8
21 u~Q1G,q!uu~Q1G8,q!u,
20510
n
s.
dy

n.
e

(u8,w8) are the polar angles of (Q1G8,q), andeG,G8
21 is the

inverse matrix of the Fourier transform ofe(r ,v). In our
specific geometry, one has

eG,G85ehdG,G81
2p~12eh!

uG2G8u2A
E

0

uG2G8uD/2
zdzJ0~z!,

whereA is the unit cell area andD is the diameter of the
cylindrical holes.

The eigenvalues of N correspond to the values ofv2/c2

for which light can propagate inside the crystal, that is,
photonic band structure. This is shown in Fig. 1~a! for air
holes in Si (eh511.9) with a diameter to lattice constan
ratio D/a50.8. The region actually probed by the electr
lies in thev5qv plane, which has been represented as w
for v50.7c. These results, as well as the loss probabi
discussed below for broad beams, have converged usi
few hundred plane waves.

The energy loss experienced by the electron can be ca
lated from the work exerted by the induced electric fie
acting back on the probe. Integrating this quantity over
electron trajectoryre(t)5(b,vt), the energy lossDE can be
written12

DE5E dtv•Eind@re~ t !,t#5LE
0

`

vdvP~v!,

whereL is the length of the trajectory and

P~v!5
1

pvLE dtRe$e2 ivtv•Eind@re~ t !,v#% ~4!

is the electron energy loss probability per unit of path leng
Only thez component of the induced field is needed, whi
can be derived from Ampe`re’s law to yield an expansion
similar to Eq.~3! in which theG component reads

ẑ•EGG0
5

21

v/c F(
G8

eG,G8
21 hG8

p u~Q1G8,q!usinu8

1
4p i

c
eG,G0

21 G .

This is actually the total field, since the contribution of th
bare electron field to the loss probability cancels out in
formula given below. Notice that onlyp components ofE
contribute to the loss. Now, inserting this result into Eq.~4!
and summing over allQ andG0 components as we did in Eq
~2!, the loss probability per unit of path length is found to

P~v!5
21

4p3v
(
GG0

E
1BZ

d2Q Re$ẑ•EGG0
ei(G2G0)•b%.

Finally, the average over 2D impact parametersb can be
easily performed to yield

P̄~v!5E
1BZ

d2QP̄~Q,v!,

where
5-2
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FIG. 1. ~Color! ~a! Photonic band structure of a triangular 2D crystal made of cylindrical air holes drilled in silicon (eh511.9) for a
diameter to lattice constant ratioD/a50.8. q is the component of the photon momentum parallel to the cylinders axes. Only the four lo
bands are displayed for the sake of clarity.~b! Intersection of these bands with thev5qv plane for v50.7c ~solid blue curves!. The

underlying density plot shows the loss probabilityP̄(Q,v) averaged for all possible electron impact parameters as a function of both p
frequencyv and momentum transfer perpendicular to the cylinders axes,Q, along the excursionGMKG. A small imaginary part equal to

0.1i has been added toeh in the calculation ofP̄ in order to improve readability.~c! Similar to ~b!, but the density plot represents now th
loss probability resolved in perpendicular momentum@P(Q,v)# for a focused electron moving along the axis of one of the cylinders
should be noted that the momentum spread necessary to focus the electron inside one of the holes is larger than the inverse of th
so in realistic experiments one would use broad beams with minimum momentum spread, and the electrons would pass only th
holes giving rise to distributions upon transmission somewhere between~b! and ~c!.
al

c-
ted
P̄~Q,v!5
21

4p3v
(
G

Re$ẑ•EGG%

is the averaged loss probability resolved in lost energyv and
perpendicular-momentum transferQ.
20510
The electron trajectory will be tilted an angle proportion
to the change in perpendicular momentumQ after scattering.

Actually, P̄(Q,v) has been measured in the past for ele
trons transmitted through thin films by recording selec
energy lossesv as a function of deflection angle.13 In pho-
ver

e of
re,
ration.
FIG. 2. ~Color! ~a! Comparison of the photonic band structure~solid blue curves! and the electron energy loss probability averaged o

impact parameters,P̄(Q,v), under the same conditions as in Fig. 1~b!. Each hexagon represents the first Brillouin zone for a given valu
v, as shown by labels. Notice that the perpendicular-momentum transferQ is proportional to the electron deflection angle, and therefo
these plots represent the actual angular distributions of transmitted electrons for specific energy losses in a broad beam configu~b!
Same as~a!, but the density plot represents now the loss probability resolved in perpendicular momentum@P(Q,v)# for a focused electron
moving along the axis of one of the cylinders.
5-3
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FIG. 3. ~a! ~Color! Photonic density of states~DOS! of the crystal considered in Fig. 1~a! as a function of photon energyv and parallel
momentumq. The DOS is strictly zero in the lower yellow region.~b! Energy loss probability for a 100-keV electron (v50.55c) moving
along the axis of one of the pores in this crystal, as compared to the DOS along thev5qv line ~shaded area!. The dashed curve represen
the loss probabilityP(v) for a localized axial trajectory, whereas the solid curve stands for the probability in the case of a broad e

beam,P̄(v). A small imaginary part equal to 0.1i has been added toeh in order to improve readability.~c! Same as~b! for 200-keV electrons
(v50.7c).
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tonic crystals, this measurable quantity provides the key
directly sampling photonic bands, as shown in Fig. 1~b!,
where P̄(Q,v) is represented for the crystal of Fig. 1~a!
~density plot! and compared with the band structure with
thev5qv plane. The band structure curves~blue curves! are
closely mapped by the regions of high loss probability.
should be noticed, however, that the second lowest band@i.e.,
the curves in Figs. 1~b! and 1~c! coming from the intersec
tion of thev5qv plane with the green surface in Fig. 1~a!#
does not contribute to the energy loss.

A different sampling of the band structure is offered
Fig. 2~a!, where each hexagon represents the 1BZ for a fi
value of v. Again, the band structure and regions of hi
loss probability are in good agreement, except for the sec
lowest band, which goes largely unnoticed by the electro
The reason for this behavior can be found in the fact th
first, this band has a pures character in theq50 limit, where
s andp modes do not mix,11 and second, onlyp components
contribute to the loss, as pointed out above. (p ands polar-
izations for q50 have also been denotedE and H,
respectively.11!

When the host material is transparent, all energy los
must be converted into radiation, so thatP(v) can be also
interpreted as a light emission probability. This can be c
nected to recent studies of light emission induced by
electrons used to characterize collective Mie excitations
nanoparticles.14 Therefore,P(v) can be obtained not only
via EELS but also by measuring photon emission spe
induced by the passage of the electrons.

P̄(v) is shown in Fig. 3 for electrons moving at tw
different velocities in the same crystal as in Fig. 1@solid
curves in Figs. 3~b! and 3~c!#. The photonic density of state
20510
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~DOS! is given for comparison in Fig. 3~a!, as calculated
using the procedure described in Ref. 11. It shows g
~white regions! and intense maxima~black regions! that are
sampled by the electrons along thev5qv lines for the two
velocities under consideration. The loss spectra are comp
with the DOS along these lines@shaded areas in Figs. 3~b!
and 3~c!#. The features of the loss spectra follow qui
closely those of the DOS. In particular, this is the case
peaksA–D, which can be interpreted as originating in th
coupling of the electron to modes that contribute to DO
peaks at frequencies such that some bands cross theK andM
points, where they are quite flat, so that the DOS is stron
enhanced.

The lowest band in Fig. 1~a! gives rise to a smooth bu
relatively high probability in the low-v region of Figs. 3~b!
and 3~c!. Actually, the light cannot resolve the holes in th
v→0 limit, so that these energy losses must be interpre
as originating in the emission of Cherenkov radiation with
an effective homogeneous medium. Finally, some bands
not couple to the electron, like the second lowest band~see
above!, which introduces a peak in the DOS but does n
affect P̄(v).

III. ENERGY LOSS IN FOCUSED BEAMS

The convergence of the above plane-wave formalism
slower when one considers an electron beam that is focu
inside one of the cylindrical holes. Then, the interaction
the electron with the photonic crystal becomes small, so
contributions to the loss probability coming from spurio
host components are dominant, unless a large numbe
plane waves is used. Convergence for broad beams
5-4



on

th

-
m
al
et
th

ry

on

e

a
e
h

a
a
te

ty
o

e
in
d
id

y

q

er
ic
es

al
th

f-
th

d by
e

o

-
s in

g
o-

as

n-

is
lin-

ELECTRON ENERGY LOSS SPECTROSCOPY AS A . . . PHYSICAL REVIEW B68, 205105 ~2003!
achieved with 61 plane waves in the previous secti
whereas focused beams take around 151 waves for the
amples under consideration; that is, the computation of
involved matrix inversions is 15 times slower.

However, thisaloof configuration has practical impor
tance, since electrons will be able to move with minimu
loss along large distances inside the selected hole. Actu
an analysis of an experiment that uses this type of geom
has been recently given by the authors with no details of
calculation,15 so that we will develop the required theo
next, along with some examples.

Multiple scattering will be used to speed the calculati
for focused beams. The electric field within each mediumj
( j 51 for air and j 5h for the host material! will be ex-
panded in terms of outgoing and standing cylindrical wav
Ej ,qms

H (r ,v) andEj ,qms
J (r ,v), respectively, wheres (5s or

p) is the polarization andm runs over azimuthal quantum
numbers. Detailed expressions for this type of waves
given in Appendix A. In practice, convergence is achiev
for m<4, which results in 18318 secular matrices, muc
smaller as compared with the plane-wave expansion form
ism. Nevertheless, the latter is still convenient for bro
beams, since it permits integrating over impact parame
analytically, as shown in Sec. II.

First of all, we shall consider a single cylindrical cavi
inside of which the electron is moving. The external field
the electron can be expressed in terms ofp-polarized cylin-
drical waves, as shown in Appendix A. Near the cylind
boundary, the bare electron field is composed of outgo
waves, as described by Eq.~A5!. These waves are reflecte
at the cylinder boundary to produce standing waves ins
the cylinder, so that the electric field can be written, in (q,v)
space, as

E5(
m

Fcm
extE1,qmp

H 1(
s

cms
ref E1,qms

J G ~5!

within that region, whereas the electric field outside the c
inder consists of transmitted outgoing waves,

E5(
ms

cms
0 Eh,qms

H . ~6!

Here,cm
ext are the coefficients of the expansion of Eq.~A5!

@see Eq.~A6!#, whereascms
0 andcms

ref are determined by the
boundary conditions at the cylinder wall according to E
~B3! of Appendix B.

For crystals we will use a 2D Korringa-Kohn-Rostok
~KKR! description16 consisting in expressing the electr
field inside the host medium in terms of cylindrical wav
centered around the cylinders:

E~r !5(
a

(
ms

ca,msEh,qms
H ~R2Ra!,

where Ra runs over 2D lattice sites. Outgoing cylindric
wavesEh,qms

H have been chosen in order to guarantee that
electric field has the correct far-field behavior.

The coefficientsca,ms can be determined from the sel
consistent interaction among cylinders. More precisely,
20510
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outgoing waves centered around each cylindera8Þa can be
translated to a given cylindera, where they behave like
passing standing waves. These waves are in turn scattere
cylinder a, giving rise to outgoing waves that add up to th
coefficientsca,ms . Putting this together, in a way similar t
standard techniques of multiple-scattering theory,17 the fol-
lowing self-consistent relation is obtained:

ca5ca
01t (

a8Þa

Taa8ca8 , ~7!

where matrix notation has been used such thatca represents
the vector of componentsca,ms , and matrix-vector products
involve a sum over (ms) indices. The first term on the right
hand side of this equation stands for the field component
the absence of multiple scattering,ca

0 . The remaining sum is
the contribution to the field in sitea coming from the electric
field propagated from every other sitea8 to a by means of

the translation matrixTaa8,ms,m8s85dss8Tm82m
aa8 @see Eq.

~A4! in Appendix A for explicit expressions ofTm82m
aa8 ] and

scattered ata via the cylinder scattering matrixtms,m8s8
5dmm8tm,ss8 @a detailed derivation oftm,ss8 is offered in
Appendix B; see Eqs.~B1! and ~B2! in particular#.

The translational symmetry of the crystal permits writin
the electric field components in the 2D perpendicular m
mentum representationQ as

ca5
A

~2p!2E1BZ
d2QcQeiQ•Ra, ~8!

which admits the inverse Fourier transformation

cQ5(
a

cae2 iQ•Ra. ~9!

Inserting this expressions into Eq.~7!, one finds that different
Q components are decoupled. More precisely,

cQ5
1

12tTQ
cQ

0 , ~10!

where aQ-dependent translation matrix has been defined

TQ,ms,m8s85dss8 (
aÞ0

Tm82m
a0 e2 iQ•Ra5dss8Sm2m8~2Q!

~11!

and one has chosenR050. Analytical expressions for the
lattice sumSm(Q) are given in Appendix C.

The inhomogeneous part of Eq.~7! takes the form
ca,ms

0 5da0cms
0 , wherea50 has been chosen as the cyli

der inside of which the electron is moving andcms
0 is given

by Eq. ~B3! for the electron source under consideration@see
Eq. ~6! as well#. Then one has, according to Eq.~9!, cQ,ms

0

5cms
0 , which is independent ofQ.

The induced electric field near the electron trajectory
made up of the result of internal scattering inside the cy
der, as described bycms

ref in Eqs.~5! and~B3!, plus the trans-
5-5
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mission into thea50 cylinder of outgoing waves comin
from the rest of the cylinders. One finds

Eind5(
ms

E1,qms
J H cms

ref 1(
s8

Am,ss8F (
aÞ0

T0acaG
ms8

J ,

~12!

where Am,ss8 represents the transmission coefficient of
standing wave into the cylinder inner region, as defined
Eqs.~B1! and ~B2!, andca is the solution of Eq.~7!.

Finally, the energy loss probability per unit of path leng
is calculated by inserting Eq.~12! into Eq. ~4!. Here P(v)
can be decomposed as

P~v!5P1~v!1Pc~v!,

where

P1~v!5(
m

ReH e1

~pk1!2
cm

extcmp
ref J ~13!

is the loss probability in the presence of a single cylindri
cavity ~see Ref. 18 for more detailed expressions!,

Pc~v!5 (
ms8

ReH e1

~pk1!2
cm

extAm,ps8F (
aÞ0

T0acaG
ms8

J
~14!

is the contribution to the loss probability originating in th
rest of the crystal, andcm

ext is defined by Eq.~A6!.
Using Eq.~8!, one can write

P~v!5E
1BZ

d2QP~Q,v!,

where

P~Q,v!5
A

~2p!2 (
m

ReH e1

~pk1!2
cm

ext

3Fcmp
ref 1 (

m8s8
Am,ps8Sm2m8~2Q!cQ,m8s8G J

is the crystal contribution revolved in perpendicular mome
tum Q and cQ,ms is the solution of the multiple-scatterin
equations as given by Eq.~10!.

P(Q,v) is represented in Fig. 1~c! ~density plot! and
compared with the photonic band structure of the crys
under discussion within thev5qv plane~blue curves!. The
data shown in the figure correspond to an axial traject
(b50), but very similar results are obtained for off-cent
trajectories. A more reduced region of the band structur
contributing to the loss, as compared with the case of a br
beam @Fig. 1~b!#. In particular, regions near theM and K
points at aroundva/2pc50.3 and 0.4, respectively, seem
be emphasized. The effect is very apparent in Fig. 2~b!,
whereQ maps are presented for selected energy losses.
has direct consequences in the loss spectra shown in
3~b! and 3~c!. For instance, the loss peaksA–D lie on top of
maxima in the DOS for broad beams~solid curves!, but
20510
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peaksB and D occur near a sudden rise of the DOS f
localized beams~dashed curves!.

The position of the loss peaks with respect to the D
features can be understood by analyzing the two-dimensi
Van Hove singularities~VHS’s! associated with our DOS
@the third dimension is actually fixed by the conditionv
5qv, which applies to all curves in Figs. 3~b!–3~c!#. The
effect of VHS’s on the electronic density of states has be
observed via EELS features assigned to electron interb
transitions,19 but here we are concerned instead with the p
tonic density of states.

Van Hove singularities are associated with the vanish
of the group velocity for specificQ points of photonic bands
n @i.e., ¹Qvn(Q,q)50].20–22 This is translated into charac
teristic features in the density of states, DOS(v)
5(n*1BZd

2Qd@v2vn(Q,q)#. In our two-dimensional mo-
mentum case, there are two different kinds of VHS’s:~i!
those coming from either minina or maxima of the ban
vn(Q,q), where the DOS becomes discontinuous, and~ii !
those arising from saddle points, which yield logarithmic d
vergences in the DOS. This behavior has to emerge in
loss probability, since it involves an integral overQ similar
to the one in the DOS.

One can clearly observe the presence of saddle point
the band structure near theM point atva/2pc'0.3 and 0.45
in Figs. 1~b!–1~c!, which should give rise to VHS’s of type
~ii ! in the DOS@Fig. 3~c!#. Also, there is a minimum at theK
point nearva/2pc'0.41, which corresponds to VHS’s o
type ~i!. Now, for broad beams Fig. 1~b! indicates that these
regions of the band structure are sampled by the electron
that logarithmic divergences show up in the loss probabi
at those energies@peaksC andD for 200-keV broad beams in
Fig. 3~c!#. However, the saddle point nearva/2pc'0.45 is
not efficiently sampled by the localized central trajectory
Fig. 1~c!, so that no peak appears in the loss probability n
that frequency@dashed curve in Fig. 3~c!#. However, the lo-
calized trajectory exhibits a feature nearva/2pc'0.41 that
should be attributed to VHS’s of type~i! and that is shad-
owed by the more intenseva/2pc'0.45 peak in the case o
the broad beam. The origin of peaksA andB in Fig. 1~b! for
100-keV electrons can be understood in the same way aC
andD, respectively.

Therefore, EELS features in the localized trajectories
der consideration occur in coincidence with VHS’s of ty
~i! in peaks nearB andD and of type~ii ! in peaksA andC.
For broad beams, all peaks coincide with VHS of type~ii !,
and the effect of the VHS of type~i! nearB andD is shad-
owed under dominant type-~ii ! VHS’s.

In the low-energy end, the spectrum for localized bea
converges to the result obtained for broad beams, which i
additional manifestation of Cherenkov radiation for an effe
tive medium whose porous structure cannot be resolved
radiation of much larger wavelength.

Finite-size effects are studied in Fig. 4, where we sh
the loss probability for crystals composed of a finite numb
of cylinders. The electron is moving in the central cylinder
all cases. The loss probability has been calculated from E
~13! and ~14!, whereca has been obtained by direct inve
sion of Eq.~7!.23 The results have also been reproduced
5-6
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means of the boundary element method,24 in which the elec-
tromagnetic field is expressed in terms of discretized bou
ary charges and currents that are solved self-consistentl
imposing the customary boundary conditions. Starting fr
the single hole, characterized by a smooth Cherenkov ra
tion spectrum with no salient features, one can observe th
relatively large number of cylinders is necessary to appro
the results of the infinite crystal. The peak nearva/2pc
'0.4 is the first to converge~e.g., for 1118 cylinders!, and
this is consistent with the fact that this is a relatively high
energy feature where diffusive propagation is achieved fo
smaller number of cylinders. The low-energy region of t
spectrum takes considerably more cylinders to converge
it exhibits size-dependent oscillations withv, suggesting
that successive reflections at the different layers of cylind
around the central one are taking place.

IV. CONCLUSIONS

The central message of this work is that fast electrons
be used to probe photonic crystal band structures. This
been shown for electrons moving along the translational
rection of symmetry of 2D crystals both for broad electr
beams and for localized beams.

Some of the features of the band structure are dire
translated into the electron loss spectra. In particular, the
probability follows to some extent the profile of the photon
density of states in the case of broad beams@see solid curves
in Figs. 3~b! and 3~c!#.

FIG. 4. Energy loss spectra for an electron moving along
axis of a cylindrical hole drilled in silicon (eh511.9) when the hole
is isolated~dashed curve! or surrounded by a different number o
holes, as indicated by labels. The electron velocity isv50.7c. The
ratio of the cylinder diameter to the lattice constant isD/a50.8. A
small imaginary part equal to 0.1i has been added toeh and con-
secutive curves have been shifted upwards by1000 cP51 in or-
der to improve readability.
20510
d-
by

ia-
t a
h

-
a

nd

rs

n
as
i-

ly
ss

The energy loss probability has been separated into
contribution of different momentum transfers perpendicu
to the trajectories. This quantity can be directly measu
from the angular distribution of broad electron beams tra
mitted through the crystal for selected energy losses, an
provides a direct mapping of the band structure as show
Figs. 1~b! and 2~a!.

The loss probability presents some peaks that can be
sociated to Van Hove singularities of different types: sad
points, giving rise to logarithmic divergences, and ba
maxima and minima, which produce smoother featur
These types of peaks are sampled differently by locali
electrons and broad beams. Measuring the electron deflec
angle is not possible for localized beams transmitted tro
cylindrical holes in these crystals, since the moment
spread of the incoming beam needed to focus it within
unit cell is of the order of the momentum transfer (;1/a).
However, if the materials involved have real dielectric co
stants, all losses are converted into emitted light, so that
loss probability can be equally measured from the indu
photon emission probability.

Finally, finite crystals have been considered as well. T
size of the crystal for which the loss probability approach
the value of the infinite crystal has been shown to depend
the lost energy, and in particular, peaks of higher-energy c
verge faster as a result of diffusive propagation of the el
tromagnetic signal far away from the beam.
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APPENDIX A: CYLINDRICAL WAVES

Analytical expressions.The electric field inside a homo
geneous materialj free of external charges and currents a
characterized by a dielectric functione j and a magnetic per
meability m j can be decomposed into cylindrical waves th
are labeled by their azimuthal quantum numberm, the mo-
mentumq along a given directionẑ, and the polarization.
More explicitly, using cylindrical coordinatesr5(R,w,z),

Ej ,qms
J ~r !5F im

QjR
Jm~QjR!R̂2Jm8 ~QjR!ŵGeimweiqz

~A1!

for s polarization and

Ej ,qmp
J ~r !5

q

kj
F iJm8 ~QjR!R̂2

m

QjR
Jm~QjR!ŵ

1
Qj

q
Jm~QjR!ẑGeimweiqz ~A2!

for p polarization. Here,kj5Ae jm j (v/c)2,

e

5-7
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Qj5Akj
22q21 i01, ~A3!

the square roots must be chosen to have positive real p
and the prime denotes differentiation with respect to the
gument.

Equations ~A1! and ~A2! are easily derived from the
Hertz vector25 P5(0,0,Jm(QjR))eimweiqz according to
Ej ,qms

J 5(1/Qj )¹3P and Ej ,qmp
J 5(1/kjQj )¹3(¹3P).

These are transversal waves (¹•Ej ,qms
J 50) that satisfy the

relation

Ej ,qms
J 5

1

kj
¹3Ej ,qms8

J

for sÞs8, which is convenient to obtain the magnetic fie
from the electric field using Faraday’s law,H
52(ic/vm j )¹3E.

Cylindrical waves with real values ofQ5Akj
22q2 and

Q85Akj
22q82 satisfy the following orthogonality relation a

z50:

E
0

`

RdRE
0

2p

dwEj ,qms
J

•~Ej ,q8m8s8
J

!*

52pdmm8dss8

1

q
d~q2q8!.

The above waves are standing in the sense that the
not transport any energy along the radial direction, a prop
that is reflected in the fact that any combination of the
waves results in a Poynting vector whose radial compon
is zero in a lossless medium. A complete basis of cylindri
waves requires us to define outgoing waves as w
Ej ,qms

H (R), which are given by the same expressions
above after substituting the Hankel functionHm

(1) for the
Bessel functionJm . With this choice, outgoing waves vanis
in the far-field limit.

Translation formula.An outgoing wave centered aroun
the positionRa8 will behave like a combination of standin
waves passing by a different positionRa . This is actually
reflected in the identity

Eh,qm8s
H

~R2Ra8!5(
m

Tm82m
aa8 Eh,qms

J ~R2Ra!,

where

Tm82m
aa8 5Hm82m

(1)
~QhuRa2Ra8u!e

i(m82m)waa8, ~A4!

subject to the conditionuRa2Ra8u.uR2Rau. Here,waa8 is
the azimuthal angle of vectorRa2Ra8 . This can be easily
proved from Graf’s addition theorem for Bessel function26

and from the detailed form of the cylindrical waves giv
above. Notice that polarization is conserved during t
translation process.

Field of a moving electron.An electron moving inside an
infinite, homogeneous medium~say medium 1! along a tra-
jectory parallel to thez axis and described byR5b, w50,
andz5vt will set up an electric field that reads, in frequen
spacev,12
20510
rts,
r-

do
ty
e
nt
l

ll,
s

s

Eext~r ,v!5E dteivtEext~r ,t !

5F 1

e1
¹2

ivm1

c2
vGp i

v (
m

Jm~Q1R,!

3Hm
(1)~Q1R.!eimweiqz,

where R,5min$R,b%, R.5max$R,b%, Q1 is the perpen-
dicular momentum given by Eq.~A3!, and q5v/v is the
momentum component of the electron field parallel to
direction of motion. Upon inspection, one finds

Eext~r ,v!5(
m

cm
extE1,qmp

H ~r !, ~A5!

with

cm
ext5

pQ1k1

e1v
Jm~Q1b! ~A6!

for b<R, and a similar expression is obtained forb.R.
Notice that the field of the electron is entirely composed op
waves.

APPENDIX B: THE SCATTERING MATRIX
OF A CYLINDER

Scattering of external standing waves.The scattering of a
standing wave by a cylinder gives rise to scattered outgo
waves. Since outgoing waves diverge at the origin, the fi
transmitted inside the cylinder has to be a combination
only standing waves. Besides, the azimuthal quantum n
ber m is conserved during scattering due to the symmetry
the cylinder. Thus, the electric field can be written, for fix
values ofs, m, q, andv, as

E5Am,ssE1,qms
J 1Am,psE1,qmp

J

inside the cylinder, occupied by material 1, and

E5Eh,qms
J 1tm,ssEh,qms

H 1tm,psEh,qmp
H

in the surrounding host materialh, where the first term in the
last expression represents the external standing wave o
larizations.

Using the expressions~A1! and ~A2! of Appendix A for
the cylindrical waves and imposing the continuity of th
components of the electric field and magnetic field paralle
the cylinder surface~i.e.,w andz components; the continuity
of the perpendicularR component of both the magnetic in
duction and the electric displacement is automatically gu
anteed by these conditions!, one finds
5-8



F Am,ss

tm,ss

Am,ps

t

G 5M 213
Qh

kh
Jm~ah!

Jm8 ~ah!

0 4 ~B1! F Am,sp

tm,sp

Am,pp

t

G 5M 213
0

mq

khah
Jm~ah!

Qh

kh
Jm~ah! 4 , ~B2!
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m,ps mq

khah
Jm~ah!

and
de

t
to

e
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-
th
is
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m,pp

Jm8 ~ah!

where
M53
zQ1

k1
Jm~a1!

2Qh

kh
Hm

(1)~ah! 0 0

Jm8 ~a1! 2Hm
(1)8~ah!

mq

k1a1
Jm~a1!

2mq

khah
Hm

(1)~ah!

0 0
Q1

k1
Jm~a1!

2Qh

kh
Hm

(1)~ah!

zmq

k1a1
Jm~a1!

2mq

khah
Hm

(1)~ah! zJm8 ~a1! 2Hm
(1)8~ah!

4 ,
ta-
ms

ess,
z5Ae1mh /ehm1, aj5Qja, anda is the radius of the cylin-
der. It is important to stress that the scattering by the cylin
mixes s and p components in general, except forq50 or
m50.

Scattering of internal outgoing waves.An electron mov-
ing inside a cylinder produces outgoing waves according
Eq. ~A5!, which are scattered at the cylinder boundary
generate an electric field as the one described by Eqs.~5! and
~6!. Applying the customary boundary conditions for th
electromagnetic field~see above!, the coefficients of these
equations can be expressed in terms of matrixM as

F cms
ref

cms
0

cmp
ref

cmp
0

G 52cm
extM 213

0

mq

k1a1
Hm

(1)~a1!

Q1

k1
Hm

(1)~a1!

zHm
(1)8~a1!

4 , ~B3!

wherecm
ext has been defined in Eq.~A6!.

Analytical but quite involved results can be obtained
inversion of the 434 matrix M, and in particular, the oscil
lation modes of the isolated cylinder are derived from
zeros of det$M %.27 Instead, we have chosen to carry on th
r

o

e

matrix inversion numerically, since the bulk of the compu
tional demand comes from the calculation of the lattice su
discussed next.

APPENDIX C: LATTICE SUMS

The lattice sum in Eq.~11! can be converted into rapidly
converging sums using Ewald’s method. For completen
we quote the results of Leung and Qiu:16

Sm~Q!5 (
RaÞ0

H2m
(1) ~QhRa!e2 imwaeiQ•Ra

5
2

i11mp
Dm2dm0 ,

where

Dm5Dm
(1)1Dm

(2)1Dm
(3) ,

Dm
(1)5

2p

AQh
umu (G

uG1Qu umu

uG1Qu22Qh
2
e(Qh

2
2uG1Qu2)/he2 imwG,

Dm
(2)5S 22i

Qh
D umu

(
RaÞ0

Ra
umueiQ•Rae2 imwa

3E
(1/2)Ah

` dj

j
j2umue2Ra

2j2
eQh

2/4j2
,
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Dm
(3)5

dm0

2 Fg1 lnS Qh
2

h D 1 (
n51

`
1

nn! S Qh
2

h D nG ,

wa andwG are the azimuthal angles of vectorsRa andG,
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