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Abstract The theoretical literature on inequality of opportunity formulates
basic properties that measures of inequality of opportunity should have. Stan-
dard methods for the measurement of inequality of opportunity determine
the inequality in counterfactual outcome distributions that are constructed by
statistical methods. We show that, when standard parametric procedures are
used to construct the counterfactuals, the choice of inequality measurement
method and the statistical specification interact to determine whether the re-
sulting measure of inequality of opportunity satisfies the basic properties.
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1 Introduction

Theories of equality of opportunity, see, e.g., Dworkin (1981a and 1981b),
Arneson (1989), Cohen (1989), Roemer (1993 and 1998) put individual re-
sponsibility in the forefront in the assessment of the distribution of outcomes.
Individuals’ outcomes such as their income level, educational attainment or
health status, are determined by two kinds of factors. On the one hand, there
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Dirk Van de gaer
Department of Economics, Ghent University, Sint-Pietersplein 6, B-9000 Gent, Belgium
Tel.: +32-9-2643482
Fax: +32-9-2648995
E-mail: Dirk.Vandegaer@ugent.be

Xavi Ramos
Departament d Economia Aplicada, Universitat Autònoma de Barcelona, Edifici B - Campus
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are circumstances, factors that are beyond individuals’ responsibility. On the
other hand, there are efforts, factors for which individuals are responsible.
Inequalities that are due to circumstances are deemed ethically unacceptable
while those arising from efforts are not considered offensive. Hence, the out-
come inequalities associated with these two factors should be treated differ-
ently.1

Following Fleurbaey and Peragine (2013) closely, we formulate two de-
sirable properties that a measure of inequality of opportunity should have.
The idea that inequalities that are due to unequal circumstances are offensive
is reflected in the compensation principle: a Pigou-Dalton transfer reducing
inequalities between individuals that have the same efforts (such that the re-
sulting inequalities are due to circumstances) should decrease inequality of
opportunity. The idea that inequalities that are due to differences in efforts
are not offensive is reflected in the utilitarian reward principle: a Pigou-Dalton
transfer reducing inequalities between individuals that have the same circum-
stances (such that the resulting inequalities are due to efforts) should not affect
inequality of opportunity.

As a result, disentangling inequalities due to circumstances from those due
to differences in efforts is key for empirical contributions. Both parametric and
non-parametric methods are used for this purpose and to construct counterfac-
tual outcome distributions in which all inequalities are due to circumstances
or to efforts. Inequality of opportunity is then measured as the inequality in a
counterfactual where all inequalities are only due to circumstances (the direct
method), or as the difference between the inequality in the actual outcome
distribution and the inequality in a counterfactual where all differences in in-
equality are only due to efforts (the indirect method). It is unclear whether
these approaches result in measures of inequality of opportunity that are con-
sistent with the basic principles mentioned above. The key point of this paper
is that the choice of measurement method (direct versus indirect) and statis-
tical method (non-parametric versus parametric, and for the latter also the
parametric specification) interact to determine whether the resulting measure
of inequality of opportunity satisfies the basic properties. For instance, the
standard method of measuring inequality of opportunity by the inequality in
the counterfactual that contains each individual’s predicted outcome condi-
tional on his circumstances satisfies utilitarian reward if the predicted value is
obtained through a linear least squares regression. If, however, it is obtained
through a loglinear least squares regression (as is common practice when the
outcome of interest is income), the standard method fails to satisfy utilitarian
reward. On the one hand, this key point helps to explain why many theo-
rists are critical about much of the empirical literature. On the other hand,
it makes researchers aware that the choice of the empirical specification can

1 Economists developed social criteria and ways to measure inequality of opportunity
based on the dichotomy between circumstances and efforts. Overviews of this literature are
Ferreira and Peragine (2016), Roemer and Trannoy (2015) and Ramos and Van de gaer
(2016).
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have important consequences for the theoretical properties of their measure of
inequality of opportunity.

The functional form used in parametric empirical analyses usually depends
on the nature of the dependent variable and on the specification that one is
used to in the literature. For inequality in PISA scores, for instance, Fer-
reira and Gignoux (2014) use a simple linear specification. So does Milanovic
(2015) for years of schooling. For inequality of opportunity for income, a log-
linear specification is almost universally used, see, e.g., Bourguignon et al.
(2007), Ferreira and Gignoux (2011), Hassine (2012), Marrero and Rodŕıguez
(2012), Singh (2012), Niehues and Peichl (2014) and Milanovic (2015). When
the outcome of interest is binary or categorical, nonlinear probability models
are commonly used. Foguel and Veloso (2014) and Trannoy et al. (2010), for
instance, use a logit model to study inequality of access to education, and
self-assessed health status, respectively, while Rosa Dias (2009) employs an
ordered probit to examine self-assessed health status. In this paper we do not
deal with nonlinear probability models, because it is much harder to define
equalizing transfers for ordinal outcomes. The non-parametric methodology,
developed by Checchi and Peragine (2010) and applied to university access by
Brunori et al. (2012) constructs counterfactuals as group averages.

The structure of the paper is as follows. Section 2 introduces the notation,
the basic distinction between direct and indirect measures of inequality of
opportunity, and the different counterfactuals used in the empirical literature.
The basic principles, compensation and utilitarian reward, are formalized in
Section 3, while the results are presented in Section 4. Section ??sec:4:1 argues
that indirect measures of inequality of opportunity can never satisfy utilitarian
reward. Section 4.2 discusses the case when the counterfactual is constructed
on the basis of a linear least squares estimate. It shows that some measures
always satisfy one of the principles. We also derive sufficiency conditions under
which other measures satisfy the principles, and show that some measures
never satisfy some principles. For counterfactuals constructed on the basis of
a loglinear least squares estimate, Section 4.3 demonstrates that the measures
never satisfy the principles. Section 4.4 shows that measures based on the
non-parametric methodology always satisfy one of the two principles. The
conclusion is contained in Section 5.

2 Measuring inequality of opportunity using counterfactuals

Let N = {1, . . . , n}, be the set of individuals. In theoretical work, N is the
population; in empirical work N is typically a sample of individuals drawn
from a population. The purpose of our work is to see how empirical approaches
perform when used in the theorists’ set-up. Therefore, it is best to think about
N as the population. We assume that the outcome we observe for individual
i is such that Pigou-Dalton transfers of this outcome can be meaningfully
defined. We call this outcome individual i’s income, yi ∈ R++. Following the
literature on equality of opportunity, we want to compensate her for some of
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her characteristics, while we want to hold her accountable for the vector of

circumstances ci ∈ RdC , the latter in the vector of efforts ei ∈ RdE .2 Define

Y =

 y1...
yn

 ,C =

 c1′
...

cn′

 ,E =

 e1′
...

en′

 ,
where ci′ and ei′ are the transpose of ci and ei, respectively. Throughout we
will assume that C and E are given and that the researcher is fully informed
about the values of Y,C and E. This is not an innocuous assumption. The
consequences of unobserved circumstances and efforts is discussed elsewhere,
see, e.g., Roemer and Trannoy (2015) or Ramos and Van de gaer (2016), and
is not the focus of the present paper, where we analyze a set-up that is as close
as possible to that used in theoretical work. A dataset d is a triplet (Y,C,E).
The set of all possible data sets is

D =
{

(Y,C,E) : Y ∈ Rn++,C ∈ Rn×d
C

,E ∈ Rn×d
E
}
.

A measure of inequality of opportunity is a function M : d ∈ D → R such
that M(d) > M(d′) means that inequality of opportunity in d is higher than
in d′. Let the function I : Z ∈ Rn++ → R+ be a measure of inequality, i.e., a
function satisfying two properties. First, it satisfies the Pigou-Dalton transfer
principle, meaning that, for all Y, Ỹ ∈ Rn++ that are such that there exists
δ ∈ R++ and i, j ∈ N : ỹi = yi − δ ≥ ỹj = yj + δ, and for all k /∈ {i, j} :

ỹk = yk, I(Ỹ) < I(Y). Second, it satisfies anonymity, meaning that, for all

Y, Ỹ ∈ Rn++ that are such that the vector Ỹ can be obtained from the vector

Y by permuting its elements, I(Ỹ) = I(Y).
The two most popular ways to measure inequality of opportunity are the

direct and the indirect approach. Direct measures determine the amount of
inequality of opportunity as the inequality in a counterfactual income dis-
tribution Yc in which all inequalities due to differences in effort have been
eliminated, such that the remaining inequality is solely due to differences in
circumstances:

MD(d) = I (Yc(d)) . (1)

Indirect measures determine the amount of inequality of opportunity by com-
paring the inequality in the actual distribution of income, Y, to the inequality
in a counterfactual income distribution YEO where there is no inequality of
opportunity. This results in the measure

M I(d) = I (Y)− I
(
YEO(d)

)
. (2)

To compute either of these measures a counterfactual distribution of in-
come has to be constructed using the information in the dataset d. This can be

2 In most applications, some characteristics are categorical; they are taken on board by
dummy variables. This does not affect any of the analysis that follows, except that taking
average values of characteristics as reference values (see Section 4.2) becomes hard to defend.
In such a case it makes more sense to take for instance the median as a reference.
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done either with a parametric or a non-parametric approach. Three types of
specifications have been used to construct counterfactual distributions para-
metrically. Individual i ’s income, yi, is assumed to depend on her circum-
stances ci and her efforts, ei, such that

yi = g (ci, ei) where g : Rd
C

× Rd
E

→ R++.

As the functional form g is unknown, the parametric approach imposes a
functional form to estimate the equation, yielding the function

ĝ (ci, ei, ui) where ĝ : Rd
C

× Rd
E

× R→ R++. (3)

The effect of specification errors go into the estimated random term, ûi, which
is defined implicitly by the equation yi = ĝ (ci, ei, ûi). Its estimate is deter-
mined by the chosen functional form ĝ and the dataset d. Some counterfactuals
treat it as a circumstance, others as an effort (see below). Other counterfactuals
are based on estimates of incomes as a function of, alternatively circumstances
and random variation, or efforts and random variation:

ĝC
(
ci, u

C
i

)
where ĝC : Rd

C

× R→ R++, (4)

ĝE
(
ei, u

E
i

)
where ĝE : Rd

E

× R→ R++. (5)

In the first (second) equation, the effect of omitted efforts (circumstances)
are taken over by circumstances (efforts) to the extent that these two are
correlated. The rest of their effect as well as specification errors go into the
estimated random term, ûCi (ûEi ), which is defined implicitly by the equation
yi = ĝC

(
ci, û

C
i

)
(yi = ĝE

(
ei, û

E
i

)
).

The following parametric counterfactuals have been or can be proposed for
the direct approach:

yc1i = ĝC (ci, 0) , (6)

yc2i = ĝE
(
e, ûEi

)
, (7)

yc3i = ĝ (ci, e, 0) , (8)

yc4i = ĝ (ci, e, ûi) , (9)

yc5i =
1

|Ni·|
∑
k∈Ni·

ĝ (ck, ek, 0) , (10)

where Ni· = {k ∈ N such that ck = ci}, the set containing all individuals that
have the same circumstances as individual i; |Ni·| is the cardinality of that set.
In (7) - (9), e is a vector of reference values for efforts. Use of counterfactual (6)
implies that one measures the inequality that is due to circumstances, including
the indirect correlation between circumstances and efforts. Counterfactual (7)
measures all inequalities that are due to circumstances and random terms that
are not correlated with effort. In (8), differences in random terms are treated
as efforts (i.e. inequalities due to differences in random terms are legitimate),
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while in (9) they are treated as circumstances.3 Counterfactual (10) is similar
in spirit to (8), but instead of taking a reference value for effort, the average
outcome of each circumstance group is taken. The most popular counterfactual
is Yc1; it was used, e.g., by Rosa Dias (2009), Ferreira and Gignoux (2011),
Ferreira and Gignoux (2014), Brunori et al. (2012), Marrero and Rodŕıguez
(2012), Foguel and Veloso (2014) and Niehues and Peichl (2014). Fleurbaey
and Schokkaert (2009) suggest to use Yc3 and Yc4. Pistolesi (2009) used Yc4.
We are unaware of applications of Yc2 and Yc5.

Non-parametric procedures rely on averaging. The non-parametric coun-
terfactual for the direct approach becomes

yc6i =
1

|Ni·|
∑
k∈Ni·

yk, (11)

which is the average income of all those having the same circumstances as
individual i. It was proposed in Van de gaer (1993) and developed in Checchi
and Peragine (2010).

Changing some of the elements used to construct the parametric counter-
factuals would/could suggest other possible counterfactuals. One could in (6)
replace the zero by ûCi . However, ĝC

(
ci, û

C
i

)
= yi and counterfactual income

would be equal to actual income. Similarly in (10) the zero could be replaced
by ûk , but, as ĝ (ck, ek, ûi) = yk, the counterfactual reduces to the non-
parametric counterfactual (11). Once could in (7) replace ûEi by a zero, but
then everybody would have the same counterfactual income. In both (7) and
(9) the choice of reference effort could be replaced by an averaging procedure
as in (10). In both cases, the counterfactual reduces to the non-parametric
counterfactual (11).

For the indirect measurement approach the following parametric counter-
factuals have been or can be proposed:

yEO1
i = ĝE (ei, 0) , (12)

yEO2
i = ĝC

(
c, ûCi

)
, (13)

yEO3
i = ĝ (c, ei, 0) , (14)

yEO4
i = ĝ (c, ei, ûi) , (15)

yEO5
i =

1

|N·i|
∑
k∈N·i

ĝ (ck, ek, 0) , (16)

where N·i = {k ∈ N such that ek = ei}, the set of individuals having the same
efforts as individual i; |N·i| is the cardinality of that set. In (13) - (15) c is a
vector of reference values for circumstances. The inequality in counterfactual
(12) measures the inequality that is due to the direct effect of efforts as well

3 As in actual applications it is unclear whether the ui should be treated as a circumstance
or effort, Fleurbaey and Schokkaert (2009) suggest to compute inequality of opportunity in
both cases. This holds, of course, also when using an indirect measure of inequality of
opportunity.
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as the part that is due to the correlation between efforts and circumstances.
The inequality in counterfactual (13) reflects all inequalities that are due to
efforts and random terms that are not correlated with circumstances. In (14),
differences in random terms are treated as circumstances, while in (15) they are
treated as efforts. Counterfactual (16) is similar in spirit to (14), but instead
of taking a reference value for circumstances, the average outcome of each
effort group is taken. Counterfactual YEO1 was used in Trannoy et al. (2010),
YEO2 was used in Bourguignon et al. (2007), Singh (2012) and Hassine (2012).
Fleurbaey and Schokkaert (2009) suggested YEO3 and YEO4. Brunori et al.
(2012) applied YEO3 and YEO4. The latter was also applied by Bourguignon
et al. (2007) and Pistolesi (2009). We are unaware of applications of YEO5.

Also in the indirect approach a non-parametric counterfactual can be con-
structed. The non-parametric counterfactual for the indirect approach becomes

yEO6
i =

1

|N·i|
∑
k∈N·i

yk, (17)

which is the average income of all those having the same effort as individual
i. Checchi and Peragine (2010) proposed this counterfactual.

Also here changing some of the elements present in the construction of the
parametric counterfactuals suggests other possible counterfactuals. One could
in (12) replace the zero by ûEi . However, ĝE

(
ci, û

E
i

)
= yi and counterfactual

income would be equal to actual income. Similarly in (16) the zero could be
replaced by ûk , but, as ĝ (ck, ek, ûi) = yk, the counterfactual reduces to
the non-parametric counterfactual (17). Once could in (13) replace ûCi by a
zero, but then everybody would have the same counterfactual income. In both
(13) and (15) the choice of reference circumstance could be replaced by an
averaging procedure as in (16). In both cases, the counterfactual reduces to
the non-parametric counterfactual (17).

3 Measurement perspective

Both theorists and empiricists use the information in the dataset d to construct
a measure of inequality of opportunity. The empiricists use the dataset d in
order to obtain a good estimate of parametric relationship (3), (4) or (5) to con-
struct the counterfactuals or estimate the counterfactuals non-parametrically.
Next, they compute a direct or indirect measure of inequality of opportunity,
respectively (1) or (2).

The theorists take a measurement theory perspective. It requires that the
measure of inequality of opportunity responds to changes in the dataset in a
way compatible to the intuitions prescribed by equality of opportunity princi-
ples. Let the set of all datasets compatible with Y, C and E be

∆ =

{
(X,C,E) : X ∈ Rn++ and

n∑
i=1

xi =

n∑
i=1

yi

}
.
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The domain ∆ ⊂ D. It keeps not only the set of individuals fixed, but also
their characteristics C and E, as well as the total income. It allows us to state
how the measure of inequality of opportunity should respond to income redis-
tributions between individuals. As both the direct and indirect approach use
standard inequality measures to measure the inequality in the counterfactual
distribution, we are interested in normative equality of opprtunity properties
involving Pigou-Dalton transfers of income. Two prominant properties involv-
ing Pigou-Dalton transfers have been proposed in the literature (see, e.g.,
Fleurbaey and Peragine, 2013).

The first property, compensation, requires that, when 2 individuals i and j
have the same efforts, and i has a higher level of income than j, then transfer-
ring an amount of money δ from i to j, without resulting in i having a lower
income than j, decreases inequality of opportunity, as their income difference,
which is entirely due to circumstances, diminishes.4

COM (Compensation) For all d = (Y,C,E) and d̃ = (Ỹ,C,E) ∈ ∆ that are
such that there exist δ ∈ R++ and i, j ∈ N : ei = ej and ỹi = yi − δ ≥ ỹj =

yj + δ, and for all k /∈ {i, j} : ỹk = yk, we have M(d̃) < M(d).

The idea that people are responsible for their efforts can be expressed by
a second property, utilitarian reward, which also makes a statement about
the effect of a particular kind of Pigou-Dalton transfer on inequality of op-
portunity. The starting point is that one should be neutral towards income
differences that are only due to differences in efforts. Hence, when individuals
i and j have the same circumstances and i has a higher income than j, then,
as the difference in incomes is due to efforts only, transferring an amount of
money δ from i to j without resulting in i having a lower income than j, should
not affect inequality of opportunity.5

UR (Utilitarian Reward) For all d = (Y,C,E) and d̃ = (Ỹ,C,E) ∈ ∆ that
are such that there exists δ ∈ R++ and i, j ∈ N : ci = cj and ỹi = yi − δ ≥
ỹj = yj + δ, and for all k /∈ {i, j} : ỹk = yk, we have M(d̃) = M(d).

We know from the literature on fair compensation that it is very difficult to
reconcile compensation and reward principles (see, e.g., Bossert, 1995, Fleur-
baey, 1995, Fleurbaey, 2008 or Fleurbaey and Maniquet, 2011). The same is
true here: COM and UR are incompatible. To see this, consider four individ-
uals: N = {1, 2, 3, 4}, c1 = c2, c3 = c4, e1 = e3, e2 = e4, incomes y1, y2, y3
and y4 such that y1 < y4 < y3 < y2 and a transfer δ ≤ (y3 − y4)/2 such that

4 Fleurbaey and Peragine (2013) labelled this property “Ex-Post Compensation”. In the
Conclusion we discuss the alternative “Ex-Ante Compensation” principle.

5 This principle has also been called “Utilitarianism for Equal Circumstances” by Fleur-
baey (2008). We discuss an alternative, “Liberal reward” in the Conclusion. It has to be
observed that not everyone in the literature endorses the reward principles; several authors
suggest that only compensation is the core part of opportunity egalitarianism. See Roemer
and Trannoy (2015) for a discussion.
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it satisfies the conditions in the properties we are using. The following Table
gives the income distribution after the transfer.

Table 1 Incompatibility between COM and UR

e1 = e3 e2 = e4
c1 = c2 y1 + δ y2 − δ
c3 = c4 y3 − δ y4 + δ

Note: y1 < y4 < y3 < y2 and δ ≤ (y3 − y4)/2.

Considering the transfers column-wise the new income distribution arises
after two Pigou-Dalton transfers between individuals having the same efforts.
By COM, inequality of opportunity decreased. Considering the transfers row-
wise the new income distribution arizes after two Pigou-Dalton transfers be-
tween individuals having the same circumstances. By UR inequality of oppor-
tunity did not change. As the two properties judge the change in the income
distribution differently, they are incompatible.

Hence we know that there does not exist any measure of inequality of op-
portunity that satisfies both COM and UR. Confronted with such an incom-
patibility, the standard approach in the theoretical literature is to weaken (at
least) one of the properties to obtain properties that are compatible. That,
however, is not the focus of our paper. Instead, we turn to the question
whether, or under which conditions, the procedures that are most frequently
used in the empirical literature satisfy the basic properties COM or UR.

4 Results

4.1 Impossibility

For indirect measures of inequality of opportunity, UR requires that the change
in measured inequality in the counterfactual induced by a Pigou-Dalton trans-
fer between individuals with the same circumstances exactly equals the change
in measured inequality in the actual distribution of income. This can only hold
for all inequality measures if the counterfactual equals the actual income dis-
tribution, which goes against the idea that the counterfactual represents a
situation with equality of opportunity, a situation in which all inequalities are
due to differences in efforts only. This results in the following impossibility.

Proposition 1 No indirect measure of inequality of opportunity can satisfy
UR.

4.2 Linear least squares

Define average income µY = 1
n

∑n
j=1 yj , the average value of circumstance

k, µCk = 1
n

∑n
j=1 cjk and µC the dC− dimensional vector containing µCk as
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k-th element for all k ∈
{

1, . . . , dC
}

. The average value for effort q, µEq =
1
n

∑n
j=1 ejq, and µE is the dE− dimensional vector containing the µEq as q

-th element for all q ∈
{

1, . . . , dE
}

. Let Ei be the n− dimensional vector
with zeros everywhere, except for its i − th element which equals one, ι the
n− dimensional vector of ones, XC = C − ιµC′, XE = E − ιµE′, XCE =[
XC XE

]
, YD = Y − ιµY ,

UA =

u
A
1
...
uAn

 and VA =

 v
A
1
...
vAn

 ,
where A ∈ {C,E,CE}. The equations that have to be estimated to construct
the counterfactuals are, in deviational form,

YD = XAβA + UA. (18)

The corresponding least squares estimator of the coefficient vector βA is

bA =
(
XA′XA

)−1
XA′YD. (19)

Performing a Pigou-Dalton transfer δ from observation i to j changes the
least squares estimates of the coefficient vector, which affects the constructed
counterfactuals and, thereby, the values of direct and indirect measures of
inequality of opportunity. The following Lemma gives the relationship between
b̃A, the least squares estimate after the Pigou-Dalton transfer, and bA.

Lemma 1 A Pigou-Dalton transfer δ from observation i to j changes the least
squares estimator of the coefficient vector into b̃A, given by

b̃A = bA +
δ

n
(SA)−1

(
xj
A − xi

A
)
,

with SA = 1
nXA′XA, xj

A = XA′Ej and xi
A = XA′Ei.

The Lemma shows which elements will be important to determine the effect of
the Pigou-Dalton transfer. First, observe that xj

A gives the j − th column of
the matrix XA′, which contains the values for the variables of individual j in
the matrix XA′. Hence, if the transfer takes place between two individuals with
exactly the same values for the variables in XA, the estimate of the coefficient
vector will not change. Second, observe that SA is the covariance matrix of the
variables in XA. The inverse of this covariance matrix enters the expression in
Lemma 1. If XA contains only one variable, SA is the variance of that variable,
such that (SA)−1 is a positive scalar. If both circumstances and efforts are
included in the matrix XA, and these variables are not correlated, both SA

and its inverse are block-diagonal. This implies that the estimated coefficient
vector of circumstances is not affected by differences in efforts between i and
j, and the estimated coefficient vector of efforts is not affected by differences
in circumstances between i and j.
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We want to establish whether, with counterfactuals determined by least
squares estimate (19), the measures of inequality of opportunity defined in
Section 3 respond to Pigou-Dalton transfers as required by properties COM
and UR. We find that few measures obey one of the properties, others don’t
and still others satisfy properties under some assumptions. In particular the
following assumptions turn out to be helpful.

C1M Circumstances are one-dimensional and the transfer goes from someone
with better circumstances to someone with worse circumstances: dC = 1 and
ci1 > cj1.

Eµ Reference efforts are equal to average efforts: e = µE.

Cµ Reference circumstances are equal to average circumstances: c = µC.

COR0 Circumstances and efforts are not correlated.

One-dimensionality of circumstances is a very strong assumption to make.
However, observe that in the literature on intergenerational mobility, one of-
ten draws lessons about inequality of opportunity (see O’Neill et al., 2000, and,
for a recent example Chetty et al., 2014), which requires a one-dimensional
view of circumstances. In addition, C1M requires monotonicity: the trans-
fer goes from an individual with better circumstances and higher income to
someone with worse circumstances and lower income. The determination of
the value for reference efforts or circumstances is a tedious issue in the liter-
ature.6 In much of the empirical literature, reference values are simply set to
their sample means, without much justification, see, e.g., Bourguignon et al.
(2007), Pistolesi (2009), Ferreira and Gignoux (2011) or Singh (2012). There
has been some debate about the implications of the correlation between efforts
and circumstances. Roemer (1993 and 1998) argued that normatively relevant
effort has to be measured such that it is, by construction, not correlated with
circumstances since it is very hard to hold people responsible for efforts if they
are correlated with circumstances, which are, by definition, not under individ-
ual control. Others, e.g., Rawls (1971), Dworkin (1981a and 1981b), Van Parijs
(1995) and Fleurbaey (2008) have argued that people should be responsible
for their tastes, even if these are correlated with their circumstances.

The following Proposition, proven in Appendix A.2, lists the properties of
the measures of inequality of opportunity.

Proposition 2 Using a linear specification and the least squares estimate of
the coefficient vector to construct the counterfactual, the following Table gives
sufficient conditions for the measures of inequality of opportunity to satisfy
COM or UR.

6 There are not many theoretical results about the consequences of the choice of reference
values –for an exception see Luttens and Van de gaer (2007). To solve the arbitrariness of
the choice of reference value Ramos and Van de gaer (2016) propose an averaging procedure.
Garćıa-Gómez et al. (2013) propose to minimize the extent to which the theoretical principles
are violated.
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Table 2 Conditions for the measures to satisfy COM and UR

Measure COM UR
Panel A: Direct measures
(a) yc1l = ĝC (cl, 0) C1M +
(b) yc2l = ĝE

(
e, ûEl

)
+ -

(c) yc3l = ĝ (cl, e, 0) Eµ and C1M Eµ and COR0
COR0 and C1M

(d) yc4l = ĝ (cl, e, ûl) COR0 -
(e) yc5i = 1

|Ni·|
∑
k∈Ni·

ĝ (ck, ek, 0) COR0 and C1M COR0

Panel B: Indirect measures
(f) yEO1

l = ĝE (el, 0) + -
(g) yEO2

l = ĝC
(
c, ûCl

)
- -

(h) yEO3
l = ĝ (c, el, 0) Cµ and COR0 -

(i) yEO4
l = ĝ (c, el, ûl) - -

(j) yEO5
i = 1

|N·i|
∑
k∈N·i

ĝ (ck, ek, 0) COR0 -

Note: A “+” means that the measure always satisfies the property in the
column; a “-” means that the measure does not satisfy the property under
any of the assumptions considered.

Table 2 contains three types of results. First, the Table shows that some
measures always satisfy one of the properties. If one wants a measure to satisfy
COM, one can use measure (b) or (f); if one wants a measure to satisfy UR,
one can use (a). To see the latter, observe that to construct counterfactual (a)
only circumstances are included in the regression. UR involves a Pigou-Dalton
transfer between individuals having the same circumstances. From Lemma 1,
this has no effect on the least squares estimator of the coefficient vector. There-
fore, the counterfactual, and the inequality in the counterfactual will not be
affected. The reason why measure (f), based on a regression including efforts
only, satisfies COM is similar: the Pigou Dalton transfer between individu-
als with the same efforts does not affect the least squares estimator of the
coefficient vector, such that the estimated counterfactual is unaffected. The
transfer decreases inequality in the actual income distribution, such that the
indirect measure of inequality of opportunity decreases. Counterfactual (b) is
also based on a regression containing only efforts. From Lemma 1, a transfer
between individuals having the same efforts has no effect on the estimated
coefficient vector. However, the transfer affects the estimated random term
for 2 individuals: the estimated random term for individual i decreases with
the amount δ, for individual j it increases with the same amount. Hence, in-
equality in the constructed counterfactual decreases and the measure satisfies
COM.

Second, the Table provides sufficiency conditions under which some mea-
sures satisfy the principles. One-dimensionality of circumstances is a condition
that occurs frequently in the Table as one of the sufficiency conditions for
COM. Consider, for instance, the popular counterfactual (a), and a Pigou-
Dalton transfer between individuals having the same efforts (but different
circumstances). The scalar covariance matrix equals the variance of the one-
dimensional circumstance, which is strictly positive, such that its inverse is also
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strictly positive. Hence, provided i had better circumstances than j, Lemma
1 says that the least squares estimated coefficient decreases. As a result, the
inequality in the estimated counterfactual decreases and the measure satisfies
COM. Absence of correlation between efforts and circumstances often helps to
establish properties of the inequality measures when the counterfactual relies
on bCE . Consider, for example, counterfactual (d). Observe that the con-
structed counterfactual is independent of the estimated coefficient vector for
circumstances, as, for every individual, the effect of a change in this vector on
the counterfactual due to its effect through cl is exactly off-set by its effect on
the estimated random term ûl. The coefficient vector for efforts has an effect
(as the effect through e is not off-set by the effect on the estimated random
term as the latter depends on el). However, remember the discussion follow-
ing Lemma 1. In the absence of correlation between efforts and circumstances,
the estimated coefficient vector of efforts is not affected by the differences
in circumstances between i and j, such that also this effect drops out. As a
result, the effect of a Pigou-Dalton transfer between individuals having the
same efforts on the counterfactual is equal to the effect on the actual income
distribution: a Pigou-Dalton transfer between i and j. Hence, inequality in
the counterfactual decreases, and the measure satisfies COM. Observe that, in
the absence of correlation between efforts and circumstances (e) has the same
properties as (a) and (j) as (f). Comparing the averaging procedures with the
reference value procedures (compare (e) with (c), and (j) with (h)), the averag-
ing procedures satisfy properties under weaker assumptions than the reference
value procedures. The use of average values as reference values by itself does
not help to guarantee that an inequality of opportunity measure has desirable
properties, but in conjunction with other assumptions the properties of the
measure can sometimes be established. Consider counterfactual (c). As the
estimated coefficient vector of efforts is multiplied into e− µE, with reference
efforts equal to average efforts, the counterfactual is independent of the es-
timated coefficient vector of efforts. A transfer between individuals having a
different value for the one-dimensional circumstance (but the same efforts) will
affect the estimated value of its regression coefficient in a way proportional to
the inverse of the variance of that circumstance multiplied by the difference in
circumstance between j and i; if i had better circumstances than j, the esti-
mated regression coefficient decreases, and the inequality in the counterfactual
decreases, such that COM is satisfied. We verified that one-dimensionality of
efforts does not help direct measures to satisfy UR. On the contrary, it ensures
that inequality in the counterfactual is affected.

Third, some measures do not satisfy certain properties under any of the
assumptions made. We clearly see Proposition 1 reflected in the Table: none
of the indirect measures satisfies UR. We also see other negative results for
the measures in which the random variation is used in the construction of the
counterfactuals. The direct measures with counterfactuals (b) and (d) do not
satisfy UR, as this would require that the inequality in the counterfactual does
not change. However, the Pigou-Dalton transfer always changes the estimated
random terms for individuals i or j, affecting the counterfactual and thereby
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the inequality in the counterfactual. The indirect measures with counterfac-
tuals (g) and (i) do not satisfy COM. The reason is that even in situations
where the estimated coefficients do not change, the change in the estimated
random terms has an effect on the value of the inequality measure for the
counterfactual distribution that may be larger or smaller than the change in
the value of the inequality measure for the actual income distribution.

We conclude this section with some relevant observations for practitioners.
If one only has information on circumstances, such that only counterfactuals
based on bC can be constructed, measures that satisfy UR are available, but no
measure that satisfies COM is available. The opposite occurs in case one only
has information on efforts. Finally, there are only three measures of inequality
of opportunity in Table 2 that are not dominated by any other, in the sense
that there does not exist another measure that requires weaker assumptions
to satisfy the properties. These are measures (a), (b) and (f).

4.3 Loglinear least squares

The equations that have to be estimated to construct the counterfactuals are
now, for A ∈ {C,E,CE},

log(Y)− ιµlog(Y ) = XAαA + VA, (20)

where µlog(Y ) = 1
n

∑n
i=1 log(yi) and the corresponding least squares estimator

of αA is
aA =

(
XA′XA

)−1
XA′ [log(Y)− ιµlog(Y )

]
. (21)

Also here, performing a Pigou-Dalton transfer δ from observation i to j
changes the least squares estimate of the coefficient vector. Lemma 2 gives the
relationship between ãA, the least squares estimate after the Pigou-Dalton
transfer, and aA.

Lemma 2 A Pigou-Dalton transfer δ from observation i to j changes the least
squares estimator of the coefficient vector into ãA, given by

ãA = aA +
1

n
(SA)−1

[
(xj

A∆j + xi
A∆i

]
,

with SA = 1
nXA′XA, xj

A = XA′Ej, xi
A = XA′Ei, ∆j = log(yj + δ)− log(yj)

and ∆i = log(yi − δ)− log(yi).

In Lemma 2 we see an element that we did not encounter in Lemma 1: ∆j

and ∆i, which depend on Yj and Yi, respectively. We know that ∆j > 0 > ∆i

and that |∆j | > |∆i|. We see two ingredients we also encountered in Lemma
1. First, the covariance matrix SA plays exactly the same role as in Lemma
1. If XA contains only one variable, the scalar (SA)−1 will be positive. If
both circumstances and efforts are included in XA, and these variables are
not correlated, the estimated coefficient vector of circumstances (resp. efforts)
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is not influenced by the efforts (resp. circumstances) of i and j. Second, the
values of xj

A and xi
A are also present. How they affect the estimated coefficient

vector depends not only on the covariance matrix of the variables in XA but
also on the values of ∆j and ∆i. Hence, contrary to Lemma 1, a transfer
between two individuals with the same values for xj

A and xi
A affects the

estimated coefficient vector. It will be this feature which destroys the positive
results found in Table 1.

The estimated coefficient vector (21) is used to determine the counterfactu-
als (6)-(10) and (12)-(16) (see Lemma A3 in Appendix A3). The counterfactual
is influenced because the Pigou-Dalton transfer has an effect on the estimated
coefficients, and increases the mean log of income (Lemma A4 in Appendix
A3). We can verify whether the way the inequality of opportunity measures
respond to Pigou-Dalton transfers is in accordance with the prescriptions in
the properties COM and UR. The result is proven in Appendix A.3 and stated
in Proposition 2.

Proposition 3 Using a loglinear specification and the least squares estimate
of the coefficient vector to construct the counterfactual, none of the measures
of inequality of opportunity satisfies COM nor UR.

The strong results in Table 1 (i.e. that UR is satisfied by (a) and COM
by (b) and (f)) relied on the fact that the vector of coefficient estimates is
unaffected by a Pigou-dalton transfer between individuals j and i when xj

A =
xi
A. Due to the presence of ∆j and ∆i in Lemma 2, these results do not

hold any longer. The results for which the absence of correlation is important
also relied on the same principle. It remains true that due to the absence of
correlation one part of the coefficient vector is not affected by differences in
xj
A∆j and xi

A∆i. However, the other part of the coefficient vector no longer
drops out because that part of xj

A∆j no longer equals the corresponding
part of xi

A∆i. Finally, the other results in Table 1 relied on C1M. With one-
dimensional circumstances, from Lemma 2, the scalar

ãA ≥ aA ⇔ xAi ≤ −xAj
∆j

∆i
.

We show the implications of this expression in Figure 1.
Pigou-Dalton transfers that take place between individuals above and to

the left of the line through the origin with slope −∆j

∆i
> 1 decrease the esti-

mated coefficient aA, thereby decreasing the inequality in the estimated coun-
terfactual. The opposite occurs for transfers between individuals below that
line. Hence, even transfers between individuals with the same circumstances
(xAi = xAj ) will affect the inequality in the estimated counterfactual. Inequal-
ity in the estimated counterfactual increases (decreases) if they both have
circumstances better (worse) than average.7

7 Figure 1 can be adjusted to illustrate the result for linear least squares. In that case
∆j = −∆i = δ, the red line coincides with the 45 degree line, and a Pigou-Dalton transfer
between individuals with the same circumstances has no effect on the estimated coefficient.
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Fig. 1 The effect of a Pigou-Dalton transfer with loglinear least squares and one-
dimensional circumstances

We have seen that, when measuring inequality of opportunity for income,
a loglinear specification is standard (see the references in the Introduction).
Proposition 3 suggests that, with a loglinear specification, none of the result-
ing measures satisfies any of the basic principles that a measure of inequality
of opportunity should have. This is bad news for what has become standard
practice. However, if one were to claim that the relevant outcome is not in-
come, but the log of income (for instance because it might be assumed that
individual utilities can be measured that way) and a measure of inequality in
the distribution of the log of (counterfactual) incomes is used in (1) or (2),
then the transfers in the properties should apply to transfers in log income,
which means that we are in the framework of Section 4.2, and the results from
Proposition 2 apply.8

More precisely, consider the factor proportional transfer principle, in which,
with δ > 0 the income of the rich individual is divided by a factor 1+ δ , while
the income of the poor individual is multiplied by 1 + δ, without resulting
in a post transfer income for the rich individual that is lower than the post

8 Actually, the empirical literature finds estimates close to one of the constant elasticity
of marginal utility (see e.g. Layard et al., 2008, Gandelman and Hernández-Murillo, 2013),
which could give empirical support to a loglinear specification as the best approximation to
modeling individual utility as a function of income.
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transfer income of the poor individual.9 Replacing the standard Pigou-Dalton
transfer in the COM and UR properties by such factor proportional transfers,
it becomes clear that use of the loglinear specification (20) and a measure of
inequality in the distribution of the log of (counterfactual) incomes in (1) or
(2) means that the results from Table 2 apply to these factor proportional
transfer versions of the COM and UR properties. Observe that it is crucial
that the inequality measure is defined on the distribution of the log of incomes.
This is, as far as we are aware of, never done in the inequality of opportunity
literature. The mean log deviation is commonly used, but it is not suited,
as it is the average value of the log of mean income divided by income. The
standard deviation of the log of incomes, or any standard inequality measure
defined on the distribution of the log of incomes are alternatives that are more
coherent with the basic intuitions of inequality of opportunity measurement.

When measuring inequality of opportunity for income, a loglinear specifi-
cation is almost universally used, and usually one uses the direct measure with
counterfactual (6). The loglinear specification is motivated by its empirical fit;
the use of a specification involving only circumstances is motivated by the
absence of data on efforts. The results in this paper provide an additional and
important motivation for this approach: if, in the properties, the transfers are
defined as factor proportional transfers, then none of the other approaches in
the literature satisfies the COM and UR principle under weaker assumptions.
Moreover, it dominates the only other approach that only needs information
on incomes and circumstances (the indirect measure with counterfactual (13)),
which requires in addition to one-dimensionality of circumstances, that refer-
ence circumstances are set equal to their empirical averages in order to satisfy
COM.

That the standard procedure is not dominated by any other, and that it
always satisfies UR (with factor proportional transfers) are strong arguments
in favor of the standard practice. Without information on efforts, it is the
best one can do, but if circumstances are not one-dimensional it does not
satisfy COM. Hence, it gives priority to the UR principle above the COM
principle. Our results show that there exist measures that satisfy factor pro-
portional transfer versions of the COM property, such as the direct measure
with counterfactual (7) or the indirect measure with counterfactual (12), but
they require information on efforts.

4.4 Non-parametric approaches

The properties of the non-parametric procedures to construct counterfactuals
are easy to derive. It is clear that the counterfactual defined in (11) is un-
changed if a Pigou-Dalton transfer occurs between two individuals having the
same circumstances. Hence it immediately follows that when this counterfac-
tual is used in the direct approach (1), the resulting measure of inequality of

9 This principle is different from the proportional transfer principles considered in Fleur-
baey and Michel (2001). We discuss this in Appendix B.
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opportunity satisfies UR always and hence cannot satisfy COM. The counter-
factual defined in (17) is unchanged if a Pigou-Dalton transfer occurs between
two individuals having the same efforts. Hence, as the inequality in the ac-
tual income distribution has decreased, it immediately follows that when this
counterfactual is used in the indirect approach (2), the resulting measure of
inequality of opportunity satisfies COM always and hence cannot satisfy UR.
We summarize the results in the following Proposition.

Proposition 4 The non-parametric counterfactual (11) in the direct approach
always satisfies UR and never satisfies COM. The non-parametric counterfac-
tual (17) in the indirect approach always satisfies COM and never satisfies
UR.

At this point, it is worth pointing out that Ferreira and Peragine (2016)
recently proposed an alternative non-parametric method that satisfies COM.
They construct a counterfactual in which every individual’s income is divided
by the average income of those that have the same effort as he does. Inequality
of opportunity is then measured by a relative inequality index defined over this
counterfactual.

5 Conclusion

The theoretical literature on inequality of opportunity formulates some basic
properties that measures of inequality of opportunity should have. The prin-
ciple of compensation pleads for a reduction of inequality between individuals
that have the same efforts. Utilitarian reward says that a transfer between
individuals having the same circumstances should not affect inequality of op-
portunity.

The empirical literature tries to quantify the amount of inequality of oppor-
tunity. It has evolved in ways rather disconnected from these principles. This
is especially so in the dominant part of the literature, which measures inequal-
ity of opportunity by means of counterfactuals, estimated through statistical
procedures that are common to model the outcome of interest, such as income,
education or health. As a result, the theoretical properties of the measures are
obscured, and many theorists feel uneasy with the empirical work.

Bridging the gap between the theoretical and the empirical literature was
one of the main goals of this paper. We have shown that some counterfactu-
als based on estimates from a linear least square specification yield measures
that satisfy some of the desirable properties. This set of counterfactuals can
be extended if additional assumptions, which have been previously used or
discussed in the literature, are imposed. Contrary to this, no single measure
of inequality of opportunity satisfies the desirable properties when counterfac-
tuals are based on estimates from a loglinear specification. This is worrying,
as this specification is commonly used when one is interested in inequality of
opportunity for income. However, provided one assumes logarithmic utility,
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transfers are defined in terms of utility, and a measure of inequality of the
distribution of log of incomes is used, the previous results are restored. This
is, provided a right inequality measure is used, an additional motivation for
what has become the standard approach in the measurement of inequality
of opportunity for income, which measures the inequality in a counterfactual
distribution, constructed on the basis of a loglinear least squares regression
of incomes on circumstances only. In terms of incomes, this approach always
satisfies the factor proportional transfer version of the utilitarian reward prin-
ciple, and provided circumstances are one-dimensional and monotonic, it also
satisfies the factor proportional transfer version of compensation. It is not
dominated by any of the other approaches we considered. Finally, when non-
parametric averaging procedures are used to construct counterfactuals in the
direct approach, the resulting measure of inequality of opportunity always
satisfies utilitarian reward. Doing the same for the counterfactual in the indi-
rect approach results in a measure of inequality of opportunity that satisfies
compensation.

The choice of measurement method (direct or indirect) and, with para-
metric methods, the choice of the functional form used to estimate and con-
struct the counterfactual interact to determine the measure of inequality of
opportunity’s properties. So far these choices were based exclusively on their
convenience, goodness of fit or what one is used to in a particular context. One
should be aware these choices affect the properties of the measure of inequality
of opportunity.

Our paper is a first analysis of the issues involved, and it has several short-
comings. First, the only reward principle we considered was utilitarian reward.
Liberal reward is the most prominent reward principle in the axiomatic liter-
ature on fair allocations (see, e.g., Bossert, 1995, and Fleurbaey, 2005), and
fair social orderings (see, e.g., Fleurbaey and Maniquet, 2005, 2008 and 2011).
It states that government taxes and transfers should respect differences in
incomes that are due to differences in responsibility. Hence, to incorporate
the idea of liberal reward, one also needs information on net transfers. It
is well known that also liberal reward is incompatible with compensation -
see Bossert (1995) and Fleurbaey (1995). The axiomatic literature proceeded
to formulate weakened versions of compensation and liberal reward and for-
mulated redistribution mechanisms that satisfy these weakened versions (see,
e.g., Bossert and Fleurbaey, 1996). Devooght (2008) and Alm̊as et al. (2011)
propose to use the income resulting from these redistribution mechanism to
define a norm income distribution and to measure inequality of opportunity
by aggregating the deviations of individual’s actual incomes from their norm
incomes. The computation of the norm incomes relies on counterfactuals that
are estimated using similar methods as the ones described here. Hence similar
issues to the ones studied here also arise for that approach. Second, the only
compensation principle we analyzed was the Ex-Post Compensation principle
COM. The alternative is Ex-Ante Compensation, which requires that a trans-
fer from an individual i that belongs to a better-off type to an individual j that
belongs to a worse-off type, meaning that the average income of those that
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have the same circumstances as i is higher than the average income of those
that have the same circumstances as j, should decrease inequality of oppor-
tunity. This principle does not require that the individuals between which the
transfers take place have the same efforts. Hence, typically, the effect on the
counterfactuals constructed using the parametric methods can go either way,
depending on, for instance, whether the effort of i is larger than of j or the
other way around. Hence the principle will not be satisfied, except when least
squares is used, counterfactual (a) is constructed and C1M is assumed. The
non-parametric method for the direct approach always satisfies the Ex-Ante
Compensation principle. Third, we only considered the most commonly used
econometric models found in the literature. Researchers are using more and
more advanced techniques to construct counterfactuals. Which, if any, of the
basic properties the resulting measures of inequality of opportunity have is an
important topic for future work.

Appendices

A Proofs

A.1 Notation

Define, for all individuals l ∈ N the following vectors:

xl
C =

[
cl,1 − µC1 . . . cl,dC − µCdC

]′
,

xl
E =

[
el,1 − µE1 . . . el,dE − µEdE

]′
,

xl
CC =

[
cl,1 − c1 . . . cl,dC − cdC

]′
,

xl
EE =

[
el,1 − e1 . . . el,dE − edE

]′
.

Hence, xl
C (xl

CC) is the dC− dimensional vector of the deviation of circumstances of

individual l from their mean (reference) values, and xl
E (xl

EE) is the dE− dimensional
vector of the deviation of his efforts from their mean (reference) values. Next, define the
(dC + dE)− dimensional vectors

xl
CE =

[
cl,1 − µC1 . . . cl,dC − µCdC el,1 − µE1 . . . el,dE − µEdE

]′
,

xl
CE =

[
cl,1 − µC1 . . . cl,dC − µCdC e1 − µE1 . . . edE − µEdE

]′
,

xl
CE =

[
c1 − µC1 . . . cdC − µCdC el,1 − µE1 . . . el,dE − µEdE

]′
,

xl
0E =

[
0 . . . 0 el,1 − e1 . . . el,dE − edE

]′
,

xl
C0 =

[
cl,1 − c1 . . . cl,dC − cdC 0 . . . 0

]′
,

and the n− dimensional vectors Ei = [0 . . . 0 1 0 . . . 0]′ and ι = [1 . . . 1]′, such that Ei

has zeros everywhere, except for its i− element which equals one and all elements in ι are
equal to one.



Measurement of inequality of opportunity based on counterfactuals 21

A.2 Proof of Proposition 2

Proof of Lemma 1 Define Ỹ = Y + δ(Ej −Ei), which is the vector Y after a Pigou-Dalton
transfer of an amount δ from observation j to i. After the transfer we estimate the equation
in deviational form

ỸD = Ỹ − ιµY = XAβ̃A + ŨA. (A.1)

For the least squares estimate b̃A =
(
XA′XA

)−1
XA′ỸD we obtain(

XA′XA
)−1

XA′YD +
(
XA′XA

)−1
XA′ (Ej −Ei

)
,

from which the expression in the Lemma follows immediately. ut

Lemma A1 Under the assumption of linearity and using the least squares estimator, the
counterfactuals (6)-(10) and (12)-(16) become

yc1l = µY + xl
C′bC , (A.2)

yc2l = µY + yDl − xl
EE′bE , (A.3)

yc3l = µY + xl
CE′bCE , (A.4)

yc4l = µY + yDl − xl
0E′bCE , (A.5)

yc5l = µY +
1

|Nl·|
∑
k∈Nl·

xk
CE′bCE (A.6)

yEO1
l = µY + xl

E′bE , (A.7)

yEO2
l = µY + yDl − xl

CC′bC , (A.8)

yEO3
l = µY + xl

CE′bCE , (A.9)

yEO4
l = µY + yDl − xl

C0′bCE . (A.10)

yE05
l = µY +

1

|N·l|
∑
k∈N·l

xk
CE′bCE (A.11)

Proof of Lemma A1 Equations (A.2),(A.4), (A.6), (A.7), (A.9) and (A.11) are straight-
forward. The others are only slightly more complicated. We prove (A.3); the proof of the
others is analogous. From (7), with the linear specification, and, for all individuals l ∈ N ,

xl
EµE = [e1 − µE1 . . . edE − µEdE ]′, we have

yc2l = µY + xEµE ′bE + ûRl

= µY + xEmuE ′bE + yDl − xl
E′bE

= µY + yDl −
(
xl
E′ − xEµE ′

)
bE

= µY + yDl − xl
EE′bE ,

which is expression (A.3). ut

Using this Lemma, that the covariance matrix of the variables in XA, SA = 1
n
XA′XA,

and adding a tilde to denote the counterfactuals after the transfer, it is easy to obtain the
following expressions for the effect of the Pigou-Dalton transfers on the counterfactuals.

Lemma A2 The change in the estimated counterfactuals of a Pigou-Dalton transfer δ from
observation i to j is

ỹc1l − y
c1
l =

δ

n
xl
C′(SC)−1(xj

C − xi
C), (A.12)
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ỹc2l − y
c2
l = ỹDl − y

D
l −

δ

n
xl
EE′(SE)−1(xEj − xi

E), (A.13)

ỹc3l − y
c3
l =

δ

n
xl
CE′(SCE)−1(xj

CE − xi
CE), (A.14)

ỹc4l − y
c4
l = ỹDl − y

D
l −

δ

n
xl

0E′(SCE)−1(xj
CE − xi

CE), (A.15)

ỹc5l − y
c5
l =

δ

n

1

|Nl·|
∑
k∈Nl·

xk
CE′(SCE)−1(xj

CE − xi
CE), (A.16)

ỹEO1
l − yEO1

l =
δ

n
xl
E′(SE)−1(xj

E − xi
E), (A.17)

ỹEO2
l − yEO2

l = ỹDl − y
D
l −

δ

n
xl
CC′(SC)−1(xj

C − xi
C), (A.18)

ỹEO3
l − yEO3

l =
δ

n
xl
CE′(SCE)−1(xj

CE − xi
CE), (A.19)

ỹEO4
l − yEO4

l = ỹDl − y
D
l −

δ

n
xl
C0′(SCE)−1(xj

CE − xi
CE). (A.20)

ỹEO5
l − yEO5

l =
δ

n

1

|N·l|
∑
k∈N·l

xk
CE′(SCE)−1(xj

CE − xi
CE), (A.21)

Proof of Proposition 2 Due to the similarity of the proofs, we first prove parts (a) and (f),
followed by parts (b) and (g), (c) and (h), and, finally, parts (d) and (i).

Consider part (a) of the Proposition and Equation (A.12). Observe that,
∑n
l=1 x

C
l = 0,

such that, from (A.12),
∑n
l=1 ỹ

c1
l =

∑n
l=1 y

c1
l . The mean of the counterfactual has not

changed, and there is no need to normalize the counterfactual distribution to study the
effects of a Pigou-Dalton transfer.
Take xj

C = xi
C . From (A.12), ỹc1l = yc1l , such that the counterfactual has not changed.

Hence, UR is satisfied. Take xj
E = xi

E . Under C1M, (SC)−1 > 0 and ci1 > cj1. From (A.12)
we immediately have that the value of the counterfactual decreases (increases) for those
observations for which xCl > (<)0, i.e. for which cl1 > (<)µC1. Hence, I(Yc1) decreases
and the measure satisfies COM.

Consider part (f) of the Proposition, and Equation (A.17). Observe that,
∑n
l=1 x

E
l = 0,

such that, from (A.17),
∑n
l=1 ỹ

EO1
l =

∑n
l=1 y

EO1
l . The mean of the counterfactual has not

changed, and there is no need to normalize the counterfactual distribution to study the
effects of a Pigou-Dalton transfer.
Take xj

E = xi
E . From (A.17), ỹEO1

l = yEO1
l , such that the counterfactual has not changed.

However, the Pigou-Dalton transfer decreases the inequality in the income vector Y, such
that I(Y) decreases, and thus I(Y) − I

(
YEO1

)
decreases. Hence COM is satisfied. Take

xj
C = xi

C . In case dE = 1, (SE)−1 > 0. Let ei1 > ej1. From (A.17), we have that for
those observations for which el1 > (<)µE1, the counterfactual decreases (increases). Hence
the transfer decreases inequality in YEO1. However, it also decreases the inequality in Y in
a different manner, and the effect on I(Y) − I

(
YEO1

)
is ambiguous, such that UR is not

even satisfied with one-dimensional effort.
Consider part (b) of the Proposition and Equation (A.13). We have∑n

l=1 ỹ
c2
l

n
=

∑n
l=1 y

c2
l

n
−
δ

n
(µE − e)′(SE)−1(xj

E − xi
E). (A.22)

Take xj
E = xi

E . From (A.22), the mean of the counterfactual has not changed. We then see

from (A.13) that ỹc2l −y
c2
l = ỹDl −y

D
l , such that the inequality in the counterfactual declines

and the measure satisfies COM. Take xj
C = xi

C . If e = µE, from (A.22), the mean of the
counterfactual has not changed, and no normalization of the counterfactual is necessary
to analyze the consequences of the Pigou-Dalton transfer. When dE = 1, (SE)−1 > 0, and
assuming that ei1 > ej1, from (A.13) the change in the counterfactual is larger (smaller) than
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the change in the actual income distribution for those with el1 > (<)µE1, and inequality
of opportunity changes. Hence the measure does not even satisfy UR under Eµ with one-
dimensional efforts.

Consider part (g) of the Proposition and Equation (A.18). We have∑n
l=1 ỹ

EO2
l

n
=

∑n
l=1 y

EO2
l

n
−
δ

n
(µC − c)′(SC)−1(xj

C − xi
C). (A.23)

Take xj
C = xi

C . From (A.23), the mean of the counterfactual has not changed. We then

see, from (A.18) that ỹEO2
l − yEO2

l = ỹDl − y
D
l , such that the change in the counterfactual

is identical to the change in the actual income distribution: in both distributions we get a
Pigou-Dalton transfer from i to j. However, nothing guarantees that the change in I(Y)−
I(YEO2) will be the same, such that the measure does not satisfy UR. Take xj

E = xi
E . If

c = µC, from (A.23), the mean of the counterfactual has not changed, and no normalization
of the counterfactual is necessary to analyze the consequences of the Pigou-Dalton transfer.
With this reference value, with one-dimensional circumstances such that (SC)−1 > 0, and
assuming that ci1 > cj1 (i.e. under C1M), from (A.18), we have that the change in the
counterfactual is larger (smaller) than the change in the actual distribution for those with
cl1 > (<)µC1. However, this does not guarantee that I(Y) − I(YEO2) decreases, and so
even under these assumptions COM need not be satisfied. If c 6= µC, it follows from (A.23)
that the mean of the counterfactual has changed. Under C1M, ci1 > cj1, such that, if
c1 < (>)µC1, the mean increases (decreases), and this can counter the effect on inequality
of opportunity that arises from the fact that, assuming that ci1 > cj1, from (A.18), we
have that the change in the counterfactual is larger (smaller) than the change in the actual
distribution for those with cl1 > (<)c1. A similar issue occurs in the following cases if the
mean of the counterfactual changes; for that reason, we focus on cases where the mean
remains constant.

The counterfactuals in (c), (d), (e), (h), (i) and (j) of the Proposition rely on estimates
of bCE , such that SCE , the estimated covariance matrix of circumstances and efforts plays
a role. Define the following matrix

(SCE)−1 =

[
ACC ACE

AEC AEE

]
.

In case circumstances and efforts are not correlated, their covariance is zero, and SCE is
block diagonal. The inverse of a block-diagonal matrix is also block diagonal, such that, if
efforts and circumstances are not correlated, ACE = (AEC)′ contains only zeros.

Consider part (c) of the Proposition and Equation (A.14). Observe,∑n
l=1 ỹ

c3
l

n
=

∑n
l=1 y

c3
l

n
+
δ

n
(e− µE)′

[
AEC(xj

C − xi
C) + AEE(xj

E − xi
E)
]
. (A.24)

Take e = µE. The mean of the counterfactual has not changed. First, with xj
C = xi

C , from
(A.14),

ỹc3l = yc3l +
δ

n
xl
C′ACE

[
xj
E − xi

E
]
.

If, in addition, ACE = 0, we get ỹc3l = yc3l : the transfer has no effect on the counterfactual

Yc3. Hence, in this case, the measure satisfies UR. Second, with xj
E = xi

E , from (A.14),

ỹc3l = yc3l +
δ

n
xl
C′ACC

[
xj
C − xi

C
]
, (A.25)

If, in addition dC = 1 such that ACC > 0, and ci1 > cj1, from (A.25), the counterfactual for
those observations for which cl1 > (<)µC1 decrease (increase), such that I(Yc3) decreases
and the measure satisfies COM.
Take e 6= µE, AEC = 0 and xj

E = xi
E . From (A.24), the mean of the counterfactual has

not changed, and, from (A.14), we obtain again (A.25), and the same conclusion follows:
under C1M the measure satisfies COM.
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Consider part (h) of the Proposition and Equation (A.19). Observe,∑n
l=1 ỹ

EO3
l

n
=

∑n
l=1 y

EO3
l

n
+
δ

n
(c−µC)′

[
ACC(xj

C − xi
C) + ACE(xj

E − xi
E)
]
. (A.26)

Take c = µC. The mean of the counterfactual has not changed. First, with xj
E = xi

E , from
(A.19),

ỹEO3
l = yEO3

l +
δ

n
xl
E′AEC

[
xj
C − xi

C
]
.

If, in addition, AEC = 0, we get ỹEO3
l = yEO3

l : the transfer has no effect on the counter-

factual. However, I(Y) falls, hence I(Y) − I(YEO3) decreases, and the measure satisfies
COM. Second, with xj

C = xi
C , from (A.19),

ỹEO3
l = yEO3

l +
δ

n
xl
E′AEE

[
xj
E − xi

E
]
. (A.27)

If, in addition dE = 1 such that AEE > 0, and ei1 > ej1, from (A.27), we have that the
counterfactual for those observations for which el1 > (<)µE1 decreases (increases). Hence
the transfer decreases inequality in YEO3. However, since the inequality in Y decreases in
a different way, the effect on I(Y)− I(YEO3) cannot be determined and the measure does
not even satisfy UR in the one-dimensional case.
Take c 6= µC, ACE = 0 and xj

C = xi
C . From (A.26), the mean of the counterfactual has

not changed, and, from (A.14), we obtain again (A.27), and the same conclusion follows:
the measure does not satisfy UR even in the one-dimensional case.

Consider part (d) of the Proposition and Equation (A.15). Observe,∑n
l=1 ỹ

c4
l

n
=

∑n
l=1 y

c4
l

n
−
δ

n
(µE − e)′

[
AEC(xj

C − xi
C) + AEE(xj

E − xi
E)
]
. (A.28)

Take e = µE. The mean of the counterfactual has not changed. First, with xj
C = xi

C , from
(A.15),

ỹc4l − y
c4
l = ỹDl − y

D
l −

δ

n
xl
E′AEE(xj

E − xi
E). (A.29)

With this reference value, with one-dimensional efforts such that AEE > 0, and assuming
that ei1 > ej1, from (A.29), the change in the counterfactual is larger (smaller) than the
change in the actual income distribution for those with el1 > (<)µE1, and inequality of
opportunity changes. Hence the measure does not satisfy UR. Second, with xj

E = xi
E ,

from (A.15),

ỹc4l − y
c4
l = ỹDl − y

D
l −

δ

n
xl
E′AEC(xC

j − xC
i ). (A.30)

If, in addition, AEC = 0, ỹc4l − y
c4
l = ỹDl − y

D
l , such that inequality in the counterfactual

decreases and the measure satisfies COM.
Take e 6= µE, AEC = 0 and xj

E = xi
E . From (A.28), the mean of the counterfactual has

not changed, and, from (A.15), we obtain ỹc4l − y
c4
l = ỹDl − y

D
l , meaning that inequality

decreased. Hence the measure satisfies COM.
Consider part (i) of the Proposition and Equation (A.20). Observe∑n
l=1 ỹ

EO4
l

n
=

∑n
l=1 y

EO4
l

n
−
δ

n
(µC−c)′

[
ACC(xj

C − xi
C) + ACE(xj

E − xi
E)
]
. (A.31)

Take c = µC. The mean of the counterfactual has not changed. First, with xj
E = xi

E , from
(A.20),

ỹEO4
l − yEO4

l = ỹDl − y
D
l −

δ

n
xl
C′ACC(xj

C − xi
C). (A.32)

If in addition dC = 1 such that ACC > 0, and ci1 > cj1, by A.32, the change in the
counterfactual for those observations for which cl1 > (<)µC1 is larger (smaller) than the
change in the actual income distribution. Hence inequality in the counterfactual increases
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more than the inequality in the actual income distribution. However, this does not guarantee
that I(Y) − I(YEO4) decreases, and so even under these assumptions COM need not be
satisfied. Second, with xj

C = xi
C , from (A.20),

ỹEO4
l − yEO4

l = ỹDl − y
D
l −

δ

n
xl
C′ACE(xj

E − xi
E).

If, in addition, ACE = 0, from (A.20), ỹEO4
l − yEO4

l = ỹDl − yDl , and the change in
the counterfactual is identical to the change in the actual income distribution: in both
distributions we get a Pigou-Dalton transfer from i to j. However, nothing guarantees that
the change in I(Y)−I(YEO4) will be the same, such that the measure does not satisfy UR.
Take c 6= µC, ACE = 0 and xj

C = xi
C . From (A.31), the mean of the counterfactual has

not changed, and, from (A.15), we obtain again ỹEO4
l −yEO4

l = ỹDl −y
D
l . Again, the change

in the counterfactual is identical to the change in the actual income distribution: in both
distributions we get a Pigou-Dalton transfer from i to j. However, nothing guarantees that
the change in I(Y)−I(YEO4) will be the same, such that the measure does not satisfy UR.

Consider part (e) of the Proposition and Equation (A.16). Observe,∑n
l=1 ỹ

c5
l

n
=

∑n
l=1 y

c5
l

n
+
δ

n

1

n

n∑
l=1

1

|Nl·|
∑
k∈Nl·

xk
CE′(SCE)−1(xj

CE − xi
CE).

Since
∑n
l=1

1
|Nl·|

∑
k∈Nl·

xk
CE′ = 0, the dC + dE-dimensional null vector, the mean of the

distribution has not changed. First, with xj
C = xi

C and COR0 from (A.16),

ỹc5l = yc5l +
δ

n

1

|Nl·|
∑
k∈Nl·

xk
E′AEE(xj

E − xi
E).

The i-th element in the vector 1
|Nl·|

∑
k∈Nl·

xk
E′ is 1

|Nl·|
∑
k∈Nl·

eki − µEi, the difference

between the average value of effort i of those that have the same circumstance as l and
the average value of effort i in the population. Under COR0, the distribution of efforts
conditional on circumstances is independent of the value of circumstances and equals the
unconditional distribution. Hence 1

|Nl·|
∑
k∈Nl·

xk
E′ is equal to the dE-dimensional null

vector, ỹyc5l = yyc5l and the measure satisfies UR.

Second, with xj
E = xi

E , from (A.16),

ỹc5l = yc5l +
δ

n

1

|Nl·|
∑
k∈Nl·

xk
CE′

[
ACC

AEC

]
(xj

C − xi
C).

Under COR0, this reduces to

ỹc5l = yc5l +
δ

n
xl
C′ACC(xj

C − xi
C).

With one-dimensional circumstances, therefore,

ỹc5l = yc5l +
δ

n

[
cl,1 − µC1

]
(SC)−1(cCj,1 − cCi,1),

and the variance of the one-dimensional circumstance, SC > 0. C1M implies that cCj,1 < cCi,1.

Hence we get ỹc5l < yc5l for those with cl,1 > µC1, which by C1M is for those that have a
higher than average income. Similarly, ỹc5l > yc5l for those with cl,1 < µC1, which by C1M is
for those that have a lower than average income. Hence we the transfer reduced inequality;
COM is satisfied.

Consider part (i) of the Proposition and Equation (A.21). Observe,∑n
l=1 ỹ

EO5
l

n
=

∑n
l=1 y

EO5
l

n
+
δ

n

1

n

n∑
l=1

1

|N·l|
∑
k∈N·l

xk
CE′(SCE)−1(xj

CE − xi
CE).
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Since
∑n
l=1

1
|N·l|

∑
k∈N·l

xk
CE′ = 0, the dC + dE-dimensional null vector, the mean of the

distribution has not changed. First, with xj
C = xi

C and COR0, from (A.21),

ỹEO5
l = yEO5

l +
δ

n
xl
E′AEE(xj

E − xi
E).

Hence, under COR0 and with one-dimensional effort,

ỹEO5
l = yEO5

l +
δ

n
[el1 − µE1] (SEE)−1(xj

E − xi
E).

and it cannot be guaranteed that the change in inequality is equal to the change in inequality
in the actual income distribution. Hence UR is not satisfied.

Second, with xj
E = xi

E , from (A.21),

ỹEO5
l = yEO5

l +
δ

n

1

|N·l|
∑
k∈N·l

xk
CE′

[
ACC

AEC

]
(xj

C − xi
C).

Under COR0, this reduces to

ỹEO5
l = yEO5

l +
δ

n

1

|N·l|
∑
k∈N·l

xk
C′ACC(xj

C − xi
C).

The i-th element in the vector 1
|N·l|

∑
k∈N·l

xk
C′ is 1

|N·l|
∑
k∈N·l

cki − µCi, the difference

between the average value of circumstance i of those that have the same effort as l and
the average value of circumstance i in the population. Under COR0, the distribution of
circumstances conditional on efforts is independent of the value of effort and equals the
unconditional distribution. Hence 1

|N·l|
∑
k∈N·l

xk
C′ is equal to the dC -dimensional null

vector, ỹEO5
l = yEO5

l , and the measure satisfies COM. ut

A.3 Proof of Proposition 3

Proof of Lemma 2 Define Ỹ = Y + δ(Ej −Ei), which is the vector Y after a Pigou-Dalton
transfer of an amount δ from observation j to i. After the transfer, for A ∈ {C,E,CE}, we
estimate the equation in deviational form

log(Ỹ)− ιµ
log(Ỹ )

= XAα̃A + ṼA. (A.33)

Observe that

log(Ỹ) = log(Y) + (log(yj + δ)− log(yj))Ej + (log(yi − δ)− log(yi))Ei,

and that

µ
log(Ỹ )

= µlog(Y ) +
1

n
[log(yj + δ)− log(yj) + log(yi − δ)− log(yi)] ,

such that the least squares estimate,

ãA =
(
XA′XA

)−1
XA′

[
log(Ỹ)− ιµ

log(Ỹ )

]
, (A.34)

can be written as

ãA = aA +
(
XA′XA

)−1
XA′ ·[

Ej (log(yj + δ)− log(yj)) + Ei (log(yi − δ)− log(yi))
(1/n)ι (log(yj + δ)− log(yj) + log(yi − δ)− log(yi))] .
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As SA = 1
n
XA′XA, XA′Ej = xj

A, XA′Ei = xi
A and (1/n)XA′ι = 0, we obtain the

expression in the Lemma. ut

Lemma A3 Under the assumption of loglinearity and using the least squares estimator,
the counterfactuals (6)-(10) and (12)-(16) are defined by

log(yc1l ) = µlog(Y ) + xl
C′aC , (A.35)

log(yc2l ) = log(yl)− xl
EE′aE , (A.36)

log(yc3l ) = µlog(Y ) + xl
CE′aCE , (A.37)

log(yc4l ) = log(yl)− xl
0E′aCE , (A.38)

log(yc5l ) = µlog(Y ) +
1

|Nl·|
∑
k∈Nl·

xk
CE′aCE , (A.39)

log(yEO1
l ) = µlog(Y ) + xl

E′aE , (A.40)

log(yEO2
l ) = log(yl)− xl

CC′aC , (A.41)

log(yEO3
l ) = µlog(Y ) + xl

CE′aCE , (A.42)

log(yEO4
l ) = log(yl)− xl

C0′aCE , (A.43)

log(yEO5
l ) = µlog(Y ) +

1

|N·l|
∑
k∈N·l

xk
CE′aCE . (A.44)

Using Lemma 2, it is straightforward to prove Lemma A4.
Lemma A4 Define ∆j = log(yj + δ)− log(yj) and ∆i = log(yi − δ)− log(yi). The change
in the estimated counterfactuals of a Pigou-Dalton transfer δ from observation i to j is

log(ỹc1l )− log(yc1l ) =
1

n
[∆j +∆i] +

1

n
xl
C′(SC)−1

[
xj
C∆j + xi

C∆i

]
, (A.45)

log(ỹc2l )− log(yc2l ) = log(ỹl)− log(yl)−
1

n
xl
EE′(SE)−1

[
xj
E∆j + xi

E∆i

]
, (A.46)

log(ỹc3l )− log(yc3l ) =
1

n
[∆j +∆i] +

1

n
xl
CE′(SCE)−1

[
xj
CE∆j + xi

CE∆i

]
, (A.47)

log(ỹc4l )− log(yc4l ) = log(ỹl)− log(yl)−
1

n
xl

0E′(SCE)−1
[
xj
CE∆j + xi

CE∆i

]
, (A.48)

log(ỹc5l )− log(yc5l ) =
1

n
[∆j +∆i] +

1

n

1

|Nl·|
∑
k∈Nl·

xk
CE′(SCE)−1

[
xj
CE∆j + xi

CE∆i

]
,

(A.49)

log(ỹEO1
l )− log(yEO1

l ) =
1

n
[∆j +∆i] +

1

n
xl
E′(SE)−1

[
xj
E∆j + xi

E∆i

]
, (A.50)

log(ỹEO2
l )− log(yEO2

l ) = log(ỹl)− log(yl)−
1

n
xl
CC′(SC)−1

[
xj
C∆j + xi

C∆i

]
, (A.51)

log(ỹEO3
l )− log(yEO3

l ) =
1

n
[∆j +∆i] +

1

n
xl
CE′(SCE)−1

[
xj
CE∆j + xi

CE∆i

]
, (A.52)

log(ỹEO4
l )−log(yEO4

l ) = log(ỹl)−log(yl)−
1

n
xl
C0′(SCE)−1

[
xj
CE∆j + xi

CE∆i

]
, (A.53)

log(ỹEO5
l )−log(yEO5

l ) =
1

n
[∆j +∆i]+

1

n

1

|N·l|
∑
k∈N·l

xk
CE′(SCE)−1

[
xj
CE∆j + xi

CE∆i

]
.

(A.54)
Proof of Proposition 3 The left hand side in the equations of Lemma A4 give the percentage
change in the estimated counterfactual. First, observe that, in (A.45), (A.47), (A.49), (A.50)
(A.52) and (A.54), the first term is the same for all observations, and so has no effect on
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the inequality of the counterfactual, provided a relative measure of inequality is used. The
problem to sign the effect of the transfer on the inequality measure is that the second
term will be different for different observations, and will never disappear (not even when
the transfer is between individuals having the same circumstances and/ or efforts - except,
when, in addition they have the same income level, but in that case there is no Pigou-
Dalton transfer). Hence, these measures satisfy neither COM nor UR. Second, observe that in
(A.46), (A.48) (A.51) and (A.53), the first term, log(ỹl)− log(yl), is zero for all observations,
except for i and j. Again, however, the problem is that the other term never vanishes, making
it impossible to assess the effect of the transfer on the inequality in the counterfactual income
distributions. Hence we obtain Proposition 3. ut

B Alternative proportional transfer principles

Let yi be individual i’s income before the transfer, yj individual j’s income before the
transfer, ỹi individual i’s income after the transfer, and ỹj individual j’s income after the
transfer. Throughout we require

yi > ỹi ≥ ỹj > yj ,

such that the transfer goes from individual i to individual j, and also after the transfer i
has at least as much income as j. Different proportional transfer principles impose different
conditions on the transfers.

The Factor Proportional Transfer Principle (this paper) requires that, with A > 1,

ỹi =
yi

A
and ỹj = yj ·A. (B.1)

The Proportional Transfer Principle (Fleurbaey and Michel, 2001 p.4) requires that,
with δ > 0,

ỹi = yi(1− δ) and ỹj = yj(1 + δ). (B.2)

The Proportional Ex-Post Transfer Principle (Fleurbaey and Michel, 2001, p.4) re-
quires that, with δ > 0,

ỹi =
yi

1 + δ
and ỹj =

yj

1− δ
. (B.3)

Assuming that the transfer described in the principle is desirable (because it decreases
inequality), the following Proposition formulates the logical relationship between the three
transfer principles.

.
Proposition C The Proportional Transfer Principle is stronger than the Factor Propor-
tional Transfer Principle, which is stronger than the Proportional Ex-Post Transfer Principle.

Proof of Proposition C
(a) Comparison of (B.2) and (B.1). Consider the case where the transfer implies the

same transfer in favor of the poor individual, i.e. A = (1 + δ). In that case, the income after
transfer for the rich person under (B.1) is higher than the income of the rich person under
(B.2), as

1− δ2 = (1− δ)(1 + δ) < 1⇐⇒
yi

A
=

yi

1 + δ
> yi(1− δ).

Hence, all transfers that are acceptable under (B.2) are also acceptable under (B.1), but the
reverse does not hold true.
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(b) Comparison of (B.1) and (B.3). Consider the case where the transfer implies the
same transfer in favor of the poor individual, i.e. A′ = 1/(1 − δ). In that case, the income
after transfer for the rich person under (B.3) is higher than the income of the rich person
under (B.1), as

1− δ2 = (1− δ)(1 + δ) < 1⇐⇒
yi

1 + δ
> (1− δ)yi =

yi

A′
.

Hence, all transfers that are acceptable under (B.1) are also acceptable under (B.3), but the
reverse does not hold true. ut
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