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Highlights
Tumors are highly complex entities

comprising cell populations with

various transcriptional programs.

Single-cell sequencing technolo-

gies are evolving fast and have the

capacity to finely characterize the

huge heterogeneity inside tumors.

New single-cell sequencing pro-

tocols do not need special infra-

structure and can be applied to a

huge multitude of cancer sample

types in many research areas.

A fine characterization of liquid bi-

opsies, tumor functional heteroge-

neity, and the tumor microenviron-

ment will be followed by an

exponential increase in our knowl-

edge on tumor progression and will

significantly improve cancer

treatment.
Effective cancer treatment has been precluded by the presence of various forms of intratumoral

complexity that drive treatment resistance and metastasis. Recent single-cell sequencing tech-

nologies are significantly facilitating the characterization of tumor internal architecture during

disease progression. New applications and advances occurring at a fast pace predict an imminent

broad application of these technologies in many research areas. As occurred with next-genera-

tion sequencing (NGS) technologies, once applied to clinical samples across tumor types, sin-

gle-cell sequencing technologies could trigger an exponential increase in knowledge of the

molecular pathways involved in cancer progression and contribute to the improvement of cancer

treatment.

Multifaceted Heterogeneity and Its Impact on Cancer Progression

Tumors comprise various cell populations in constant evolution. Some of this complex heterogeneity

derives from genetic diversification and Darwinian selection of tumor cells as they adapt to variable

environments. Next-generation sequencing (NGS; see Glossary) used for the past decade had

enough sensitivity to detect mutations present in minor cell populations and, combined with multi-

sampling of human tumors (multisampling sequencing), fostered many studies that characterized in-

tratumor heterogeneity in various cancers [1]. The level of intratumor heterogeneity is considered a

main driver of therapy resistance and metastasis and is associated with poor prognosis [2].

In addition, human cancers frequently have tumor cell populationswithdifferent transcriptional programs.

This functional diversity is likely associatedwith thegenetic heterogeneitydescribed abovebut is also the

result of many other factors. First, the presence of a hierarchical structure, where a group of quiescent

stem-like cells fosters thegrowthof a tumor comprising cells indifferent differentiation states,wasdemon-

strated in various tumor types [3].Additionally,different transcriptionalprogramscanbeactivated in tumor

cells as a response to stochastic factors or to a variable tumormicroenvironment. This functional diversity

provides tumors with a plasticity that grants a high capacity for adaptation [4].

Finally, human tumors comprise not only malignant/transformed cells but also a plethora of different

cell types recruited from the surrounding tissue and the immune system. The tumor microenviron-

ment shows also genetic and transcriptional diversity and plays important roles in tumor progression,

metastasis, and treatment resistance [1,5].

Fine characterization of these levels of tumor heterogeneity is essential to the successful treatment of

cancer patients. The recent development of technologies based on sequencing individual cells (sin-

gle-cell sequencing technologies) opens new ways for the characterization of tumor heterogeneity.

At the genetic level, single-cell DNA-seq technologies offer higher sensitivity in the detection of mi-

nority clones, the reconstruction of clone structure, and the identification of concurrent or exclusive

alterations in the same cells. However, it is in the study of functional heterogeneity that single-cell

RNA-seq (scRNA-seq) significantly improves on previous technologies, increasing our molecular

comprehension of cancer progression. A precise cell-type annotation of complex cellular samples

from primary tumors is possible thanks to the recent generation of single-cell transcriptome atlases.

These comprise normal and pathological samples from human and mouse [6,7].
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The Emergence of scRNA-seq Technologies

In just a few years, the ability to perform single-cell expression profiles increased from a handful

of cells to thousands of cells in a single experiment [8]. After the first scRNA-seq experiment in a
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Glossary
Circulating tumor cells (CTCs):
cancer cells that have escaped
from the primary tumor and trav-
elled through the blood vessels.
Functional heterogeneity: pres-
ence of cells with different tran-
scriptional programs inside
tumors.
Genetic heterogeneity: existence
of cell clones with different ge-
netic somatic mutations inside
human tumors.
Genomic library: collection of
DNA fragments with common
adapters ready to be analyzed by
next-generation sequencing
technologies.
Intratumor heterogeneity: the
presence of cell diversity inside
human tumors.
Microfluidics: group of tech-
niques that allow the manipula-
tion of fluids in the range of mi-
croliters to picoliters.
Multisampling sequencing:
comprehensive analysis of
regionally distant samples from
the same tumor by next-genera-
tion technologies.
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four-cell-stage blastomere [9], several studies were published based on cell isolation and individual

genomic library preparation. These initial protocols were laborious and expensive, required RNA

amplification steps that introduced bias in the data, and were characterized by reduced throughput

[10,11]. The subsequent introduction of unique molecular identifiers (UMIs), which are random se-

quences that label individual molecules, significantly removed cDNA amplification bias [12]. Further

developments in STRT-seq and CEL-seq protocols included the introduction of an individual bar-

coding step on isolated cells before a single retrotranscription reaction reducing batch artifacts

[13,14]. In 2015, the introduction of microfluidic devices (Drop-seq [15] and InDrop [16]) enabled

the processing of thousands of cells at once. Following this strategy, 10x Genomics automated

equipment recently characterized 1.3 million cells at the single-cell level [8]. Unfortunately,

microfluidics-based methods are not efficient in the removal of the abundant rRNA. Consequently,

they use poly-T oligonucleotides to sequence the end of poly-A-tailed RNAs. This is useful in

generating expression profiles in this group of RNAs but does not provide complete transcriptomic

information. Split-seq and Sci-seq strategies avoid physical cell isolation, taking advantage of a

combinatorial barcoding strategy that permits the individual labeling of more than 100 000 sin-

gle-cell transcriptomes [17,18]. These techniques do not require expensive microfluidics infrastruc-

ture and permit greater control over the number of analyzed cells. Finally, single-cell multiomics

approaches that allow the study of genetic, epigenetic, and transcriptomic profiles in the same

cell have been developed [19,20]. This opens a window of opportunity for comprehensive cell

characterization.

Single-cell sequencing data analysis is a great challenge, similar to the early years of the use of NGS

technologies. Due to a great variety of sequencing strategies and biological questions, there are

many different reported analysis workflows. Analysis tools for subpopulation identification, differen-

tial expression, functional signatures, pseudotiming modeling, and network reconstruction are pub-

licly available for researchers with limited bioinformatics resources [21,22].

Next-generation sequencing
(NGS) technologies: family of ap-
plications that allow the afford-
able parallel sequencing of hun-
dreds of millions of small
fragments in a single reaction.
Single-cell multiomics: technolo-
gies that allow the simultaneous
analysis of different cell molecular
characteristics such as genomics,
transcriptomics, epigenomics, or
proteomics.
Single-cell RNA-sequencing
(scRNA-seq): analysis of the RNA
content of single cells by next-
generation sequencing
technologies.
Transcriptional signature: a spe-
cific set of genes expressed by a
cell in a given moment under
particular circumstances.
Dissecting the Tumor Ecosystem with scRNA-seq
Functional Diversity of Tumor Cells

Transcriptional heterogeneity among tumor cells has clear and direct clinical implications. First,

molecular classification according to transcriptional signatures is commonly used for clinical man-

agement in many tumor types. Regarding this, the presence of different transcriptional programs

inside the same tumor might prevent, or at least bias, molecular classification from a single biopsy.

In this context, scRNA-seq experiments have demonstrated the presence within the tumor of

multiple cell populations belonging to different molecular groups according to standard classifica-

tions [23–25].

Second, the presence of functional diversity within tumors likely improves their adaptation to hostile

environments. Functionally diverse cell populations with symbiotic, mutually beneficial relationships

have been reported in tumors [26]. This diversity can also be hierarchical, as described in several tu-

mor types in which a minority of highly specialized cells, termed cancer stem cells (CSCs), might have

special capacities tomaintain tumor growth, metastasize, and resist antitumor treatments [27]. Never-

theless, the lack of universally accepted CSC markers and properties has generated controversy in

these studies. scRNA-seq technologies offer an opportunity for the unbiased identification and study

of those populations that supposedly are present in very low numbers and in a quiescent or dormant

state, and to design more specific antitumor treatments [28]. scRNA-seq experiments recently

demonstrated the presence of populations with stem-like and treatment-resistance properties in oli-

godendroglioma and melanoma [29,30].

Finally, single-cell technologies can detect minor treatment-resistant cell populations inside com-

plex tumors, which can be used to select appropriate therapies. For instance, the presence of a

melanoma cell population expressing high levels of AXL anticipated the occurrence of

clonal selection after treatment with RAF or MEK inhibitors and the eventual development of

drug resistance[29].
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Tumor Microenvironment

Cancer-associated fibroblasts (CAFs) are present in many if not all solid tumors and participate

actively in tumor development [31]. The molecular mechanisms behind CAFs’ role remain largely un-

known and the lack of reliable cell markers to identify CAFs prevents a clear statement of their abun-

dance and importance in solid tumors [32]. The origin of CAFs is also under debate. They can be the

result of the transformation of resident fibroblasts previously present in the normal tissue or new cells

generated from special cell precursors recruited to the tumor [33]. scRNA-seq reports in the

past years have provided useful information in this respect. Different types of CAFs have been re-

ported in breast and colorectal tumors, which is likely to be associated with different cell origins

[34–36]. Additionally, each group of CAFs has special functions in the recruitment of immune cells

and in the induction of the epithelial–mesenchymal transition (EMT) in tumor cells [24,29,34,36].

Tumors are also frequently infiltrated by immune cells. The activation of the immune system to attack tu-

mor cells is attractive as an antitumoral therapy [37]. Consequently, the so-called immunotherapies have

become a promising tool in fighting cancer, although variable responses have been observed when they

are applied to cancer patients [38]. There is a great diversity of immune cells with differing, and probably

opposite, functions in tumor development. This complexity requires a correct transcriptional character-

ization of all the different cell types present in the tumor [39]. Here, scRNA-seq studies offer an

unprecedented opportunity. A recent study demonstrated that a high proportion of active versus ex-

hausted CD8+ T lymphocytes is associated with a better outcome in non-small cell lung cancer [40]. By

contrast, tumors presenting large proportions of regulatory T lymphocytes or myeloid-derived suppres-

sor cells have a poor prognosis [41–43]. The complex relationship between the different immune cells

present in the tumor will determine an overall tolerant or nontolerant environment. Finally, some studies

successfully identified tumorneoantigensby single-cell characterizationof theT cell receptor (TCR) reper-

toire, which might be useful in the diagnosis and treatment of cancer [40] (Figure 1, Key Figure).

Circulating Tumor Cells

The characterization of cells that extravasate into the blood circulation, circulating tumor cells

(CTCs), constitute a good and low-invasive alternative for the diagnosis and, more importantly, moni-

toring of tumors [44]. The utility of this strategy has been widely shown in many tumor types and the

quantification of CTCs can be used as a prognostic factor [45]. Whereas many authors claim that CTCs

recapitulate intratumor diversity perfectly, others have reported that they resemble metastasis more

than primary tumors [46].

The low number of CTCs present in the blood circulation has forced many studies to purify CTCs ac-

cording to specific epithelial surface markers. Debate about the specificity of these markers calls into

question some of the reported observations [45]. Some current platforms for CTC isolation are based

on physicochemical properties, but it remains unclear whether this constitutes a less biased isolation

method [47]. The high throughput of modern single-cell sequencing technologies offers without

doubt an opportunity to reduce the need for extensive purification, which will help to clarify the na-

ture and the source of CTCs (Figure 1).

Relevant observations came recently from CTC single-cell sequencing studies. The presence of hetero-

geneous CTC populations with both epithelial and mesenchymal markers was identified, stressing that

isolation methods based on epithelial markers are likely to be inadequate to capture all CTCs [48,49].

Additionally, a recent study on prostate cancer CTCs identified the activation of the noncanonical

Wnt signaling pathway, anticipating the appearance of drug resistance [49]. Finally, the presence of pla-

koglobin in breast cancer CTCs was associated with earlier metastasis appearance [50]. This suggests

that we need to include the study of CTCs in therapeutic decision-making in oncological practice.

Limitations of Single-Cell Technologies in Human Cancer

Amajor limitation in the application of scRNA-seq technologies to solid tumor samples is the require-

ment for complex dissociation protocols to obtain viable, individualized fresh cells. This limitation is

especially important as several studies have raised caution on potential transcriptional changes
Trends in Cancer, January 2020, Vol. 6, No. 1 15



Key Figure

Functional Heterogeneity of Human Tumors Revealed by Single-Cell RNA-seq (scRNA-seq)
Studies

Figure 1. Graphical representation of some of the main cell types present in solid tumors. scRNA-seq studies providing useful information about potential

functions in cancer progression are specified next to each cell type. Abbreviation: EMT, epithelial–mesenchymal transition. See [24,25,29,30,34–36,40,43,48–50].
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arising from tissue manipulation between sample collection and processing [21]. Some authors have

bypassed this limitation by working with either cell lines or organoids (Figure 2) [51]. Although these

have provided useful information, they fail to mimic the complex interactions between cancer cells

and the microenvironment. Additionally, to understand the molecular basis of tumor evolution, it

would be important to obtain several samples, or even serial samples, from the same patient, which

is not straightforward in solid tumors. Recently developed low-invasive biopsy techniques such as

fine-needle aspiration (FNA) are not very practical for traditional genomic analysis due to the low

amount of recovered material, but offer a window of opportunity for the application of scRNA-seq

technologies in clinical research [52].

Fortunately, many platforms are compatible with cell fixation and storage protocols. Transcriptomic

programs obtained from these cells seem similar to those of freshly processed cells [53,54] (Figure 2).
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Figure 2. Different Sample Types Used for Single-Cell Sequencing.

Different types of samples currently used for single-cell sequencing are represented together with their advantages (green boxes) and disadvantages

(red boxes).
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If these protocols are optimized for all applications and broadly implanted, it is easy to anticipate a

great increase in the application of scRNA-seq technologies in clinical research, where coordinating

sample collection and processing is not always easy. Moreover, the recent development of scRNA-

seq strategies for isolated single nuclei, sometimes obtained from formalin-fixed paraffin-embedded

(FFPE) material, reduces the need to obtain viable cells and facilitates the study of long-stored sam-

ples in retrospective projects [11,55].
Concluding Remarks

Despite overall improvement in the treatment of cancer patients, long-term success of targeted

therapies remains limited to specific tumor types. Tumor cellular complexity is likely a key factor

in this failure. Consequently, tumors with huge infiltrations of different cell types, like pancreatic

adenocarcinoma, have mortality rates that remained stubbornly unchanged.

The recent development of single-cell sequencing technologies brings a revolution in the character-

ization of tumor heterogeneity, not only at the genetic but also at the epigenetic and transcriptomic

level. Despite technical problems that need to be solved, we anticipate the incorporation of these

technologies in clinical research extended to many tumor types. Similar to the explosion of genetic

data generated following the development of NGS, single-cell sequencing technologies will trigger
Trends in Cancer, January 2020, Vol. 6, No. 1 17



Outstanding Questions

Do transcriptionally different cell

populations collaborate during tu-
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an exponential increase in knowledge about tumor architecture and evolution dynamics (see

Outstanding Questions). Finally, all of this new data will be translated into better diagnosis and treat-

ment of cancer patients.
mor progression?

Can the equilibrium inside the
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