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Ab initio local vibrational modes of light impurities in silicon
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We have developed a formulation of density-functional perturbation theory for the calculation of vibrational
frequencies in molecules and solids, which uses numerical atomic orbitals as a basis set for the electronic
states. The~harmonic! dynamical matrix is extracted directly from the first-order change in the density matrix
with respect to infinitesimal atomic displacements from the equilibrium configuration. We have applied this
method to study the vibrational properties of a number of hydrogen-related complexes and light impurities in
silicon. The diagonalization of the dynamical matrix provides the vibrational modes and frequencies, including
the local vibrational modes~LVM’s ! associated with the defects. In addition to tests on simple molecules,
results for interstitial hydrogen, hydrogen dimers, vacancy-hydrogen and self-interstitial-hydrogen complexes,
the boron-hydrogen pair, substitutional C, and several O-related defects inc-Si, are presented. The average
error relative to experiment for the;60 predicted LVM’s is about 2% with most highly harmonic modes being
extremely close and the more anharmonic ones within 5–6 % of the measured values.
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I. INTRODUCTION

The knowledge of the structures of impurities and defe
is an essential prerequisite for understanding the elect
and optical changes that these complexes induce in sem
ductors such as crystalline silicon.1,2 The presence of ligh
impurities such as H, B, C, or O results in the appearanc
infrared ~IR! or Raman-active local vibrational mode
~LVM’s !, usually well isolated from the frequency range
the phonons of the host material. The observation of LVM
coupled with isotope substitutions and uniaxial stress m
surements, provide precious information about the type
number of impurity atoms involved and the symmetry of t
defect. However, these data are rarely sufficient to iden
the defect unambiguously.

Since the early days of Stein,3 a large number of vibra-
tional modes have been identified through the interplay
experiment and theory. The calculation of LVM’s at theab
initio level provides a critical link between theory and e
periment. This is particularly true in the case of hydrog
since it binds covalently in the immediate vicinity of man
impurities and defects, thus giving rise to a number
LVM’s in the range;800 to ;2200 cm21. Other common
impurities in Si which produce LVM’s are B, C, and O, b
any element lighter than Si can in principle be observed
LVM spectroscopy.

The computation of systematically accurate vibratio
frequencies is a challenge for first-principles theory, giv
their sensitivity on the details of bonding geometry and el
tronic structure. Various approaches have been used to
culate LVM’s, from semiempirical models,4 to ab initio
Hartree-Fock5 and density-functional theory.6–8 Typical ac-
curacies in the calculated vibrational modes for light imp
rities in silicon in former works are within 3% and 10% o
the experimental data, which means in some cases a d
tion of over 100 cm21.
0163-1829/2002/65~7!/075210~8!/$20.00 65 0752
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In most cases, frequencies are calculated in the spiri
the frozen phononapproximation. One computes the tot
energy of the system in the equilibrium configuration~that in
which the forces acting on the atoms are zero!, and then for
small displacements of selected atoms~either individually or
in the direction of a normal mode, if this is known!. The
actual value of the atomic displacements~typically a few
hundredths of an Å! are parameters chosen by the user. O
can either fit the energy vs displacement to a polynomial,
extract a specific vibrational mode,6,9 or compute the dy-
namical matrix by finite differences.7 When a few specific
modes are all that is needed, only the movement of the at
involved in those modes is considered. In these methods,
not possible to isolate the harmonic contributions complet
from the anharmonic ones, since finite displacements alw
involve some anharmonic effects. For this reason, the
quencies obtained in this approach are sometimes referre
asquasiharmonic.10

One can also calculate vibrational properties fro
constant-temperature molecular-dynamics simulations,
instance by extracting selected frequencies from the veloc
velocity autocorrelation function11 or by using more sophis
ticated spectral estimators, like the multiple signal classifi
tion ~MUSIC! algorithm.12,13 This is computationally
exhausting, since long molecular dynamics runs are requi
but potentially very accurate.13 This also allows the calcula
tion of frequencies as a function of temperature.

However, a calculation of vibrational frequencies does
necessarily require the actual displacement of the atoms
in the methods described above. Linear-response theory~in
particular through the application of perturbation theory
density-functional theory! was thoroughly used in the past14

to compute the response of the system to infinitesimal ato
displacements, and from that, the vibrational frequencies
the harmonic approximation. This can be done with only
knowledge of the electronic solution in the equilibrium co
©2002 The American Physical Society10-1
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figuration. The advantage of this approach is that anharm
effects are eliminated, and that no reference is neede
explicit finite atomic displacements. In addition, this a
proach allows one to compute phonons with an arbitrarq
vector in crystalline systems, without having to conside
supercell commensurate with the periodicity of the phon
as is required in the frozen-phonon and molecular-dynam
approaches.

We prosent a method, based on density-functional per
bation theory~DFPT!, to compute vibrational frequencies i
the harmonic approximation. We use a basis set of nume
atomic orbitals to expand the electronic wave functio
which makes the method computationally very efficient, a
allows us to calculate systems with a large number of ato
We then apply it to make a systematic study of a numbe
defect centers in silicon, involving light impurities and the
complexes with intrinsic defects~vacancies and self
interstitials!. In most cases, a comparison of the calcula
and measured vibrational frequencies is very favorable,
proving on the results obtained by other approaches.

The outline of this paper is as follows. We first discuss
theoretical method and the model used to describe the
fects. Then we compare the vibrational properties obtai
for a variety of complexes with experimental data as well
other first-principles calculations in the literature. Finally, w
discuss the results.

II. METHODOLOGY

A. Ground-state description

In this work, we use the fully self-consistentab initio
code SIESTA.15,16 The electronic energy is obtained fro
density-functional theory~DFT!17,18 within the local-density
approximation. The exchange-correlation potential is tha
Ceperley and Alder19 as parametrized by Perdew an
Zunger.20 Norm-conserving pseudopotentials21 in the
Kleinman-Bylander form22 are used to remove the core ele
trons from the calculations.

The valence-electron wave functions are described w
numerical linear combinations of atomic orbitals of the Sa
key type,23 but generalized to be arbitrarily complete wi
the inclusion of multiple-zeta orbitals and polarizatio
states.24 These orbitals are numerical solutions of a free at
with the appropriate pseudopotential, and are strictly z
beyond some cutoff radius. This makes the calculation of
ground-state Kohn-Sham Hamiltonian scale linearly with
number of atoms,15,16allowing calculations in very large sys
tems with a modest computational cost.

In the present work, the basis sets include single-z
~SZ!, double-zeta~DZ!, double-zeta plus polarization~DZP!,
and triple-zeta plus polarization~TZP!. A DZP basis includes
two sets ofs andp’s plus one set ofd’s on Si, O, C or B, and
two s’s and one set ofp’s on H. The radial cutoff of the
atomic orbitals was determined as described in Ref. 24, w
an energy shift of 0.5 eV, and a split norm of 0.15 for all t
species except H, for which the split norm was 0.5. T
charge density is projected on a real space grid with
equivalent cutoff of 90–150 Ry to calculate the exchan
correlation and Hartree potentials. The host crystal is rep
07521
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sented by a periodic supercell of 64 host atoms, and
k-point sampling is reduced to theG point. This restriction
appears to be quite sufficient for a calculation of vibration
spectra. Tests have been performed for selected defects
128-host-atom cell, and the results are within a few wa
numbers of those obtained in the 64 host atoms cell.

In order to determine the equilibrium structure of the d
fects studied, we have relaxed all the atomic coordina
with a conjugate gradient algorithm, reaching a tolerance
the forces ofFmax,0.01 eV/Å . The dynamical matrix for
the whole cell is computed~see below! from this ground
state, and its eigenfrequencies and eigenmodes are obta

B. Linear-response theory

An implementation of DFPT was developed to compu
the electronic response toinfinitesimalatomic displacements
As is well known from the ‘‘2n11’’ theorem in quantum
mechanics,25 the first-order change of the electronic wa
function in a perturbative expansion allows the computat
of the second-order change in the energies. This implies
only the properties of the unperturbed ground state
needed to obtain the linear response of the system. The
tension of this theorem to DFT is that a knowledge of t
first-order change in the electronic density variationally d
termines the second-order change in the energy. In this w
we analytically obtain the dynamical matrix from the grad
ent of the density relative to atomic displacement and, fr
this, the vibrational properties, without physically displaci
any atom.

Here we briefly describe the key points of our formul
tion. In the Appendix, additional technicalities are present
A complete report will be published elsewhere.26 The change
in the electronic wave function is obtained by solving t
first-order perturbation expansion of the Schro¨dinger equa-
tion ~the Sternheimer equation27!

dĤc0,i1Ĥ0dc i5de ic0,i1e0,idc i , ~1!

wherec0,i are the ground-state electronic wave functions a
dc i the first order perturbation ofc i when an atom is dis-
placed~if we consider atoma, this would be]ac i). As we
expand these wave functions in terms of atomic orbitalsfm
centered atRm ,

c0,i~r !5(
m

cimfm~r2Rm!, ~2!

the derivatives can be directly written in terms of the deriv
tives of the atomic orbitals:

]ac i~r !5(
m

@]acimfm~r2Rm!1cim]afm~r2Rm!#.

~3!

Only the orbitalsfm centered on atoma appear in the last
term which is equal to2cim•¹fm(r2Rm). The change in
the coefficients,]acim , is obtained from Eq.~1!. ]c i is then
used to compute the perturbation in the electronic densit
0-2



an

n
-

ni
ha
his
a
i-

en
th
bu
b
e
e

n

ur
lue
re
’’
a
fr

t

ing
ce

k or
ical
for
the
red
m-
al
t
lso
ym-
lts
he-
rst-

ipate
ily
mi-
ch
e
tion

ed.
, it

l-

ect
-

en
lly
eri-
i-
n

of
rom

C
e

AB INITIO LOCAL VIBRATIONAL MODES OF LIGHT . . . PHYSICAL REVIEW B 65 075210
]ar~r !5(
i 51

occ

@]ac i* c i1c i* ]ac i #. ~4!

This allows a computation of the dynamical matrix, by
explicit derivation of the forces on all the atomsb in the
system~the expressions of which can be found in the Appe
dix, for our approach! with respect to the infinitesimal dis
placement of one of them (a):

~MaMb!1/2Dab5
]2E

]Ra]Rb
5]aFb. ~5!

We remark that only terms up to first order in the electro
wave functions appear in the resulting formulas. Note t
only linear effects in the wave function are obtained in t
method, which is consistent with the harmonic approxim
tion implicitly assumed in the diagonalization of the dynam
cal matrix. Thus one expects to obtain high-quality frequ
cies for the vibrational modes that are harmonic, but
frequencies of modes involving large anharmonic contri
tions will be less accurate. Although phonons with an ar
trary q vector can be obtained in the present approach, h
we only calculate vibrations which are periodic with th
simulation supercell~i.e., q5G!, since we are interested i
LVM’s.

III. RESULTS

Tests of the method for free SiH4, CO, CO2, and H2 lead
to very good agreement with experiment~see Table I!. Using
an appropriate basis set is essential to reproduce acc
frequencies. In most of the cases a DZ set gives good va
but in some configurations a more complete basis is requi
This is particularly true for bending modes. Oxygen ‘‘likes
to have polarization orbitals, and thus the frequencies
better when these are included. Note that the vibrational
quencies are more sensitive to the basis set size than
structural properties such as bond lengths. In general,

TABLE I. Calculated and measured~Ref. 28! frequencies for
free SiH4 , CO, CO2, and H2 molecules with various basis sets.

SZ SZP DZ DZP TZ TZP Expt.

SiH4

T2 2045 2064 2160 2153 2173 2159 2191
A1 1970 1974 2110 2116 2131 2125 2187
E 800 862 921 929 926 929 975
T2 701 772 806 818 817 821 914

H2

A 3619 3670 4194 4185 4193 4191 4161

CO
A 1681 1823 1885 2088 1945 2183 2170

CO2

A1 2118 2355 2235 2277 2224 2394 2349
A2 1107 1216 1200 1241 1209 1331 1333
E 478 558 547 583 560 635 667
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largest improvements in the frequencies correspond to go
from SZ to DZ, then DZ to DZP, but the TZ basis produ
only marginal improvements.

A number of defects containing light impurities inc-Si are
now considered. These are H at a bond-center~BC! site, H
dimers (H2 and H2* ), the hydrogenated vacancy (VHn,
n51,2,3,4) and the saturated divacancyV2H6, the self-
interstitial-hydrogenIH2 complex, the$B,H% pair, substitu-
tional C, interstitial O, and two charge states of theA-center
~oxygen-vacancy complex!. These embrace a range of Si-X
bonding configurations, withX5H, C, O and B. In most
cases, we have tried different basis sets in order to chec
improve the accuracy of our calculations when the chem
properties are particularly complex. We show frequencies
the DZ and DZP basis sets. Typically, the calculations of
whole dynamical matrix for each of the systems conside
here take around one week of CPU in a 733-MHz Pentiu
III processor. Although the diagonalization of the dynamic
matrix gives all the (G point! modes in the cell, we presen
here only the stretching and some bending LVM’s. We a
obtain the eigenvectors which we use to determine the s
metry of the corresponding vibrational modes. Our resu
are compared with available experimental data, and with t
oretical frequencies obtained by other authors using fi
principles DFT.

A. HBC , H2, and H2*

At the BC site,29 hydrogen exists in the11 and 0 charge
states. In the latter case, the odd electron does not partic
in the bonding but resides in a nonbonding orbital primar
localized on the two Si atoms adjacent to the proton. Che
cally, this is a three-center, two-electron bond, very mu
like the type of H bonding occurring in boron hydrides. Th
bond is somewhat compressed because optimal relaxa
~no Si second-nearest neighbors! would likely result in a
longer Si-H-Si bond and a frequency lower than observ
This suggests that as H moves along the trigonal axis
tends to form something like Si . . . H-Si, then Si-H-Si, then
Si-H . . . Si, aprocess which is highly anharmonic. The ca
culated frequency is given in Table II.

Raman40 and IR33,41measurements of H2 in silicon reveal
a considerable softening of the stretching mode with resp
to the frequency of H2 in the gas phase. A number of calcu
lations ~for a review, see Ref. 39! found the molecule to be
stable at the tetrahedral interstitial~T! site. The electron af-
finity of the Si atoms surrounding H2 is at least partly re-
sponsible for a small charge transfer from H2 to its Si neigh-
bors, which results in a weakening of the H-H bond. Ev
though the H-H stretch mode is not expected to be fu
harmonic, our calculated frequency is close to the exp
mental one~Table II!. Note that the errors relative to exper
ment in the D2 and HD frequencies are very different tha
the error in the H2 frequency. This is also a clear feature
these frequencies when they are calculated dynamically f
the v-v autocorrelation function.42

The trigonal H2* defect8 consists of one hydrogen atom
close to the antibonding~AB! site, and the other near the B
site ~see Fig. 1!. The two H atoms are inequivalent. Th
0-3
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TABLE II. Calculated and measured frequencies for HBC ~our calculation is spin polarized for HBC
0 and

spin averaged for HBC
1), H2 in the ^100& alignment, and H2* 5HBCHAB . A DZ basis was used for all thes

complexes. The errors relative to experimental values are in parentheses. Were H2 a classical dumbbell, its
wag modes would be at 731 and 860 cm21 ~see the discussion in Ref. 39!.

Expt. This work Other authors

HBC

HBC
1 1998a 1891~25%! 2203b~110%! 2210c~111%!

HBC
0 2 1813 1768b 1945c

H2 in Si
H2 3618d 3549~22%! 3607e~10%! 3396f~26%! 3260g~29%!

DH 3265d 3081~26%! 3129e~24%!

D2 2643d 2511~25%! 2559e~23%!

2062g 2135~13%! 2164g~15%! 2100h~12%! 1945i~25%!

H2* 1838g 1750~25%! 1844g~10%! 1500h~118%! 1677i~29%!

817g 843/839~13%! 1002g~122%! 711i~213%!

aReference 30. fReference 35.
bReference 31. gReference 36.
cReference 32. hReference 37.
dReference 33. iReference 38.
eReference 34.
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Si-HAB bond length is slightly longer than the Si-HBC one
~we obtain 1.580 and 1.510 Å, respectively! which gives rise
to different stretch frequencies for the two atom
2135 cm21 for HBC and 1750 cm21 for HAB . We also obtain
two degenerate wagging modes, associated with theBC
atom, at 560 cm21, and two wagging modes with 839 an
843 cm21, related to HAB . The latter should be degenerat
but small inaccuracies in the atomic relaxations render th
at slightly different frequencies.

B. Hydrogen and native defects

A considerable number of IR and Raman lines are rela
to H-intrinsic defect complexes. It has been noted43,44 that
vibrational modes above 2000 cm21 are mainly related to H

FIG. 1. Calculated structure of a H2* complex in silicon. Dark
spheres are Si atoms, white spheres are H. The two perpendi
arrows represent the HAB wag eigenmodes at 842 cm21. The
twofold-degenerate wagging mode for HBC is found at 560 cm21.
07521
:

m

d

in vacancies, while those lines below 2000 cm21 are pre-
dominant for H-self-interstitial systems or H at AB sites.
large number of geometrical configurations may lead to v
similar vibrational lines, making it difficult to identify thes
defects unambiguously. As noted by other groups,2,45–47 the
stretching frequencies inVHn (n51,2,3,4) systems increase
with n due to the repulsive H-H interaction. Thus, the high
IR line is that ofVH4. Si-H bonds point toward the center o
the vacancy along the trigonal axes.

In our calculations~Table III!, VH has monoclinic sym-
metry, and the H oscillates parallel to the^111& direction. In
orthorhombic VH2, two equivalent H’s have stretchin
modes along thê100& and^001& directions. The frequencie
for these modes are 2121 and 2144 cm21 respectively.VH3

hasC3v symmetry. TheA singlet involves the movement o
three H atoms toward the vacancy, while in the twofo
degenerateE mode one of the atoms moves in oppositio
VH4 has Td symmetry. In addition to the threefold
degenerateT2 mode at 2205, we obtain an IR-inactive singl
A1 mode at 2265 cm21.

The vibrational modes ofV2H6 are almost identical to
those ofVH3: The fully saturated divacancy behaves ve
much like two weakly coupledVH3 complexes. TheA2 sin-
glet at 2176 cm21 induces a dipole along thê111& direction.
In addition to this mode and the IR-activeE doublet, we
obtain two IR-inactive modes at 2186 and 2134 cm21.

The IH2 complex50 has two equivalent and weakl
coupled hydrogen atoms, which yields two very simil
stretching frequencies. Uniaxial stress measurements s
that the two hydrogen atoms are equivalent. Our rela
structure has an almostC2v symmetry, with theA mode
higher than theB mode, confirming early results.50 The de-
viation from perfect symmetry is due to the finite toleran

lar
0-4
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TABLE III. Calculated and measured frequencies for stretching modes inVHn (n51,2,3,4) and V2H6.
The error relative to experiment is in parentheses. Our frequencies were obtained with a DZP bas
measured values for theVH2D, VHD2 andVD3, as published in Ref. 44, are now believed to belong t
divacancy complex~Ref. 49! and are therefore not listed here.

Expt.a This work Other authorsb Expt.a This work Other authorsb

VH VH4

A8 2038 1971(23%) 2248(110%) A1 2257c 2265(10%) 2404(16%)
VD T2 2222 2205(21%) 2319(14%)

A8 1507 1418(26%) 1613(17%) VH3D
VH2 A1 2250 2251(10%) 2384(16%)

A1 2144 2163(11%) 2316(17%) E 2224 2205(21%) 2319(14%)
B1 2121 2132(11%) 2267(17%) A1 1620 1594(22%) 1677(13%)

VHD VH2D2

A8 2134 2135(20%) 2292(17%) A1 2244 2235(20%) 2364(15%)
A8 1555 1551(20%) 1641(15%) B1 2225 2204(21%) 2319(14%)

VD2 A1 1628 1603(21%) 1690(14%)
A1 1564 1552(21%) 1658(16%) B2 1615 1585(22%) 1663(13%)
B1 1547 1532(20%) 1625(15%) VHD3

VH3 A1 2236 2221(21%) 2342(15%)
A1 2185 2158(21%) 2318(16%) A1 1636 1613(21%) 1705(14%)
E 2155 2100(22%) 2256(15%) E 1616 1584(22%) 1664(14%)

VH2D VD4

A8 2140 2298 A1 no-IR 1623 1721
A9 2101 2256 T2 1617 1584(22%) 1664(13%)
A8 1520 1632

VHD2 V2H6

A8 2121 2277 A1 2190c 2186(20%) 2

A8 1534 1646 A2 2191 2176(20%) 2

A9 1509 1619 E 2166c 2143(21%) 2

VD3 E 2165 2134(21%) 2

A1 1547 1661
E 1510 1619

aReference 44.
bReference 45.
cReference 48.
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in the geometry optimization. This deviation is seen wh
comparing theIHD and IDH complexes: they should b
identical, but we find their frequencies to be off by 2 cm21.
Note that we reproduce the correct ordering for the bend
modes ofIH2 at 737 and 732 cm21 ~Table IV!.

C. Oxygen, carbon, and boron in silicon

Oxygen is a well-known impurity which is especially im
portant in Czochralski-grown Si, and a considerable amo
of effort was focused in understanding its properties.51 We
have computed the LVM frequencies for interstitial oxyg
(Oi) and two charge states of the vacancy-oxygen comp
(A center!. The results are in Table V. Frequencies fori
were computed with the oxygen placed at the BC site, wh
the probability of finding this delocalized atom is at a ma
mum, and the classical harmonic potential can better
scribe the local modes. The IR-activeA2u mode corresponds
to the asymmetric-stretching mode, while theA1g is the sym-
metric one. TheEu mode involves the movement of neare
07521
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silicon atoms with no participation of the oxygen.52 Finally,
Table VI shows the triply degenerate mode of substitutio
carbon as well as the LVM’s associated with a$B,H%
complex.2

IV. CONCLUSIONS

We have presented a development of DFPT, using lo
ized atomic wave functions as a basis set, and applied
the study of LVM’s for light impurities in silicon. In contras
to other methods, the dynamical matrix is computed anal
cally without actually displacing any atom from its equilib
rium position. The calculations are based on the ground-s
density matrix, as computed with theSIESTA package.

Tests of the method for free molecules (SiH4 , H2, CO,
and CO2) show that this approach is highly accurate in si
ations where the anharmonic contributions are small. N
that the frequencies are obtained atT50 K, while experi-
mental data are obtained at low, but nonzero, temperatu

We have used a variety of basis set sizes to describe
0-5
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TABLE IV. Calculated frequencies with a DZ basis set compared with experimental and other theoretical results forIH2. The error
relative to experiment is in parenthesis.

Expt.a This work Other authors Expt.a This work Other authors

IH2 ID2

A 1989 2007 (11%) 2107b (16%) 2145a (18%) 1448 1440 (21%) 1510b (14%) 1540a (16%)
B 1986 2004 (11%) 2106b (16%) 2143a (18%) 1446 1438 (21%) 1508b (14%) 1539a (16%)
B 748 737 (21%) ~A! 775a (13%) 609 590a

A 743 733 (21%) ~B! 768a (13%) 601 583a

A 716 ~B! 736a 566 564a

B 711 ~A! 717a 562 555a

IHD/IDH
Expt.a This work Other authors
1988 2005/2007 (11%) 2106b (16%) 2144a (18%)
1447 1440/1438 (21%) 1509b (13%) 1540a (16%)
746 733/736 (22%) 771a (13%)

714/714 727a

aReference 50.
bReference 45.
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electronic wave functions. In most cases, a DZ basis is q
sufficient to obtain accurate atomic structures and vibratio
frequencies. Larger basis sets such as DZP improve the
quencies in situations that involve more complex chem
bondings. The defects included here are HBC, H2 , H2* , VHn

~with n51,2,3,4),V2H6 , IH2, the $B,H% pair, substitutional
C, interstitial O, and two charge states of theA center. These
defects involve a wide range of bonding configurations.

The average error relative to experiment of the;60 cal-
culated modes is about 2%. In situations where large an
monic contributions are present, the accuracy of the met
decreases somewhat~5–6 %!. This occurs, for example
when H is close to a BC position. However, in most cases
calculated frequencies are in remarkable agreement~0–2 %!
with experimental data, implying that this perturbative a
proach is totally justified and that the ground-state den
matrix calculated withSIESTA is very reliable.
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APPENDIX: TECHNICALITIES

The unperturbed electronic densityr0(r ) is written in
terms of the density matrixrmn

0 ,
is for

TABLE V. Calculated and measured LVM’s for interstitial O (Oi) and two charge states of theA center

(VO0 and VO2). For VO(0/2) a DZP basis was used for O and its Si nearest-neighbors, and a DZ bas
the other Si atoms. For Oi , a DZP basis was used for all the atoms in the cell. The symmetry of Oi structure
is shown above the frequencies.

Expt.a This work Other authorsb Other authorsc

D3d D3d C2 D3d

A2u 1136 1131 (20%) 1184 (14%) 1108 (22%) 1098 (23%)
O i A1g 618 607 (22%) 619 (10%) 621 (10%) 630 (12%)

Eu 518 538 (14%) 519 (10%) 518 (10%)

VO0 B1 836 861 (13%) 839a (10%) 843 (11%)
A1 534 546 (12%) 548a (13%) 540 (11%)

VO2 B1 885 897 (11%) 872a (21%) 850 (24%)
A1 545 558 (12%) 532a (22%) 539 (21%)

aReference 53 for Oi Ref. 54 for VO(0/2).
bReference 55.
cReference 56.
0-6



s

l-

of
l

l;

i-
rix

tu
d

AB INITIO LOCAL VIBRATIONAL MODES OF LIGHT . . . PHYSICAL REVIEW B 65 075210
r0~r !5(
i

ni uc i
0~r !u25(

m,n
S (

i
nicim* cinDfm* ~r !fn~r !

5(
m,n

rmn
0 fm* ~r !fn~r !, ~A1!

whereni is the occupation of statei, andm,n loop over the
orbitals in the basis set.

When we consider a perturbed system, we can express
change in the electronic density in a similar way, defining
density matrix]armn :

]ar~r !5(
m,n

]armn•fm* ~r !•fn~r !

1(
mn

rmn
0
•@]afm* ~r !•fn~r !1fm* ~r !•]afn~r !#.

~A2!

The matrix ]armn involves derivatives of the coefficient
cim , which are obtained from the solution of the Eq.~1!. Its
final expression26 is

TABLE VI. Calculated and measured frequencies for substi
tional C and the$B,H% pair in Si. A DZP basis was used for C an
its Si nearest-neighbors, and DZ for the other atoms. For the$B,H%
pair, a DZ basis was used for all the atoms.

Expt. This work Other authors

Cs Td 607a 631 (14%) 662b (19%)
A 1903c 1958 (13%) 1830d (24%)

$B,H% 1880e (21%)
E 652 695 (16%)

aReference 57.
bReference 58.
cReference 59.
dReference 61.
eReference 62.
fReference 60.
i,

J.

nd
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]armn5(
i

ni(
j

cim* (
m8,n8

cj m8
*

]aHm8n82e i]Sm8n8
e i2e j

cin8cj n

1(
i

ni(
j

cj m* (
m8,n8

cin8
*

]aHn8m82e i]Sn8m8
e i2e j

cj m8cin

1(
i

ni]ae i2cim* cın1(
i

]anie i2cim* cın , ~A3!

where ]aHmn and ]aSmn denote the change in the Hami
tonian and overlap matrices Hmn5^fmuĤufn& and Smn

5^fmufn&. Once the change in the density matrix]armn is
known, we derive the expression of the forces inSIESTA with
respect to atomic displacement~Ref. 16!:

Fb52
]E

]Rb
52(

mn
rmn

]Hmn
0

]Rb
1(

mn
Emn

]Smn
0

]Rb

2E ]VNA~r !

]Rb
dr~r !dr2

1

8p (
jk

]

]Rb

3E VNA~r2Rjk!¹VNA~r !dr12(
m

rm
0 K ]fm

]Rb
UVH

d

1VNAUfmL 22(
mn

rmnK ]fm

]Rb
UVH

d 1VxcUfnL . ~A4!

Here Hmn
0 stands for the non-self-consistent contribution

the Hamiltonian ~kinetic plus nonlocal pseudopotentia
terms!; the matrix Emn5( ie icim* cin is defined in a similar
way to rmn , VNA is the screened neutral-atom potentia
dr(r ) is the differencer(r )2ratom(r ), whereratom is a sum
of localized atomic densities;VH

d is the Hartree potential of
dr; andVxc is the exchange-correlation potential.

Note that, in]aFb52]2E/]a]b , just first-order deriva-
tives of rmn will appear, and that the knowledge of]armn

would enable the computation of a whole row of the dynam
cal matrix. More details of the computation of these mat
elements will be published elsewhere.26
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