
Characterization and Upscaling of Hydrodynamic
Transport in heterogeneous Dual Porosity Media∗,
https://doi.org/10.1016/j.advwatres.2020.103781

Philippe Gouzea,∗, Alexandre Puyguiraudb, Delphine Roubineta, Marco Dentzb
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Abstract

We study the upscaling of pore-scale transport of passive solute in a carbon-

ate rock sample. It is characterized by microporous regions displaying hetero-

geneous porosity distribution that are accessible due to diffusion only, and a

strongly heterogeneous mobile pore space, characterized by a broad distribu-

tion of flow velocities. We observe breakthrough curves that are characterized

by strong tailing, which can be attributed to velocity variability in the flowing

medium portion, and solute retention in the microporous space. Using accurate

numerical flow and transport simulations, we separate these two mechanisms by

analyzing the statistics of residence times in the mobile phase, and the trapping

and residence time statistics in the immobile phases. We employ a continu-

ous time random walk framework in order to upscale transport using a particle

based implementation of mobile-immobile mass transfer, and heterogeneous ad-

vection. This approach is based on the statistics of the characteristic mobile

and immobile residence times, and mass transfer rates between the two con-

tinua. While classical mobile-immobile approaches model mass transfer as a

constant rate process, we find that the trapping rate increases with increasing

mobile residence times until it reaches a constant asymptotic value. Based on

these findings and the statistical characteristics of travel and retention times,
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we derive an upscaled Lagrangian transport model that separates the processes

of heterogeneous advection and diffusion in the immobile microporous space,

and provides accurate descriptions of the observed non-Fickian breakthrough

curves. These results shed light on transport upscaling in highly complex dual-

porosity rocks for which mobile-immobile mass transfer are controlled by a dual

multirate process controlled by the heterogeneity of both the flow field in the

connected porosity and the diffusion in the no-flow regions.

Keywords: Non-Fickian dispersion, Heterogeneous porous media,

Upscaling, Time Domain Random Walk, Continuous Time Random Walk,

Dual multirate mass transfer model

1. Introduction

Solute transport in the laminar flow through the void space of a porous

medium is due to molecular diffusion and advection. Despite the simplicity of

these fundamental processes, observed transport is characterized by complex

features such as strong breakthrough curve tailing, non-Gaussian concentra-5

tion distributions, anomalous dispersion, incomplete mixing, and intermittent

Lagrangian flow properties (Cortis and Berkowitz, 2004; Seymour et al., 2004;

Bijeljic et al., 2011; De Anna et al., 2013; Bijeljic et al., 2013; Kang et al., 2014;

Holzner et al., 2015; Morales et al., 2017). These behaviors are due to the intri-

cate structure of the pore space, and the multi-scale heterogeneity distribution,10

which cause broad distributions of advective and diffusive mass transfer time

scales and transport pathways (Bijeljic et al., 2011; Puyguiraud et al., 2019b;

Porta et al., 2015). The understanding of these heterogeneity mechanisms,

and their quantification in upscaled transport models are key issues in many

academic and engineering applications concerned with the large scale (macro-15

scopic) prediction of the fate of conservative and reactive solutes in geological

and engineered media, such as the assessment of groundwater contamination

and remediation, geological storage of nuclear waste, geothermal energy pro-

duction, and underground storage of carbon dioxide (Domenico and Schwartz,
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1997; Poinssot and Geckeis, 2012; Niemi et al., 2017).20

Classical upscaling approaches quantify Darcy scale transport in terms of

hydrodynamic dispersion coefficients (Bear, 1972), which incorporate the large

scale dispersive effect of pore scale velocity fluctuations. The key issue is evi-

dently the determination of the macroscopic dispersion coefficient. For instance,

de Josselin de Jong (1958) and Saffman (1959) used Lagrangian stochastic mod-25

els for pore-scale particle motion in order to derive expressions for the hydro-

dynamic dispersion coefficients. Their approaches are based on the fact that

velocities vary on typical length scales, the pore lengths. Thus, particles spend

more time in low than in high flow velocity regions. This behavior, which lies

at the origin of pore-scale Lagrangian intermittency (Dentz et al., 2016), is30

modeled by a distribution of travel times. The spatial transitions and the tran-

sition times depend on both the pore velocities and molecular diffusion. Since

these pioneering works, hydrodynamic dispersion and its dependence on the

local Péclet number (the ratio of the characteristic diffusion time to the advec-

tion time) was the subject of numerous experimental, numerical and theoretical35

investigations (Scheven, 2013; Swanson et al., 2015; Pfannkuch, 1963; Rashidi

et al., 1996; Jourak et al., 2013; Bijeljic and Blunt, 2006). Systematic upscal-

ing approaches have been based on generalized Taylor dispersion theory (Bren-

ner, 1980; Salles et al., 1993), volume averaging (Quintard and Whitaker, 1994;

Davit et al., 2012, 2013) and continuous time random walk (CTRW) (Bijeljic40

and Blunt, 2006).

CTRW methods similar to the approaches involved in the works of de Jos-

selin de Jong (1958) and Saffman (1959) were used to model non-Fickian pore-

scale transport features such as anomalous dispersion, breakthrough curves tail-

ing and intermittent Lagrangian particle velocities (De Anna et al., 2013; Kang45

et al., 2014; Gjetvaj et al., 2015; Bijeljic et al., 2011; Puyguiraud et al., 2019c).

The implementation of CTRW is often handled by modeling particle transport

through transitions over fixed spatial scales characterized by random transi-

tion times (Berkowitz et al., 2006). The time domain random walk (TDRW)

method that will be used in this study, is also based on particles motion over50
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fixed distance. Transition times are determined kinematically from the Eulerian

flow field and the spatially distributed properties, for instance the porosity and

diffusivity, that can be mapped either from tomographic imaging or from (sta-

tistical) models. Thus, these methods provide a means to relate pore-scale flow

properties to Darcy scale transport behavior (Bijeljic et al., 2011; Puyguiraud55

et al., 2019c,a).

The presence of immobile medium regions that consist of dead end pores,

regions of low flow in the wake of solid grains and microporosity where diffusion

dominates are common features of porous media such as reservoir rocks. The

large difference in terms of Péclet number between these zones of the porous60

media and the connected network of pores that forms the usual macroporosity

(the flowing porosity) supports the use of dual continuum mobile-immobile mass

transfer approaches first proposed by van Genuchten and Wierenga (1976). This

approach has been widely used to take into account the often-encountered con-

trol of spatially distributed diffusive zones on the overall hydrodynamic trans-65

port and specifically on the occurrence of often highly non-Fickian breakthrough

curves observed experimentally from laboratory to field scales. The heteroge-

neous medium is modeled by overlapping mobile and immobile continua. At

each point in space, the system state is defined by a mobile and series of immo-

bile concentrations. The mobile and immobile continua communicate through70

linear mass transfer in two-equation models (Ahmadi et al., 1998; Cherblanc

et al., 2007), which can be formulated in a way that allows the immobile concen-

trations to be written as linear functionals of the mobile concentration, which

are characterized by a memory kernel (Haggerty and Gorelick, 1995; Carrera

et al., 1998) that accounts for the microscale mass transfer processes. As such,75

it is a method to upscale pore-scale transport. Many implementations of this ap-

proach consider a constant average velocity in the mobile medium portion (Liu

and Kitanidis, 2012; Porta et al., 2013, 2015). However, advective heterogene-

ity, this means velocity variability in the flowing medium portion, by itself gives

rise to anomalous transport (Bijeljic et al., 2011; De Anna et al., 2013; Kang80

et al., 2014; Puyguiraud et al., 2019c). This is why the importance of pore-scale
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velocity statistics and their relation to the complex medium and heterogeneity

structure have been studied in a series of recent experimental and numerical

works (Siena et al., 2014; Matyka et al., 2016; Holzner et al., 2015; De Anna

et al., 2017; Alim et al., 2017; Dentz et al., 2018; Aramideh et al., 2018).85

Some authors have coupled CTRW models of advective heterogeneity with

trapping in immobile regions (Gjetvaj et al., 2015; Dentz et al., 2018). Key items

for these modeling approaches are the identification of the dominant pore-scale

transport and mass transfer processes, their relation to the pore-scale medium

and the flow properties. These aims have been pursued by experiments (Swan-90

son et al., 2015), numerical simulations (de Vries et al., 2017; Ceriotti et al.,

2019) and formal upscaling using volume averaging (Davit et al., 2012; Orgogozo

et al., 2013; Porta et al., 2015), and Lagrangian CTRW based methods (Gjet-

vaj et al., 2015; Dentz et al., 2018). Volume averaging delineates a mobile

region, the flowing porosity, and immobile regions such as biofilms (Orgogozo95

et al., 2013) based on a velocity cutoff determined from a Péclet criterion (Porta

et al., 2015). The large scale transport model is then obtained by averaging the

microscale transport equations over a unit cell that is statistically representative

of the properties of the medium and the flow, and contains two distinct medium

portions, which, as outlined above, are connected through mass transfer across100

domain boundaries. Lagrangian stochastic models (Margolin et al., 2003; Ben-

son and Meerschaert, 2009; Dentz et al., 2012; Comolli et al., 2016) formulate

mass transfer between mobile and immobile medium regions through compound

stochastic Poisson processes (Feller, 1968). This means that mass transfer events

occur at constant rate, quantified by the Poisson process, which renders the res-105

idence time in immobile regions as the sum over individual trapping times a

compound Poisson process. As shown by Margolin et al. (2003), Benson and

Meerschaert (2009) and discussed further in this paper, this formulation is equiv-

alent to Eulerian mobile-immobile mass transfer formulations.

This study aims at testing our capability of characterising and upscaling110

hydrodynamic transport in heterogeneous natural reservoirs where both veloc-

ity distribution and immobile domain heterogeneity cause anomalous transport,
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starting from the model assuming that mobile-immobile mass transfers are con-

trolled by a Poisson process. For that we use as an example of highly het-

erogeneous media, a carbonate sample imaged using X-ray microtomography115

that displays marked bimodal structural heterogeneity caused by the presence

of connected macro-porosity and microporous material that results from grain

sedimentation and diagenesis events. The image is processed in order to map the

mobile and the immobile domain and direct numerical simulations of flow and

transport are performed. We investigate in detail the statistics of mobile and120

immobile particle motion in terms of the respective residence times, the trap-

ping rates and the mobile and immobile times between trapping events. Using

the detailed statistical analysis, we discuss the salient features of transport at

the pore scale, and quantify them in an upscaled transport model based on a

Lagrangian formulation that implements in a simple form the specific process125

that characterizes the spatial distribution of the mobile-immobile mass transfers

in heterogeneous media.

The paper is organized as follows. Section 2 details the methodology. It

describes the numerical solution of the direct flow and transport problem, the

simulation setup, the boundary conditions and the model outputs which allow130

investigating in detail the statistics of mobile and immobile particle motion in

terms of the respective residence times, the trapping rates and the mobile and

immobile times between trapping events. In Section 3 we consider transport in

a simple fracture matrix setup in order to present the concept of the basic La-

grangian methodology for a simple mobile-immobile system for which the single135

trapping rate upscaling CTRW formulation is detailed and then validated using

the direct simulation results. Then, following the same approaches we inves-

tigate in Section 4 the transport behavior in the carbonate rock sample using

direct numerical simulations as well as the upscaling of transport in the immo-

bile domain using a statistical multi-trapping approach. Then, in Section 5, we140

derive a new upscaled Lagrangian model and validate it by comparison with

the results of the direct numerical simulations. Conclusions are presented in

Section 6.
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2. Material and methods

2.1. Sample MC10 properties145

The MC10 carbonate sample is a porous and permeable rock made of quasi

pure calcite. The structure that results from complex sedimentation and di-

agenetic events is made of impervious grains of variable characteristic length

ranging from few tens to about 150 µm and microporous material that ensure

the cohesion of the rock. When performing X-ray microtomography of such150

single solid phase material, the X-ray energy attenuation integrated over each

voxel of the final 3-dimensional image denotes the porosity. For this study, we

use a cropped sub-volume made of 900× 900× 900 cubic voxels of side dimen-

sion dx = 1.6867× 10−6 m. MC10 is characterized by connected macropores of

mean size 70 ×10−6 m. The microporous material (diagenetic cement) is con-155

sidered immobile regarding fluid flow and only accessible to solute by diffusion.

It displays variable porosity made by pores that are smaller than the imaging

resolution. Accordingly, connected macro-porosity delimits the mobile domain

while the microporous material delimits the immobile domain. Details on the

sample characteristics and the methodologies applied to process the X-ray to-160

mographic image are given in Appendix A.

The effective diffusion De in each location of the immobile domain (i.e. in

each voxel) is the product of the molecular diffusion D0 times the effective

porosity φe,

De(x) = D0φe(x) = D0φ(x)/κ(x), (1)165

where κ denotes the immobile domain tortuosity that can be considered as a

constant or a function of the immobile domain porosity φ such as the formu-

lation derived from the electric tortuosity by Archie (1942), κ(x) = φ(x)1−m.

Accordingly, (1) can be rewritten170

De(x) = D0φ(x)m, (2)

with m ranging from 1 (assuming that there is no tortuosity effect) to about

4.5 in microporous limestones (Gouze et al., 2008). The diffusion coefficient D0

7



is constant for all simulations and set to 10−9 m2s−1. Note that the porosity of175

the immobile domain is defined as the porosity accessible by a solute diffusing

from the mobile domain, and thus can be different from the total porosity of the

immobile domain, for instance if porous zones are embedded in zones considered

as non-diffusive as explained below.

For each voxel of the immobile domain transport by diffusion is impossible180

below a given porosity value. Different approaches using, for instance, perco-

lation theory, critical-path analysis or effective medium approximation theory

can be used to evaluate the porosity threshold ζ below which the system is non-

percolating for diffusion (see Hunt and Sahimi (2017); Hommel et al. (2018) and

references herein). For the sample considered here, applying a porosity thresh-185

old consists in transforming the fraction of the immobile domain where φ < ζ

into solid:

De(x) =

 D0φe for φ ≥ ζ

0 for φ < ζ
. (3)

The porosity value of the immobile domain resulting from the image process-190

ing ranges from 0.045 to 0.193 with mean porosity 0.108 (Hebert et al., 2015).

Figure 1 displays a cross section (normal to the main flow) in the segmented

image of the 9003-voxel sample where the fraction of immobile domain corre-

sponding to porosity below threshold values of 10% are enlighten. For instance,

applying a porosity threshold of ζ = 0.1 acts as removing 39% of the immobile195

domain. The mean porosity of the remaining fraction of the immobile domain

is then 0.175. However, applying this threshold does not change noticeably the

area of the mobile-immobile interface which is 1.22 × 105 m2 per m3 of mobile

domain when ζ = 0.0 and 1.20 × 105 m−1 when ζ = 0.1, i.e. a decrease of

1.64%.200
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Figure 1: Porosity map of a slice normal to the main flow direction z positioned at z = 450.

The image on the left displays the porosity map before threshold. Orange and cyan colors

denote the solid phase (φ = 0) and the mobile domain (φ = 1) respectively, while gray scale

from black (low porosity) to white (high porosity) denotes the immobile domain porosity. The

image on the right shows in yellow color the fraction of the immobile domain removed (i.e.

transformed into solid) when applying a threshold ζ = 0.1 (defined in Section 2.1).

In this paper, different tortuosity models are investigated. Assuming a poros-

ity threshold of ζ = 0.1 and tortuosity defined by κ(φ) = φ1−m with m = 2.5 is

the most realistic model (Garing et al., 2014), but models with m= 1.5 and 4.5

as well as with a constant tortuosity model κ = 1.8 and ζ = 0 are investigated

in order to explore the feedback control of the immobile domain diffusivity on205

the overall solute transport and on the upscaling feasibility. A comprehensive

characterisation of the diffusion properties according to the assumption made

on tortuosity are given in Appendix B.

2.2. Mobile domain flow

We consider the flow in the sample at low Reynolds so that the pore-scale210

flow velocity v(x) is solution of the Stokes equation

∇2v(x) =
1

µ
∇p(x), (4)
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where p(x) is the fluid pressure. The 9003 cubic voxels mesh is directly used

as the meshed domain for OpenFOAM calculations using a permeameter-like215

configuration: (i) constant pressure is applied at the inlet (z = 0) and the

outlet (z = Lz) boundaries where 20-pixels layers of unitary porosity are added

in order to obtain an accurate determination of the velocity components at the

inlet and outlet of the domain, (ii) the domain is bounded by solid at x = 0,

x = Lx, y = 0 and y = Ly, (iii) no-slip conditions are applied at the mobile-solid220

and the immobile-solid domain boundaries. Lx, Ly and Lz denote the domain

lengths in the x, y and z directions, respectively.

The flow equations are solved via a finite volume scheme implemented in the

SIMPLE algorithm of OpenFOAM (https://cfd.direct/openfoam/user-guide/v7-

fvsolution/). This algorithm solves the steady state Stokes equation (4) and225

continuity equation ∇ · v(x) = 0 following an iterative procedure. Convergence

is reached when the difference in terms of pressure and velocity components

between the current and the previous steps is smaller than a threshold. Once

convergence has been reached, we extract the velocity field components that are

computed at each of the voxel interface.230
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Figure 2: Left: normalized fluid Eulerian velocity PDF in the direction of the main flow vz/vz

(circles) and in one of the direction perpendicular to the main flow vx/vz (solid line). Right:

Eulerian velocity norm |V | PDF (plain line) and flux weighted Eulerian velocity norm PDF

(dashed line).

The fluid velocity in the direction along the z-axis (the main flow direc-

tion) displays an asymmetric shape with some negative values that empha-

size the high complexity of the flow field triggered by the high heterogeneity

of the mobile domain. The fluid velocity perpendicular to the main flow di-

rection is quasi-symmetric (Figure 2). The flux weighted velocity norm PDF235

P ◦E(|V |) = |V |/〈|V |〉PE(|V |), where PE(|V |) denotes the PDF of the Eulerian

velocity norm, is displayed in Figure 2. Puyguiraud et al. (2019b) showed that

for stationary system P ◦E is equal to the Lagrangian velocity PDF which is the

core information required for upscaling advective transport in the mobile do-

main (Puyguiraud et al., 2019c). Upscaling of the advective transport using P ◦E240

for this highly heterogeneous sample is beyond the scope of the present work

that focuses on upscaling the immobile domain transport, and will be presented

in a future dedicated paper. Nevertheless, we note that the PDF P ◦E presented

in Figure 2 is quite similar to that of the sandstone sample presented in Figure

2 in Puyguiraud et al. (2019c) for which upscaling methods were proposed by245

the authors.
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2.3. Transport simulations

Transport in the mobile-immobile domain is described by the generic advection-

diffusion equation which is considered to apply at the scale of each voxel:

∂c(x, t)

∂t
+ v(x) · ∇c(x, t)−De∇2 c(x, t) = 0, (5)250

where De is the effective diffusion coefficient and v(x) is the flow velocity. In

the mobile domain, De reduces to the molecular diffusion coefficient D0 whereas

the flow velocity is zero in the immobile domain.

Equation (5) is solved numerically using a time-domain random walk (TDRW)255

method (Russian et al., 2016), which is based on the formulation of Eq. (5) as a

master equation using a finite volume discretization of the spatial operators. A

complete description of the TDRW method, a demonstration of its equivalence

with Eq. (5), and its implementation using voxelized images of porous media

can be found in Dentz et al. (2012) and Russian et al. (2016). The main features260

of the method are given below. The domain discretization used for transport is

the same as the one used for computing the flow. The TDRW approach models

the displacement of particles in space and time, their ensemble average giving

the solution of the transport equation for the considered media. For each parti-

cle, each motion event is denoted by a single jump from one voxel to one of the265

6 face-neighboring voxels. As such, the jump distance ξ is constant and equal

to the voxel size dx. The direction and the jump duration are controlled by the

local properties of the voxels, i.e. the fluid velocity and the effective diffusion

coefficient. The recursive relations that describe the random walk from position

xj to position xi of a given particle at jump n is270

xi(n+ 1) = xj(n) + ξ, t(n+ 1) = t(n) + τj , (6)

with |ξ| = ξ denoting the transition length. The probability wij for a transition

of length ξ from pixel j to pixel i, and the transition time τj associated to pixel

j are given by

wij =
bij∑
[jk] bkj

, τj =
1∑

[jk] bkj
, (7)275
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where the notation
∑

[jk] indicates the summation over the nearest neighbors

of pixel j. The bij are given by

bij =
D̂eij

ξ2
+
|vij |
2ξ

(
vij
|vij |

+ 1

)
, (8)

where D̂eij denotes the harmonic mean of the diffusion coefficients of pixels i

and j, and vij denotes the velocity component of vj in the direction of pixel i,280

vij = vj · ξij . As a convention, voxel i is downstream from pixel j if vij > 0.

Note that the TDRW can be seen as a continuous time random walk (CTRW)

because it treats time as an exponentially distributed continuous random vari-

able whose mean may vary between voxels. In this paper, we use the term

TDRW for the numerical random walk method used to solve the direct prob-285

lem, and the term CTRW for the upscaled random walk framework.

2.4. TDRW simulations setup

The applied boundary condition at the sample inlet (z = 0) is a pulse

of constant concentration in the mobile domain only. This is performed by

applying a flux weighted injection of the particles at t = 0. By construction290

the pulse is formally an exponential concentration function of characteristic

time τj |z=dx/2 (Russian et al., 2016). The main result is given by the first

passage time at the outlet of the mobile domain which denotes the inert tracer

breakthrough curve (BTC). No-flux boundary condition is set at x = 0, x = Lx,

y = 0, y = Ly, as well as z = 0 and z = Lz in the immobile domain.295

Simulations can be performed for different values of Péclet number which

is defined by Pe = 〈|V |〉l/D0 where l is a characteristic length which is taken

here as the average pore length. Each simulation involves at least 107 particles.

The statistics concerning the trapping events characteristics such as the trap-

ping time in the immobile domain and the survival time in the mobile domain300

between two trapping events are obtained by sampling more than 109 events

(the definition of a trapping event is provided in Section 2.5).

13



2.5. Model Output

The mass transfers occurring in the sample are probed by a set of statistical

distributions which are given as probability density functions (PDFs), denoted305

ψ̌.(.), where the overlying reversed-hat symbol indicates that they are derived

from the results of the direct TDRW simulations. These PDFs describe the

advection-diffusion transport in the mobile domain, the exchange between the

mobile and the immobile domains, and the diffusive transport in the immobile

domain. In terms of random walk process, we will name each intrusion of a310

particle into the immobile domain a ”trapping event”.

Trapping time PDF denoted ψ̌τim is the PDF of the time τim(p, n(p)) spent

by the particles p (p = 1, .., P ) in the immobile domain during the trapping

events n(p) (n(p) = 1, ..., N(p)), where P is the total number of particles

exiting at the sample’s outlet and N(p) is the total number of trapping315

events encountered by particle p.

Immobile time PDF denoted ψ̌tim is the PDF of the time tim(p) spent by

the particles in the immobile domain to cross the entire domain (i.e. from

z = 0 to z = Lz). For a given particle p, tim =
∫
n(p)

τimdn.

Survival time PDF denoted ψ̌τs is the PDF of the times τs(p, n(p)) spent by320

the particles p in the mobile domain between trapping events n−1 and n.

Mobile time PDF denoted ψ̌tm is the PDF of the time tm(p) spent by the

particles in the mobile domain to cross the entire domain. For a given

particle p, tm =
∫
n
τsdn + ε, where ε is the sum of the time spent to move

from the inlet to the location of the first trapping event and of the time325

spent to move from the exit location of trapping event N(p) to the outlet.

Trapping rate PDF denoted ψ̌γ is the PDF of γ(p) = n(p)/tm(p).

First passage time PDF denoted ψ̌tt is the PDF of the first passage time

tt(p) spent by the particles to cross the domain and is equivalent to the
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breakthrough curve (BTC). By definition, for each particle p330

tt(p) = tm(p) + tim(p) = tm(p) +

N(p)∑
i=1

τim(p, i). (9)

3. Modeling transport in a single fracture with mobile-immobile mass

transfer

In this section, we investigate the case of the transport of a passive tracer in335

a simple mobile-immobile domain system that can be adequately represented as

a single linear fracture (the mobile domain) crossing a continuous porous matrix

(the immobile domain). The different PDFs characterizing the transport process

(described in Section 2.5) will be computed using direct TDRW simulations and

will later be compared to those resulting from TDRW simulations performed340

for the MC10 carbonate sample. Furthermore, we present a 1D CTRW model

that upscales transport in the fracture matrix system and introduces the main

features and concepts used for the upscaling of transport in the MC10 carbonate

sample. The detailed fracture-matrix transport model can be formulated in the

most general form as345

φ(y)
∂c(x, t)

∂t
+ u(y)

∂c(x, t)

∂x
−∇ · [D(y)∇c(x, t)] = 0, (10)

where φ(y) is porosity, which is equal to φm within the fracture and φim in the

matrix; u(y) is the Darcy velocity, which is equal to u in the fracture and 0 in

the matrix; similarly, D(y) is the diffusion coefficient, which is equal to Dmφm350

in the fracture and equal to Dimφim in the matrix, where Dm and Dim denote

the diffusion coefficient in the mobile and the immobile domain respectively.

In the following, we consider two equivalent upscaled transport approaches.

3.1. Upscaling by vertical averaging

Upscaled transport in this fracture-matrix system can be described by a mul-355

tirate mass transfer model (Haggerty and Gorelick, 1995; Carrera et al., 1998).

In the following, we briefly outline the steps that lead to such a description in

order to highlight the underlying assumptions. The upscaled multirate mass
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transfer description for the fracture-matrix system is obtained by vertical aver-

aging. To this end, we define the averages concentration over the fracture and360

matrix cross-sections as

cm(x, t) =
1

dm

dm∫
0

dyc(x, t), cim(x, t) =
1

dim

dim∫
0

dyc(x, t), (11)

where dm is the width of the fracture and dim of the matrix. Averaging (10)

over the fracture cross-section gives365

φm
∂cm(x, t)

∂t
+ u

∂cm(x, t)

∂x
−Dmφm

∂2cm(x, t)

∂x2
= − 1

dm
φmDm

∂cm(x, t)

∂y

∣∣∣∣
y=0

,

(12)

while the equation for purely diffusive transport in the matrix domain is

φim
∂cim(x, t)

∂t
−Dimφim

∂2cim(x, t)

∂y2
= 0. (13)

370

The boundary condition are cim(x, y = 0, t) = cm(x, y = 0, t) as an expression of

concentration continuity. We approximate cm(x, t) ≈ cm(x, t), which assumes

fast equilibration over the fracture cross-section. Using flux continuity across

the fracture matrix interface, we obtain in Appendix C

∂cm(x, t)

∂t
+ v

∂cm(x, t)

∂x
−Dm

∂2cm(x, t)

∂x2
= −β ∂cim(x, t)

∂t
, (14)375

where we defined the capacity coefficient β = dimφim/dmφm and the pore ve-

locity v = u/φm. The average matrix concentration can be expressed as a linear

functional of the average fracture concentration (Appendix C)

cim(x, t) =

t∫
0

dt′ϕ(t− t′)cm(x, t). (15)380

The memory function is well known (Carrera et al., 1998), and can be expressed

in Laplace space as

ϕ∗(λ) =
tanh(

√
λτD)√

λτD
, (16)

385
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where we define the characteristic diffusion time τD = d2im/Dim in the matrix.

Combining (14) and (15), we obtain the integro-partial-differential equation

∂cm(x, t)

∂t
+ v

∂cm(x, t)

∂x
−Dm

∂2cm(x, t)

∂x2
= −β ∂

∂t

t∫
0

dt′ϕ(t− t′)cm(x, t), (17)

which is equivalent to the multirate mass transfer model of Haggerty and Gore-390

lick (1995); Carrera et al. (1998). In the following, we describe the formulation

of this upscaled model in a Lagrangian framework.

3.2. Upscaled Lagrangian model

The upscaled Lagrangian approach models one-dimensional advective-diffusive

transport along the fracture, which is interrupted by trapping events that are395

Poisson distributed. This means that transitions from the fracture to the matrix

occur at constant rate γ, which can be quantified by the diffusion rate over the

fracture cross-section. At each trapping event, a particle is trapped for a ran-

dom time distributed according to ψim(t). These are the principal ingredients

of the upscaled transport model. In the following, we formulate this model in400

the TDRW framework.

One-dimensional advective-diffusion particle motion at constant velocity v

and diffusion coefficient Dm is described by particle transitions over the fixed

distance ` by a random time tm. The probability wu for upstream particle

motion is405

wu =
Dmτv
`2

. (18)

The probability for downstream motion is accordingly wd = 1 − wu. The time

τv is defined by

τv =
`/v

1 + 2/Pe
, Pe =

v`

Dm
. (19)410

The transition time tm is exponentially distributed

ψim(t) = τv exp(−t/τv). (20)
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These rules represent mobile transport as a TDRW model for advection-diffusion415

with constant velocity v and diffusion coefficient Dm (Russian et al., 2016). This

motion is combined with the trapping rules outlined in the following. During a

transition of duration tm, nt trapping events occur, such that the total transition

time is given by

tt = tm +

nt∑
i=1

τim. (21)420

The number nt of trapping events is distributed according to the Poisson dis-

tribution

P (n|t) =
(γt)nt exp(−γt)

nt!
, (22)

425

with mean 〈nt〉 = γt. Thus, the total transition time tt describes a compound

Poisson process. Its PDF ψ(t) can be expressed in Laplace space as (Margolin

et al., 2003; Dentz et al., 2012)

ψ∗(λ) =
1

1 + λτv + γτv[1− ψ∗im(λ)]
. (23)

430

Laplace transformed quantities are marked by an asterisk, the Laplace variable

is denoted by λ.

In order to show the equivalence of this Lagrangian formulation with the

MRMT model (17), we derive in Appendix D for the concentration cm(x, t) in

the fracture435

∂cm(x, t)

∂t
+ v

∂cm(x, t)

∂x
−Dm

∂2cm(x, t)

∂x2
= −∂cim(x, t)

∂t
. (24)

The concentration cim(x, t) in the matrix is given by

cim(x, t) = γ

t∫
0

dt′ϑ(t− t′)cm(x, t′), (25)

440

where the memory kernel ϑ(t) is defined by

ϑ(t) =

∞∫
t

dt′ψim(t′). (26)
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It denotes the probability that the trapping time is larger than t. Using (25)

in (24), we obtain for cm(x, t) the governing equation445

∂cm(x, t)

∂t
+ v

∂cm(x, t)

∂x
−Dm

∂2cm(x, t)

∂x2
= −γ ∂

∂t

t∫
0

dt′ϑ(t− t′)cm(x, t′). (27)

This equation and equation (17) are equivalent if

γϑ(t) ≡ βϕ(t). (28)
450

We first recall that ϕ(t) is normalized to 1, which can be seen by taking the

limit λ → 0 in (16), while the integral over ϑ(t) is equal to 〈τim〉, the mean

trapping time. Thus, we obtain

γ〈τim〉 = β. (29)
455

This equivalence identifies the trapping rate γ and trapping time distribution

ψim(t) as the key quantities in the upscaled model. Both quantities can be ac-

cessed by random walk particle tracking simulations as outlined in Section (2.4).

In the following, we use this general framework for the upscaling of transport

in the MC10 carbonate sample.460

3.3. CTRW upscaled model versus TDRW model results

We tested the CTRW model by comparing the results with direct TDRW

simulations for the simplest idealized 2-dimensional representation of a single

fracture system. The computational domain is a porous medium (the immobile

domain) of dimension Lz=20000 × Ly=1001 pixels embedding a fracture (the465

mobile domain) of aperture 1 pixel, located at y=500, so that the immobile

domain depth on each side of the fracture is `im=500 pixels. The pixel size is

denoted ξ as in Section 2.3.

The flow velocity v in the fracture is constant, the inlet is located at z = 0

where a pulse injection is applied (see Section 2.4) and the outlet is located at470

z = 20000 where the PDF of the first passage time (or breakthrough curve) ψ̌tt

is monitored. With a fracture aperture ξ, the problem is simply characterized
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by the Péclet number Pe = V ξ/D0. We performed simulations for constant

diffusivity in the immobile domain (De(x, y) = D) and for random lognormal

distribution with De(x, y) taken as the spatial geometric mean of the pixel475

diffusion. Simulations are performed with ξ = 10−5 m, D0 = 10−9 m2·s−1, De =

1.774 × 10−11 m2·s−1 and 10−12 ≤ De(x, t) ≤ 10−9 m2·s−1 for the lognormal

distributed diffusion model in the matrix.

A main attribute of the compound Poisson process described in Section 3.2 is

that the distribution of the survival time in the mobile domain τs is exponentially480

distributed:

ψτs(t) = γ exp(−γt), (30)

where γ = 1/〈τs〉.

Figure 3 displays the survival time distribution ψ̌τs computed from the485

TDRW which is well fitted by an exponential distribution of mean 〈γ〉 = 〈n/tm〉

= 1/〈τs〉.
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Figure 3: PDFs of the survival time ψ̌τs computed by TDRW (circles) and the exponential

trend (Equation (30)) corresponding to the same mean value 〈γ〉 = 1/〈τs〉 = 0.697 s−1 (dashed

line) for different Péclet numbers. The colored lines denote the trapping rate PDFs ψ̌γ where

the average 〈γ〉 = 〈n/tm〉 (vertical dashed line) is 0.697 s−1.

Figure 4 shows the perfect agreement between the breakthrough curves, or
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first passage time PDFs ψ̌tt , resulting from the upscaled CTRW simulations

and those obtained from the TDRW simulations, for Pe values ranging from 1490

to 100. The results are similar for the homogeneous immobile domain and for

the random lognormal distribution with the same geometric mean diffusion, as

expected (Nœtinger and Estebenet, 2000; Russian et al., 2016).
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Figure 4: Green, red and blue circles denote ψ̌tt , the PDFs of the first passage time tt

computed by TDRW, for constant De = 1.774×10−11 m2·s−1 in the immobile domain for

Pe = 1, 10 and 100, respectively. The black circles, that are almost completely overlapped

by the red circles (Pe = 10), denote ψ̌tt for random lognormal porosity distribution with

geometric mean diffusion equal to 1.774×10−11 m2·s−1. The green, red and blue dashed lines

denote the equivalent ψtt computed by the CTRW. The curve plotted as a continuous black

line is the memory function ϕ(t) of slope −1/2 that characterizes the immobile domain while

the vertical black dashed line indicates the diffusion characteristic time td = `2im/(2De) =

7.044×105 s.

4. TDRW modeling of transport in the carbonate sample

This section concerns direct simulations performed with the TDRW model,495

i.e. simulations of the 3-dimensional domain. Simulations are performed ac-

cording to the algorithm and the boundary conditions described in Sections 2.2

and 2.3, respectively. The results presented in this section focus on 4 distinct

models that characterize the immobile domain diffusivity distribution in terms

of tortuosity κ and porosity threshold ζ (see Table B.1). The simplest model500
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assumes constant tortuosity κ=1.8 and no porosity threshold, while the three

other assume porosity-dependent tortuosity κ = φm, with m = 1.5, 2.5 or 4.5

and a porosity threshold ζ = 0.1.

4.1. Trapping properties of the MC10 sample

Here, the trapping characteristics of the MC10 sample are analyzed and505

compared to the CTRW model discussed in Section 3. We recall that this

model is characterized by the following feature: the conditional PDF Pn(n|tm)

that measures the number of trapping events conditioned to the time spent in

the mobile domain is a Poisson distribution with a constant trapping rate γ.

This means that the time spent in the mobile domain between two trapping510

events, or survival time τs, is characterized by an exponential distribution. The

PDF ψ̌τs computed for the MC10 sample and the one corresponding to Equation

(30) with the same average values 〈τs〉 are displayed in Figure 5, while the PDF

Pn(n|tm) computed for the MC10 sample and the one corresponding to Equation

(22), where the constant trapping rate γ = 〈γ〉, are displayed in Figure 6. The515

latter is obtained by computing the PDF of ntm from Equation (22) for each

range of tm.
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Figure 5: PDFs of the survival time τs, ψ̌τs , for different values of κ or alternatively m

and ζ. For comparison, the continuous lines denote the exponential trend (Equation (30))

corresponding to the same average values 〈τs〉.
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The survival time PDF ψ̌τs does not depend on the average fluid velocity

in the sample, i.e. does not depend on the Pe value, and is controlled by

the transport properties at the mobile-immobile domains interface and thus is520

controlled by the effective diffusion of the immobile domain in the vicinity of the

mobile-immobile interface, that is to say by the local porosity. Figure 5 shows

that the ψ̌τs PDFs are visually identical when applying a porosity threshold

ζ ≤ 0.1 or not, emphasizing that the value of the porosity threshold does not

change noticeably the properties of the immobile domain at the mobile-immobile525

interface nor its topology, as it is shown also in Appendix B. As expected,

ψ̌τs is strongly shifted toward larger time values when the immobile diffusivity

at the mobile-immobile interface decreases. The important point is that ψ̌τs

curves are, as a general rule, not exponential distributions and display an over-

representation of the short survival times. We see also larger maximum values530

compared to what is predicted by the exponential distribution, but this feature

decreases when m increases.
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Figure 6: Left: conditional probability log10(Pn(n|tm)) obtained for the MC10 sample. Right:

conditional probability log10(Pn(n|tm)) corresponding to the theoretical Poisson distribution

computed using a single rate 〈γ〉. Black color indicates values of log10(Pn(n|tm)) smaller than

-5 while color scale from dark red to white denotes values of log10(Pn(n|tm)) ranging from -5

to -0.68. The green dashed line is a visual landmark. Results are given for Pe = 100, ζ = 0.1

and κ(x) = φ(x)1−m with m = 2.5.

The conditional PDF Pn(n|tm) resulting from the MC10 simulations is com-

pared to the one computed assuming a Poisson distribution following Equation

22 with a constant trapping rate 〈γ〉 in Figure 6. The conditional PDF Pn(n|tm)535

resulting from the MC10 simulations is noticeably different from the one com-

puted assuming a Poisson distribution with a constant trapping rate. For a

given mobile time, the theoretical Poisson model predicts less trapping events

than what is measured for the MC10 sample. This discrepancy increases with

the value of tm.540
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Figure 7: PDFs of the trapping rate ψ̌γ , where γ(p) = n(p)/tm(p) for different properties of the

immobile domain and different values of Pe. The values in parenthesis denote the percentage

of particles p traveling the entire domain in the mobile domain without being trapped in the

immobile domain. The vertical red discontinuous line indicates the mean trapping rate 〈γ〉

which is equal to 1.51 ± 0.18 for all the curves.

The trapping rate distribution encompasses the information about the trap-

ping process which is controlled by the complex interactions between the mobile

and immobile transport process. As such, one can expect that the trapping rate

distribution is a macroscopic observable that characterizes the mobile-immobile

mass transfer, and in a similar manner that the memory function is the macro-545

scopic observable that enciphers the entire properties of immobile domain dif-

fusive transport properties. Figure 7 displays the PDF of γ, ψ̌γ and reports the

percentage of the particles that do not encounter trapping when traveling from

the inlet to the outlet for different properties of the immobile domain. This

percentage depends evidently on the value of the Pe number but also on the550

properties of the immobile domain. For instance, it ranges from 1.8% to 95.6%

for Pe = 100 depending on the value of m. It follows that the average trapping

rate 〈γ〉 cannot be inferred from 1/〈τs〉 because the statistics of τs concern only

particles that encounter trapping whereas a certain number of particles never

visit the immobile domain. Yet, interestingly, the results presented in Figure 7555

show that all the PDFs ψ̌γ have almost the same average value, 〈γ〉 = 1.51 ±
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0.18 s−1 independently of the immobile domain properties, which means that

this value is an intrinsic property of the MC10 sample, probably related to the

geometry of the mobile domain and its interface with the immobile domain,

despite the distributions ψ̌γ being strongly dissimilar.560

Altogether, these results suggest that the assumptions supporting the CTRW

model of Section 3.2 are not strictly met for the carbonate sample considered

here. Taking into account these results, the issue that will be investigated next

is to evaluate to which extent the CTRW model is robust enough to model trans-

port in heterogeneous media such as the MC10 sample, or alternatively what565

additional relationship between the trapping rate properties and the mobile do-

main properties are required to derive a reliable upscaled model for complex

systems such as the MC10 sample.

4.2. Upscaling the impact of diffusion in the immobile domain

For each trapping event, the particles that enter the immobile domain at a570

given location can exit at another location. In the case of the single fracture

model with homogeneous equivalent immobile domain, the relocation distance

along the linear continuous mobile-immobile interface is a sharp distribution

(well described by its mean value 0). Conversely, the relocation of the particles

in the MC10 sample is much less predictable due to the strong heterogeneity of575

the system in which the immobile domain is formed of heterogeneous clusters

spatially distributed. This is triggered principally by non-continuous mobile-

immobile interfaces (lacunar interface) and the possibility of particles to utilize

the immobile domain to take a shortcut from a given flow path to another.

Conversely, the 1-dimensional CTRW model imposes by construction that par-580

ticles enter and exit the immobile domain at the same location for each trapping

event.

Simulating such a situation while keeping the complete (3-dimensional) com-

putation of the transport in the mobile domain is viewed as potentially instruc-

tive for understanding conjointly the effect of the particles relocation at the585

mobile-immobile interface owing to the strong heterogeneity of the interface
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and the statistical representativeness of the trapping time PDF ψ̌τim for mod-

eling the immobile domain transport properties at the scale of the sample. To

this end, the TDRW solver is modified such that transport in the mobile domain

and the trapping process are kept unchanged, but the time spent in the immo-590

bile domain is drawn from the trapping time PDF ψ̌τim previously computed

during the corresponding TDRW simulation involving the full direct simulation

of the transport in the mobile and the immobile domain. Doing this imposes

by construction that particles enter and exit the immobile domain at the same

location for each trapping event similarly to the CTRW upscaled model. From595

now on, the model in which the trapping time PDF is used to model the time

spent in the immobile domain at each trapping event is called the UPSCAL

TDRW model in contrast to the FULL TDRW model.

4.2.1. Control of the immobile domain diffusion properties over mobile-immobile

mass transfer600

Figure 8 compiles the main information concerning the results in terms of

first passage time tt, mobile time tm, immobile time tim and survival time τs

for the FULL TDRW model and the UPSCAL TDRW model. These data are

very valuable for understanding the control of the immobile domain properties

on the way particles sample the system. The capacity of the immobile domain605

to trigger shortcuts between zones of the mobile domain with different flow

properties decreases when moving from the κ = 1.8 - ζ = 0 model to the m

= 2.5 - ζ = 0.1 model and m = 4.5 - ζ = 0.1 model because 1) applying a

porosity threshold decreases the probability of having immobile domain clusters

connected to many pores and 2) increasing the value of m acts as increasing610

the tortuosity, i.e. the effective diffusion time in the immobile domain (see

Table B.1). Consequently, comparing the results for the FULL model with

the UPSCAL model for which particles are forced to exit the immobile domain

where they entered for each of the trapping events allows not only to understand

the feedback effect of the particle relocation process at the mobile-immobile615

interface on the overall transport that is quantified by the first passage time
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PDF, but also to decompose the overall transport process in terms of the time

spent in the mobile domain and the immobile domain.

For the κ = 1.8 - ζ = 0 model the first passage time PDF ψ̌tt obtained for the

FULL and the UPSCALmodel are noticeably dissimilar; their respective shape620

being fully controlled by the immobile time distribution for intermediate and

long times. Conversely, the mobile time PDF are the same but different from the

mobile time PDF computed assuming no immobile domain, i.e. depending only

on the mobile domain properties. This indicates that the transport is strongly

controlled by the broad spatial redistribution of the particles among mobile625

zones of distinctly different flow rates. As a general rule, one can conclude that

the discrepancy between the UPSCAL and the FULL model in terms of first

passage time PDF ψ̌tt (Figure 8) originates from the fact that both the trapping

rate γ and the trapping time in the immobile domain τim are different as a result

of the distinct particle relocation processes when encountering trapping events.630

From these observations, one can speculate that for the κ = 1.8 - ζ = 0 model

the upscaling of such a system with a one-dimensional model where particles

sample the immobile domain according to the ensemble average statistics of the

mobile displacement will fail even if one considers a non-unique trapping rate

that would be related to the mobile time.635

The two other models of immobile domain (m = 2.5 and 4.5) share the same

spatial geometry, i.e. the same boundaries, because they share the same porosity

threshold ζ = 0.1, but differ from the effective diffusion spatial distribution and

mean. Increasing the value of m acts as decreasing 1) the mean distance of

penetration of the particle into the immobile domain and 2) the relocation640

distance between the entrance and the exit of the particle in the immobile

domain during each trapping event. As such, the model characterized by m =

4.5 is the most similar to the simple fracture model presented in Section 3.3 in

terms of geometry. Indeed, the results presented in Figure 8 for m = 4.5 - ζ =

0.1 show that the first passage time PDFs ψ̌tt are almost similar for the FULL645

and the UPSCAL models, while the mobile time PDFs of tm (ψ̌tm) overlap the

PDFs of tm for the case where there is no immobile domain. This means that
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the immobile domain heterogeneity does not control the advective transport in

the mobile domain similarly to what occurs in the simple fracture model.

For the model where one sets m to the value of 2.5, which is the most realistic650

parameterization, Figure 8 tells us, following the same argumentation as for the

m = 4.5 case, that the immobile domain heterogeneity weakly controls the

mobile domain transport.
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Figure 8: PDFs of the first passage times tt (ψ̌tt , plain circles), the mobile times tm (ψ̌tm ,

plain lines) and the immobile times tim (ψ̌tim , dashed lines) for the FULL TDRW model

(black) and the UPSCAL TDRW model (red). Simulations were performed with the following

parameters: Pe = 100, κ = 1.8 and ζ = 0, and κ(x) = φ(x)1−m with m = 2.5 or 4.5 and ζ

= 0.1. The gray-filled circles denote the PDFs of tt for the case where there is no immobile

domain (recall that ψ̌tt = ψ̌tm in this case).
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4.2.2. On the control of the mobile domain transport on the trapping rate

Figure 9 shows that the trapping rate γ is not constant but depends on the655

mobile time tm. The function γ(t) depends on the properties of the immobile

domain controlled by κ and ζ but also on the Pe value which means that this

function γ(tm) is not an intrinsic property of the system, but depends on the

flow rate. Yet we observed, for instance for the immobile domain characterized

by m = 2.5 and ξ = 0.1 that the trapping rate is actually constant for value of660

tm larger than 200 s (materialized by the vertical dashed line in Figure 9). The

system behaves as a constant trapping rate for range of tm which increases as

m increases.
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Figure 9: γ(t) versus tm, for different tortuosity model for the immobile domain (with ζ =

0.1). Gray filled symbols are results for Pe = 100 while red and blue circles are results (for

the m = 2.5 model) for Pe = 10 and 1000, respectively.

Figure 10 compares the theoretical conditional PDF Pn(n|tm) assuming a

Poisson distribution following Equation 22 where the trapping rate is a function665

of tm using the values given in Figure 9 with the conditional PDF Pn(n|tm)

resulting from the MC10 simulations. It can be seen that using the γ(tm)

function reestablishes the consistency with the compound Poisson process model

(compared to Figure 6). This gives us the sound basis for implementing the

CTRW approach presented in Section 3.2, but implemented with the γ(tm)670
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function, for upscaling the transport in the MC10 sample.

Figure 10: Left: conditional probability log10(Pn(n|tm)) obtained for the MC10 sample.

Right: conditional probability log10(Pn(n|tm)) corresponding to the theoretical Poisson dis-

tribution computed using the function γ(tm) displayed in Figure 9. Black color indicates

values of log10(Pn(n|tm)) smaller than -5 while color scale from dark red to white denotes

values of log10(Pn(n|tm)) ranging from -5 to -0.68. The green dashed line is a visual landmark

identical to Figure 6. Results are given for Pe = 100, κ(x) = φ(x)1−m with m = 2.5 and ζ =

0.1.

5. CTRW upscaling of MC10

As shown above, the dependence of the trapping rate γ on the time spent

by a particle in the mobile domain tm is a critical feature triggered by the

heterogeneity of the mobile-immobile domain interface. Accordingly, the pro-675

posed model is based on the implementation of the mobile-time dependence of

the trapping rate in the CTRW upscaling model that was used to model the

transport in the single fracture in Section 3.2. One speculates that the number
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of trapping events ntm during a mobile transition of duration tm is Poisson-

distributed in which the trapping rate is given by the γ(tm) function. To test680

this assumption we build a simple upscaled model in which the transport pro-

cesses is modeled by the unconditional downstream motion of particles with

constant distance Lz and a random transition time tm distributed according to

ψ̌tm (plotted in Figure 8). The first passage time for each particle injected at t

= 0 is similar to Equation (9)685

tt = tm +

nt∑
i=1

τim. (31)

Here the number of trapping events nt is a random variable distributed according

to the Poisson distribution

P (n|tm) =
(〈nt〉)n exp(−〈nt〉)

n!
, (32)690

with 〈nt〉 = tmγ(tm). The trapping time τim is also a random variable dis-

tributed according to ψ̌τim .

32



10
-1

10
0

10
1

10
2

10
3

time (s)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
D

F

TDRW UPSCAL  m = 1.5 ξ = 0.0

TDRW UPSCAL  m = 2.5 ξ = 0.1

TDRW UPSCAL  m = 2.5 ξ = 0.0

TDRW UPSCAL  m = 4.5 ξ = 0.1

CTRW m = 1.5 ξ = 0.0

CTRW m = 2.5 ξ = 0.1

CTRW m = 2.5 ξ = 0.0

CTRW m = 4.5 ξ = 0.1

10
-1

10
0

10
1

10
2

10
3

time (s)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
D

F

TDRW FULL m = 1.5 ξ = 0.0

TDRW FULL m = 2.5 ξ = 0.1

TDRW FULL m = 2.5 ξ = 0.0

TDRW FULL m = 4.5 ξ = 0.1

CTRW m = 1.5 ξ = 0.0

CTRW m = 2.5 ξ = 0.1

CTRW m = 2.5 ξ = 0.0

CTRW m = 4.5 ξ = 0.1

Figure 11: The figure on the left displays the comparison of PDFs of the total tt ψ̌tt computed

by the TDRW for the UPSCAL model with ψtt the total time PDFs resulting from the CTRW

using as input the mobile time PDFs ψ̌tm computed by the TDRW model without immobile

domain (corresponding to the identical gray filled circle curve displayed in all plots of Figure 8).

The figure on the right displays the comparison of PDFs of the total tt ψ̌tt computed by the

TDRW for the FULL model with ψtt the total time PDFs resulting from the CTRW using

as input the mobile time PDFs ψ̌tm computed by the FULL TDRW model (corresponding

to the immobile-domain-properties-dependent black line curves displayed in Figure 8).

The results of the upscaled CTRW model are first compared with those

obtained with the UPSCAL TDRW simulations in the left plot of Figure 11.695

The UPSCAL TDRW simulations integrate the same relocation process as in

the upscaled CTRW model. As such, and because both the models share the

same mobile time distribution ψ̌tm computed assuming no immobile domain,

the comparison of the CTRW with the TDRW UPSCAL model is a sound

validation of the approach used to model the trapping rate and the trapping700

time in the immobile domain, independently of retro-action of the immobile

domain on the mobile domain time distribution. The results given in Figure 11

show that the CTRW is perfectly reproducing the BTC computed with the

TDRW UPSCAL model for different properties of the immobile domain.
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Figure 12: Comparison of PDFs of the total tt ψ̌tt computed using the TDRW for the FULL

model with those resulting from the CTRW using as input the mobile time PDFs ψ̌tm com-

puted using the TDRW model for Pe = 10, 100 and 1000 for the case where κ(x) = φ(x)1−m

with m= 2.5 and ζ = 0.1. The dashed lines display the results of the CTRW using constant

trapping rate γ = 1.51.

The comparison of the BTCs computed with the CTRW model using the705

mobile time distribution ψ̌tm resulting from the FULL TDRW model with those

computed with the TDRW are given in Figure 11 (right plot) for different im-

mobile domain parameters, as well as for different values of Pe in Figure 12.

As expected, the CTRW model does not reproduce well the TDRW data for

the case where m= 1.5 and ζ = 0 for which the immobile domain provides the710

largest opportunity for particle to shortcut the main flow streams. Clearly this

specific process cannot be taken into account by the Lagrangian CTRW model.

Conversely, we observe a good fit of the upscaled CTRW model results with

those computed by the direct TDRW simulations for the reference case where

κ(x) = φ(x)1−m with m= 2.5. Specifically, the upscaled model reproduces per-715

fectly the data for long times (t ≥ 102 s) for both ζ = 0 and 0.1 while the fit at

intermediate times is better for the case where the porosity threshold is applied,

i.e. ζ = 0.1. The ability of the CTRW model to reproduce the direct simulations

for times ranging over six orders of magnitude and for different values of the Pe

number is shown in Figure 12. This figure also displays the PDFs ψtt computed720
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by the CTRW model assuming a single trapping rate value γ = 〈γ(p)〉 thus

allowing us to figure out the noticeable improvement of using the temporally

evolving γ(tm) for upscaling the BTCs at long times.

6. Conclusions

With the objective of upscaling transport in heterogeneous media, a La-725

grangian transport model that separates the processes of transport in mobile

and immobile domains is presented along with its particle-based CTRW im-

plementation. Assuming an homogeneous immobile domain and a continuous

mobile-immobile interface, mass transfer occurs as a compound Poisson pro-

cess with constant mobile-immobile exchanges rate. We show that this model is730

equivalent to the multirate mass transfer model of Haggerty and Gorelick (1995)

with the mean trapping event number of the Lagrangian model being equal to

the capacity ratio of the multirate mass transfer model. In other words, the

transport process in the Lagrangian CTRW model is characterized by the mean

trapping event number which also denotes the ratio of the solute mass in the735

immobile domain to that in the mobile domain at equilibrium. We show that

this 1-dimensional CTRW model perfectly reproduces the direct 2-dimensional

TDRW simulations of the transport of solute in a linear fracture embedded into

a porous matrix.

However, this upscaled model is not able to reproduce the transport in the740

digitalized carbonate sample MC10 that is used to illustrate highly heteroge-

neous porous media for which we performed direct 3-dimensional TDRW sim-

ulations. These simulations performed for a set of assumptions concerning the

diffusivity distribution in the immobile domain allow the thorough statistical

analysis of the mass transfer dynamics within the two domains and exchanged745

at their interface which is spatially discontinuous and heterogeneous in terms

of trapping rate. We found that this heterogeneity of the mobile-immobile in-

terface, together with the complexity of the flow in the mobile domain causes

a deviation from the CTRW model presented in Section 3.2 or equivalently a
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deviation from the MRMT model.750

For instance, the discrepancy between the computed survival time distribu-

tion for MC10 and the exponential distribution characterizing the single trap-

ping rate model arises from the non-uniqueness of the trapping rate; γ is a

function of tm (Figure 9). The survival time distribution displays a power law

trend for short survival times which denotes the superposition of exponential755

distributions of τs(tm) with distinct average: 〈τs〉(tm) ≡ 1/γ(tm). Conversely,

the increase of the occurrence of larger survival times compared to the expo-

nential distribution denotes the lacunarity of the mobile-immobile interface; the

distance (and thus the time) between to trapping events can be augmented due

to the absence of available immobile domain in some part of the mobile domain.760

Introducing this functional dependence of the trapping rate to the mobile

time allows complying with a mobile time dependent compound Poisson process.

In other words, the mass transfers at the scale of the sample can be modeled

as the ensemble average of residence-time-dependent mass transfers that can

individually be modeled as single rate processes.765

The comparison of the upscaled model against the direct 3-dimensional

TDRW for different assumed properties of the immobile domain and differ-

ent values of the Péclet number permits to prove the efficiency of the model to

reproduce the complex mass transfers in the two domains and at their interface,

as long as the spreading of solute due to the immobile domain does not reach770

a level where it produces a strong decorrelation of the velocity experienced by

the particles in the mobile domain. This latter situation occurs when immo-

bile domain clusters allow short-cut connections between zones of the mobile

domain displaying distinctly different flow rates. Fortunately, this situation is

quite unlikely in reservoir rocks since the diffusivity in the immobile domain is775

generally decreasing from the mobile-immobile interface ensuring together with

the presence of non-diffusing zones a certain insulation between adjacent flowing

pore networks.

The final conclusion of this study is that the proposed upscaled Lagrangian

transport model provides an accurate description of the observed non-Fickian780
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breakthrough curves in heterogeneous dual-porosity media, even when display

broad distributions of flow velocity and highly heterogeneous immobile zones,

such as the carbonate example studied here. This model is a dual multirate mass

transfer model (DMRMT), in which the multiple rates of trapping arise from

both the heterogeneity of the diffusion in immobile domain and the heterogeneity785

of the flow in the mobile domain.
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Appendix A. MC10 sample description

MC10 sample is a reefal carbonate sample from Llucmajor platform (Ma-

jorca, Spain) and is chosen as a typical example of complex porous media. Car-

bonate reservoirs are known to be heterogeneous over a wide range of scales as790

the result of the deposition and multiple diagenetic processes. The sample is a

cylinder of 9 mm diameter that was imaged using X-ray computed microtomog-

raphy which is a non-destructive imaging technique that produces 3-dimensional

images from a set (usually more than 1500) 2D X-ray attenuation images taken

at different angles. The sample was imaged at the ID19 beamline of the Eu-795

ropean Synchrotron Radiation Facility (ESRF), Grenoble, France. After the

3-dimensional reconstruction process that was performed using the single dis-

tance phase retrieval algorithm described by Paganin et al. (2002) applying an

unsharp filter before reconstruction, the final 3-dimensional image is formed of

cubic voxels associated with a value indicating the X-ray attenuation integrated800

over the voxel volume. This value ranges from that corresponding to the X-ray

attenuation of air for voxels belonging to macropores to that corresponding to

the X-ray attenuation of the solid rock, i.e. where porosity is zero. The voxel

size denotes the optical resolution of the image. The total X-ray energy attenua-

tion depends on the attenuation of the fraction of the rock-forming minerals and805

of the porosity. For a single component solid phase such as the sample consid-

ered here that is made of calcite, the X-ray energy attenuation integrated over

each voxel of the final 3-dimensional image denotes the porosity. The MC10

sample was previously investigated by Smal et al. (2018) for illustrating the

application of a new segmentation algorithm allowing mapping the unresolved810

porosity, i.e. the fraction of the pore space containing pores that are smaller

than the imaging resolution. While connected macropores allow solute trans-

port by advection and diffusion, solute transport in the microporous material is

assumed to be controlled by diffusion. Accordingly, connected macro-porosity

delimits the mobile domain while the microporous material delimits the immo-815

bile domain. Applying the methodology proposed by Smal et al. (2018) one
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obtains a segmented image formed of a connected mobile domain, an immobile

domain which in our case is almost completely surrounding the mobile domain

and patches of solid material where no solute transport occurs (see Fig. 1). Note

that the immobile domain contains isolated macropores (voxels of porosity equal820

to 1) corresponding to the non-connected macro-porosity. The 3-dimensional

image used in this paper to illustrate mobile-immobile solute transport and its

upscaling is a cubic sub-volume of side size 900 × 900 × 900 cubic voxels. The

voxel size is 1.6867× 10−6 m. The average pore size is evaluated from the dis-

tribution of the chord-length distribution function Torquato and Lu (1993) as825

70 ×10−6 m. Accordingly, the mobile domain is formed by around 104 pores.

This 900 × 900 × 900 image is obtained from a volume of 300 × 300 × 300

voxels cropped from the segmented image of the cylindrical rock sample, then

having each voxel divided by 3 in each of the directions (1 voxel is meshed in 27

voxels). This procedure allows obtaining a sufficient resolution for an accurate830

calculation of the Stokes flow.

Appendix B. Immobile domain properties

Different tortuosity models are investigated assuming a porosity threshold

of ζ = 0.1 and tortuosity defined by κ(φ) = φ1−m with m= 1.5, 2.5 and 4.5

as well as with a constant tortuosity model κ = 1.8 and ζ = 0. Table B.1835

displays the average effective diffusion 〈De〉 and a geometric evaluation of the

diffusion characteristic time td = `2im/(2〈De〉) for these different models, with

`im approximated by the ratio of the immobile volume to the mobile-immobile

interface area.

The immobile domain transport properties (by diffusion) can also be charac-840

terized by the memory function ϕ(t) that denotes the probability that a particle

entering the immobile zone at t = 0 remains there until time t. For a given

digitized rock sample segmented into mobile and immobile domains, ϕ(t) char-

acterizes the geometry and the volume fraction of the immobile domain and the

topology of the mobile-immobile interface (Gouze et al., 2008). ϕ(t) is derived845
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κ = 1.8 m = 1.5 m = 2.5 m = 4.5

ζ (-) 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

〈De〉 (10−12 m2/s) 59.9 98.1 39.7 74.0 6.2 13.5 0.2 0.5

td (s) 3.3 0.3 5.0 0.5 31.9 2.5 988.3 395.3

tc = 〈ψ◦τim〉 (s) 0.15 0.061 0.18 0.075 0.96 0.39 26.7 12.8

td/tc (-) 22.0 5.70 27.1 6.2 33.2 6.4 37.0 5.3

Table B.1: Mean properties of the immobile domain models characterized by the porosity

threshold ζ and the tortuosity either constant (κ(x) = 1.8) or function of porosity (κ(x) =

φ(x)1−m with m = 1.5, 2.5 and 4.5). Colored boxes denotes the parameter sets used for the

results discussed in Section 4.

from the trapping time PDF ψ̌τim with the relation ϕ(t) = 1−
∫ t
0
ψ̌τim(t′)dt′.

As shown in Figure B.13, the assumptions made on the formulation of the

tortuosity and its parameterization (Equations (1) - (3)) are noticeably mod-

ifying ϕ(t). Specifically, one can see that increasing the exponent m of the

tortuosity model (Equation (2)) and implementing a porosity threshold ζ > 0850

changes the shape and the average slope of the memory function, and therefore

should have a critical effect on the overall hydrodynamic transport in the sam-

ple. The characteristic diffusion time in the immobile domain tc is given by the

mean trapping time 〈ψ̌τim〉. Table B.1 displays the values of tc for these different

models. The model with constant tortuosity (κ(x) = 1.8) and the model with855

κ(x) = φ(x)1−m with m = 1.5 display similar values of tc. Conversely, increas-

ing the exponent m increases noticeably the characteristic diffusion time, i.e.

lengthen the effective diffusion path length, whereas applying a threshold (ζ =

0.1) reduces the immobile domain extension and consequently the value of tc.

The ratio td/tc is given in Table B.1. This ratio is a qualitative indication of the860

effective intricacy and heterogeneity of the diffusion paths characterized by the

mean diffusion time tc compared to the mean diffusion time expected from a

simple geometry of the immobile domain of similar volume and mobile-immobile

interface area. When all the porosity of the immobile domain is considered (ζ =
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0.0) the ratio td/tc is ranging from 22 to 37 emphasizing the strong complexity865

of the diffusion path (that can be guessed from the cross section presented in

Figure 1). When the zones of the smallest porosity values are not participat-

ing to diffusion (ζ = 0.1) the ratio td/tc is much smaller (td/tc = 5.8 ± 0.5)

and apparently independent of the tortuosity model, suggesting that applying

the porosity threshold acts as decreasing the effective intricacy of the diffusion870

paths.
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Figure B.13: The memory function ϕ(t) for different properties of the immobile domain: for

constant tortuosity (κ = 1.8) and for κ(φ) = φ1−m with m ranging from 1.5 to 4.5, without

and with porosity threshold, i.e. ζ = 0 and ζ = 0.1, respectively.

Appendix C. Vertical averaging of the mobile-immobile model of a

single fracture embedded in an homogeneous matrix

Flux continuity at the fracture-matrix interface implies

φmDm
∂cm(x, t)

∂y

∣∣∣∣
y=0

= φimDim
∂cim(y, t)

∂y

∣∣∣∣
y=0

, (C.1)875

such that

φm
∂cm(x, t)

∂t
+ q

∂cm(x, t)

∂x
− φmDm

∂2cm(x, t)

∂x2
= − 1

dm
φimDim

∂cim(y, t)

∂y

∣∣∣∣
y=0

(C.2)
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The flux over the interface is obtained by integration of (13) over y, which gives880

φmDm
∂cm(y, t)

∂y

∣∣∣∣
y=0

= φimdim
∂cim(x, t)

∂t
. (C.3)

The matrix concentration is obtained from (13). In Laplace space, we obtain

c∗im(y, λ) =
cosh[(y + dim)

√
λ/Dim]

cosh(
√
λτD)

c∗m(x, λ), (C.4)
885

where we defined τD = d2im/Dim. The average matrix concentration is then

obtained by integration over y, which gives

c∗im(y, λ) = ϕ∗(λ)c∗m(x, λ), (C.5)

where the memory function is defined by (16). The memory function at λ = 0890

is ϕ∗(0) = 1, which means

∞∫
0

dtϕ(t) = 1. (C.6)

Appendix D. Upscaled Lagrangian model

The particle density in the Lagrangian model is obtained from CTRW the-895

ory (Berkowitz et al., 2006; Russian et al., 2016) as

ci(t) =

t∫
0

dt′Ri(t
′)

t−t′∫
0

dt′′ψ(t′′), (D.1)

Ri(t) = δi,0 +

t∫
0

dt′ψ(t− t′) [wuRi+1(t′) + wdRi−1(t′)] . (D.2)

These equations are combined into a single generalized master equation in900

Laplace space

λc∗i (λ) = δi,0 +
λψ∗(λ)

1− ψ∗(λ)

[
wuc

∗
i−1(λ) + wdc

∗
i+1(λ)− c∗i (λ)

]
. (D.3)

Inserting (23) into (D.3) and using the definition (18) of the transition proba-

bilities, we obtain905

λc∗i (λ) = δi,0 +
Dm

c∗i−1(λ)+c
∗
i+1(λ)−2c

∗
i+1(λ)

`2 − v c
∗
i+1(λ)−c

∗
i (λ)

`

1 + λ−1γ[1− ψ∗im(λ)]
. (D.4)
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In the limit `→ 0, we obtain

λc∗(x, λ) = δ(x) +
Dm

∂2c∗(x,λ)
∂x2 − v c

∗(x,λ)
∂x

1 + λ−1γ[1− ψ∗im(λ)]
. (D.5)

910

The concentration c∗(x, λ) denotes the sum of the fracture and matrix concen-

trations c∗(x, λ) = c∗m(x, λ) + c∗im(x, λ). We identify

c∗im(x, λ) = γϑ∗(λ)c∗m(x, λ), (D.6)

where the memory kernel ϑ(t) is defined through its Laplace transform as915

ϑ∗(λ) =
1

λ
[1− ψ∗im(λ)]. (D.7)

Using (D.6) and (D.7) in (10), we obtain for c∗m(x, λ)

λc∗m(x, λ) + v
∂c∗m(x, λ)

∂x
−Dm

∂2c∗m(x, λ)

∂x2
= δ(x)− λc∗im(x, λ). (D.8)

Finally, inverse Laplace transform of (D.8) gives (24).
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