
For Review Only
High fire recurrence reduces ectomycorrhizal fungal 

diversity of Mediterranean pine forests

Journal: Molecular Ecology

Manuscript ID MEC-20-0408

Manuscript Type: Original Article

Date Submitted by the 
Author: 09-Apr-2020

Complete List of Authors: Pérez-Izquierdo, Leticia; Swedish University of Agricultural Sciences, Soil 
and Environment
Zabal-Aguirre, Mario; Instituto de Ciencias Agrarias (CSIC/ICA), Grupo 
de Interacciones Beneficiosas Planta-Microrganismo
Verdú, Miguel; CIDE (CSIC, UVEG, GV), 
Buee, Marc; INRA, UMR INRA-UL Interactions Arbres/Microorganismes
Rincón, Ana; Consejo Superior de Investigaciones Cientificas, Institut of 
Agronomic Sciences ICA-CSIC, Serrano 115bis

Keywords: ectomycorrhizal communities, enzymatic activity, fire recurrence, 
Mediterranean pines, serotiny

 

Molecular Ecology



For Review Only

1

1 High fire recurrence reduces ectomycorrhizal fungal diversity of Mediterranean pine 

2 forests

3

4 Pérez-Izquierdo L1*, Zabal-Aguirre M1, Verdú M2, Buée M3, Rincón A1

5

6 1Instituto de Ciencias Agrarias, ICA-CSIC. Serrano 115bis, 28006. Madrid, Spain.

7 2CIDE-CSIC-UV-GV, Ctra Moncada-Náquera km4.5, 46113, Moncada-Valencia, Spain.

8 3INRA, UMR1136 INRA Nancy � Université de Lorraine, Interactions Arbres-

9 Microorganismes Labex ARBRE, 54280 Champenoux, France.

10

11

12 Corresponding author: Leticia Pérez-Izquierdo

13 *Current address: 

14 Department of Soil and Environment, SLU, Lennart Hjelms väg 9, SE-75007 Uppsala, 

15 Sweden. 

16 E-mail: leticia.perez@slu.se

17

18 Running title: Mycorrhizas in fire-prone Mediterranean ecosystems

19

20

21

22 Competing interests

23 The authors declare that they have no competing interests

24

25

26

Page 1 of 97 Molecular Ecology



For Review Only

2

28 Abstract

29 Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean 

30 ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In 

31 Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) 

32 fungi, essential for ecosystem dynamics, might be drastically threatened by fire. We tested 

33 how fire regime alters the structure and function of ECM communities of Pinus pinaster and 

34 Pinus halepensis Mediterranean forests, and analyzed the relative contribution of 

35 environmental (climate, soil properties) and tree-mediated (serotiny) factors. For both pines, 

36 high fire recurrence significantly reduced local and regional ECM fungal diversity, although 

37 certain fungal species were favored by recurrent fire. The high fire recurrence also associated 

38 a general decline of ECM root-tip enzymatic activity for Pinus pinaster, while it did not 

39 imply major functional changes for Pinus halepensis. Separated effects of fire regime related-

40 factors such as climate, soil properties or tree phenotype drove these processes. In addition to 

41 the main influence of climate, the tree fire-adaptive trait serotiny recovered a great portion of 

42 the variation in structure and function of fungal communities associated with the fire regime. 

43 Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver 

44 shaping ECM fungal communities, but mainly at the local scale and likely independently of 

45 the fire regime. Our results show that fire regime strongly impacts ECM fungal communities, 

46 and reveal complex feedbacks among trees, mutualistic fungi and surrounding environment in 

47 fire-prone Mediterranean forest ecosystems. 

48

49 Keywords: ectomycorrhizal communities, enzymatic activity, fire recurrence, Mediterranean 

50 pines, serotiny
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51 Introduction

52 Mediterranean climate is characterized by a marked seasonality with mild winters and hot dry 

53 summers, which gives rise to one of the most fire-prone ecosystems in the world (Pausas, 

54 2004). The evolutionary history of these ecosystems is tightly linked to fire (Keeley, Bond, 

55 Bradstock, Pausas, & Rundel, 2011). Recurrent burning has markedly structured plant 

56 communities in this area (Verdú & Pausas, 2007), where many species have developed 

57 evolutionary mechanisms of resistance and resilience to fire (Pausas, 2015; Tapias, Climent, 

58 Pardos, & Gil, 2004). A good example of fire-adaptive trait is serotiny, i.e., the retention of 

59 mature seeds in closed cones for more than a year until dispersion and germination is 

60 activated by fire, evolved by some representative Mediterranean pine species (Budde et al., 

61 2014; Hernández-Serrano, Verdú, González-Martínez, & Pausas, 2013) and other conifers in 

62 fire-dominated systems (Greene et al., 1999). Fire generates phenotypic divergence on 

63 serotiny, a heritable trait in Mediterranean pines, ultimately producing local adaptation 

64 (Hernández-Serrano et al., 2014). There is evidence that serotiny is related to differences in 

65 fire regime, increasing with the frequency of stand-replacing fires (Hernández-Serrano et al., 

66 2013; Radeloff, Mladenoff, Guries, & Boyce, 2004). Changes in the fire regime are closely 

67 linked to climate (Pausas, 2004), and predicted climate change scenarios make Mediterranean 

68 ecosystems especially vulnerable. Temperature rise and rainfall decrease are expected to 

69 increase drought risk and consequently forest wildfires, altering the structure and successional 

70 dynamics of Mediterranean forests (Lindner et al., 2010). 

71 Ecosystem development is driven by interactions among climatic conditions, edaphic 

72 environment and biotic communities. Given the role of fungi in organic matter turnover and 

73 nutrient cycling, they are key players in the plant-soil-microbial feedbacks that determine 

74 ecosystem development after disturbances (Clemmensen et al., 2015). Specifically, 
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75 mutualistic ectomycorrhizal (ECM) fungi, which are tightly linked to the host through 

76 specialized symbiotic structures, mediate the uptake and transfer of water and nutrients to 

77 trees (Smith & Read, 2008). They channel the photosynthetic carbon (C) fixed by trees into 

78 the belowground, influencing soil C storage and nutrient cycling (Clemmensen et al., 2013; 

79 Talbot, Allison, & Treseder, 2008). This symbiosis can provide up to the 80% of nutrients to 

80 trees and alleviate their hydric stress (Kivlin, Emery, & Rudgers, 2013; van der Heijden, 

81 Martin, Selosse, & Sanders, 2015), and therefore can be especially relevant in severe 

82 environments e.g., recurrent fire and drought conditions in Mediterranean ecosystems 

83 (Egerton-Warburton, Querejeta, & Allen, 2007; Prieto et al., 2016; Querejeta, Egerton-

84 Warburton, & Allen, 2007). 

85 Fire affects ECM communities mainly through vegetation damages and altered soil properties 

86 (Buscardo et al., 2015; Hart, DeLuca, Newman, MacKenzie, & Boyle, 2005; Rincón & 

87 Pueyo, 2010), conditions that may favor fire-tolerant fungi (Glassman, Levine, Dirocco, 

88 Battles, & Bruns, 2016; Rincón, Santamaría-Pérez, Ocaña, & Verdú, 2014). Certain fungi can 

89 remain for long time in the soil spore banks and be advantaged after fire, as it has been shown 

90 in closed-cone pine forest populations with historical highly recurrent and intense fires (Baar, 

91 Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 2015). Fire usually 

92 decreases root mycorrhizal colonization and fungal richness (Dove & Hart, 2017). More 

93 generally, fire drastically disrupts the species composition of the mycorrhizal communities, 

94 usually leading to their simplification with the dominance of pioneer fungi (Dove & Hart, 

95 2017; Buscardo et al., 2015; de Román & de Miguel, 2005; Rincón et al., 2014; Torres & 

96 Honrubia, 1997). Additionally, because intraspecific plant genotypic and phenotypic variation 

97 affects the structure of their associated ECM fungi (Gehring & Whitham, 1991; Pérez-

98 Izquierdo et al., 2017, 2019; van der Heijden et al., 2015) it is plausible that genetically fire-
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99 driven changes in trees, such as serotiny degree, may co-affect these mutualistic communities 

100 for example by determining the C available to exchange in symbiosis. Nevertheless, fires 

101 recurrently affect big areas of Mediterranean ecosystems, yet the cumulative effects of 

102 recurrent wildfires on ECM fungal communities are less known than those of single wildfires 

103 (Buscardo et al., 2015).

104 In our study, we targeted forests of two representative Mediterranean tree species, Maritime 

105 pine (Pinus pinaster Ait.) and Aleppo pine (Pinus halepensis Mill.), amply distributed in the 

106 Iberian Peninsula. While the Maritime pine usually grows in acid soils at 700-1700 m 

107 altitude, the Aleppo pine grows in basic substrate and below 800 m (Ruíz, Álvarez-Uria, & 

108 Zavala, 2009). Pinus halepensis is typically distributed in warm and dry areas, even under 

109 extreme drought induced either by climate or soil constituents (e.g., marls, gypsum, rocky 

110 slopes) (Ruíz et al., 2009). Both pine species have a life history related to fire adaptation 

111 (Tapias et al., 2004) displaying great post-fire colonizing abilities (Barbéro, Loisel, & Quézel, 

112 1998) and showing fire-adaptive traits such as serotiny (Pausas, 2015). The natural 

113 regeneration and dynamics of these pine forests critically relies on ECM fungal communities, 

114 because pine species are obligatory ectomycorrhizal (Nuñez, Horton, & Simberloff, 2009; 

115 Smith & Read, 2008). Recurrent fires, tightly linked to climate in these Mediterranean areas, 

116 might act as an environmental filter, culling plant and microbial species unable to tolerate 

117 conditions at a particular location and thus preventing their establishment or persistence 

118 (Kraft et al., 2015). 

119 Based on all these premises, we expected that i) due to the habitat filtering imposed by the fire 

120 regime, the ECM fungal communities in high fire recurrence sites (HiFi hereafter) would be 

121 less diverse and more homogeneous than those in low fire recurrence sites (LoFi hereafter), 

122 and that it would imply different functional outcomes. In our study area, the distinct historical 
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123 fire recurrence has induced a sharp serotiny divergence in trees within the HiFi and LoFi 

124 populations along time (Hernández-Serrano et al., 2013). Serotiny has been proven to be a 

125 heritable trait associated with the genotype of trees (Budde et al., 2014; Castellanos, 

126 González-Martínez, & Pausas, 2015; Hernández-Serrano et al., 2013). Because different tree 

127 genotypes can influence their associated ECM fungi (Gehring & Whitham, 1991; Pérez-

128 Izquierdo et al., 2017), we further hypothesize that, at the finer scale of individuals, ii) the 

129 serotiny degree of trees, i.e., genotypic fire-adaptation, will explain structural and functional 

130 divergences of ECM fungal communities.

131 In order to address these predictions, we characterized the structure of root-tip ECM fungal 

132 communities of natural P. pinaster and P. halepensis forests (Hernández-Serrano et al., 2013). 

133 For both pine forests, serotinous populations growing under a warm and dry Mediterranean 

134 climate subjected to high fire frequency and non-serotinous populations growing under a 

135 subhumid climate where fires are rare (Verdú & Pausas, 2007) were surveyed (Figure S1). 

136 Additionally, we determined, on excised ECM root-tips, potential fungal enzymatic traits 

137 related to C turnover and mobilization of nutrients. These are processes directly implicated in 

138 the exchange of resources that support most mycorrhizal symbioses and many essential 

139 ecosystem functions (Johnson et al. 2012). 

140

141 Material and Methods

142 Study sites and sampling 

143 Surveys were conducted in natural forests of P. pinaster (Ppi) and of P. halepensis (Pha) 

144 located in eastern Spain (Figure S1). We selected nine pine populations located in high fire 

145 recurrence sites where crown-fires are historically frequent and most regeneration events are 

146 driven by fire (HiFi populations), while the other selected six populations were located in low 
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147 fire recurrence areas where most regeneration events are independent of fire because fire 

148 events are rare (LoFi populations) (Hernández-Serrano et al., 2013; Pausas et al., 2004). In the 

149 study area, fire is tightly linked to Mediterranean climatic conditions (i.e., drought) (Pausas, 

150 Bradstock, Keith, Keeley, & Network, 2004). Recent fire history information (Pausas & 

151 Fernández-Muñoz, 2012; Pausas, 2004) shows that more than 50% of the study area at HiFi 

152 conditions burned at least once during the 1978�2001 period, while for LoFi conditions, the 

153 proportion was about 15% (Abdel Malak & Pausas, 2006). From a microevolutionary point of 

154 view, this distinct fire regime has induced a sharp serotiny divergence within these 

155 populations (Hernández-Serrano et al., 2013). More than 500 genes were differentially 

156 expressed across the two pine accessions from HiFi and LoFi populations (Pinosio et al., 

157 2014) and three high-differentiation outlier single nucleotide polymorphisms-SNPs were 

158 identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale 

159 (Budde et al., 2017). Thus, despite the lack of long-term fire statistics for the specific study 

160 sites, there is strong evidence that the fire interval is much shorter in HiFi areas than in LoFi. 

161 The serotiny degree of these pine populations growing under distinct fire regime has been 

162 accurately characterized in Hernández-Serrano et al., 2013 (Table S1). Briefly, serotiny was 

163 estimated considering both the cone age and the proportion of serotinous cones, i.e., the 

164 number of closed cones, those remaining closed after maturation, with respect to the total 

165 fully ripe (open and closed) cones (see Hernández-Serrano et al., 2013 for details). The 

166 characteristics of pine populations related to productivity (diameter at breast height; DBH), 

167 fire-adaptation traits (bark thickness and serotiny degree), as well as location and local 

168 environmental variables are described in Table S1. All the selected stands were mature pine 

169 populations, with DBH between 20.8 and 35.4 cm corresponding to trees of more than 40 yr 

170 (Camarero, Olano, & Parras, 2010; Vieira et al., 2015).
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171 In May 2013, five trees per population separated by more than 10 m were selected from a 

172 total of 15 populations (n = 75). Under each tree, the litter was removed and samples were 

173 obtained, approximately 1 m far from the trunk, by excavating 10 x 10 x 20 cm soil holes at 

174 the four orientations (north, south, east and west). The four samples per tree were pooled into 

175 a combined sample and kept at 4 ºC in plastic bags until processing. Once in the lab, roots 

176 were separated from soil, coarse roots discarded (diameter > 2 mm), and remaining roots 

177 gently washed with tap water over 2 and 0.5 mm sieves for collecting root tips. All 

178 ectomycorrhizal (ECM) root tips per each sample were carefully selected (Rincón et al., 

179 2014), cleaned and sorted per sample under a stereomicroscope for further enzymatic and 

180 molecular analyses. Remaining soil was air dried and sieved (2 mm) for analysis.

181 The gravimetric soil moisture of soil samples was determined by drying at 105 ºC for 48 h. 

182 Air-dried soils were measured for pH (2 g of soil in 10 ml of H2O, 1:5, w:v), electrical 

183 conductivity (EC) (1:5, w:v in H2O), organic matter (OM) (Walkley & Black, 1934), total N 

184 (Kjeldahl method). Extractable P was determined by the Bray & Kurtz (1945) method, after 

185 extraction in an ammonium fluoride and chloride acid solution. Extractable potassium (K) 

186 was determined after nitric acid digestion according to Isaac & Kerber (1971). Both P and K 

187 extracts were measured by inductively coupled plasma spectrometry (Optima 4300DV, 

188 Perkin-Elmer, Waltham, MA, EE.UU.).

189 Enzymatic tests 

190 The fungal community functioning was evaluated on excised ECM root tips by measuring 

191 activities of eight hydrolytic and oxidative exoenzymes secreted by fungi. Seven enzymatic 

192 tests were based on fluorogenic substrate release, methylumbelliferone (MU) e.g. U�

193 glucosidase (EC 3.2.1.3 at ExPasy-Enzyme database) and cellobiohydrolase (EC 3.2.1.91) 

194 that degrade cellulose, U�85��"�
�"� (EC 3.2.1.37) and U���� �����
�"� (EC 3.2.1.31) implied 
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195 in the degradation of hemicellulose, acid phosphatase (EC 3.1.3.2) involved in the 

196 mobilization of phosphorus, N-acetylglucosaminidase or chitinase (EC 3.2.1.14) which 

197 hydrolyses chitin, or methylcoumarine (AMC) for L-leucineaminopeptidase (3.4.11.1) related 

198 to the mobilization of nitrogen from peptidic substrates. The Laccase (1.10.3.2) activity was 

199 determined by a photometric assay based on ABTS substrate (2,2'-Azino-bis (3-ethylbenzo-

200 thiazolin-6-sulfonic acid). This enzyme is related to the degradation of recalcitrant 

201 compounds such as lignin. Enzymatic activities were determined following the protocol 

202 described by Courty, Pritsch, Schloter, Hartmann, & Garbaye (2005), with modifications. A 

203 total of 280 ECM-tips were randomly collected per sample and separated in subsets of 7 

204 ECM-tips with 5 replicates per each enzymatic test. Each replicate thus consisted of a tube 

205 with 7 pooled ECM-tips that were incubated in buffer during the corresponding time for each 

206 enzyme (Courty et al., 2005), after which 100 W� of the respective enzymatic reaction mix was 

207 added to 100 W� of stopping buffer in 96-well microplates. Enzymatic activities were 

208 measured in a Victor microplate reader (Perkin-Elmer Life Sciences, Massachusetts, USA), 

209 with 355/460 nm excitation/emission wavelengths for the fluorogenic assays and 415 nm for 

210 laccase. After reading, the ECM-tips of each replicate were scanned and their area calculated 

211 with the software ImageJ 1.49. Enzymatic activities were expressed in pmol min-1mm-2. 

212 Molecular analyses

213 Per each measured enzyme, the ECM-tips were pooled (7 ECM-tips subsets x 5 replicates = 

214 35), added of a pinch of polyvinylpolypyrrolidone (PVPP), and the DNA extracted with the 

215 Invisorb®DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany), making a total of 

216 600 DNA extractions (75 tree samples x 8 enzymes) corresponding to 280 root tips per tree. 

217 The internal transcribed spacer region ITS-1 of the nuclear ribosomal DNA was amplified 

218 with the primer pair ITS1F-ITS2 (Gardes & Bruns, 1993) adapted for Illumina-MiSeq. Each 
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219 sample was amplified in three independent 20 µl PCR reactions, each containing 2 µl of 10x 

220 polymerase buffer, 2.4 µl of 25 mM MgCl2, 1.12 µl of 10 mg ml-1 BSA, 0.4 µl of 10 mM 

221 Nucleotide Mix, 0.4 µl of 10 mM forward/reverse primers and 0.2 µl of AmpliTaqGold 

222 polymerase (5 U ml-1) (Applied Biosystems, Carlsbad, CA, USA). Negative controls without 

223 DNA were included in all runs to detect possible contaminations. The PCR conditions were as 

224 follow: 3 min 94 ºC, 30 cycles of 1 min 94 ºC, 30 s 53 ºC and 45 s 72 ºC, with a final step of 

225 10 min 72 ºC. Independent reactions were combined per sample, and each PCR product was 

226 purified (UltraClean PCR clean-up kit of MoBio, Carlsbad, CA, USA), quantified 

227 (PicoGreen, Life Technologies, Carlsbad, CA, USA), and finally pooled in an equimolar 

228 library containing 75 samples. Sequencing was carried out on an Illumina MiSeq sequencer (2 

229 × 300 bp paired-end reads) in an external service (Parque Científico de Madrid, Spain).

230 Bioinformatic analyses

231 Sequences were de-multiplexed according to their tags, filtered and trimmed using the 

232 fastq_filter command and fastq_truncqual option of Usearchv.7.0.1001 (Edgar, 2013) for 

233 eliminating quality scores \ 10. We used FLASH to merge reads with a minimum overlap of 

234 110 bp, resulting in 58.3 % of retained sequences (4205677 out of the initial set of 7215915 

235 sequences). Then, sequences were dereplicated with the derep_fulllength Usearch command. 

236 De-replicated sequences were sorted by decreasing abundance, and singletons discarded with 

237 the sortbysize Usearch command. Finally, 4116377 sequences (57 %) were retained. 

238 Operational taxonomic units (OTUs) were generated from abundance-sorted sequences using 

239 the cluster_otus Usearch command with a 97 % similarity threshold. Extracted ITS sequences 

240 were then mapped against the OTU representative sequences using the usearch_global 

241 Usearch command. Taxonomic assignation of representative sequences for each OTU was 

242 done according to the 7.2 UNITE database (Kõljalg et al., 2013). Fungal taxonomic 
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243 assignment served to identify those OTUs closely related to recognized ECM taxa (Nguyen et 

244 al., 2016; Tedersoo et al., 2014; Tedersoo & Smith, 2013). The 86 % of the inferred 

245 sequences corresponded to ECM fungi and these were used for all subsequent analyses. 

246

247 Statistical analyses

248 The effect of the fire recurrence (HiFi vs LoFi) on the structure (i.e., alpha and beta-diversity) 

249 and functioning (i.e., enzymatic activities) of ECM fungal communities (hypothesis 1) was 

250 separately evaluated by pine forest. Beta-diversity of total and by phyla ECM fungal 

251 communities of the different pine populations was calculated with the functions betadisper 

252 and permutest of the vegan package (Anderson, Ellingsen, & McArdle, 2006; Oksanen et al., 

253 2015), and visualized by Principal Component Analyses (PCoA). Beta-diversity was 

254 calculated on Bray-Curtis abundance matrix of OTUs previously normalized by variance 

255 stabilization according to McMurdie and Holmes (2014) by using the DESeq package 

256 (Anders & Huber, 2012). 

257 Alpha-diversity was analysed by General Linear Models (GLMs) (p<0.05) with the number of 

258 fungal OTUs as response variable. In these models, the square root of the total number of 

259 sequences obtained per sample was included as a covariate to account for differences in 

260 sequencing depth (Tedersoo et al., 2014). Models at lower taxonomic levels were also 

261 performed (i.e., phyla and families). In all cases, before modelling, Shapiro and Levene tests 

262 were performed to test the normality and homocedasticity of data, and variables were log or 

263 square root transformed when needed. Firstly, we modelled the effect of the variable pine 

264 forest on ECM fungal alpha-diversity, using pine forest as fixed factor and the site nested 

265 within pine forest. Subsequent GLMs analyses were separately performed for each pine 

266 species. In these models, the fire regime was introduced as fixed factor and the site (i.e., pine 
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267 population) nested within fire regime (n = 35 P. pinaster trees and n = 40 P. halepensis trees). 

268 Same GLM syntaxes were used to test the effect of fire recurrence on the different root-tip 

269 enzymatic activities. Correlations between enzymatic activities and ECM fungal community 

270 assemblages of the pine populations were analyzed by Mantel tests with ade4 R package. 

271 To identify representative fungal OTUs of each fire regime per pine species, the Indicator 

272 Species Analysis (with OTUs >100 reads to avoid spurious relations) was carried out 

273 (p<0.05) with the function multipatt of the indicspecies R package (Cáceres, Legendre, & He, 

274 2013).

275 Climatic and edaphic characteristics are intimately associated with fire regime in 

276 Mediterranean ecosystems (Pausas et al., 2004). So, to separate the edaphic and climatic 

277 effects from that of the fire regime, we performed CCA on Hellinger-transformed relative 

278 fungal abundance data and RDA with the Euclidean distance matrix of enzymatic activities 

279 both with forward selection of explanatory variables. We used different analyses due to their 

280 different data assumptions, RDA assumes a linear relationship between predictors and data 

281 while CCA assumes a unimodal response curve. In these models, the variable fire regime and 

282 the edaphic and climatic indexes were included. Previously, to reduce the dimensionality of 

283 environmental data, Principal Component Analyses (PCA) were independently run for 

284 edaphic variables (pH, OM, EC, N, P, K) and climatic variables (mean annual temperature, 

285 mean annual precipitation and altitude), and the first two axes, explaining the maximum 

286 amount of variance, of respective PCAs were used as edaphic or climatic indexes (Figure S2).

287 To test our hypothesis 2, effect of tree serotiny degree (i.e., genotypic fire-adaptation) on 

288 ECM fungal community, two additional models with the factor serotiny and the edaphic and 

289 climatic indexes were included. As before, we performed a CCA model on Hellinger-
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290 transformed relative fungal abundance data and a RDA model with the Euclidean distance 

291 matrix of enzymatic activities both with forward selection of explanatory variables.

292 Since the distribution of the two pine species considered in our study is closely linked to the 

293 bedrock type, i.e., P. pinaster preferentially settled on siliceous soils, while P. halepensis 

294 include both siliceous and calcareous soils (Hernández-Serrano et al., 2013), we made 

295 additional analyses for testing possible confounding effects of pine species and bedrock type 

296 (both factors included in the variable pine forest). For this, the pine species effect on ECM 

297 fungal community structure and enzymatic activities was respectively checked by Canonical 

298 Correspondence (CCA) and Redundancy (RDA) analyses, only with data of Sinarcas, the 

299 unique location where populations of both pine species grow under a common bedrock 

300 environment (Table S1). No significant effects of the pine species identity on the ECM fungal 

301 community structure (CCA: n=218; explained variation %=12.4; P=0.204) or on the 

302 enzymatic profile (RDA: n=8; explained variation %=44.4; P=0.094) in the location Sinarcas 

303 were observed. 

304 Ordinations were done with the software CANOCO v.5.0 (Biometris Plant Research 

305 International, Wageningen, Netherlands), and the rest of analyses with the R software v.3.5.2 

306 (R Core Team, 2014).
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308 Results

309 Sequencing yields and taxonomic identification of fungi 

310 A total of 501 ECM fungal OTUs corresponding to 3182548 sequences were identified. 

311 Almost half of OTUs were found in both pine species and ~26 % exclusively in one of them 

312 (Figure S3a). LoFi and HiFi pine populations shared the 54.8 % of OTUs, while ~21-23 % 

313 were only found either in LoFi or HiFi (Figure S3a). Most OTUs belonged to Basidiomycota 

314 (89.4 %), 10.2 % to Ascomycota, and 0.4 % to Zygomycota (Figure S3b; Table S2). The 

315 taxonomic classification of OTUs allowed identifying 12 fungal orders, 30 families and 47 

316 genera, most of them represented across all treatments (Table S2).

317 The majority of the 20 most abundant fungi and of the indicator species found in root tips of 

318 P. pinaster belonged to Tomentellaceae, Inocybaceae, Russulaceae, and Rhizopogonaceae 

319 and, in the case of P. halepensis, to Pezizales, Thelephoraceae and Sebacinaceae (Table S3; 

320 Figure S4). The indicator species analysis revealed 54 fungal OTUs preferentially associated 

321 to P. pinaster forests and 37 to P. halepensis forests (Table S3). Besides, 31 fungi belonging 

322 to 14 different genera were indicators of LoFi populations of P. pinaster and 31 fungi 

323 belonging to 13 different genera were indicators of LoFi populations of P. halepensis. In 

324 contrast, 11 indicators from 5 different genera and 6 from 5 different genera were associated 

325 with HiFi populations of P. pinaster and P. halepensis respectively (Table S3).

326

327 Root-tip ectomycorrhizal fungal diversity 

328 Total fungal �-diversity marginally varied between pine forests (R2=0.13; F=3.62; P=0.062). 

329 At the phylum level, significantly less Basidiomycetes (R2=0.24; F=6.12; P=0.016) and 

330 marginally more Ascomycetes (R2=0.81; F=3.88; P=0.053) were found in P. halepensis forest 

331 compared with P. pinaster. The root-tips of P. pinaster were enriched of Amanitaceae, 
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332 Atheliaceae, Cantharellaceae, Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae 

333 and Russulaceae species, while in P. halepensis root-tips prevailed species of the families 

334 Pezizaceae, Pyronemataceae and Sebacinaceae (Table 1). At regional scale, root-tip ECM 

335 fungal �-diversity of both pine forests was similar (R2=0.01 F=1.34, P=0.265), although 

336 Basidiomycetes were more dissimilar in P. pinaster than in P. halepensis forests (R2=0.01 

337 F=4.44, P=0.033), and the opposite pattern was observed for Ascomycetes (R2=0.03; F=11.62, 

338 P=0.001).

339 The ECM fungal �-diversity was significantly lower in high fire recurrence (HiFi) 

340 populations compared with low fire recurrence (LoFi) populations in both pine forests (Figure 

341 1a), and this difference was consistent within the two fungal phyla i.e., Ascomycetes and 

342 Basidiomycetes (Figure 1b-c). Although the �-diversity of many ECM fungal families 

343 decreased in HiFi populations of both pine forest (Table 1), some taxa were more diverse in 

344 HiFi, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae for P. pinaster, or Pezizaceae 

345 for P. halepensis (Table 1). At regional scale, a consistent reduction of ECM fungal �-

346 diversity was observed in HiFi populations of both pine forests (i.e., more homogeneous 

347 ECM communities in HiFi than LoFi) (Figure 2a). Likewise, Basidiomycetes were less �-

348 diverse in HiFi than LoFi populations, while no difference was observed for Ascomycetes 

349 (Figure 2b-c). 

350

351 Potential enzymatic activity of ECM root-tips

352 The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi 

353 populations, the enzymatic activity of ECM root tips was very similar for both pines, except 

354 in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in P. 

355 halepensis compared with P. pinaster (Figure 3). By contrast, in HiFi populations, the activity 
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356 of most of the C-degrading enzymes (i.e., cellobiohydrolase, U�85��"�
�"� and U�

357 glucuronidase), and of those mobilizing nitrogen (i.e., chitinase and L-leucineaminopeptidase) 

358 was higher for P. halepensis than P. pinaster, with the exception of laccase that was lower 

359 (Figure 3). 

360 The ECM fungal species assemblage of P. pinaster root-tips significantly correlated with their 

361 enzymatic profile (Mantel r=0.14; P=0.003). The HiFi populations of P. pinaster had higher 

362 root-tip laccase activity and lower hemicellulose degrading activity (i.e., U�85��"�
�"�� U�

363 glucuronidase), and of enzymes mobilizing nitrogen (i.e., chitinase and L-

364 leucineaminopeptidase) and phosphorus (i.e., acid phosphatase) (Figure 3). No significant 

365 relation between fungal community structure and enzymatic activity was observed for P. 

366 halepensis (Mantel r=0.03; P=0.287), although laccase activity significantly increased in HiFi 

367 populations (Figure 3).

368

369 Main drivers of the structure and function of ECM fungal communities 

370 Climate, in particular temperature (Climate 1, first axis from PCA in Figure S2), together with 

371 fire recurrence, were major factors determining ECM fungal communities of Mediterranean 

372 pine forests (Table S4A; Figure 4a). As hypothesized, the tree trait serotiny (selected by fire 

373 regime) did affect the structure of root-tip ECM fungal communities (Table S4B; Figure 4a). 

374 Higher levels of serotiny significantly correlated with the ECM fungal community structure 

375 of HiFi populations in both P. pinaster and P. halepensis forests (Table S4B; Figure 4a). 

376 Contrarily, the edaphic effects were likely related to differences among plots inside LoFi or 

377 HiFi populations, i.e. the strength and direction of edaphic vectors along plots displayed in 

378 Figure 4a. 
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379 Regarding ECM functionality (i.e., enzymatic activities), the fire recurrence together with 

380 climatic variables explained root-tip enzymatic activity in P. pinaster forest (Table S4A; 

381 Figure 4b). Moreover, the serotiny degree of P. pinaster populations significantly correlated 

382 with the ECM root-tip enzymatic profile in HiFi populations, while soil characteristics mainly 

383 drove variations in enzymes among sites inside LoFi and HiFi populations (Table S4B; Figure 

384 4b). For P. halepensis, root-tip enzymatic activity was essentially driven by the surrounding 

385 edaphic environment (Table S4; Figure 4b), mainly by high pH and low phosphorus 

386 availability (see PC2 in Figure S2a).

387

388 Discussion

389 Mutualistic feedbacks between trees and ectomycorrhizal fungi that are essential for 

390 ecosystem dynamics can be highly vulnerable to fire in Mediterranean ecosystems. Our 

391 results show that fire regime shapes the structure and functioning of root-tip ECM fungal 

392 communities in fire-prone Mediterranean forests. Divergent ECM fungal communities 

393 associate with P. pinaster and P. halepensis, which are highly influenced by the edaphic 

394 environment and climate. According to our first hypothesis, high fire recurrence reduces ECM 

395 fungal diversity and has a homogenizing effect on these communities, which leads to a 

396 reduced enzymatic activity for P. pinaster (but not for P. halepensis). Confirming our second 

397 hypothesis, this effect is evidenced at the finer scale of individuals since the serotiny degree 

398 of trees, i.e., genotypic fire-adaptation, does significantly affect the structure (for both P. 

399 pinaster and P. halepensis) and functioning (in the case of P. pinaster) of ECM fungal 

400 communities. In this work, relative contribution of main variables related to fire such as 

401 climate, soil properties and the tree trait serotiny structuring ECM fungal communities have 

402 been disentangled. 
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403

404 ECM communities in P. pinaster and P. halepensis forests

405 The tree species had a marginal effect on ECM fungal communities probably blurred by the 

406 strong effect of the local environmental conditions. The degree of tree host specificity for 

407 ECM fungi seems to be correlated with the phylogenetic distances between hosts (Tedersoo, 

408 Mett, Ishida, & Bahram, 2013). However, it has been shown that the genus Pinus associates 

409 with specialized ECM fungi, in particular within the genera Suillus and Rhizopogon (Smith & 

410 Read, 2008) and that even the Pinus genotype play an essential role in structuring ECM 

411 fungal communities (Gehring, Mueller, Haskins, Rubow, & Whitham, 2014; Pérez-Izquierdo 

412 et al., 2017, 2019). Given the importance of pH shaping fungal communities (Coince et al., 

413 2014; Glassman, Wang, & Bruns, 2017; Rincón et al., 2015; Tedersoo et al., 2014), these 

414 divergent observations could be interpreted as context-dependent, i.e., in our study, soil pH 

415 (ranging from 5.1 to 8) was higher, even in Sinarcas where both pine species grew under a 

416 similar local environment, than in the mentioned studies (average pH of 5). The strong 

417 environmental filter imposed by the bedrock influence, mainly siliceous for P. pinaster and 

418 calcareous for P. halepensis (Ojeda, Pausas, & Verdú, 2010), was reflected in more diverse 

419 and more heterogeneous Ascomycetes species together with less diverse and more 

420 homogeneous Basidiomycetes in the case of P. halepensis, whereas the opposite pattern was 

421 observed for P. pinaster. We observed a preferential association of P. halepensis with fungal 

422 species of the genus Sebacina and the order Pezizales. So far, no tree host specificity has been 

423 observed among the Sebacina species (Ray & Craven, 2016; Selosse, Bauer, & Moyersoen, 

424 2002). Given the reported positive effects of sebacinous fungi against stresses such as 

425 herbivory, salinity or drought (Barazani & Baldwin, 2013; Ray & Craven, 2016; Zarea, 

426 Miransari, & Karimi, 2014), they could play a key role in the resistance of P. halepensis to 
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427 limited nutrient availability (i.e., related to high soil pH) and the restrictive conditions 

428 imposed by the Mediterranean climate. Similarly, ascomycetous ECM Pezizales, which tend 

429 to be favoured in basic soils, have traits such as their melanin production capacity that make 

430 them perfect symbionts under stressful conditions including post-fire scenarios (Koide, 

431 Fernandez, & Malcolm, 2014; Lamit et al., 2014; Rincón et al., 2014; Rincón & Pueyo, 2010;  

432 Tedersoo, Hansen, Perry, & Kjøller, 2006; Torres & Honrubia, 1997). On the other hand, 

433 species from the genera Rhizopogon, Craterellus, Cenoccocum, Russula and Lactarius were 

434 enriched under P. pinaster (less basic pH). Although ECM fungi tolerate a wide range of pH 

435 (Rousk et al., 2010), most of these fungi grow better under acidophilic conditions (Yamanaka, 

436 2003). 

437

438 Structural and functional shifts of root-tip ECM fungal communities due to the fire regime 

439 As we firstly hypothesized, for both pine species, the local and regional diversity of root-tip 

440 ECM fungi significantly declined in populations where fires are historically frequent, and this 

441 implied functional outcomes e.g., laccase activity of ECM root-tips increased in HiFi 

442 populations of both pine forests. Many fire studies have ascribed decreases in fungal diversity 

443 to the reduction of heat resistant propagules, elimination of rare species from the spore bank, 

444 the scarcity of suitable hosts, the direct burning of mycelium and roots, and/or the disturbed 

445 soil properties (Glassman et al., 2016; Holden, Gutierrez, & Treseder, 2013; Rincón & Pueyo, 

446 2010). These processes do have a great importance on ECM fungal communities in the short 

447 term after disturbance, giving the way to other processes such as dispersion through time 

448 (Dooley & Treseder, 2011; Kipfer, Moser, Egli, Wohlgemuth, & Ghazoul, 2011; Rincón et 

449 al., 2014; Sun et al., 2015), similar to that reported in succession studies where fungal 

450 richness increases with forest age (Kyaschenko, Clemmensen, Hagenbo, Karltun, & Lindahl, 
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451 2017; Twieg, Durall, & Simard, 2007). In our study, it does not seem that ECM fungal 

452 diversity has not been yet restored since the last fire (at least more than 40 years ago), because 

453 typical late-stage species such as Amanita or Lactarius (Cairney & Chambers, 2013; Taylor & 

454 Bruns, 1999) were indicators in HiFi areas. On the contrary, our results suggest that, the 

455 initial ruderal symbionts that facilitate the establishment of seedlings are replaced over time 

456 by ECM fungi that respond more efficiently to the new environmental conditions, probably 

457 driving plant-soil feedbacks to different directions (Duhamel et al., 2019). 

458 The ECM species composition diverged between fire regimes and, although fungal diversity 

459 decreased with high fire recurrence, some fungal families were more diverse in HiFi 

460 populations, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae for P. pinaster, or 

461 Pezizaceae for P. halepensis. Different authors have proposed that in ecosystems subjected to 

462 frequent fires, the positive response of microorganisms would indicate a selection of the fire-

463 tolerant ones over time (Buscardo et al., 2015; Dooley & Treseder, 2011; Rincón et al., 2014). 

464 Fire recurrence in Mediterranean forests is intimately linked to temperature and drought 

465 (Pausas, 2004), so as expected, in our work, climate was a strong determinant of fire regime 

466 effects on fungal communities. All these results, together with the observed decline in ECM 

467 fungal �-diversity, seem to indicate that the habitat b�#����� was likely the dominant 

468 ecological process assembling root-tip ECM fungal communities under high fire recurrence, 

469 while without the fire pressure (i.e., low fire recurrence) and milder climate conditions, 

470 competition among fungi could prevail, similar to that described across biological groups 

471 (Pérez-Valera, Verdú, Navarro-Cano, & Goberna, 2018; Verdú & Pausas, 2007). The 

472 diversity of plant and microbial communities is regulated by sequentially operating assembly 

473 rules: abiotic filtering is an omnipresent structuring force, and biological interactions e.g., 
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474 competition, further fine-tunes the community assemblages (Pérez-Valera et al., 2018; Verdú 

475 & Pausas, 2007).

476 Fire regime and climate can filter directly different biotic organisms (i.e., trees and ECM 

477 fungi), however our results did provide significant clues about indirect plant-mediated effects 

478 of high fire recurrence on ECM fungal communities. We observed that serotiny, previously 

479 demonstrated to be a tree heritable trait shaped by recurrent fires (Budde et al., 2014; 

480 Castellanos, González-Martínez, & Pausas, 2015; Hernández-Serrano et al., 2014), 

481 significantly explained the variation of ECM fungal communities, aside from the accounted 

482 climatic effects for both pine species. This could be attributed to climatic constraints in the 

483 channel of C from the tree towards the ECM fungi, although, on the other hand, serotiny is a 

484 trait that requires resources (water and C) for maintaining a large amount of seeds alive in the 

485 canopy with a cost for the plant (Cramer & Midgley, 2009; Harris & Pannell, 2010). Another 

486 possible explanation is that the ability of the different tree genotypes/phenotypes to 

487 preferentially allocate photosynthates to the more beneficial ECM fungi, or to those with low 

488 C demands and/or high abilities to cope with hydric/nutrient stress can be the prevailing 

489 mechanism explaining such plant-mediated effects (Bever, Richardson, Lawrence, Holmes, & 

490 Watson, 2009; Gehring et al., 2014). This was to some extent supported by our results, at least 

491 in P. pinaster, for which a direct effect of tree phenotype (serotiny) on enzymatic responses of 

492 ECM fungi, but no effect of climatic variables was observed. We have previously shown that 

493 particular P. pinaster genotypes can impact enzymatic activities through changes in the 

494 composition of the associated microbial communities (Pérez-Izquierdo et al., 2017, 2019). 

495 Additionally, it cannot be ruled out that, the fire recurrence negatively affects other tree traits 

496 such as root development and/or architecture constraining the space for ECM fungal 

497 colonization, which would make mechanisms like priority effects particularly important 
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498 (Kennedy, Peay, & Bruns, 2009; Peay, Belisle, & Fukami, 2012). In any case, further 

499 experimentation would be needed to shed light on these assumptions.

500 The increased fire recurrence affected ecosystem functions differently in the two pine species 

501 by reducing most enzymatic activities in the case of P. pinaster, but not for P. halepensis. 

502 This suggests functional redundancy between ECM fungal communities associated with P. 

503 halepensis in low and high fire recurrence sites, since diversity and assemblage shifts were 

504 not translated into functional changes (Jones et al., 2010). These results might indicate a high 

505 capacity of P. halepensis forests to recover its functionality among recurrent fires in warmer 

506 areas probably by shifting plant-microbial feedbacks to readjust to the environment 

507 (Clemmensen et al., 2015; Johnstone et al., 2010). The edaphic conditions (mainly pH and P) 

508 were main factors explaining differences in enzymatic profiles among populations of both 

509 pine species. Among their multiple functions, an outstanding feature of ectomycorrhizal fungi 

510 is their ability to mobilize nutrients from the soil (Smith & Read, 2008). Because of their 

511 direct access to C from the host, they are able to invest energy (i.e., enzymatic production) to 

512 mine for N and/or P from hardly accessible sources (Fernandez, See, & Kennedy, 2020; 

513 Lindahl & Tunlid, 2015), as it could be the case for basic soils in our study together with 

514 recalcitrant pine litter. Our findings are in line with previous studies indicating that the 

515 availability of resources in surrounding soil together with tree host genetics strongly regulate 

516 ECM enzymatic production (Aponte, García, Marañón, & Gardes, 2010; Courty et al., 2016; 

517 Courty et al., 2011; Schneider et al., 2012). As previously mentioned, the laccase activity 

518 increased in high fire recurrence populations of both pines. Laccase is an oxidative enzyme 

519 related to several processes like the degradation of recalcitrant C compounds (i.e., lignin), but 

520 also to the production of melanin by fungi (Baldrian, 2006; Eisenman et al., 2007). Melanin is 

521 a group of complex polymers deposited in the cell wall associated with resistance to stresses 
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522 such as drought (Koide et al., 2014) and moderately resistant to decomposition (Fernandez, 

523 Heckman, Kolka, & Kennedy, 2019). It is also possible that in our study sites, changes in 

524 traits like production of melanin by fungi or more litter tannins by trees associated to the fire 

525 regime and climatic stress might have affected organic matter turnover and feedback cycles, 

526 issues that would deserve further analyses. In fact, in a 2-million-year chronosequence, 

527 Albornoz et al. (2016) showed strong variation of ECM fungal communities even within the 

528 same hosts, attributable not only to short-term fungal edaphic specialization or different 

529 inoculum density and composition, but also likely to a much longer-term ecosystem-level 

530 feedbacks among soil, plants and ECM fungi during pedogenesis.

531

532 Conclusions

533 In P. pinaster and P. halepensis Mediterranean forests, the high fire recurrence filters the 

534 ECM fungal community composition, even favoring some ECM fungal species, but reduces 

535 local and regional ECM diversity. Factors such as climate, which is intimately related to fire, 

536 and soil properties in particular pH, affect ECM fungal communities composition and their 

537 enzymatic functions. Aside from the climatic filter, local adaptation in pine populations to 

538 recurrent fires (i.e., increased serotiny) selects for different ECM fungal communities, 

539 accompanying different functional responses. ECM fungal communities associated with 

540 serotinous P. pinaster trees imply a reduced enzymatic activity, but for P. halepensis, a 

541 functional redundancy in LoFi and HiFi fire regimes likely exists. Edaphic variables, highly 

542 linked to the bedrock type in Mediterranean ecosystems, are main drivers of ECM fungal 

543 structure and functioning but generally independent of the fire regime. The bedrock material 

544 is also a main factor driving differences in ECM fungal communities associated with P. 

545 pinaster and P. halepensis, overriding the possible effect of the tree species. Although fire is a 
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546 main factor shaping Mediterranean ecosystems, changes in fire frequency because of 

547 predicted warmer and longer dry periods have the potential to affect the plants and their 

548 symbionts altering the structure, functioning and successional dynamics of Mediterranean 

549 forests ecosystems. The observed fire regime-related structural and functional shifts in ECM 

550 fungal communities might have essential implications for Mediterranean pine forests 

551 dynamics, which should be carefully considered to promote the sustainable management of 

552 these vulnerable ecosystems and to maintain their resilience under future climatic scenarios.
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922 Table 1. Alpha-diversity of representative ectomycorrhizal (ECM) fungal families analysed 

923 by General Linear Models (GLMs) (p<0.05). Main effects of the pine species (Ppi =Pinus 

924 pinaster and Pha =Pinus halepensis) (left) and the fire regime (LoFi = low fire recurrence and 

925 HiFi = high fire recurrence) (right) are shown. The site was nested within the fix factor fire 

926 regime in the GLMs. Data represent means +/- SE. Arrows indicate significantly higher k�

927 diversity, and �=� indicates no variation between pine species according to the GLM (F 

928 values; *p<0.05; **p<0.01; ***p<0.001). In the separate analyses on the right, for each pine 

929 forest, different letters denote significant differences between fire regimes (p<0.05) (in bold). 

930 A = Ascomycetes (orange); B = Basidiomycetes (green). 

931

932

Pine Forest P. pinaster P. halepensis

Ppi Pha F (p-value) LoFi HiFi LoFi HiFi

AmanitaceaeB � 9.2** 0.1 ± 0.1 a 0.9 ± 0.2 b 0.1 ± 0.1 0.2 ± 0.1

AtheliaceaeB � 6.8* 9.7 ± 0.6 b 6.7 ± 0.6 a 6.3 ± 0.5 5.9 ± 0.4

BankeraceaeB = = 2.0 1.8 ± 0.4 1.3 ± 0.3 1.7 ± 0.5 b 0.9 ± 0.2 a

CantharellaceaeB � 41.7*** 1.0 ± 0.2 a 2.8 ± 0.4 b 0.7 ± 0.2 0.5 ± 0.2

ClavariaceaeB � 36.9*** 0.8 ± 0.2 1.2 ± 0.4 0.3 ± 0.2 b 0.1 ± 0.1 a

ClavulinaceaeB = = 2.4 2.9 ± 0.3 b 1.7 ± 0.3 a 2.7 ± 0.5 b 1.3 ± 0.3 a

CortinariaceaeB � 16.2*** 2.2 ± 0.7 b 0.4 ± 0.2 a 0.6 ± 0.4 b 0.2 ± 0.1 a

GloniaceaeA � 5.7* 2.5 ± 0.3 b 1.2 ± 0.2  a 1.7 ± 0.4 b 0.9 ± 0.3 a

HydnaceaeB = = 0.8 0.3 ± 0.1 0.2 ± 0.1 0.6 ± 0.2 b 0.2 ± 0.1 a

InocybeaceaeB = = 1.4 5.5 ± 0.8 b 3.0 ± 0.5 a 3.1 ± 0.3 2.8 ± 0.3

PezizaceaeA � 22.8*** 0.2 ± 0.1 0.2 ± 0.1 0.5 ± 0.2 a 1.1 ± 0.2 b

PyronemataceaeA � 30.7*** 0.6 ± 0.2 0.9 ± 0.2 2.9 ± 0.3 b 1.6 ± 0.3 a

RhizopogonaceaeB � 29.1*** 0.9 ± 0.2 a 1.8 ± 0.2 b 0.8 ± 0.2 b 0.4 ± 0.1 a

RussulaceaeB � 14.0*** 7.3 ± 0.6 b 5.5 ± 0.7 a 4.3 ± 0.8 4.3 ± 0.5

SebacinaceaeB � 33.6*** 5.7 ± 1.1 4.5 ± 0.4 8.7 ± 0.8 9.0 ± 0.8

SuillaceaeB = = 0.0 1.6 ± 0.3 1.2 ± 0.2 1.6 ± 0.2 b 1.2 ± 0.2 a

TelephoraceaeB = = 0.0 11.9 ± 1.0 11.0 ± 1.0 14.1 ± 1.8 b 10.4 ± 0.8 a

TuberaceaeA = = 0.0 1.4 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.4 ± 0.2

933

934

935

936

937
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941 Figure 1. Alpha-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 
942 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 
943 recurrence populations of Pinus pinaster and Pinus halepensis, analysed by Generalized 
944 Linear Models (p<0.05). Boxes represent the interquartile range (IQR) between first and third 
945 quartiles and the horizontal line inside is the median. Whiskers denote the lowest and highest 
946 values within 1.5 x IQR from the first and third quartiles, respectively. Within each graph, 
947 different letters denote significant differences among fire regimes.
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952 Figure 2. Beta-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 
953 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 
954 recurrence populations of Pinus pinaster (triangles) and Pinus halepensis (circles). The 
955 centroids within each group are represented by small white dots. Grey solid lines give the 
956 relative position of the point with respect to the respective centroid. Dotted lines reflect the 
957 area occupied by all plots of a given treatment, which is inversely proportional to the 
958 similarity of their ECM fungal communities.
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964 Figure 3. Enzymatic activity of ectomycorrhizal root tips (means ± SE) of low (LoFi, blue) or 
965 high (HiFi, red) fire recurrence populations of Pinus pinaster and Pinus halepensis, analysed 
966 by Generalized Linear Models (p<0.05). For each pine species, different letters denote 
967 significant differences between fire recurrence levels, while for each LoFi/HiFi treatment, 
968 asterisks denote significant differences between pine forest levels.
969
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974 Figure 4. (a) Ectomycorrhizal fungal community structure and (b) enzymatic activities 
975 associated with root-tips of Pinus pinaster (triangles) and Pinus halepensis (circles) forests 
976 subjected to low (blue) or high (red) fire recurrence, respectively analyzed by Canonical 
977 Correspondence (CCA) and Redundancy (RDA) analyses. In all cases, the weight, direction 
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978 and separate effects of serotiny, climatic and edaphic conditions is represented by vectors (see 
979 model details in Table S4). Serotiny degree is the number of closed cones by total number of 
980 cones in the tree. Edaphic and climatic conditions are represented by the first two axes 
981 (Edaphic1 and Edaphic2; Climate1 and Climate2) of Principal Coordinates Analyses (PCA) 
982 performed considering the pH, electric conductivity and potassium, nitrogen, phosphorus and 
983 organic matter content in the first case, and mean temperature, mean precipitation and altitude 
984 in the second case (Figure S2). Only significant variables are shown, *p<0.05, **p<0.01, 
985 ***p<0.001.
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986 Supplementary Figures
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988 Figure S1
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992 Figure S1. Location of the fifteen study sites with pine populations of Pinus pinaster Ait. 
993 (triangles) and Pinus halepensis Mill. (circles), growing in areas of low (LoFi, blue) and high 
994 (HiFi, red) fire recurrence, in eastern Spain. The distinct historical fire regime has induced a 
995 sharp serotiny divergence within these pine populations along time. Serotinous populations 
996 associate to HiFi while non-serotinous populations associate to LoFi.
997

998
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1003 Figure S2. Principal component analyses (PCA) performed with (a) the edaphic variables pH, 
1004 electric conductivity (EC), potassium (K), nitrogen (N), phosphorus (P) and organic matter 
1005 (OM), and (b) the climate-related variables altitude, mean temperature (Tm) and mean 
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1006 precipitation (Pm) of each pine forest. The first two axes of each analysis explaining the 
1007 maximum of variance (in parenthesis) were used as edaphic or climatic indexes in models 
1008 (i.e., proxies of edaphic and climatic conditions of each pine forest Pinus pinaster or Pinus 

1009 halepensis).
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1061

1062 Abstract

1063 Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean 

1064 ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In 

1065 Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) 

1066 fungi, essential for ecosystem dynamics, might be drastically threatened by fire. We tested 

1067 how fire regime alters the structure and function of ECM communities of Pinus pinaster and 

1068 Pinus halepensis Mediterranean forests, and analyzed the relative contribution of 

1069 environmental (climate, soil properties) and tree-mediated (serotiny) factorseffectors. For 

1070 both pines, high fire recurrence significantly reduced local and regional ECM fungal diversity, 

1071 although certain fungal species were favored by recurrent fire. The high fire recurrence also 

1072 associated a general decline of ECM root-tip enzymatic activity for Pinus pinaster, while it 

1073 did not imply major functional changes for Pinus halepensis. Separated effects of fire regime 

1074 related-factorseffectors such as climate, soil properties or tree phenotype drove these 

1075 processes. In addition to the main influence of climate, the tree fire-adaptive trait serotiny 

1076 recovered a great portion of the variation in structure and function of fungal communities 

1077 associated with the fire regime. Edaphic conditions (especially pH, tightly linked to bedrock 

1078 type) were an important driver shaping ECM fungal communities, but mainly at the local 

1079 scale and likely independently of the fire regime. Our results show that fire regime strongly 

1080 impacts ECM fungal communities, and reveal complex feedbacks among trees, mutualistic 

1081 fungi and surrounding environment in fire-prone Mediterranean forest ecosystems. 

1082

1083 Keywords: ectomycorrhizal communities, enzymatic activity, fire recurrence, Mediterranean 

1084 pines,  serotiny
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1085

1086 Introduction

1087 Mediterranean climate is characterized by a marked seasonality with mild winters and hot dry 

1088 summers, which gives rise to one of the most fire-prone ecosystems in the world (Pausas, 

1089 2004). The evolutionary history of these ecosystems is tightly linked to fire (Keeley, Bond, 

1090 Bradstock, Pausas, & Rundel, 2011). Recurrent burning has markedly structured plant 

1091 communities in this area (Verdú & Pausas, 2007), where many species have developed 

1092 evolutionary mechanisms of resistance and resilience to fire (Pausas, 2015; Tapias, Climent, 

1093 Pardos, & Gil, 2004). A good example of fire-adaptive trait is serotiny, i.e., the retention of 

1094 mature seeds in closed cones for more than a year until dispersion and germination is 

1095 activated by fire, evolved by some representative Mediterranean pine species (Budde et al., 

1096 2014; Hernández-Serrano, Verdú, González-Martínez, & Pausas, 2013) and other conifers in 

1097 fire-dominated systems (Greene et al., 1999). Fire generates phenotypic divergence on 

1098 serotiny, an heritable trait in Mediterranean pines, ultimately producing local adaptation 

1099 (Hernández-Serrano et al., 2014). There is evidence that serotiny is related to differences in 

1100 fire regime, increasing with the frequency of stand-replacing fires (Hernández-Serrano et al., 

1101 2013; Radeloff, Mladenoff, Guries, & Boyce, 2004). Changes in the fire regime are closely 

1102 linked to climate (Pausas, 2004), and predicted climate change scenarios make Mediterranean 

1103 ecosystems especially vulnerable. Temperature rise and rainfall decrease are expected to 

1104 increaserise drought risk and consequently forest wildfires, altering the structure and 

1105 successional dynamics of Mediterranean forests (Lindner et al., 2010). 

1106 Ecosystem development is driven by interactions among climatic conditions, edaphic 

1107 environment and biotic communities. Given the role of fungi in organic matter turnover and 

1108 nutrient cycling, they are key players in the plant-soil-microbial feedbacks that determine 
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1109 ecosystem development after disturbances (Clemmensen et al., 2015). Specifically, 

1110 mutualistic ectomycorrhizal (ECM) fungi, which are tightly linked to the host through 

1111 specialized symbiotic structures, mediate the uptake and transfer of water and nutrients to 

1112 trees (Smith & Read, 2008). They channel the photosynthetic carbon (C) fixed by trees into 

1113 the belowground, influencing soil Ccarbon storage and nutrient cycling (Clemmensen et al., 

1114 2013; Talbot, Allison, & Treseder, 2008). This symbiosis can provide up to the 80% of 

1115 nutrients to trees and alleviate their hydric stress (Kivlin, Emery, & Rudgers, 2013; van der 

1116 Heijden, Martin, Selosse, & Sanders, 2015), and therefore can be especially relevant in severe 

1117 environments e.g., recurrent fire and drought conditions in Mediterranean ecosystems 

1118 (Egerton-Warburton, Querejeta, & Allen, 2007; Prieto et al., 2016; Querejeta, Egerton-

1119 Warburton, & Allen, 2007). 

1120 Fire affects ECM communities are affected by fire mainly through vegetation damages and 

1121 altered soil properties (Buscardo et al., 2015; Hart, DeLuca, Newman, MacKenzie, & Boyle, 

1122 2005; Rincón & Pueyo, 2010), conditions that may favor fire-tolerantprone fungi (Glassman, 

1123 Levine, Dirocco, Battles, & Bruns, 2016; Rincón, Santamaría-Pérez, Ocaña, & Verdú, 2014). 

1124 Certain fungi can remain for long time in the soil spore banks and be advantaged after fire, as 

1125 it has been shown in closed-cone pine forest populations with historical highly recurrent and 

1126 intense fires  (Baar, Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 

1127 2015). Fire usually decreases root mycorrhizal colonization and fungal richness (Dove & 

1128 Hart, 2017) .  However, exceptions of high colonization rates after fire have been seen for 

1129 seedlings of fire-adapted Mediterranean pines. More generally, fire drastically disrupts the 

1130 species composition of the mycorrhizal communities, usually leading to their simplification 

1131 with the dominance of pioneer fungi (Dove & Hart, 2017; Buscardo et al., 2015; de Román & 

1132 de Miguel, 2005;  A. Rincón et al., 2014; Torres & Honrubia, 1997) (Torres and Honrubia 
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1133 1997; de Román and de Miguel 2005; Martin-Pinto et al. 2006; Buscardo et al. 2015; Rincón 

1134 and Pueyo 2010; Rincón et al. 2014; Vasquez-Gassibe et al. 2016). Certain fungi can remain 

1135 for long time in the soil spores banks and be advantaged after fire, as it has been shown in 

1136 closed-cone pine forest populations with historical highly recurrent and intense fires (Baar, 

1137 Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 2015). 

1138 AdditionallyMoreover, because intraspecific plant genotypic and phenotypic variation affects 

1139 the structure of their associated ECM fungi (Gehring & Whitham, 1991; Pérez-Izquierdo et 

1140 al., 2017, 2019; van der Heijden et al., 2015) it is and plausibley that , genetically fire-driven 

1141 changes in trees, such as serotiny degree, may co-affect these mutualistic communities for 

1142 example by determining the Ccarbon available to exchange in symbiosis. Nevertheless, fires 

1143 recurrently affect big areas of Mediterranean ecosystems, yet the cumulative effects of 

1144 recurrent wildfires on ECM fungal communities are less known than those of single wildfires 

1145 (Buscardo et al., 2015).

1146 In our study, we targeted forests of two representative Mediterranean tree species, Maritime 

1147 pine (Pinus pinaster Ait.) and Aleppo pine (Pinus halepensis Mill.), amply distributed in the 

1148 Iberian Peninsula. While the Maritime pine usually grows in acid soils at 700-1700 m 

1149 altitude, the Aleppo pine grows in basic substrate and below 800 m (Ruíz, Álvarez-Uria, & 

1150 Zavala, 2009). Pinus halepensis is typically distributed in warm and dry areas, even under 

1151 extreme drought induced either by climate or soil constituents (e.g., marls, gypsum, rocky 

1152 slopes) (Ruíz et al., 2009). Both pine species have a life history related to fire adaptation 

1153 (Tapias et al., 2004) displaying great post-fire colonizing abilities (Barbéro, Loisel, & Quézel, 

1154 1998) and showing fire-adaptive traits such as serotiny (Pausas, 2015). The natural 

1155 regeneration and dynamics of these pine forests critically relaieys on ECM fungal 

1156 communities, because pine species are obligatory ectomycorrhizal (Nuñez, Horton, & 
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1157 Simberloff, 2009; Smith & Read, 2008). Recurrent fires, tightly linked to climate in these 

1158 Mediterranean areas, might act as an environmental filter, culling plant and microbial species 

1159 unable to tolerate conditions at a particular location and thus preventing their establishment or 

1160 persistence (Kraft et al., 2015). 

1161 Based on all these premises, we expected that  ii) due to the habitat filtering imposed by the 

1162 fire regime and subjacent Mediterranean climatic conditions, the ECM fungal communities in 

1163 sites subjected to high fire recurrence sites  (HiFi hereafter) would be less diverse and more 

1164 homogeneous than those in sites exposed to low fire recurrence sites (LoFi hereafter),  and 

1165 thatthis it would  imply different functional outcomes. Conversely, increasing diversity might 

1166 act as an insurance for ecosystem functions during extreme perturbations (e.g. fire and/or 

1167 drought). 

1168 In theour study area, the  distinct historical fire regimerecurrencefrequency has induced a 

1169 sharp serotiny divergence in trees  within the HiFi and LoFi populations along time  

1170 (Hernández-Serrano et al., 2013). Serotiny has been proven to beas a heritable trait  associated 

1171 with the genotype of trees (Budde et al., 2014; Castellanos, González-Martínez, & Pausas, 

1172 2015; A. Hernández-Serrano et al., 2013) . Despite the low specificity of the mycorrhizal 

1173 symbiosis for pines (Smith & Read, 2008), Because different tree genotypes can influence 

1174 their associated ECM fungi (Gehring & Whitham, 1991; Pérez-Izquierdo et al., 2017),. 

1175 weThis led us to further hypothesize that, at the finer scale of individuals, iii) the trees 

1176 differing in their serotiny degree of trees, i.e., genotypic fire-adaptation, would will explain 

1177 affect differentially the structural and functional divergences of harbor dissimilar ECM fungal 

1178 communities. Moreover, given expectable changes in nutrient availability and ECM structural 

1179 shifts, we assumed (iii) different functional outcomes among root-tip ECM fungi associated 
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1180 with pines growing under distinct fire regime, i.e., either increased or decreased nutrient 

1181 mobilization depending on fungal and/or tree adaptation to the new environmental conditions.

1182 In order to address these predictions, we characterized the structure of root-tip ECM fungal 

1183 communities of natural P. pinaster and P. halepensis forests (Hernández-Serrano et al., 2013). 

1184 For both pine forests, serotinous populations growing under a warm and dry Mediterranean 

1185 climate subjected to high fire frequency and non-serotinous populations growing under a 

1186 subhumid climate where fires are rare (Verdú & Pausas, 2007) were surveyed (Figure S1). 

1187 Additionally, we determined, on excised ECM root-tips, potential fungal enzymatic traits 

1188 related to Ccarbon turnover and mobilization of nutrients. These are processes directly 

1189 implicated in the exchange of resources that support most mycorrhizal symbioses and many 

1190 essential ecosystem functions (Johnson et al. 2012). 

1191

1192 Material and Methods

1193 Study sites and sampling 

1194 Surveys were conducted in natural forests of P. pinaster (Ppi) and of P. halepensis (Pha) 

1195 located in eastern Spain (Figure S1). We selected nNine pine populations are located in high 

1196 fire recurrence sites where crown-fires are historically frequent and most regeneration events 

1197 are driven by fire (HiFi populations), while the other selected six populations wereare located 

1198 in low fire recurrence areas where most regeneration events are independent of fire because 

1199 fire events are rare (LoFi populations) (Hernández-Serrano et al., 2013; Pausas et al., 2004). 

1200 The serotiny degree of these pine populations growing under distinct fire regime has been 

1201 accurately characterized in Hernández-Serrano et al., 2013 (Table S1). Briefly, serotiny was 

1202 estimated considering both the cone age and the proportion of serotinous cones  the number of 

1203 closed cones, those remaining closed after maturation, with respect to the total number (open 
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1204 and closed). In the study area, fire is tightly linked to Mediterranean climatic conditions (i.e., 

1205 drought) (Pausas, Bradstock, Keith, Keeley, & Network, 2004), and fire history makes it 

1206 possible a clear differentiation of sites with a much shorter fire return interval than others 

1207 (Abdel Malak & Pausas, 2006).. Recent fire history information (Pausas & Fernández-Muñoz, 

1208 2012; Pausas, 2004) shows that more than 50% of the study area at HiFi conditions burned at 

1209 least once during the 1978�2001 period, while for LoFi conditions, the proportion was about 

1210 15% (Abdel Malak & Pausas, 2006).  From a microevolutionary point of view, this distinct 

1211 fire regime has induced a sharp serotiny divergence within these populations (Hernández-

1212 Serrano et al., 2013). More than 500 genes were differentially expressed across the two pine 

1213 accessions from HiFi and LoFi populations (Pinosio et al., 2014) and three high-

1214 differentiation outlier single nucleotide polymorphisms-SNPs were identified between HiFi 

1215 and LoFi stands, suggesting fire-related selection at the regional scale (Budde et al., 2017). 

1216 Thus, despite the lack of long-term fire statistics for the specific study sites, there is strong 

1217 evidence that the fire interval is much shorter in HiFi areas than in LoFi. Nine pine 

1218 populations are located in high fire recurrence sites where crown-fires are historically 

1219 frequent and most regeneration events are driven by fire (HiFi populations), while the other 

1220 six populations are located in low fire recurrence areas where most regeneration events are 

1221 independent of fire because fire events are rare (LoFi populations) (Hernández-Serrano et al., 

1222 2013; Pausas et al., 2004). The serotiny degree of these pine populations growing under 

1223 distinct fire regime has been accurately characterized in Hernández-Serrano et al., 2013 

1224 (Table S1). Briefly, serotiny was estimated considering both the cone age and the proportion 

1225 of serotinous cones, i.e., the number of closed cones, those remaining closed after maturation, 

1226 with respect to the total fully ripe (open and closed) of cones  (see Hernández-Serrano et al., 

1227 2013 for details). The characteristics of pine populations related to productivity (diameter at 
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1228 breast height; DBH), fire-adaptation traits (bark thickness and serotiny degree), as well as 

1229 location and local environmental variables are described in Table S1. All the selected stands 

1230 were mature pine populations, with DBH between 20.8 and 35.4 cm corresponding to trees of 

1231 more than 40 yr (Camarero, Olano, & Parras, 2010; Vieira et al., 2015).

1232 In Mayspring 2013, five trees per population separated by more than 10 m were selected 

1233 fromin a total of 15 populations (n = 75). Under each tree, the litter was removed and samples 

1234 were obtained,, approximately 1 m far from the trunk, by excavating 10 x 10 x 20 cm soil 

1235 holes at the four orientations (north, south, east and west). The four samples per tree were 

1236 pooled into a combined sample and kept at 4 ºC in plastic bags until processing. Once in the 

1237 lab, roots were separated from soil, coarse roots discarded (diameter > 2 mm), and remaining 

1238 roots gently washed with tap water over 2 and 0.5 mm sieves for collecting root tips. All 

1239 ectomycorrhizal (ECM) root tips per each sample were carefully selected (Rincón et al., 

1240 2014), cleaned and sorted per sample under a stereomicroscope for further enzymatic and 

1241 molecular analyses. Remaining soil was air dried and sieved (2 mm) for analysis.

1242 The gravimetric soil moisturerelative humidity (RH) of soil samples was determined by 

1243 drying at 1065 ºC for 48 h. Air-dried soils were measured for pH (2 g of soils 1:5, w:v in 10 

1244 ml of H2O, 1:5, w:v), electrical conductivity (EC) (1:5, w:v in H2O), organic matter (OM) 

1245 (Walkley & Black, 1934), total N (Kjeldahl method). Extractable P was determined by the 

1246 Bray & Kurtz (1945) method, after extraction in an ammonium fluoride and chloride acid 

1247 solution. Extractable potassium (K) was determined after nitric acid digestion according to 

1248 Isaac & Kerber (1971). Both P and K extracts were measured by inductively coupled plasma 

1249 spectrometry (Optima 4300DV, Perkin-Elmer, Waltham, MA, EE.UU.).

1250 Enzymatic tests 
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1251 The fungal community functioning was evaluated on excised ECM root tips by measuring 

1252 activities of eight hydrolytic and oxidative exoenzymes secreted by fungi. Seven enzymatic 

1253 tests were based on fluorogenic substrate release, methylumbelliferone (MU) e.g. U�

1254 glucosidase (EC 3.2.1.3 at ExPasy-Enzyme database) and cellobiohydrolase (EC 3.2.1.91) 

1255 that degrade cellulose, U�85��"�
�"� (EC 3.2.1.37) and U���� �����
�"� (EC 3.2.1.31) implied 

1256 in the degradation of hemicellulose, acid phosphatase (EC 3.1.3.2) involved in the 

1257 mobilization of phosphorus, N-acetylglucosaminidase or chitinase (EC 3.2.1.14) which 

1258 hydrolyses chitin, or methylcoumarine (AMC) for L-leucineaminopeptidase (3.4.11.1) related 

1259 to the mobilization of nitrogen from peptidic substrates. The Laccase (1.10.3.2) activity was 

1260 determined by a photometric assay based on ABTS substrate (2,2'-Azino-bis (3-ethylbenzo-

1261 thiazolin-6-sulfonic acid). This enzyme is related to the degradation of recalcitrant 

1262 compounds such as lignin. Enzymatic activities were determined following the protocol 

1263 described by Courty, Pritsch, Schloter, Hartmann, & Garbaye (2005), with modifications. A 

1264 total of 280 ECM-tips were randomly collected per sample and separated in subsets of 7 

1265 ECM-tips with 5 replicates per each enzymatic test. Each replicate thus consisted of a tube 

1266 with 7 pooled ECM-tips that were incubated in buffer during the corresponding time for each 

1267 enzyme (Courty et al., 2005), after which 100 W� of the respective enzymatic reaction mix was 

1268 added to 100 W� of stopping buffer in 96-well microplates. Enzymatic activities were 

1269 measured in a Victor microplate reader (Perkin-Elmer Life Sciences, Massachusetts, USA), 

1270 with 355/460 nm excitation/emission wavelengths for the fluorogenic assays and 415 nm for 

1271 laccase. After reading, the ECM-tips of each replicate were scanned and their area calculated 

1272 with the software ImageJ 1.49. Enzymatic activities were expressed in pmol min-1mm-2. 

1273 Molecular analyses
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1274 Per each measured enzyme, the ECM-tips were pooled (7 ECM-tips subsets x 5 replicates = 

1275 35), added of a pinch of polyvinylpolypyrrolidone (PVPP), and the DNA extracted with the 

1276 Invisorb®DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany), making a total of 

1277 600 DNA extractions (75 tree samples x 8 enzymes) corresponding to 280 root tips per tree. 

1278 The internal transcribed spacer region ITS-1 of the nuclear ribosomal DNA was amplified 

1279 with the primer pair ITS1F-ITS2 (Gardes & Bruns, 1993) adapted for Illumina-MiSeq. PCR 

1280 amplifications (3 min 94 ºC, 30 cycles of 1 min 94 ºC, 30 s 53 ºC and 45 s 72 ºC, with a final 

1281 step of 10 min 72 ºC) were conducted in a Verity Thermal Cycler (Life Technologies), and 

1282 eEach sample was amplified in three independent 20 µl PCR reactions, each containing 2 µl 

1283 of 10x polymerase buffer, 2.4 µl of 25 mM MgCl2, 1.12 µl of 10 mg ml-1 BSA, 0.4 µl of 10 

1284 mM Nucleotide Mix, 0.4 µl of 10 mM forward/reverse primers and 0.2 µl of AmpliTaqGold 

1285 polymerase (5 U ml-1) (Applied Biosystems, Carlsbad, CA, USA). Negative controls without 

1286 DNA were included in all runs to detect possible contaminations. The PCR conditions were as 

1287 follow: 3 min 94 ºC, 30 cycles of 1 min 94 ºC, 30 s 53 ºC and 45 s 72 ºC, with a final step of 

1288 10 min 72 ºC. Independent reactions were combined per sample, and each PCR product was 

1289 purified (UltraClean PCR clean-up kit of MoBio, Carlsbad, CA, USA), quantified 

1290 (PicoGreen, Life Technologies, Carlsbad, CA, USA), and finally pooled in an equimolar 

1291 library containing 75 samples. Sequencing was carried out on an Illumina MiSeq sequencer (2 

1292 × 300 bp paired-end reads) in an external service (Parque Científico de Madrid, Spain).

1293 Bioinformatic analyses

1294 Sequences were de-multiplexed according to their tags, filtered and trimmed using the 

1295 fastq_filter command and fastq_truncqual option of Usearchv.7.0.1001 (Edgar, 2013) for 

1296 eliminating quality scores \ 10. We used FLASH  was used to merge reads with a minimum 

1297 overlap ofat 97 % of similarity using 110 bp and 160 of minimum and maximum overlap 
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1298 respectively, resulting inand the 58.3 % of retained sequences was retained (4205677 out of 

1299 the initial set of 7215915 sequences). Then, sSequences were dereplicated with the 

1300 derep_fulllength Usearch command. De-replicated sequences were then sorted by decreasing 

1301 abundance, and singletons discarded with the sortbysize Usearch command. Finally, 4116377 

1302 sequences (57 %) were retained. OMolecular operational taxonomic units (MOTUs) were 

1303 generated from abundance-sorted sequences using the cluster_otus Usearch command with a 

1304 97 % similarity threshold. Extracted ITS sequences were then mapped against the MOTU 

1305 representative sequences using the usearch_global Usearch command. Taxonomic 

1306 assignation of representative sequences for each MOTU was done by using the Basic Local 

1307 Alignment Search Tool (BLAST) (Altschul, Gish, Miller, Myers, & Lipman, 1990) according 

1308 toagainst the 7.2 UNITE database (Kõljalg et al., 2013). Fungal taxonomic assignment served 

1309 to identify those MOTUs closely related to recognized ECM taxa (Nguyen et al., 2016; 

1310 Tedersoo et al., 2014; Tedersoo & Smith, 2013). The 86 % of the inferred sequences 

1311 corresponded to ECM fungi and these were used for all subsequent analyses. 

1312

1313 Statistical analyses

1314 To test the hypothesis 1, the effect of the fire recurrencefrequency (HiFi vs LoFi) on the 

1315 structure (i.e., alpha and beta-diversity) and functioning (i.e., enzymatic activities) of ECM 

1316 fungal communities (hypothesis 1) was separately evaluated by pine forest. Beta-diversity of 

1317 total and by phyla ECM fungal communities of the different pine populations was calculated 

1318 with the functions betadisper and permutest of the vegan package (Anderson, Ellingsen, & 

1319 McArdle, 2006; Oksanen et al., 2015), and visualized results of the dissimilarity betadisper 

1320 object were plotted by Principal Component Analyses (PCcoA). graphs. Beta-diversity was 

1321 calculated on Bray-Curtis abundance matrix of OTUs previously normalized by variance 

Page 56 of 97Molecular Ecology



For Review Only

57

1322 stabilization according to McMurdie and Holmes (2014) by using the DESeq package 

1323 (Anders & Huber, 2012). 

1324 Alpha-diversity was analysed by General Linear Models (GLMs) (p<0.05) with the number of 

1325 fungal OTUs as response variable. In these models, the square root of the total number of 

1326 sequences obtained per sample was included as a covariate to account for differences in 

1327 sequencing depth (Tedersoo et al., 2014). Models at lower taxonomic levels were also 

1328 performed (i.e., phyla and families). In all cases, before modelling, Shapiro and Levene tests 

1329 were performed to test the normality and homocedasticity of data, and variables were log or 

1330 square root transformed when needed. Firstly, we modelled the effect of the variable pine 

1331 forest on ECM fungal alpha-diversity, using pine forest as fixed factor and the site nested 

1332 within pine forestand the site as random factor (i.e., pine population). Subsequent GLMs 

1333 analyses were separately performed for each pine species. In these models, the fire regime 

1334 was introduced as fixed factor and the site (i.e., pine population) nested within fire regime (n 

1335 = 35 P. pinaster trees and n = 40 P. halepensis trees). Same GLM syntaxes were used to test 

1336 the effect of fire recurrencefrequency on the different root-tip enzymatic activities. 

1337 Correlations between enzymatic activities and ECM fungal community assemblages of the 

1338 pine populations were analyzed by Mantel tests with ade4 R package. 

1339 To identify representative fungal OTUs of each fire regime per pine species, the Indicator 

1340 Species Analysis (with OTUs >100 reads to avoid spurious relations) was carried out 

1341 (p<0.05) with the function multipatt of the indicspecies R package (Cáceres, Legendre, & He, 

1342 2013).

1343 Climatic and edaphic characteristics are intimately associated with fire regime in 

1344 Mediterranean ecosystems (Pausas et al., 2004). So, to separate the edaphic and climatic 

1345 effects from that of the fire regime, we performed CCA on Hellinger-transformed relative 
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1346 fungal abundance data and RDA with the Euclidean distance matrix of enzymatic activities 

1347 both with forward selection of explanatory variables. We used different analyses due to their 

1348 different data assumptions, RDA assumes a linear relationship between predictors and data 

1349 while CCA assumes a unimodal response curve. In these models, the variable fire regime and 

1350 the edaphic and climatic indexes were included. Previously, to reduce the dimensionality of 

1351 environmental data, Principal Component Analyses (PCA) were independently run for 

1352 edaphic variables (pH, OM, EC, N, P, K) and climatic variables (mean annual temperature, 

1353 mean annual precipitation and altitude), and the first two axes, explaining the maximum 

1354 amount of variance, of respective PCAs were used as edaphic or climatic indexes (Figure S2).

1355

1356 To test our hypothesis 2, effect of tree serotiny degree (i.e., genotypic fire-adaptation) on 

1357 ECM fungal community, two additional models with the factor serotiny and the edaphic and 

1358 climatic indexes were included. As before, we performed a CCA model on Hellinger-

1359 transformed relative fungal abundance data and a RDA model with the Euclidean distance 

1360 matrix of enzymatic activities both with forward selection of explanatory variables.

1361 Since the distribution of the two pine species considered in our study is closely linked to the 

1362 bedrock type, i.e., P. pinaster preferentially settled on siliceous soils, while P. halepensis 

1363 include both siliceous and calcareous soils (A. Hernández-Serrano et al., 2013) (Ojeda, 

1364 Pausas, & Verdú, 2010), we made additional analyses for testing possible confounding effects 

1365 of pine species and bedrock type (both factors included in the variable pine forest). For this, 

1366 the pine species effect on ECM fungal community structure and enzymatic activities was 

1367 respectively checked by Canonical Correspondence (CCA) and Redundancy (RDA) analyses, 

1368 only with data of Sinarcas, the unique location where populations of both pine species grow 

1369 under a common bedrock environment (Table S1). No significant effects of the pine species 
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1370 identity on the ECM fungal community structure (CCA: n=218; explained variation %=12.4; 

1371 P=0.204) or on the enzymatic profile (RDA: n=8; explained variation %=44.4; P=0.094) in 

1372 the location Sinarcas were observed. 

1373 Ordinations were done with the software CANOCO v.5.0 (Biometris Plant Research 

1374 International, Wageningen, Netherlands), and the rest of analyses with the R software v.3.5.2 

1375 (R Core Team, 2014).

1376
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1378

1379 Results

1380 Sequencing yields and taxonomic identification of fungi 

1381 A total of 501 ECM fungal MOTUs corresponding to 3182548 sequences were identified. 

1382 Almost half of MOTUs were found in both pine species and ~26 % exclusively in one of 

1383 them (Figure S32a). LoFi and HiFi pine populations shared the 54.8 % of MOTUs, while 

1384 ~21-23 % were only found either in LoFi or HiFi (Figure S32a). Most MOTUs belonged to 

1385 Basidiomycota (89.4 %), 10.2 % to Ascomycota, and 0.4 % to Zygomycota (Figure S32b; 

1386 Table S2). The taxonomic classification of OTUs allowed identifyingied 12 fungal orders, 30 

1387 families and 47 genera, most of them represented across all treatments (Table newS2).  

1388 The majority of the 20 most abundant fungi and of the indicator species fungi most commonly 

1389 found in root tips of P. pinaster belonged to Tomentellaceae, Inocybaceae, Russulaceae, and 

1390 Rhizopogonaceae and, in the case of P. halepensis, to Pezizales, Thelephoraceae and 

1391 Sebacinaceae (Table S2, S3; Figure S4). The indicator species analysis revealed 54  fungal 

1392 MOTUs preferentially found associated to in P. pinaster forests and 37  toin P. halepensis 

1393 forests (Table S3). Besides, 31 fungi belonging to 14 different genera were indicators of LoFi 

1394 populations of P. pinaster and  31 fungi belonging to 13 different genera were indicators of 

1395 LoFi populations of P. halepensis. in each respective pine species, whileIn contrast, 11 

1396 indicators from 5 different genera for P. pinaster and 6 from 5 different genera for P. 

1397 halepensis were associated with HiFi populations of P. pinaster and P. halepensis 

1398 respectively indicators (Table S3).

1399

1400 Root-tip ectomycorrhizal fungal diversity 
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1401 Total fungal �-diversity marginally varied between pine forestsspecies (R2=0.13; F=3.62; 

1402 P=0.062). At the phylum level, P. halepensis harboured significantly less Basidiomycetes 

1403 (R2=0.24; F=6.12; P=0.016) and marginally more Ascomycetes (R2=0.81; F=3.88; P=0.053) 

1404 were found in P.Pinus halepensis forest compared with than P. pinaster (Figure 1). The root-

1405 tips of P.inus pinaster root-tips were enriched of Amanitaceae, Atheliaceae, Cantharellaceae, 

1406 Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae and Russulaceae species, while 

1407 in P. halepensis root-tips prevailed species of the families Pezizaceae, Pyronemataceae and 

1408 Sebacinaceae (Table 1). At regional scale, rRoot-tip ECM fungal �-diversity of both pine 

1409 forestsspecies was similar (R2=0.01 F=1.34, P=0.265), although Basidiomycetes were more 

1410 dissimilar in P. pinaster than in P. halepensis forests (R2=0.01 F=4.4451, P=0.03304), and the 

1411 opposite pattern was observed for Ascomycetes (R2=0.03; F=11.62, P=0.001).

1412 The HiFi populations harboured significantly lower ECM fungal �-diversity was significantly 

1413 lower in high fire recurrencefrequency (HiFi) populations compared withthan low fire 

1414 recurrencefrequency (LoFi) populations in both pine forestsspecies (Figure 1a), and this 

1415 difference was consistent within the two fungal phyla i.e., Ascomycetes and Basidiomycetes 

1416 (Figure 1b-c). Total fungal �-diversity marginally varied between pine species (F=3.62; 

1417 P=0.062). At the phylum level, P. halepensis harboured significantly less Basidiomycetes 

1418 (F=6.12; P=0.016) and marginally more Ascomycetes (F=3.88; P=0.053) than P. pinaster 

1419 (Figure 1). Pinus pinaster root-tips were enriched of Amanitaceae, Atheliaceae, 

1420 Cantharellaceae, Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae and 

1421 Russulaceae species, while in P. halepensis root-tips prevailed species of the families 

1422 Pezizaceae, Pyronemataceae and Sebacinaceae (Table 1). Although the �-diversity of many 

1423 ECM fungal families decreased in HiFi populations of both pine forestspecies (Table 1), some 
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1424 taxa were clearly more diverse favoured by firein HiFi, e.g. Amanitaceae, Cantharellaceae 

1425 and Rhizopogonaceae for P. pinaster, or Pezizaceae for P. halepensis (Table 1). 

1426 At regional scale, a consistent reduction of ECM fungal �-diversity was observed in HiFi 

1427 populations of both pine forestsspecies (i.e., more homogeneous ECM communities in HiFi 

1428 than LoFi) (Figure 2a). Likewise, Basidiomycetes were less �-diverse in HiFi than LoFi 

1429 populations, while no difference was observed for Ascomycetes (Figure 2b-c). Root-tip ECM 

1430 fungal �-diversity of both pine species was similar (F=1.34, P=0.265), although 

1431 Basidiomycetes were more dissimilar in P. pinaster than in P. halepensis forests (F=4.51, 

1432 P=0.004), and the opposite pattern was observed for Ascomycetes (F=11.62, P=0.001). 

1433

1434 Potential enzymatic activity of ECM root-tips

1435 The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi 

1436 populations, the enzymatic activity of ECM root tips was very similar for both pines, except 

1437 in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in P. 

1438 halepensis compared with P. pinaster (Figure 3). By contrast, in HiFi populations, the activity 

1439 of most of the C-degrading enzymes (i.e., cellobiohydrolase, U�85��"�
�"� and U�

1440 glucuronidase), and of those mobilizing nitrogen (i.e., chitinase and L-leucineaminopeptidase) 

1441 was higher for P. halepensis than P. pinaster, with the exception of laccase that was lower 

1442 (Figure 3). 

1443 The ECM fungal species assemblage of P. pinaster root-tips  was significantly 

1444 correlatedassociated with their enzymatic profile (Mantel r=0.14; P=0.003) (Figure 3a). The 

1445 HiFi populations of P. pinaster had higher increased root-tip laccase activity and 

1446 lowerreduced hemicellulose degrading activity (i.e., U�85��"�
�"�� U���� �����
�"�F� and of 

1447 enzymes mobilizing nitrogen (i.e., chitinase and L-leucineaminopeptidase) and phosphorus 

Page 62 of 97Molecular Ecology



For Review Only

63

1448 (i.e., acid phosphatase) (Figure 3a, Figure S3).  �-glucosidase and laccase did correlate with 

1449 the ECM fungal families favoured in HiFi, such as Cantharellaceae or Rhizopogonaceae 

1450 (Table 1; Figure 3a). No significant relation between fungal community structure and 

1451 enzymatic activity was observed for P. halepensis (Mantel r=0.03; P=0.287) (Figure 3b), 

1452 although laccase activity significantly increasedpicked in HiFi populations (Figure 3b, Figure 

1453 S3).

1454

1455 Main drivers of the structure and function of ECM fungal communities 

1456 Climate, in particular temperature (Climate 1, first axis from PCA in Figure S2), together with 

1457 fire regimerecurrencefrequency,  and the tree fire-adaptive trait serotiny wereere  revealed as 

1458 major fire regime factors determiningeffectors on ECM fungal communities of Mediterranean 

1459 pine forests (Table S4A; Figure 4a).  As hypothesized, tThe CCA analysis clearly showed that 

1460 sThe tree trait serotiny (selected by fire regime) did also affectted the structure of explained 

1461 differences in root-tip ECM fungal communitiesy structure (Table S42B; Table 2B; Figure 

1462 4a). Higher levels of serotiny significantly correlated with the ECM fungal community 

1463 structureies  inof between LoFi and HiFi populations ofin  apart from the climatic effects, 

1464 both in P. pinaster and P. halepensis forests forests (Table S42B; Figure 4a). Contrarily, the 

1465 edaphic effects were likely related to differences among plots inside LoFi or HiFi populations, 

1466 i.e.  the (Table 2; Figure 4a)strength and direction of edaphic vectors along plots displayed in 

1467 Figure 4a. 

1468 Regarding ECM functionality (i.e., enzymatic activities), the fire recurrence together with the 

1469 climatic variables explaineddid not affected root-tip enzymatic activity in P.inus pinaster 

1470 forest any pine forest (Table S42A; Figure 4b). Moreover, tThe serotiny degree of P. pinaster 

1471 populations significantly correlated with the ECM root-tip enzymatic profile in HiFi 
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1472 populations, while soil characteristics mainly drove variations in enzymes among sites inside 

1473 LoFi and HiFi populations (Table S42B; Figure 4b). For P. halepensis, root-tip enzymatic 

1474 activity was essentially driven by the surrounding edaphic environment (Table S42; Figure 

1475 4b), mainly by high pH and low phosphorus availability (see PC2 in Figure S21a).

1476

1477 Discussion

1478 Mutualistic feedbacks between trees and ectomycorrhizal fungi that are essential for 

1479 ecosystem dynamics can be highly vulnerable to fire in Mediterranean ecosystems. Our 

1480 results show that  the fire regime shapes the structure and functioning of root-tip ECM fungal 

1481 communities in fire-prone Mediterranean forests. According to our H1D, dDivergent ECM 

1482 fungal communities associateted with P. pinaster and P. halepensis, which  are highly 

1483 influenced by the bedrock typeedaphic environment (siliceous vs. calcareous), and by the 

1484 strong habitat filter imposed by the fire regime and the Mediterranean climatethese fungal 

1485 communities differently respond to the fire regime. According to our first hypothesis,  As we 

1486 hypothesized (H2h), high fire recurrence reduces ECM fungal diversity and has a 

1487 homogenizing effect of ECM fungalon these communities, which leads to a reduced 

1488 enzymatic activity for one of the pine speciesP. pinaster (but not for P. halepensis). 

1489 Confirming our second hypothesis, this effect is evidenced at the finer scale of individuals 

1490 since the serotiny degree of trees, i.e., genotypic fire-adaptation, does significantly affect the 

1491 structure (for both P. pinaster and P. halepensis) and functioning (in the case of P. pinaster) 

1492 of ECM fungal communities. In this work, rR Our results demonstrate that relative.An overall 

1493 simplification of the ECM community structure is observed under high fire recurrence, which 

1494 associates a general enzymatic activity decline for P. pinaster but not for P.halepensis. 

1495 Separated effects contribution on ECM fungal communities of main variables related to fire-
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1496 related effectors such as climate, soil properties andor the tree trait ee phenotype (serotiny 

1497 degree) structuring ECM fungal communities have beehavecanenn able to be disentangled in 

1498 this study. 

1499

1500

1501 ECM communities in P. pinaster and P. halepensis forests

1502 The tree species had a marginal effect on ECM fungal communities probably blurred by the 

1503 strong effect of the local environmental conditions. . . The contrasted local environment rather 

1504 than the tree species was the main driver of the differences in ECM fungal assemblages 

1505 observed between P. pinaster and P. halepensis forestsThe degree of tree host specificity for 

1506 ECM fungi seems to be correlated with the phylogenetic distances between hosts (Leho 

1507 Tedersoo, Mett, Ishida, & Bahram, 2013). However, it has been shown that the genus Pinus 

1508 associates with specialized ECM fungi, in particular within the genera Suillus and Rhizopogon 

1509 (Smith & Read, 2008) and Opposite to other mutualistic relationships, the mycorrhizal 

1510 symbiosis is low specific e.g., for Pinus spp. it can reach the genus level (Smith & Read, 

1511 2008). However, the tree species identity or even that even the Pinus tree genotype has been 

1512 previously demonstrated to play an essential role in structuring ECM fungal communities 

1513 (Gehring, Mueller, Haskins, Rubow, & Whitham, 2014; Leticia Pérez-Izquierdo et al., 2017, 

1514 2019) (Aponte, García, Marañón, & Gardes, 2010; Barbi et al., 2016; Pérez-Izquierdo et al., 

1515 2017). Given the importance of pH shaping fungal communities (Coince et al., 2014; 

1516 Glassman, Wang, & Bruns, 2017; Ana Rincón et al., 2015; L. Tedersoo et al., 2014) (Coince 

1517 et al., 2014; Rincón et al., 2015; Rousk et al., 2010; Tedersoo et al., 2014), these divergent 

1518 observations could be interpreted as context-dependent, i.e., in our study, soil pH (ranging 

1519 from 5.1 to 8) was two points higher,  even in Sinarcas where both pine species grew under a 
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1520 similar local environment, than in the mentioned studies (average pH of ,5) even in Sinarcas, 

1521 where both pine species grew under a similar local environment. Thus ,  together with climate 

1522 limitations, the bedrock influence, mainly siliceous for P. pinaster, and calcareous for P. 

1523 halepensis, was aThe strong environmental filter imposed by  the bedrock influence, mainly 

1524 siliceous for P. pinaster and calcareous for P. halepensis (Ojeda, Pausas, & Verdú, 

1525 2010)(Ojeda, Pausas, & Verdú, 2010), for their associated ECM fungal communities, 

1526 probably overtaken other possible effect of the tree species. This was also reflected in more 

1527 diverse and more heterogeneous Ascomycetes species together with less diverse and more 

1528 homogeneous Basidiomycetes in the case of P. halepensis, whereas . ,tT and the opposite 

1529 pattern was observed for P. pinaster. In fact, Ascomycetes have been often associated with 

1530 environmental stressful conditions, by traits such as their melanin production capacity (Koide, 

1531 Fernandez, & Malcolm, 2014; Treseder & Lennon, 2015). Accordingly, wWe observed a 

1532 preferential association of P. halepensis with fungal species of the genus Sebacina and the 

1533 order Pezizales. So far, noany tree host specificity has been observed among the Sebacina 

1534 species (Ray & Craven, 2016; Selosse, Bauer, & Moyersoen, 2002). Given the reported 

1535 positive effects of sebacinous fungi against stresses such as herbivorye, salinity or drought 

1536 (Barazani & Baldwin, 2013; Ray & Craven, 2016; Zarea, Miransari, & Karimi, 2014), they 

1537 could play a key role in the resistance of P. halepensis to limited nutrient availability (i.e., 

1538 related to high soil pH) and the restrictive conditions imposed by the Mediterranean climate. 

1539 Similarly, ascomycetous ECM Pezizales, which tend to be favoured in basic soils, have traits 

1540 that such as their melanin production capacity that make them perfect symbionts under 

1541 stressful conditions  including post-fire scenariosones (Koide, Fernandez, & Malcolm, 2014; 

1542 Lamit et al., 2014; A. Rincón et al., 2014; Ana Rincón & Pueyo, 2010; Leho Tedersoo, 

1543 Hansen, Perry, & Kjøller, 2006; Torres & Honrubia, 1997) (Lamit, Holeski, Flores-Rentería, 
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1544 Whitham, & Gehring, 2016; Tedersoo, Hansen, Perry, & Kjøller, 2006). On the other hand, 

1545 species from the genera Rhizopogon, Craterellus, Cenoccocum, Russula and Lactarius were 

1546 enriched under P. pinaster (less basic pH). Although ECM fungi tolerate a wide range of pH 

1547 (Rousk et al., 2010), most of these fungi grow better under acidophilic conditions (Yamanaka, 

1548 2003). 

1549

1550 Structural and functional shifts of root-tip ECM fungal communities due to the fire regime 

1551 As we firstly hypothesized, for both pine species, the local and regional diversity of root-tip 

1552 ECM fungi significantly declined in populations where fires are historically frequent, and this 

1553 implied functional outcomes e.g., . laccase activity of ECM root-tips increased in HiFi 

1554 populations of both pine forests. 

1555 Many fire studies have ascribed decreases in fungal diversity to the reduction of heat resistant 

1556 propagules, elimination of rare species from the spore bank, the scarcity of suitable hosts, the 

1557 direct burning of mycelium and roots, and/or the disturbed soil properties (Glassman et al., 

1558 2016; Holden, Gutierrez, & Treseder, 2013; Rincón & Pueyo, 2010). These processes do have 

1559 a great importance on ECM fungal communities in the short term after relatively post-

1560 disturbance short term, giving the way to other processes such as dispersion through time 

1561 (Dooley & Treseder, 2011; Kipfer, Moser, Egli, Wohlgemuth, & Ghazoul, 2011; Rincón et 

1562 al., 2014; Sun et al., 2015), similar to that reported in succession studies, where fungal 

1563 richness increases with forest age (Kyaschenko, Clemmensen, Hagenbo, Karltun, & Lindahl, 

1564 2017; Twieg, Durall, & Simard, 2007). In our study, it does not seems not a plausible 

1565 explanation that ECM fungal diversity hasve not been yet restored since the last fire (at least 

1566 more than 40 years ago), because typical late-stage species such as Amanita or Lactarius 

1567 (Cairney & Chambers, 2013; Taylor & Bruns, 1999) were indicators in HiFi areas. On the 
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1568 contrary, our results suggest that, the initial ruderal symbionts that facilitate the establishment 

1569 of seedlings are replaced over time by ECM fungi that respond more efficiently to the new 

1570 environmental conditions, probably driving plant-soil feedbacks to different directions and 

1571 creating a different soil ecosystem (Duhamel et al., 2019). 

1572 The ECM species composition diverged between fire regimes and, although fungal diversity 

1573 decreased with high fire recurrence, some fungal families were more diverse in HiFi 

1574 populationsclearly favoured by fire, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae 

1575 for P. pinaster, or Pezizaceae for P. halepensis. Different authors have proposed that in 

1576 ecosystems subjected to frequent fires, the positive response of microorganisms would 

1577 indicate a selection of the fire-tolerant ones over time (Buscardo et al., 2015; Dooley & 

1578 Treseder, 2011; Rincón et al., 2014). Fire recurrence in Mediterranean forests is intimately 

1579 linked to temperature and drought (Pausas, 2004), so as expected, in our work, climate was a 

1580 strong determinant of fire regime effects on fungal communities. Similar to that described for 

1581 plant communities (Pausas & Verdú, 2008; Verdú & Pausas, 2007), Aall these results, 

1582 together with the observed decline in ECM fungal �-diversity, seem to indicate that the 

1583 habitat b�#����� was likely the dominant ecological process assembling root-tip ECM fungal 

1584 communities under high fire recurrence, while without the fire pressure (i.e., low fire 

1585 recurrence) and milder climate conditions, competition among fungi could prevail, si. milar to 

1586 that described across biological groups (Pérez-Valera, Verdú, Navarro-Cano, & Goberna, 

1587 2018; Verdú & Pausas, 2007). The diversity of plant and microbial communities is regulated 

1588 by sequentially operating assembly rules: abiotic filtering is an omnipresent structuring force, 

1589 and biological interactions e.g., competition, further fine-tunes the community assemblages 

1590 (Pérez-Valera et al., 2018; Verdú & Pausas, 2007).

1591
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1592 Fire regime and climate can filter directly different Beyond co-variation of biotic organisms  

1593 (i.e., trees and ECM fungi) filtered by the fire regime and climate, however our results did 

1594 provide significant clues about indirect plant-mediated effects of high fire recurrence on ECM 

1595 fungal communities. We observed that serotiny, previously demonstrated to beas a tree 

1596 heritable trait shaped by recurrent fires (Budde et al., 2014; Castellanos, González-Martínez, 

1597 & Pausas, 2015; Ana Hernández-Serrano et al., 2014), significantly explained the 

1598 variationbility of ECM fungal communities, aside from the accounted climatic effects for both 

1599 pine species. This could be attributed to climatic constraints in the channel of Ccarbon from 

1600 the tree towards the ECM fungi, although, on the other hand, serotiny is a trait that requires 

1601 resources (water and Ccarbon) for maintaining a large amount of seeds alive in the canopy 

1602 with a cost for the plant (Cramer & Midgley, 2009; Harris & Pannell, 2010). Thus, we 

1603 suggestAnother possible explanation is that the ability of the different tree 

1604 genotypes/phenotypes to preferentially allocate photosynthates to the more beneficial ECM 

1605 fungi, or to those with low Ccarbon demands and/or high abilities to cope with hydric/nutrient 

1606 stress is can be the prevailing mechanism explaining such plant-mediated effects (Bever, 

1607 Richardson, Lawrence, Holmes, & Watson, 2009; Gehring et al., 2014). This was further to 

1608 some extent supported by our results, at least in P. pinaster, for which a direct effect of tree 

1609 phenotype (serotiny) on enzymatic responses of ECM fungi, but no effect of climatic 

1610 variables was observed. We have previously shown that particular P. pinaster genotypes can 

1611 impact enzymatic activities through changes in the composition of the associated microbial 

1612 communities (Pérez-Izquierdo et al., 2017, 2019). Additionally, it cannot be ruled out that, as 

1613 for serotiny, the fire recurrence negatively affects other tree traits , such as root development 

1614 and/or architecture constraining , which would consecutively reduce the space for ECM 

1615 fungal colonization, which would make mechanisms like priority effects particularly 
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1616 important making that mechanisms such as priority effects could gain importance (Kennedy, 

1617 Peay, & Bruns, 2009; Peay, Belisle, & Fukami, 2012). In any case, further experimentation 

1618 would be needed to shed light on these assumptions.

1619  

1620 The increased fire recurrence affected ecosystem functions differently in the two pine species 

1621 by reducing most enzymatic activities in the case of P. pinaster, but not for P. halepensis. 

1622 This suggests functional redundancy between HiFi and LoFi ECM fungal communities 

1623 associated with P. halepensis in low and high fire recurrencefrequency sites, since diversity 

1624 and assemblage shifts were not translated into functional changes (Jones et al., 2010). These 

1625 results might indicate a high capacity of P. halepensis forests to recover its functionality 

1626 among recurrent fires in warmer areas probably by shifting plant-microbial feedbacks to 

1627 readjust to the environment (Clemmensen et al., 2015; Johnstone et al., 2010). The edaphic 

1628 conditions (mainly pH and P) were a main factorseffector explaining differences in enzymatic 

1629 profiles , indistinctively in LoFi and HiFi populations among populations of both pine species. 

1630 Among their multiple functions, an outstanding feature of ectomycorrhizal fungi is s, 

1631 emphasizing again the main role of the bedrock type in nutrient availability and ecosystem 

1632 functionality in Mediterranean forests. Ectomycorrhizal fungi display multiple functions, 

1633 among them, theiry are ability to able to  such as mobilizeing nutrients from the soil (Smith & 

1634 Read, 2008) . for the host, with particular N mining abilities where litter N is hard to access 

1635 (Smith & Wang 2019; Fernandez et al., 2020), as could be also the case for pine litter in our 

1636 study.Because of their direct access to C from the host, they are able to invest energy (i.e., 

1637 enzymatic production) to mine for N and/or P from hardly accessible sources (Fernandez, 

1638 See, & Kennedy, 2020; Lindahl & Tunlid, 2015)which are often limiting nutrients in forests, 

1639 as it could be the case for pine litter and/or basic soils in our study together with recalcitrant 
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1640 pine litterin our study. Our results show that the ECM enzymatic production is mainly 

1641 regulated by the availability of P which is in turn highly dependent on the bedrock type in 

1642 Mediterranean ecosystems.  Ectomycorrhizal fungi act on soil nutrient and carbon dynamics 

1643 directly affecting tree productivity, and contributing soil organic matter and priming or 

1644 inhibiting its turnover in soils (Clemmensen et al., 2013; Fernandez et al., 2020), which can 

1645 be of prime importance in Mediterranean soil formation. Our findings are in line with 

1646 previous studies indicating that the availability of resources in surrounding soil andtogether 

1647 with tree host genetics strongly regulates ECMmicrobial enzymatic production in surrounding 

1648 soilare among the key factors affecting the enzymatic activity of ECM fungal communities 

1649 (Aponte, García, Marañón, & Gardes, 2010; P.-E. Courty et al., 2016; Pierre Emmanuel 

1650 Courty et al., 2011; Schneider et al., 2012). 

1651 As previously mentioned, the laccase activity of ECM root-tips increased in high fire 

1652 recurrence populations of both pines forests. Laccase is an oxidative enzyme related to several 

1653 processes like the degradation of recalcitrant C compounds (i.e., lignin), but also to the 

1654 production of melanin by fungi (Baldrian, 2006; Eisenman et al., 2007). Melanin is a group of 

1655 complex polymers deposited in the cell wall associated with resistance to stresses such as 

1656 drought (Koide et al., 2014) and moderately resistant to decomposition (Fernandez, Heckman, 

1657 Kolka, & Kennedy, 2019). It is also possible that in our study sites, changes in traits like 

1658 production of melanin by fungi or more litter tannins by trees associated to the fire regime and 

1659 climatic stress might have affected organic matter turnover and feedback cycles, issues that 

1660 would deserve further analyses. In fact, in a 2-million-year chronosequence, Albornoz et al. 

1661 (2016) showed strong variation of ECM fungal communities even within the same hosts, 

1662 attributable not only to short-term fungal edaphic specialization or different inoculum density 
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1663 and composition, but also likely to a much longer-term ecosystem-level feedbacks among soil, 

1664 plants and ECM fungi during pedogenesis.

1665

1666 Conclusions

1667 In P. pinaster and P. halepensis Mediterranean forests, the high fire recurrencefrequency 

1668 filters the ECM fungal community composition, even favoring some ECM fungal species, but 

1669 reduces local and regional ECM diversity. Factors such as climate, which is intimately related 

1670 to fire, and soil properties in particular pH, affect ECM fungal communities composition and 

1671 their enzymatic functions. Separated effects of fire-regime related effectors such as climate, 

1672 soil properties or the tree phenotype are driving these processes in Mediterranean ecosystems. 

1673 Aside from the climatic filter, local adaptation in pine populations to recurrent fires (i.e., 

1674 increased serotiny) selects for different ECM fungal communities, accompanying different 

1675 functional responses. ECM fungal communities associated with serotinous P. pinaster trees 

1676 imply a reduced enzymatic activity, but for P. halepensis, a functional redundancy in LoFi 

1677 and HiFi fire regimes likely exists. Edaphic variables, highly linked to the bedrock type in 

1678 Mediterranean ecosystems, are main drivers of ECM fungal structure and functioning but 

1679 generally independent of the fire regime. The bedrock material is also a main factor driving 

1680 differences in ECM fungal communities associated with P. pinaster and P. halepensis, 

1681 overriding the possible effect of the tree species. Although fire is already a main ecological 

1682 factor shaping in the Mediterranean ecosystemsarea, changes in fire frequency because of 

1683 predicted warmer and longer dry periods have the potential to affect the plants and their 

1684 symbionts altering the structure, functioning and successional dynamics of Mediterranean 

1685 forests ecosystems.  The observed fire regime-related structural and functional shifts in ECM 

1686 fungal communities might have essential implications for Mediterranean pine forests 
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1687 dynamics, which should be carefully considered to promote the sustainable management of 

1688 these vulnerable ecosystems and to maintain their resilience under future climatic scenarios.
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2077

2078 Table 1. Alpha-diversity of representative ectomycorrhizal (ECM) fungal families analysed 

2079 by General Linear Models (GLMs) (p<0.05). Main effects of the pine species (Ppi =Pinus 

2080 pinaster and Pha =Pinus halepensis) (left) and the fire regime (LoFi = low fire recurrence and 

2081 HiFi = high fire recurrence) (right) are shown. The site was nested within the fix factor fire 

2082 regime in the  Generalized Linear Models (GLMs). Data represent means +/- SE. Arrows 

2083 indicate significantly higher k�
�7��"�#5� and �=� indicates no variation between pine species 

2084 according to the GLM (F values; *p<0.05; **p<0.01; ***p<0.001). In the separate analyses 

2085 on the right, for each pine forest, different letters denote significant differences between fire 

2086 regimes (p<0.05) (in bold). A = Ascomycetes (orange); B = Basidiomycetes (green). 

2087

2088

Pine Forest P. pinaster P. halepensis

Ppi Pha F (p-value) LoFi HiFi LoFi HiFi

AmanitaceaeB � 9.2** 0.1 ± 0.1 a 0.9 ± 0.2 b 0.1 ± 0.1 0.2 ± 0.1

AtheliaceaeB � 6.8* 9.7 ± 0.6 b 6.7 ± 0.6 a 6.3 ± 0.5 5.9 ± 0.4

BankeraceaeB = = 2.0 1.8 ± 0.4 1.3 ± 0.3 1.7 ± 0.5 b 0.9 ± 0.2 a

CantharellaceaeB � 41.7*** 1.0 ± 0.2 a 2.8 ± 0.4 b 0.7 ± 0.2 0.5 ± 0.2

ClavariaceaeB � 36.9*** 0.8 ± 0.2 1.2 ± 0.4 0.3 ± 0.2 b 0.1 ± 0.1 a

ClavulinaceaeB = = 2.4 2.9 ± 0.3 b 1.7 ± 0.3 a 2.7 ± 0.5 b 1.3 ± 0.3 a

CortinariaceaeB � 16.2*** 2.2 ± 0.7 b 0.4 ± 0.2 a 0.6 ± 0.4 b 0.2 ± 0.1 a

GloniaceaeA � 5.7* 2.5 ± 0.3 b 1.2 ± 0.2  a 1.7 ± 0.4 b 0.9 ± 0.3 a

HydnaceaeB = = 0.8 0.3 ± 0.1 0.2 ± 0.1 0.6 ± 0.2 b 0.2 ± 0.1 a

InocybeaceaeB = = 1.4 5.5 ± 0.8 b 3.0 ± 0.5 a 3.1 ± 0.3 2.8 ± 0.3

PezizaceaeA � 22.8*** 0.2 ± 0.1 0.2 ± 0.1 0.5 ± 0.2 a 1.1 ± 0.2 b

PyronemataceaeA � 30.7*** 0.6 ± 0.2 0.9 ± 0.2 2.9 ± 0.3 b 1.6 ± 0.3 a

RhizopogonaceaeB � 29.1*** 0.9 ± 0.2 a 1.8 ± 0.2 b 0.8 ± 0.2 b 0.4 ± 0.1 a

RussulaceaeB � 14.0*** 7.3 ± 0.6 b 5.5 ± 0.7 a 4.3 ± 0.8 4.3 ± 0.5

SebacinaceaeB � 33.6*** 5.7 ± 1.1 4.5 ± 0.4 8.7 ± 0.8 9.0 ± 0.8

SuillaceaeB = = 0.0 1.6 ± 0.3 1.2 ± 0.2 1.6 ± 0.2 b 1.2 ± 0.2 a

TelephoraceaeB = = 0.0 11.9 ± 1.0 11.0 ± 1.0 14.1 ± 1.8 b 10.4 ± 0.8 a

TuberaceaeA = = 0.0 1.4 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.4 ± 0.2
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2097

2098 Figure 1. Alpha-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 
2099 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 
2100 recurrenceLoFi (bluelight bars) and HiFi (dark bars) populations of Pinus pinaster and Pinus 

2101 halepensis, analysed by Generalized Linear Models (p<0.05). Boxes represent the 
2102 interquartile range (IQR) between first and third quartiles and the horizontal line inside is the 
2103 median. Whiskers denote the lowest and highest values within 1.5 x IQR from the first and 
2104 third quartiles, respectively. Within each graph, different letters denote significant differences 
2105 among fire regimes.
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2111 Figure 2. Beta-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 
2112 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 
2113 recurrence LoFi (greyblue) and HiFi (blackred) populations of Pinus pinaster (triangles) and 
2114 Pinus halepensis (circles). The centroids within each group are represented by small white 
2115 dots. Grey solid lines give the relative position of the point with respect to the respective 
2116 centroid. Dotted lines reflect the area occupied by all plots of a given treatment, which is 
2117 inversely proportional to the similarity of their ECM fungal communities.
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2125 Figure 3. Enzymatic activity of ectomycorrhizal root tips (means ± SE) of low (LoFi, blue) or 
2126 high (HiFi, red) fire recurrence populations of Pinus pinaster and Pinus halepensis, analysed 
2127 by Generalized Linear Models (p<0.05). For each pine species, different letters denote 
2128 significant differences between fire recurrence levels, while for each LoFi/HiFi treatment, 
2129 asterisks denote significant differences between pine forest levels.
2130
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2132

2133

(a) Pinus pinaster

(b) Pinus halepensis
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2134 Figure 3. Variation of root-tip ectomycorrhizal (ECM) fungal community composition 
2135 associated with LoFi (blue) and HiFi (red) populations of (a) Pinus pinaster and (b) Pinus 

2136 halepensis by sample plots (left) and fungal families (right) and correlation with enzymatic 
2137 activities, analyzed by Detrended Correspondence Analysis (DCA). Vectors represent the 
2138 weight and direction of enzymatic activities plotted in the ordination space. In the fungal 
2139 species graphs on the right, only the most abundant taxa (proportional to the diameter of the 
2140 circles) are shown.  The correlation between ECM fungal community structure and enzymatic 
2141 activities dissimilarity matrices is shown through Mantel test.
2142
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2150

2151 Figure 4. Distribution of (a) E ectomycorrhizal (ECM) fungal community structure and (b) 
2152 enzymatic activitiesy compositionassociated with root-tips of LoFi (blue) and HiFi (red) 
2153 Pinus pinaster (triangles) and Pinus halepensis (circles) fforests subjected to low (blue) or 
2154 high (red) fire recurrence, analyzed by Canonical Correspondence Analysis (CCA), and (b) 
2155 their enzymatic profiles analyzed respectively analyzed by Canonical Correspondence (CCA) 
2156 and Redundancy (RDA) aAnalyseis. In all cases,  (RDA) showing the weight, direction and 
2157 separate effects of serotiny, climatic and edaphic conditions in sample plotsis represented by 
2158 vectors (see model details in Table S4). Serotiny degree is the number of closed cones by total 
2159 number of cones in the tree. Edaphic and climatic conditions are represented by the first two 
2160 axes (Edaphic1 and Edaphic2; Climate1 and Climate2) of Principal Coordinates Analyses 
2161 (PCA) performed considering the pH, electric conductivity and potassium, nitrogen, 
2162 phosphorus and organic matter content in the first case, and mean temperature, mean 
2163 precipitation and altitude in the second case (Figure S21). Only significant variables are 
2164 shown, *p<0.05, **p<0.01, ***p<0.001.
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2165

2166 Supplementary Figures

2167

2168 Figure S1

2169
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2171

2172 Figure S1. Location of the fifteen study sites with pine populations of Pinus pinaster Ait. 
2173 (triangles) and Pinus halepensis Mill. (circles), growing in areas of low (LoFi, blue) and high 
2174 (HiFi, red) fire recurrence, in eastern Spain. The distinct historical fire regime has induced a 
2175 sharp serotiny divergence within these pine populations along time. Serotinous populations 
2176 associate to HiFi while non-serotinous populations associate to LoFi.
2177

2178
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2181 Figure S2
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2186

2187

2188 Figure S21. Principal component analyses (PCA) performed with (a) the edaphic variables 
2189 pH, electric conductivity (EC), potassium (K), nitrogen (N), phosphorus (P) and organic 
2190 matter (OM), and (b) the climate-related variables altitude, mean temperature (Tm) and mean 
2191 precipitation (Pm) of each pine forest. The first two axes of each analysis explaining the 
2192 maximum of variance (in parenthesis) were used as edaphic or climatic indexes in models 
2193 (i.e., proxies of edaphic and climatic conditions of each pine forest Pinus pinaster or Pinus 

2194 halepensis).

Page 93 of 97 Molecular Ecology



For Review Only

Page 94 of 97Molecular Ecology



For Review Only

95

2207

2208 Figure S4
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2223 Figure S3. Enzymatic activity of ectomycorrhizal root tips (means ± SE) of LoFi (light bars) 
2224 and HiFi (dark bars) populations (low and high fire recurrence, respectively) of Pinus pinaster 
2225 (Ppi) and Pinus halepensis (Pha), analysed by Generalized Linear Models (p<0.05). For each 
2226 pine species, different letters denote significant differences between fire recurrence levels, 
2227 while for each LoFi/HiFi treatment, asterisks denote significant differences between pine 
2228 forest levels.
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