MOLECULAR ECOLOGY

High fire recurrence reduces ectomycorrhizal fungal diversity of Mediterranean pine forests

Journal:	Molecular Ecology
Manuscript ID	MEC-20-0408
Manuscript Type:	Original Article
Date Submitted by the Author:	09-Apr-2020
Complete List of Authors:	Pérez-Izquierdo, Leticia; Swedish University of Agricultural Sciences, Soil and Environment Zabal-Aguirre, Mario; Instituto de Ciencias Agrarias (CSIC/ICA), Grupo de Interacciones Beneficiosas Planta-Microrganismo Verdú, Miguel; CIDE (CSIC, UVEG, GV), Buee, Marc; INRA, UMR INRA-UL Interactions Arbres/Microorganismes Rincón, Ana; Consejo Superior de Investigaciones Cientificas, Institut of Agronomic Sciences ICA-CSIC, Serrano 115bis
Keywords:	ectomycorrhizal communities, enzymatic activity, fire recurrence, Mediterranean pines, serotiny

1	High fire recurrence reduces ectomycorrhizal fungal diversity of Mediterranean pine
2	forests
3	
4	Pérez-Izquierdo L ^{1*} , Zabal-Aguirre M ¹ , Verdú M ² , Buée M ³ , Rincón A ¹
5	
6	¹ Instituto de Ciencias Agrarias, ICA-CSIC. Serrano 115bis, 28006. Madrid, Spain.
7	² CIDE-CSIC-UV-GV, Ctra Moncada-Náquera km4.5, 46113, Moncada-Valencia, Spain.
8	³ INRA, UMR1136 INRA Nancy – Université de Lorraine, Interactions Arbres-
9	Microorganismes Labex ARBRE, 54280 Champenoux, France.
10	
11	
12	Corresponding author: Leticia Pérez-Izquierdo
13	*Current address:
14	Department of Soil and Environment, SLU, Lennart Hjelms väg 9, SE-75007 Uppsala,
15	Sweden.
16	E-mail: leticia.perez@slu.se
17	
18	Running title: Mycorrhizas in fire-prone Mediterranean ecosystems
19	
20	
21	
22	Competing interests
23	The authors declare that they have no competing interests
24	
25	
26	

28 Abstract

29 Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean 30 ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In 31 Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) 32 fungi, essential for ecosystem dynamics, might be drastically threatened by fire. We tested 33 how fire regime alters the structure and function of ECM communities of *Pinus pinaster* and Pinus halepensis Mediterranean forests, and analyzed the relative contribution of 34 35 environmental (climate, soil properties) and tree-mediated (serotiny) factors. For both pines, 36 high fire recurrence significantly reduced local and regional ECM fungal diversity, although 37 certain fungal species were favored by recurrent fire. The high fire recurrence also associated 38 a general decline of ECM root-tip enzymatic activity for *Pinus pinaster*, while it did not 39 imply major functional changes for *Pinus halepensis*. Separated effects of fire regime related-40 factors such as climate, soil properties or tree phenotype drove these processes. In addition to 41 the main influence of climate, the tree fire-adaptive trait serotiny recovered a great portion of 42 the variation in structure and function of fungal communities associated with the fire regime. 43 Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver 44 shaping ECM fungal communities, but mainly at the local scale and likely independently of 45 the fire regime. Our results show that fire regime strongly impacts ECM fungal communities, 46 and reveal complex feedbacks among trees, mutualistic fungi and surrounding environment in 47 fire-prone Mediterranean forest ecosystems.

48

Keywords: ectomycorrhizal communities, enzymatic activity, fire recurrence, Mediterranean
 pines, serotiny

51 Introduction

52 Mediterranean climate is characterized by a marked seasonality with mild winters and hot dry 53 summers, which gives rise to one of the most fire-prone ecosystems in the world (Pausas, 54 2004). The evolutionary history of these ecosystems is tightly linked to fire (Keeley, Bond, 55 Bradstock, Pausas, & Rundel, 2011). Recurrent burning has markedly structured plant 56 communities in this area (Verdú & Pausas, 2007), where many species have developed 57 evolutionary mechanisms of resistance and resilience to fire (Pausas, 2015; Tapias, Climent, 58 Pardos, & Gil, 2004). A good example of fire-adaptive trait is serotiny, i.e., the retention of 59 mature seeds in closed cones for more than a year until dispersion and germination is 60 activated by fire, evolved by some representative Mediterranean pine species (Budde et al., 61 2014; Hernández-Serrano, Verdú, González-Martínez, & Pausas, 2013) and other conifers in 62 fire-dominated systems (Greene et al., 1999). Fire generates phenotypic divergence on 63 serotiny, a heritable trait in Mediterranean pines, ultimately producing local adaptation 64 (Hernández-Serrano et al., 2014). There is evidence that serotiny is related to differences in 65 fire regime, increasing with the frequency of stand-replacing fires (Hernández-Serrano et al., 66 2013; Radeloff, Mladenoff, Guries, & Boyce, 2004). Changes in the fire regime are closely 67 linked to climate (Pausas, 2004), and predicted climate change scenarios make Mediterranean 68 ecosystems especially vulnerable. Temperature rise and rainfall decrease are expected to 69 increase drought risk and consequently forest wildfires, altering the structure and successional 70 dynamics of Mediterranean forests (Lindner et al., 2010).

Ecosystem development is driven by interactions among climatic conditions, edaphic environment and biotic communities. Given the role of fungi in organic matter turnover and nutrient cycling, they are key players in the plant-soil-microbial feedbacks that determine ecosystem development after disturbances (Clemmensen et al., 2015). Specifically,

75 mutualistic ectomycorrhizal (ECM) fungi, which are tightly linked to the host through 76 specialized symbiotic structures, mediate the uptake and transfer of water and nutrients to 77 trees (Smith & Read, 2008). They channel the photosynthetic carbon (C) fixed by trees into 78 the belowground, influencing soil C storage and nutrient cycling (Clemmensen et al., 2013; 79 Talbot, Allison, & Treseder, 2008). This symbiosis can provide up to the 80% of nutrients to 80 trees and alleviate their hydric stress (Kivlin, Emery, & Rudgers, 2013; van der Heijden, 81 Martin, Selosse, & Sanders, 2015), and therefore can be especially relevant in severe 82 environments e.g., recurrent fire and drought conditions in Mediterranean ecosystems 83 (Egerton-Warburton, Querejeta, & Allen, 2007; Prieto et al., 2016; Querejeta, Egerton-84 Warburton, & Allen, 2007).

85 Fire affects ECM communities mainly through vegetation damages and altered soil properties 86 (Buscardo et al., 2015; Hart, DeLuca, Newman, MacKenzie, & Boyle, 2005; Rincón & 87 Puevo, 2010), conditions that may favor fire-tolerant fungi (Glassman, Levine, Dirocco, 88 Battles, & Bruns, 2016; Rincón, Santamaría-Pérez, Ocaña, & Verdú, 2014). Certain fungi can 89 remain for long time in the soil spore banks and be advantaged after fire, as it has been shown 90 in closed-cone pine forest populations with historical highly recurrent and intense fires (Baar, 91 Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 2015). Fire usually 92 decreases root mycorrhizal colonization and fungal richness (Dove & Hart, 2017). More 93 generally, fire drastically disrupts the species composition of the mycorrhizal communities, 94 usually leading to their simplification with the dominance of pioneer fungi (Dove & Hart, 95 2017; Buscardo et al., 2015; de Román & de Miguel, 2005; Rincón et al., 2014; Torres & 96 Honrubia, 1997). Additionally, because intraspecific plant genotypic and phenotypic variation 97 affects the structure of their associated ECM fungi (Gehring & Whitham, 1991; Pérez-98 Izquierdo et al., 2017, 2019; van der Heijden et al., 2015) it is plausible that genetically fire-

99 driven changes in trees, such as serotiny degree, may co-affect these mutualistic communities 100 for example by determining the C available to exchange in symbiosis. Nevertheless, fires 101 recurrently affect big areas of Mediterranean ecosystems, yet the cumulative effects of 102 recurrent wildfires on ECM fungal communities are less known than those of single wildfires 103 (Buscardo et al., 2015).

104 In our study, we targeted forests of two representative Mediterranean tree species, Maritime 105 pine (*Pinus pinaster* Ait.) and Aleppo pine (*Pinus halepensis Mill.*), amply distributed in the 106 Iberian Peninsula. While the Maritime pine usually grows in acid soils at 700-1700 m 107 altitude, the Aleppo pine grows in basic substrate and below 800 m (Ruíz, Álvarez-Uria, & 108 Zavala, 2009). Pinus halepensis is typically distributed in warm and dry areas, even under 109 extreme drought induced either by climate or soil constituents (e.g., marls, gypsum, rocky 110 slopes) (Ruíz et al., 2009). Both pine species have a life history related to fire adaptation 111 (Tapias et al., 2004) displaying great post-fire colonizing abilities (Barbéro, Loisel, & Quézel, 112 1998) and showing fire-adaptive traits such as serotiny (Pausas, 2015). The natural 113 regeneration and dynamics of these pine forests critically relies on ECM fungal communities, 114 because pine species are obligatory ectomycorrhizal (Nuñez, Horton, & Simberloff, 2009; 115 Smith & Read, 2008). Recurrent fires, tightly linked to climate in these Mediterranean areas, 116 might act as an environmental filter, culling plant and microbial species unable to tolerate 117 conditions at a particular location and thus preventing their establishment or persistence 118 (Kraft et al., 2015).

Based on all these premises, we expected that i) due to the habitat filtering imposed by the fire regime, the ECM fungal communities in high fire recurrence sites (HiFi hereafter) would be less diverse and more homogeneous than those in low fire recurrence sites (LoFi hereafter), and that it would imply different functional outcomes. In our study area, the distinct historical

123 fire recurrence has induced a sharp serotiny divergence in trees within the HiFi and LoFi 124 populations along time (Hernández-Serrano et al., 2013). Serotiny has been proven to be a 125 heritable trait associated with the genotype of trees (Budde et al., 2014; Castellanos, 126 González-Martínez, & Pausas, 2015; Hernández-Serrano et al., 2013). Because different tree 127 genotypes can influence their associated ECM fungi (Gehring & Whitham, 1991; Pérez-128 Izquierdo et al., 2017), we further hypothesize that, at the finer scale of individuals, ii) the 129 serotiny degree of trees, i.e., genotypic fire-adaptation, will explain structural and functional 130 divergences of ECM fungal communities.

131 In order to address these predictions, we characterized the structure of root-tip ECM fungal 132 communities of natural P. pinaster and P. halepensis forests (Hernández-Serrano et al., 2013). 133 For both pine forests, serotinous populations growing under a warm and dry Mediterranean 134 climate subjected to high fire frequency and non-serotinous populations growing under a 135 subhumid climate where fires are rare (Verdú & Pausas, 2007) were surveyed (Figure S1). 136 Additionally, we determined, on excised ECM root-tips, potential fungal enzymatic traits 137 related to C turnover and mobilization of nutrients. These are processes directly implicated in 138 the exchange of resources that support most mycorrhizal symbioses and many essential 139 ecosystem functions (Johnson et al. 2012).

140

141 Material and Methods

142 *Study sites and sampling*

Surveys were conducted in natural forests of *P. pinaster* (Ppi) and of *P. halepensis* (Pha) located in eastern Spain (Figure S1). We selected nine pine populations located in high fire recurrence sites where crown-fires are historically frequent and most regeneration events are driven by fire (HiFi populations), while the other selected six populations were located in low

147 fire recurrence areas where most regeneration events are independent of fire because fire 148 events are rare (LoFi populations) (Hernández-Serrano et al., 2013; Pausas et al., 2004). In the 149 study area, fire is tightly linked to Mediterranean climatic conditions (i.e., drought) (Pausas, 150 Bradstock, Keith, Keeley, & Network, 2004). Recent fire history information (Pausas & 151 Fernández-Muñoz, 2012; Pausas, 2004) shows that more than 50% of the study area at HiFi 152 conditions burned at least once during the 1978–2001 period, while for LoFi conditions, the 153 proportion was about 15% (Abdel Malak & Pausas, 2006). From a microevolutionary point of 154 view, this distinct fire regime has induced a sharp serotiny divergence within these 155 populations (Hernández-Serrano et al., 2013). More than 500 genes were differentially 156 expressed across the two pine accessions from HiFi and LoFi populations (Pinosio et al., 157 2014) and three high-differentiation outlier single nucleotide polymorphisms-SNPs were 158 identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale 159 (Budde et al., 2017). Thus, despite the lack of long-term fire statistics for the specific study 160 sites, there is strong evidence that the fire interval is much shorter in HiFi areas than in LoFi. 161 The serotiny degree of these pine populations growing under distinct fire regime has been accurately characterized in Hernández-Serrano et al., 2013 (Table S1). Briefly, serotiny was 162 163 estimated considering both the cone age and the proportion of serotinous cones, i.e., the 164 number of closed cones, those remaining closed after maturation, with respect to the total 165 fully ripe (open and closed) cones (see Hernández-Serrano et al., 2013 for details). The 166 characteristics of pine populations related to productivity (diameter at breast height; DBH), 167 fire-adaptation traits (bark thickness and serotiny degree), as well as location and local 168 environmental variables are described in Table S1. All the selected stands were mature pine 169 populations, with DBH between 20.8 and 35.4 cm corresponding to trees of more than 40 yr 170 (Camarero, Olano, & Parras, 2010; Vieira et al., 2015).

171 In May 2013, five trees per population separated by more than 10 m were selected from a 172 total of 15 populations (n = 75). Under each tree, the litter was removed and samples were 173 obtained, approximately 1 m far from the trunk, by excavating 10 x 10 x 20 cm soil holes at 174 the four orientations (north, south, east and west). The four samples per tree were pooled into 175 a combined sample and kept at 4 °C in plastic bags until processing. Once in the lab, roots 176 were separated from soil, coarse roots discarded (diameter > 2 mm), and remaining roots 177 gently washed with tap water over 2 and 0.5 mm sieves for collecting root tips. All 178 ectomycorrhizal (ECM) root tips per each sample were carefully selected (Rincón et al., 179 2014), cleaned and sorted per sample under a stereomicroscope for further enzymatic and molecular analyses. Remaining soil was air dried and sieved (2 mm) for analysis. 180

181 The gravimetric soil moisture of soil samples was determined by drying at 105 °C for 48 h. 182 Air-dried soils were measured for pH (2 g of soil in 10 ml of H_2O , 1:5, w:v), electrical 183 conductivity (EC) (1:5, w:v in H₂O), organic matter (OM) (Walkley & Black, 1934), total N 184 (Kjeldahl method). Extractable P was determined by the Bray & Kurtz (1945) method, after 185 extraction in an ammonium fluoride and chloride acid solution. Extractable potassium (K) 186 was determined after nitric acid digestion according to Isaac & Kerber (1971). Both P and K 187 extracts were measured by inductively coupled plasma spectrometry (Optima 4300DV, 188 Perkin-Elmer, Waltham, MA, EE.UU.).

189 *Enzymatic tests*

The fungal community functioning was evaluated on excised ECM root tips by measuring activities of eight hydrolytic and oxidative exoenzymes secreted by fungi. Seven enzymatic tests were based on fluorogenic substrate release, methylumbelliferone (MU) e.g. βglucosidase (EC 3.2.1.3 at ExPasy-Enzyme database) and cellobiohydrolase (EC 3.2.1.91) that degrade cellulose, β-xylosidase (EC 3.2.1.37) and β-glucuronidase (EC 3.2.1.31) implied

195 in the degradation of hemicellulose, acid phosphatase (EC 3.1.3.2) involved in the 196 mobilization of phosphorus, N-acetylglucosaminidase or chitinase (EC 3.2.1.14) which 197 hydrolyses chitin, or methylcoumarine (AMC) for L-leucineaminopeptidase (3.4.11.1) related 198 to the mobilization of nitrogen from peptidic substrates. The Laccase (1.10.3.2) activity was 199 determined by a photometric assay based on ABTS substrate (2,2'-Azino-bis (3-ethylbenzo-200 thiazolin-6-sulfonic acid). This enzyme is related to the degradation of recalcitrant 201 compounds such as lignin. Enzymatic activities were determined following the protocol 202 described by Courty, Pritsch, Schloter, Hartmann, & Garbaye (2005), with modifications. A 203 total of 280 ECM-tips were randomly collected per sample and separated in subsets of 7 204 ECM-tips with 5 replicates per each enzymatic test. Each replicate thus consisted of a tube 205 with 7 pooled ECM-tips that were incubated in buffer during the corresponding time for each 206 enzyme (Courty et al., 2005), after which 100 μ l of the respective enzymatic reaction mix was 207 added to 100 µl of stopping buffer in 96-well microplates. Enzymatic activities were 208 measured in a Victor microplate reader (Perkin-Elmer Life Sciences, Massachusetts, USA), 209 with 355/460 nm excitation/emission wavelengths for the fluorogenic assays and 415 nm for 210 laccase. After reading, the ECM-tips of each replicate were scanned and their area calculated 211 with the software ImageJ 1.49. Enzymatic activities were expressed in pmol min⁻¹mm⁻².

212 *Molecular analyses*

213 Per each measured enzyme, the ECM-tips were pooled (7 ECM-tips subsets x 5 replicates =

214 35), added of a pinch of polyvinylpolypyrrolidone (PVPP), and the DNA extracted with the

215 Invisorb®DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany), making a total of

- 216 600 DNA extractions (75 tree samples x 8 enzymes) corresponding to 280 root tips per tree.
- 217 The internal transcribed spacer region ITS-1 of the nuclear ribosomal DNA was amplified
- 218 with the primer pair ITS1F-ITS2 (Gardes & Bruns, 1993) adapted for Illumina-MiSeq. Each

219 sample was amplified in three independent 20 μ l PCR reactions, each containing 2 μ l of 10x 220 polymerase buffer, 2.4 µl of 25 mM MgCl₂, 1.12 µl of 10 mg ml⁻¹ BSA, 0.4 µl of 10 mM 221 Nucleotide Mix, 0.4 µl of 10 mM forward/reverse primers and 0.2 µl of AmpliTagGold 222 polymerase (5 U ml⁻¹) (Applied Biosystems, Carlsbad, CA, USA). Negative controls without 223 DNA were included in all runs to detect possible contaminations. The PCR conditions were as 224 follow: 3 min 94 °C, 30 cycles of 1 min 94 °C, 30 s 53 °C and 45 s 72 °C, with a final step of 225 10 min 72 °C. Independent reactions were combined per sample, and each PCR product was purified (UltraClean PCR clean-up kit of MoBio, Carlsbad, CA, USA), quantified 226 227 (PicoGreen, Life Technologies, Carlsbad, CA, USA), and finally pooled in an equimolar 228 library containing 75 samples. Sequencing was carried out on an Illumina MiSeq sequencer (2) 229 × 300 bp paired-end reads) in an external service (Parque Científico de Madrid, Spain).

230 Bioinformatic analyses

231 Sequences were de-multiplexed according to their tags, filtered and trimmed using the 232 fastq filter command and fastq truncqual option of Usearchy.7.0.1001 (Edgar, 2013) for 233 eliminating quality scores \leq 10. We used FLASH to merge reads with a minimum overlap of 234 110 bp, resulting in 58.3 % of retained sequences (4205677 out of the initial set of 7215915 235 sequences). Then, sequences were dereplicated with the *derep fulllength* Usearch command. 236 De-replicated sequences were sorted by decreasing abundance, and singletons discarded with 237 the sortbysize Usearch command. Finally, 4116377 sequences (57 %) were retained. 238 Operational taxonomic units (OTUs) were generated from abundance-sorted sequences using 239 the *cluster* otus Usearch command with a 97 % similarity threshold. Extracted ITS sequences 240 were then mapped against the OTU representative sequences using the usearch global 241 Usearch command. Taxonomic assignation of representative sequences for each OTU was 242 done according to the 7.2 UNITE database (Kõljalg et al., 2013). Fungal taxonomic

assignment served to identify those OTUs closely related to recognized ECM taxa (Nguyen et
al., 2016; Tedersoo et al., 2014; Tedersoo & Smith, 2013). The 86 % of the inferred
sequences corresponded to ECM fungi and these were used for all subsequent analyses.

246

247 *Statistical analyses*

248 The effect of the fire recurrence (HiFi vs LoFi) on the structure (i.e., alpha and beta-diversity) 249 and functioning (i.e., enzymatic activities) of ECM fungal communities (hypothesis 1) was 250 separately evaluated by pine forest. Beta-diversity of total and by phyla ECM fungal 251 communities of the different pine populations was calculated with the functions betadisper 252 and permutest of the vegan package (Anderson, Ellingsen, & McArdle, 2006; Oksanen et al., 253 2015), and visualized by Principal Component Analyses (PCoA). Beta-diversity was 254 calculated on Bray-Curtis abundance matrix of OTUs previously normalized by variance 255 stabilization according to McMurdie and Holmes (2014) by using the DESeq package 256 (Anders & Huber, 2012).

257 Alpha-diversity was analysed by General Linear Models (GLMs) (p < 0.05) with the number of 258 fungal OTUs as response variable. In these models, the square root of the total number of 259 sequences obtained per sample was included as a covariate to account for differences in 260 sequencing depth (Tedersoo et al., 2014). Models at lower taxonomic levels were also 261 performed (i.e., phyla and families). In all cases, before modelling, Shapiro and Levene tests 262 were performed to test the normality and homocedasticity of data, and variables were log or 263 square root transformed when needed. Firstly, we modelled the effect of the variable pine 264 forest on ECM fungal alpha-diversity, using pine forest as fixed factor and the site nested 265 within pine forest. Subsequent GLMs analyses were separately performed for each pine 266 species. In these models, the fire regime was introduced as fixed factor and the site (i.e., pine

267 population) nested within fire regime (n = 35 *P. pinaster* trees and n = 40 *P. halepensis* trees). 268 Same GLM syntaxes were used to test the effect of fire recurrence on the different root-tip 269 enzymatic activities. Correlations between enzymatic activities and ECM fungal community 270 assemblages of the pine populations were analyzed by Mantel tests with ade4 R package. 271 To identify representative fungal OTUs of each fire regime per pine species, the Indicator 272 Species Analysis (with OTUs >100 reads to avoid spurious relations) was carried out 273 (p<0.05) with the function *multipatt* of the indicspecies R package (Cáceres, Legendre, & He,

274 2013).

275 Climatic and edaphic characteristics are intimately associated with fire regime in 276 Mediterranean ecosystems (Pausas et al., 2004). So, to separate the edaphic and climatic 277 effects from that of the fire regime, we performed CCA on Hellinger-transformed relative 278 fungal abundance data and RDA with the Euclidean distance matrix of enzymatic activities 279 both with forward selection of explanatory variables. We used different analyses due to their 280 different data assumptions, RDA assumes a linear relationship between predictors and data 281 while CCA assumes a unimodal response curve. In these models, the variable fire regime and 282 the edaphic and climatic indexes were included. Previously, to reduce the dimensionality of 283 environmental data, Principal Component Analyses (PCA) were independently run for 284 edaphic variables (pH, OM, EC, N, P, K) and climatic variables (mean annual temperature, 285 mean annual precipitation and altitude), and the first two axes, explaining the maximum 286 amount of variance, of respective PCAs were used as edaphic or climatic indexes (Figure S2). 287 To test our hypothesis 2, effect of tree serotiny degree (i.e., genotypic fire-adaptation) on 288 ECM fungal community, two additional models with the factor serotiny and the edaphic and 289 climatic indexes were included. As before, we performed a CCA model on Hellinger-

transformed relative fungal abundance data and a RDA model with the Euclidean distancematrix of enzymatic activities both with forward selection of explanatory variables.

292 Since the distribution of the two pine species considered in our study is closely linked to the 293 bedrock type, i.e., P. pinaster preferentially settled on siliceous soils, while P. halepensis 294 include both siliceous and calcareous soils (Hernández-Serrano et al., 2013), we made 295 additional analyses for testing possible confounding effects of pine species and bedrock type 296 (both factors included in the variable pine forest). For this, the pine species effect on ECM 297 fungal community structure and enzymatic activities was respectively checked by Canonical 298 Correspondence (CCA) and Redundancy (RDA) analyses, only with data of Sinarcas, the 299 unique location where populations of both pine species grow under a common bedrock 300 environment (Table S1). No significant effects of the pine species identity on the ECM fungal 301 community structure (CCA: n=218; explained variation %=12.4; P=0.204) or on the 302 enzymatic profile (RDA: n=8; explained variation %=44.4; P=0.094) in the location Sinarcas 303 were observed.

Ordinations were done with the software CANOCO v.5.0 (Biometris Plant Research
International, Wageningen, Netherlands), and the rest of analyses with the R software v.3.5.2
(R Core Team, 2014).

308 Results

309 Sequencing yields and taxonomic identification of fungi

- 310 A total of 501 ECM fungal OTUs corresponding to 3182548 sequences were identified.
- 311 Almost half of OTUs were found in both pine species and ~26 % exclusively in one of them
- 312 (Figure S3a). LoFi and HiFi pine populations shared the 54.8 % of OTUs, while ~21-23 %
- 313 were only found either in LoFi or HiFi (Figure S3a). Most OTUs belonged to Basidiomycota
- 314 (89.4 %), 10.2 % to Ascomycota, and 0.4 % to Zygomycota (Figure S3b; Table S2). The
- taxonomic classification of OTUs allowed identifying 12 fungal orders, 30 families and 47
- 316 genera, most of them represented across all treatments (Table S2).
- The majority of the 20 most abundant fungi and of the indicator species found in root tips of
- 318 P. pinaster belonged to Tomentellaceae, Inocybaceae, Russulaceae, and Rhizopogonaceae
- and, in the case of *P. halepensis*, to Pezizales, *Thelephoraceae* and *Sebacinaceae* (Table S3;
- 320 Figure S4). The indicator species analysis revealed 54 fungal OTUs preferentially associated
- 321 to *P. pinaster* forests and 37 to *P. halepensis* forests (Table S3). Besides, 31 fungi belonging
- 322 to 14 different genera were indicators of LoFi populations of *P. pinaster* and 31 fungi
- 323 belonging to 13 different genera were indicators of LoFi populations of *P. halepensis*. In
- 324 contrast, 11 indicators from 5 different genera and 6 from 5 different genera were associated

325 with HiFi populations of *P. pinaster* and *P. halepensis* respectively (Table S3).

326

327 *Root-tip ectomycorrhizal fungal diversity*

328 Total fungal α -diversity marginally varied between pine forests (R²=0.13; F=3.62; P=0.062).

- 329 At the phylum level, significantly less Basidiomycetes (R²=0.24; F=6.12; P=0.016) and
- marginally more Ascomycetes (R²=0.81; F=3.88; P=0.053) were found in *P. halepensis* forest
- 331 compared with P. pinaster. The root-tips of P. pinaster were enriched of Amanitaceae,

332 Atheliaceae, Cantharellaceae, Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae 333 and Russulaceae species, while in *P. halepensis* root-tips prevailed species of the families 334 *Pezizaceae*, *Pyronemataceae* and *Sebacinaceae* (Table 1). At regional scale, root-tip ECM 335 fungal β -diversity of both pine forests was similar (R²=0.01 F=1.34, P=0.265), although 336 Basidiomycetes were more dissimilar in *P. pinaster* than in *P. halepensis* forests (R²=0.01 337 F=4.44, P=0.033), and the opposite pattern was observed for Ascomycetes (R²=0.03; F=11.62, 338 P=0.001).

339 The ECM fungal α -diversity was significantly lower in high fire recurrence (HiFi) 340 populations compared with low fire recurrence (LoFi) populations in both pine forests (Figure 341 1a), and this difference was consistent within the two fungal phyla i.e., Ascomycetes and 342 Basidiomycetes (Figure 1b-c). Although the α -diversity of many ECM fungal families 343 decreased in HiFi populations of both pine forest (Table 1), some taxa were more diverse in 344 HiFi, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae for P. pinaster, or Pezizaceae 345 for *P. halepensis* (Table 1). At regional scale, a consistent reduction of ECM fungal β -346 diversity was observed in HiFi populations of both pine forests (i.e., more homogeneous 347 ECM communities in HiFi than LoFi) (Figure 2a). Likewise, Basidiomycetes were less β-348 diverse in HiFi than LoFi populations, while no difference was observed for Ascomycetes 349 (Figure 2b-c).

350

351 Potential enzymatic activity of ECM root-tips

The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi populations, the enzymatic activity of ECM root tips was very similar for both pines, except in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in *P*. *halepensis* compared with *P. pinaster* (Figure 3). By contrast, in HiFi populations, the activity

of most of the C-degrading enzymes (i.e., cellobiohydrolase, β-xylosidase and βglucuronidase), and of those mobilizing nitrogen (i.e., chitinase and L-leucineaminopeptidase)
was higher for *P. halepensis* than *P. pinaster*, with the exception of laccase that was lower
(Figure 3).
The ECM fungal species assemblage of *P. pinaster* root-tips significantly correlated with their
enzymatic profile (Mantel r=0.14; P=0.003). The HiFi populations of *P. pinaster* had higher
root-tip laccase activity and lower hemicellulose degrading activity (i.e., β-xylosidase, β-

glucuronidase), and of enzymes mobilizing nitrogen (i.e., chitinase and Lleucineaminopeptidase) and phosphorus (i.e., acid phosphatase) (Figure 3). No significant
relation between fungal community structure and enzymatic activity was observed for *P*. *halepensis* (Mantel r=0.03; P=0.287), although laccase activity significantly increased in HiFi
populations (Figure 3).

368

369 *Main drivers of the structure and function of ECM fungal communities*

370 Climate, in particular temperature (Climate 1, first axis from PCA in Figure S2), together with 371 fire recurrence, were major factors determining ECM fungal communities of Mediterranean pine forests (Table S4A; Figure 4a). As hypothesized, the tree trait serotiny (selected by fire 372 373 regime) did affect the structure of root-tip ECM fungal communities (Table S4B; Figure 4a). 374 Higher levels of serotiny significantly correlated with the ECM fungal community structure 375 of HiFi populations in both P. pinaster and P. halepensis forests (Table S4B; Figure 4a). 376 Contrarily, the edaphic effects were likely related to differences among plots inside LoFi or 377 HiFi populations, i.e. the strength and direction of edaphic vectors along plots displayed in 378 Figure 4a.

379 Regarding ECM functionality (i.e., enzymatic activities), the fire recurrence together with 380 climatic variables explained root-tip enzymatic activity in *P. pinaster* forest (Table S4A; 381 Figure 4b). Moreover, the serotiny degree of *P. pinaster* populations significantly correlated 382 with the ECM root-tip enzymatic profile in HiFi populations, while soil characteristics mainly 383 drove variations in enzymes among sites inside LoFi and HiFi populations (Table S4B; Figure 384 4b). For *P. halepensis*, root-tip enzymatic activity was essentially driven by the surrounding 385 edaphic environment (Table S4; Figure 4b), mainly by high pH and low phosphorus 386 availability (see PC2 in Figure S2a).

387

388 Discussion

389 Mutualistic feedbacks between trees and ectomycorrhizal fungi that are essential for 390 ecosystem dynamics can be highly vulnerable to fire in Mediterranean ecosystems. Our 391 results show that fire regime shapes the structure and functioning of root-tip ECM fungal 392 communities in fire-prone Mediterranean forests. Divergent ECM fungal communities 393 associate with P. pinaster and P. halepensis, which are highly influenced by the edaphic 394 environment and climate. According to our first hypothesis, high fire recurrence reduces ECM 395 fungal diversity and has a homogenizing effect on these communities, which leads to a 396 reduced enzymatic activity for P. pinaster (but not for P. halepensis). Confirming our second 397 hypothesis, this effect is evidenced at the finer scale of individuals since the serotiny degree 398 of trees, i.e., genotypic fire-adaptation, does significantly affect the structure (for both P. 399 pinaster and P. halepensis) and functioning (in the case of P. pinaster) of ECM fungal 400 communities. In this work, relative contribution of main variables related to fire such as 401 climate, soil properties and the tree trait serotiny structuring ECM fungal communities have 402 been disentangled.

403

404 ECM communities in P. pinaster and P. halepensis forests

405 The tree species had a marginal effect on ECM fungal communities probably blurred by the 406 strong effect of the local environmental conditions. The degree of tree host specificity for 407 ECM fungi seems to be correlated with the phylogenetic distances between hosts (Tedersoo, 408 Mett, Ishida, & Bahram, 2013). However, it has been shown that the genus *Pinus* associates 409 with specialized ECM fungi, in particular within the genera Suillus and Rhizopogon (Smith & 410 Read, 2008) and that even the *Pinus* genotype play an essential role in structuring ECM 411 fungal communities (Gehring, Mueller, Haskins, Rubow, & Whitham, 2014; Pérez-Izquierdo 412 et al., 2017, 2019). Given the importance of pH shaping fungal communities (Coince et al., 413 2014; Glassman, Wang, & Bruns, 2017; Rincón et al., 2015; Tedersoo et al., 2014), these 414 divergent observations could be interpreted as context-dependent, i.e., in our study, soil pH 415 (ranging from 5.1 to 8) was higher, even in Sinarcas where both pine species grew under a 416 similar local environment, than in the mentioned studies (average pH of 5). The strong 417 environmental filter imposed by the bedrock influence, mainly siliceous for P. pinaster and 418 calcareous for P. halepensis (Ojeda, Pausas, & Verdú, 2010), was reflected in more diverse 419 and more heterogeneous Ascomycetes species together with less diverse and more 420 homogeneous Basidiomycetes in the case of P. halepensis, whereas the opposite pattern was 421 observed for *P. pinaster*. We observed a preferential association of *P. halepensis* with fungal 422 species of the genus Sebacina and the order Pezizales. So far, no tree host specificity has been 423 observed among the Sebacina species (Ray & Craven, 2016; Selosse, Bauer, & Moversoen, 424 2002). Given the reported positive effects of sebacinous fungi against stresses such as 425 herbivory, salinity or drought (Barazani & Baldwin, 2013; Ray & Craven, 2016; Zarea, 426 Miransari, & Karimi, 2014), they could play a key role in the resistance of *P. halepensis* to

427 limited nutrient availability (i.e., related to high soil pH) and the restrictive conditions 428 imposed by the Mediterranean climate. Similarly, ascomycetous ECM Pezizales, which tend 429 to be favoured in basic soils, have traits such as their melanin production capacity that make 430 them perfect symbionts under stressful conditions including post-fire scenarios (Koide, 431 Fernandez, & Malcolm, 2014; Lamit et al., 2014; Rincón et al., 2014; Rincón & Pueyo, 2010; 432 Tedersoo, Hansen, Perry, & Kjøller, 2006; Torres & Honrubia, 1997). On the other hand, 433 species from the genera Rhizopogon, Craterellus, Cenoccocum, Russula and Lactarius were 434 enriched under *P. pinaster* (less basic pH). Although ECM fungi tolerate a wide range of pH 435 (Rousk et al., 2010), most of these fungi grow better under acidophilic conditions (Yamanaka, 436 2003).

437

438 Structural and functional shifts of root-tip ECM fungal communities due to the fire regime

439 As we firstly hypothesized, for both pine species, the local and regional diversity of root-tip 440 ECM fungi significantly declined in populations where fires are historically frequent, and this 441 implied functional outcomes e.g., laccase activity of ECM root-tips increased in HiFi populations of both pine forests. Many fire studies have ascribed decreases in fungal diversity 442 443 to the reduction of heat resistant propagules, elimination of rare species from the spore bank, 444 the scarcity of suitable hosts, the direct burning of mycelium and roots, and/or the disturbed 445 soil properties (Glassman et al., 2016; Holden, Gutierrez, & Treseder, 2013; Rincón & Pueyo, 446 2010). These processes do have a great importance on ECM fungal communities in the short 447 term after disturbance, giving the way to other processes such as dispersion through time 448 (Dooley & Treseder, 2011; Kipfer, Moser, Egli, Wohlgemuth, & Ghazoul, 2011; Rincón et 449 al., 2014; Sun et al., 2015), similar to that reported in succession studies where fungal 450 richness increases with forest age (Kyaschenko, Clemmensen, Hagenbo, Karltun, & Lindahl,

451 2017; Twieg, Durall, & Simard, 2007). In our study, it does not seem that ECM fungal 452 diversity has not been yet restored since the last fire (at least more than 40 years ago), because 453 typical late-stage species such as *Amanita* or *Lactarius* (Cairney & Chambers, 2013; Taylor & 454 Bruns, 1999) were indicators in HiFi areas. On the contrary, our results suggest that, the 455 initial ruderal symbionts that facilitate the establishment of seedlings are replaced over time 456 by ECM fungi that respond more efficiently to the new environmental conditions, probably 457 driving plant-soil feedbacks to different directions (Duhamel et al., 2019).

458 The ECM species composition diverged between fire regimes and, although fungal diversity 459 decreased with high fire recurrence, some fungal families were more diverse in HiFi 460 populations, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae for P. pinaster, or 461 Pezizaceae for P. halepensis. Different authors have proposed that in ecosystems subjected to 462 frequent fires, the positive response of microorganisms would indicate a selection of the fire-463 tolerant ones over time (Buscardo et al., 2015; Dooley & Treseder, 2011; Rincón et al., 2014). 464 Fire recurrence in Mediterranean forests is intimately linked to temperature and drought 465 (Pausas, 2004), so as expected, in our work, climate was a strong determinant of fire regime 466 effects on fungal communities. All these results, together with the observed decline in ECM 467 fungal β -diversity, seem to indicate that the habitat filtering was likely the dominant 468 ecological process assembling root-tip ECM fungal communities under high fire recurrence. 469 while without the fire pressure (i.e., low fire recurrence) and milder climate conditions, 470 competition among fungi could prevail, similar to that described across biological groups 471 (Pérez-Valera, Verdú, Navarro-Cano, & Goberna, 2018; Verdú & Pausas, 2007). The 472 diversity of plant and microbial communities is regulated by sequentially operating assembly 473 rules: abiotic filtering is an omnipresent structuring force, and biological interactions e.g.,

474 competition, further fine-tunes the community assemblages (Pérez-Valera et al., 2018; Verdú
475 & Pausas, 2007).

476 Fire regime and climate can filter directly different biotic organisms (i.e., trees and ECM 477 fungi), however our results did provide significant clues about indirect plant-mediated effects 478 of high fire recurrence on ECM fungal communities. We observed that serotiny, previously 479 demonstrated to be a tree heritable trait shaped by recurrent fires (Budde et al., 2014; 480 Castellanos, González-Martínez, & Pausas, 2015; Hernández-Serrano et al., 2014), 481 significantly explained the variation of ECM fungal communities, aside from the accounted 482 climatic effects for both pine species. This could be attributed to climatic constraints in the 483 channel of C from the tree towards the ECM fungi, although, on the other hand, serotiny is a 484 trait that requires resources (water and C) for maintaining a large amount of seeds alive in the 485 canopy with a cost for the plant (Cramer & Midgley, 2009; Harris & Pannell, 2010). Another 486 possible explanation is that the ability of the different tree genotypes/phenotypes to 487 preferentially allocate photosynthates to the more beneficial ECM fungi, or to those with low 488 C demands and/or high abilities to cope with hydric/nutrient stress can be the prevailing 489 mechanism explaining such plant-mediated effects (Bever, Richardson, Lawrence, Holmes, & 490 Watson, 2009; Gehring et al., 2014). This was to some extent supported by our results, at least 491 in *P. pinaster*, for which a direct effect of tree phenotype (serotiny) on enzymatic responses of 492 ECM fungi, but no effect of climatic variables was observed. We have previously shown that 493 particular P. pinaster genotypes can impact enzymatic activities through changes in the 494 composition of the associated microbial communities (Pérez-Izquierdo et al., 2017, 2019). 495 Additionally, it cannot be ruled out that, the fire recurrence negatively affects other tree traits 496 such as root development and/or architecture constraining the space for ECM fungal 497 colonization, which would make mechanisms like priority effects particularly important

498 (Kennedy, Peay, & Bruns, 2009; Peay, Belisle, & Fukami, 2012). In any case, further 499 experimentation would be needed to shed light on these assumptions.

500 The increased fire recurrence affected ecosystem functions differently in the two pine species 501 by reducing most enzymatic activities in the case of P. pinaster, but not for P. halepensis. 502 This suggests functional redundancy between ECM fungal communities associated with P. 503 halepensis in low and high fire recurrence sites, since diversity and assemblage shifts were 504 not translated into functional changes (Jones et al., 2010). These results might indicate a high 505 capacity of *P. halepensis* forests to recover its functionality among recurrent fires in warmer 506 areas probably by shifting plant-microbial feedbacks to readjust to the environment 507 (Clemmensen et al., 2015; Johnstone et al., 2010). The edaphic conditions (mainly pH and P) 508 were main factors explaining differences in enzymatic profiles among populations of both 509 pine species. Among their multiple functions, an outstanding feature of ectomycorrhizal fungi 510 is their ability to mobilize nutrients from the soil (Smith & Read, 2008). Because of their 511 direct access to C from the host, they are able to invest energy (i.e., enzymatic production) to 512 mine for N and/or P from hardly accessible sources (Fernandez, See, & Kennedy, 2020; Lindahl & Tunlid, 2015), as it could be the case for basic soils in our study together with 513 514 recalcitrant pine litter. Our findings are in line with previous studies indicating that the 515 availability of resources in surrounding soil together with tree host genetics strongly regulate 516 ECM enzymatic production (Aponte, García, Marañón, & Gardes, 2010; Courty et al., 2016; 517 Courty et al., 2011; Schneider et al., 2012). As previously mentioned, the laccase activity 518 increased in high fire recurrence populations of both pines. Laccase is an oxidative enzyme 519 related to several processes like the degradation of recalcitrant C compounds (i.e., lignin), but 520 also to the production of melanin by fungi (Baldrian, 2006; Eisenman et al., 2007). Melanin is 521 a group of complex polymers deposited in the cell wall associated with resistance to stresses

522 such as drought (Koide et al., 2014) and moderately resistant to decomposition (Fernandez, 523 Heckman, Kolka, & Kennedy, 2019). It is also possible that in our study sites, changes in 524 traits like production of melanin by fungi or more litter tannins by trees associated to the fire 525 regime and climatic stress might have affected organic matter turnover and feedback cycles, 526 issues that would deserve further analyses. In fact, in a 2-million-year chronosequence, 527 Albornoz et al. (2016) showed strong variation of ECM fungal communities even within the 528 same hosts, attributable not only to short-term fungal edaphic specialization or different 529 inoculum density and composition, but also likely to a much longer-term ecosystem-level 530 feedbacks among soil, plants and ECM fungi during pedogenesis.

531

532 Conclusions

In P. pinaster and P. halepensis Mediterranean forests, the high fire recurrence filters the 533 534 ECM fungal community composition, even favoring some ECM fungal species, but reduces 535 local and regional ECM diversity. Factors such as climate, which is intimately related to fire, 536 and soil properties in particular pH, affect ECM fungal communities composition and their 537 enzymatic functions. Aside from the climatic filter, local adaptation in pine populations to 538 recurrent fires (i.e., increased serotiny) selects for different ECM fungal communities, 539 accompanying different functional responses. ECM fungal communities associated with 540 serotinous P. pinaster trees imply a reduced enzymatic activity, but for P. halepensis, a 541 functional redundancy in LoFi and HiFi fire regimes likely exists. Edaphic variables, highly 542 linked to the bedrock type in Mediterranean ecosystems, are main drivers of ECM fungal 543 structure and functioning but generally independent of the fire regime. The bedrock material 544 is also a main factor driving differences in ECM fungal communities associated with P. 545 *pinaster* and *P. halepensis*, overriding the possible effect of the tree species. Although fire is a

main factor shaping Mediterranean ecosystems, changes in fire frequency because of predicted warmer and longer dry periods have the potential to affect the plants and their symbionts altering the structure, functioning and successional dynamics of Mediterranean forests ecosystems. The observed fire regime-related structural and functional shifts in ECM fungal communities might have essential implications for Mediterranean pine forests dynamics, which should be carefully considered to promote the sustainable management of these vulnerable ecosystems and to maintain their resilience under future climatic scenarios.

be carefully ...

553 Acknowledgements

554 We gratefully acknowledge A. Hernández-Serrano, A. Montesinos and D.A. Rodríguez 555 for their help in field, L. López for its support in the lab work and E. Sentausa for assistance 556 in data analyses. This work was supported by the projects MyFUNCO (CGL2011-29585-557 C02-02) and PiroPheno (CGL2017-89751-R) founded by the Spanish Ministry for Economy 558 and Competitiveness (MINECO), and by the LABoratoire d'EXcellence Arbre (LABEX .lowsi. 559 Arbre). LPI held a pre-doctoral fellowship awarded by MINECO. We also acknowledge three 560 anonymous reviewers for their constructive comments that highly improved the quality of the 561 manuscript.

563 **References**

564	Abdel Malak, D., & Pausas, J. G. (2006). Fire regime and post-fire Normalized Difference
565	Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin).
566	International Journal of Wildland Fire, Vol. 15, pp. 407–413. doi: 10.1071/WF0505
567	Albornoz, F. E., Teste, F. P., Lambers, H., Bunce, M., Murray, D. C., White, N. E., &
568	Laliberté, E. (2016). Changes in ectomycorrhizal fungal community composition and
569	declining diversity along a 2-million-year soil chronosequence. <i>Molecular Ecology</i> ,
570	<i>25</i> (19), 4919–4929. doi: 10.1111/mec.13778
571	Anders, S., & Huber, W. (2012). Differential expression of RNA-Seq data at the gene level–
572	the DESeq package.
573	Anderson, M., Ellingsen, K., & McArdle, B. (2006). Multivariate dispersion as a measure of
574	beta diversity. <i>Ecology Letters</i> , 9(6), 683–693.
575	doi:10.1111/j.14610248.2006.00926.x/full
576	Aponte, C., García, L. V., Marañón, T., & Gardes, M. (2010). Indirect host effect on
577	ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities
578	on the roots of co-occurring Mediterranean oaks. Soil Biology and Biochemistry, 42(5),
579	788–796. doi: 10.1016/j.soilbio.2010.01.014
580	Baar, J., Horton, T. R., Kretzer, A. M., & Runs, T. D. (1999). Mycorrhizal colonization of
581	Pinus muricata from resistant propagules after a stand-replacing wildfire. <i>New</i>
582	<i>Phytologist</i> , 143(2), 409–418. Doi: 10.1046/j.1469-8137.1999.00452.x
583	Baldrian, P. (2006). Fungal laccases-occurrence and properties. <i>FEMS Microbiology Reviews</i> ,
584	<i>30</i> , 215–242. doi: 10.1111/j.1574-4976.2005.00010.x
585	Barazani, O., & Baldwin, I. T. (2013). A Mixed Bag: The Plant Growth-Promoting Sebacina
586	<i>vermifera</i> Impairs Defense Mechanisms Against Herbivores Oz. In <i>Piriformospora</i>
587	<i>indica</i> (pp. 251–261). doi: 10.1007/978-3-642-33802-1
588	Barbéro, M., Loisel, R., & Quézel, P. (1998). Pines of the Mediterranean basin. In DM
589	Richardson (Ed.), <i>Ecology and biogeography of Pinus</i> (pp. 153–170).
590	Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J., & Watson, M. (2009).
590 591	Preferential allocation to beneficial symbiont with spatial structure maintains
592	mycorrhizal mutualism. <i>Ecology Letters</i> , 12(1), 13–21. doi: 10.1111/j.1461-
592 593	
	0248.2008.01254.x
594	Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of
595	phosphorus in soils. Soil Science, 59(1), 39–46.
596	Bruns, T. D., Peay, K. G., Boynton, P. J., Grubisha, L. C., Hynson, N. A., Nguyen, N. H., &
597	Rosenstock, N. P. (2009). Inoculum potential of <i>Rhizopogon</i> spores increases with time
598	over the first 4 yr of a 99-yr spore burial experiment. <i>New Phytologist</i> , 181(2), 463–470.
599	doi: 10.1111/j.1469-8137.2008.02652.x
600	Budde, K. B., González-Martínez, S. C., Navascués, M., Burgarella, C., Mosca, E., Lorenzo,
601	Z., Heuertz, M. (2017). Increased fire frequency promotes stronger spatial genetic
602	structure and natural selection at regional and local scales in <i>Pinus halepensis</i> Mill.
603	Annals of Botany, 119(6), 1061–1072. doi: 10.1093/aob/mcw286
604	Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J. G., Vendramin, G. G., Verdú,
605	M., & González-Martínez, S. C. (2014). In situ genetic association for serotiny, a fire-
606	related trait, in Mediterranean maritime pine (<i>Pinus pinaster</i>). New Phytologist, 201(1),
607	230–241. doi: 10.1111/nph.12483
608	Buscardo, E., Rodriguez-Echeverria, S., Freitas, H., De Angelis, P., Pereira, J. S., & Muller,
609	L. A. H. (2015). Contrasting soil fungal communities in Mediterranean pine forests

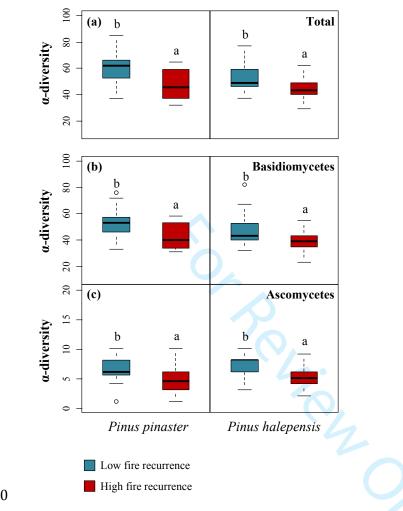
610	subjected to different wildfire frequencies. <i>Fungal Diversity</i> , 70(1), 85–99. doi: 10.1007/s12225_014_0204_5
611	10.1007/s13225-014-0294-5
612	Cáceres, M. D., Legendre, P., & He, F. (2013). Dissimilarity measurements and the size
613	structure of ecological communities. <i>Methods in Ecology and Evolution</i> , 4(12), 1167–
614	1177. doi: 10.1111/2041-210X.12116/full
615	Cairney, J. W., & Chambers, S. M. (2013). Ectomycorrhizal fungi: key genera in profile.
616	Springer Science & Business Media.
617	Camarero, J. J., Olano, J. M., & Parras, A. (2010). Plastic bimodal xylogenesis in conifers
618	from continental Mediterranean climates. New Phytologist, 185(2), 471–480. doi:
619	10.1111/j.1469-8137.2009.03073.x
620	Castellanos, M. C., González-Martínez, S. C., & Pausas, J. G. (2015). Field heritability of a
621	plant adaptation to fire in heterogeneous landscapes. Molecular Ecology, 24(22), 5633-
622	5642. doi: 10.1111/mec.13421
623	Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H.,
624	Lindahl, B. D. (2013). Roots and Associated Fungi Drive Long-Term Carbon
625	Sequestration in Boreal Forest. Science, 339(6127), 1615–1618. doi:
626	10.1126/science.1231923
627	Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl, B. D.
628	(2015). Carbon sequestration is related to mycorrhizal fungal community shifts during
629	long-term succession in boreal forests. New Phytologist, 205, 1525–1536. doi:
630	doi:10.1111/nph.13208
631	Coince, A., Cordier, T., Lengellé, J., Defossez, E., Vacher, C., Robin, C., Marçais, B.
632	(2014). Leaf and root-associated fungal assemblages do not follow similar elevational
633	diversity patterns. PloS One, 9(6), e100668. doi: 10.1371/journal.pone.0100668
634	Courty, P. E., Munoz, F., Selosse, M. A., Duchemin, M., Criquet, S., Ziarelli, F., Richard,
635	F. (2016). Into the functional ecology of ectomycorrhizal communities: Environmental
636	filtering of enzymatic activities. Journal of Ecology, 104(6), 1585–1598. doi:
637	10.1111/1365-2745.12633
638	Courty, P E, Pritsch, K., Schloter, M., Hartmann, A., & Garbaye, J. (2005). Activity profiling
639	of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New
640	Phytologist, 167(1), 309–319. doi: 10.1111/j.1469-8137.2005.01401.x
641	Courty, P. E., Labbé, J., Kohler, A., Marçais, B., Bastien, C., Churin, J., Le Tacon, F.
642	(2011). Effect of poplar genotypes on mycorrhizal infection and secreted enzyme
643	activities in mycorrhizal and non-mycorrhizal roots. Journal of Experimental Botany,
644	62(1), 249–260. doi: 10.1093/jxb/erq274
645	Cramer, M. D., & Midgley, J. J. (2009). Maintenance costs of serotiny do not explain weak
646	serotiny. Austral Ecology, 34, 653–662. doi: 10.1111/j.1442-9993.2009.01971.x
647	de Román, M., & de Miguel, A. M. (2005). Post-fire, seasonal and annual dynamics of the
648	ectomycorrhizal community in a <i>Quercus ilex</i> L . forest over a 3-year period.
649	Mycorrhiza, 15, 471–482. doi: 10.1007/s00572-005-0353-6
650	Dooley, S. R., & Treseder, K. K. (2011). The effect of fire on microbial biomass: a meta-
651	analysis of field studies. <i>Biogeochemistry</i> , 109(1-3), 49-61. doi: 10.1007/s10533-011-
652	9633-8
653	Dove, N. C., & Hart, S. C. (2017). Fire reduces fungal species richness and in situ
654	mycorrhizal colonization: A meta-analysis. <i>Fire Ecology</i> , 13(2), 37–65. doi:
655	10.4996/fireecology.130237746
656	Duhamel, M., Wan, J., Bogar, L. M., Segnitz, R. M., Dncritts, N. C., & Peay, K. G. (2019).
657	Plant selection initiates alternative successional trajectories in the soil microbial

658	community after disturbance. Ecological Monographs, 89(3), e01367. doi:
659	10.1002/ecm.1367
660	Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon
661	reads. Nature Methods, 10(10), 996–998. doi: 10.1038/nmeth.2604
662	Egerton-Warburton, L. M., Querejeta, J. I., & Allen, M. F. (2007). Common mycorrhizal
663	networks provide a potential pathway for the transfer of hydraulically lifted water
664	between plants. Journal of Experimental Botany, 58(6), 1473-1483. doi:
665	10.1093/jxb/erm009
666	Eisenman, H. C., Mues, M., Weber, S. E., Frases, S., Chaskes, S., Gerfen, G., & Casadevall,
667	A. (2007). Cryptococcus neoformans laccase catalyses melanin synthesis from both D -
668	and L -DOPA. <i>Microbiology</i> , 153, 3954–3962. doi: 10.1099/mic.0.2007/011049-0
669	Fernandez, C. W., Heckman, K., Kolka, R., & Kennedy, P. G. (2019). Melanin mitigates the
670	accelerated decay of mycorrhizal necromass with peatland warming. <i>Ecology Letters</i> , 22,
671	498–505. doi: 10.1111/ele.13209
672	Fernandez, C. W., See, C. R., & Kennedy, P. G. (2020). Decelerated carbon cycling by
673	ectomycorrhizal fungi is controlled by substrate quality and community composition.
674	New Phytologist, 226(2), 569–582. doi: 10.1111/nph.16269
675	Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes,
676	application to the identification of mycorrhizae and rusts. <i>Molecular Ecology</i> , 2, 113–
677	118. doi: 10.1111/j.1365-294X.1993.tb00005.x
678	Gehring, C. A., Mueller, R. C., Haskins, K. E., Rubow, T. K., & Whitham, T. G. (2014).
679	Convergence in mycorrhizal fungal communities due to drought, plant competition,
680	parasitism, and susceptibility to herbivory: Consequences for fungi and host plants.
681	Frontiers in Microbiology, 5(JUN), 1–9. doi: 10.3389/fmicb.2014.00306
682	Gehring, C. A., & Whitham, T. G. (1991). Herbivore-Driven Mycorrhizal Mutualism in
683	Insect-Susceptible Pinyon Pine. <i>Nature</i> , <i>353</i> (6344), 556–557. doi: 10.1038/353556a0
684	Glassman, S. I., Levine, C. R., Dirocco, A. M., Battles, J. J., & Bruns, T. D. (2016).
685	Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.
686	<i>The ISME Journal</i> , 10, 1228–1239. doi: 10.1038/ismej.2015.182
687	Glassman, S. I., Peay, K. G., Talbot, J. M., Smith, D. P., Chung, J. A., Taylor, J. W.,
688	Bruns, T. D. (2015). A continental view of pine-associated ectomycorrhizal fungal spore
689	banks : a quiescent functional guild with a strong biogeographic pattern. New
690	<i>Phytologist</i> , 205, 1619–1631. doi: 10.1111/nph.13240
691	Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental filtering by pH and soil
692	nutrients drives community assembly in fungi at fine spatial scales. <i>Molecular Ecology</i> ,
693	26(24), 6960–6973. doi: 10.1111/mec.14414
694	Greene, D. F., Zasada, J. C., Sirois, L., Kneeshaw, D., Morin, H., Charron, I., & Simard, M. J.
695	(1999). A review of the regeneration dynamics of North American boreal forest tree
696	species. Canadian Journal of Forest Research, 29(6), 824–839. doi: 10.1139/x98-112
697	Harris, M. S., & Pannell, J. R. (2010). Canopy seed storage is associated with sexual
698	dimorphism in the woody dioecious genus Leucadendron. Journal of Ecology, 98, 509–
699	515. doi: 10.1111/j.1365-2745.2009.01623.x
700	Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-
701	fire vegetative dynamics as drivers of microbial community structure and function in
702	forest soils. <i>Forest Ecology and Management</i> , 220(1–3), 166–184. doi:
703	10.1016/j.foreco.2005.08.012
704	Hernández-Serrano, A., Verdú, M., González-Martínez, S. C., & Pausas, J. G. (2013). Fire
705	structures pine serotiny at different scales. American Journal of Botany, 100(12), 2349–

706	2356. doi: 10.3732/ajb.1300182
707	Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.
708	C., & Pausas, J. G. (2014). Heritability and quantitative genetic divergence of serotiny, a
709	fire-persistence plant trait. Annals of Botany, 114(3), 571–577. doi: 10.1093/aob/mcu142
710	Holden, S. R., Gutierrez, A., & Treseder, K. K. (2013). Changes in Soil Fungal Communities,
711	Extracellular Enzyme Activities, and Litter Decomposition Across a Fire
712	Chronosequence in Alaskan Boreal Forests. <i>Ecosystems</i> , 16(1), 34–46. doi:
713	10.1007/s10021-012-9594-3
714	Isaac, R. A., & Kerber, J. D. (1971). Atomic absorption and flame photometry: Techniques
715	and uses in soil, plant and water analysis. In Walsh LM (ed). Soil Science Society
716	America. Madison. WI. (Ed.), Instrumental Methods for Analysis of Soils and Plant
717	Tissue.
718	Johnson, D., Martin, F., Cairney, J. W. G., & Anderson, I. C. (2012). The importance of
719	individuals: Intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New
720	Phytologist, 194(3), 614–628. doi: 10.1111/j.1469-8137.2012.04087.x
721	Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., &
722	Turetsky, M. (2010). Fire, climate change, and forest resilience in interior AlaskaThis
723	article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal
724	Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian
725	Journal of Forest Research, 40(7), 1302–1312. doi: 10.1139/X10-061
726	Jones, M. D., Twieg, B. D., Ward, V., Barker, J., Durall, D. M., & Simard, S. W. (2010).
727	Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme
728	activity after wildfire or clearcut logging. Functional Ecology, 24(5), 1139–1151. doi:
729	10.1111/j.1365-2435.2010.01699.x
730	Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., & Rundel, P. W. (2011). Fire in
731	Mediterranean ecosystems: ecology, evolution and management. Cambridge University
732	Press.
733	Kennedy, P. G., Peay, K. G., & Bruns, T. D. (2009). Root tip competition among
734	ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology, 90(8), 2098-
735	2107. doi: 10.1890/08-1291.1
736	Kipfer, T., Moser, B., Egli, S., Wohlgemuth, T., & Ghazoul, J. (2011). Ectomycorrhiza
737	succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central
738	Alps. Oecologia, 167(1), 219–228. doi: 10.1007/s00442-011-1981-5
739	Kivlin, S. N., Emery, S. M., & Rudgers, J. A. (2013). Fungal symbionts alter plant responses
740	to global change. American Journal of Botany, 100(7), 1445-1457. doi:
741	10.3732/ajb.1200558
742	Koide, R. T., Fernandez, C., & Malcolm, G. (2014). Determining place and process:
743	Functional traits of ectomycorrhizal fungi that affect both community structure and
744	ecosystem function. New Phytologist, 201(2), 433-439. doi: 10.1111/nph.12538
745	Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M.,
746	Larsson, K. H. (2013). Towards a unified paradigm for sequence-based identification of
747	fungi. Molecular Ecology, 22(21), 5271–5277. doi: 10.1111/mec.12481
748	Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015).
749	Community assembly, coexistence and the environmental filtering metaphor.
750	<i>Functional Ecology</i> , <i>29</i> , 592–599. doi: 10.1111/1365-2435.12345
751	Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E., & Lindahl, B. D. (2017). Shift
752	in fungal communities and associated enzyme activities along an age gradient of
753	managed Pinus sylvestris stands. The ISME Journal, 11, 863–874. doi:

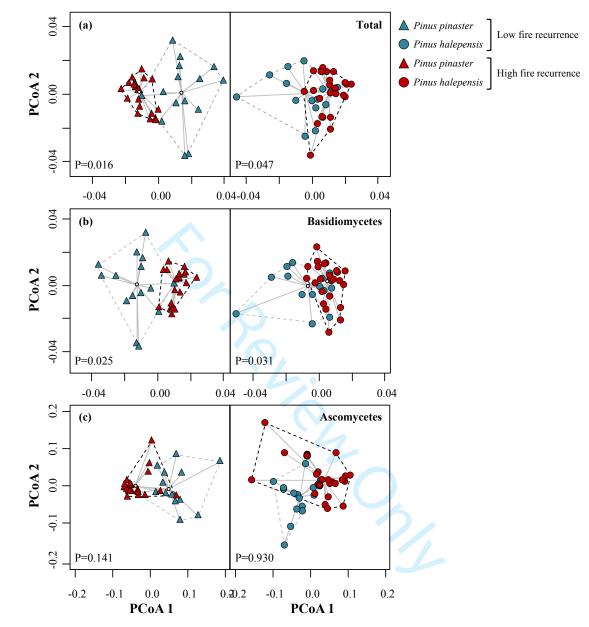
754	10.1038/ismej.2016.184
755	Lamit, L. J., Lau, M. K., Sthultz, C. M., Wooley, S. C., Whitham, T. G., & Gehring, C. A.
756	(2014). Tree genotype and genetically based growth traits structure twig endophyte
757	communities. American Journal of Botany, 101(3), 467–478. doi: 10.3732/ajb.1400034
758	Lindahl, B. D., & Tunlid, A. (2015). Ectomycorrhizal fungi – potential organic matter
759	decomposers, yet not saprotrophs. 205, 1443–1447. doi: 10.1111/nph.13201
760	Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J.,
761	Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of
762	European forest ecosystems. <i>Forest Ecology and Management</i> , 259(4), 698–709. doi:
763	10.1016/j.foreco.2009.09.023
764	McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: why rarefying microbiome data
765	is inadmissible. <i>PLoS Computational Biology</i> , <i>10</i> (4), e1003531. doi:
766	10.1371/journal.pcbi.1003531
767	5 1
	Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Kennedy, P. G.
768	(2016). FUNGuild: An open annotation tool for parsing fungal community datasets by
769	ecological guild. <i>Fungal Ecology</i> , 20, 241–248. doi: 10.1016/j.funeco.2015.06.006
770	Nuñez, M. A., Horton, T. R., & Simberloff, D. (2009). Lack of belowground mutualisms
771	hinders Pinaceae invasions. <i>Ecology</i> , <i>90</i> (9), 2352–2359. doi: 10.1890/08-2139.1
772	Ojeda, F., Pausas, J. G., & Verdú, M. (2010). Soil shapes community structure through fire.
773	<i>Oecologia</i> , <i>163</i> (3), 729–735. doi: 10.1007/s00442-009-1550-3
774	Oksanen, A. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O.,
775	Wagner, H. (2015). Vegan community ecology package: ordination methods, diversity
776	analysis and other functions for community and vegetation ecologists. Version 2.3-1. In
777	R package version 2.3-1.
778	Pausas, J.G. (2015). Evolutionary fire ecology: Lessons learned from pines. <i>Trends in Plant</i>
779	Science, 20(5), 318–324. doi: 10.1016/j.tplants.2015.03.001
780	Pausas, J. G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western
781	Mediterranean Basin: From fuel-limited to drought-driven fire regime. Climatic Change,
782	<i>110</i> (1–2), 215–226. doi: 10.1007/s10584-011-0060-6
783	Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula
784	(Mediterranean basin). <i>Climatic Change</i> , 63, 337–350.
785	Pausas, J. G, Bradstock, R. A., Keith, D. A., & Keeley, J. E. (2004). Plant functional traits in
786	relation to fire in corwn-fire ecosystems. <i>Ecology</i> , 85(4), 1085–1100. doi: 10.1890/02-
787	4094
788	Peay, K. G., Belisle, M., & Fukami, T. (2012). Phylogenetic relatedness predicts priority
789	effects in nectar yeast communities. Proceedings. Biological Sciences / The Royal
790	Society, 279(1729), 749–758. doi: 10.1098/rspb.2011.1230
791	Pérez-Izquierdo, L, Zabal-Aguirre, M., Flores-Rentería, D., González-Martínez, S., Buée, M.,
792	& Rincón, A. (2017). Functional outcomes of fungal community shifts driven by tree
793	genotype and spatial-temporal factors in Mediterranean pine forests. Environmental
794	Microbiology, 19(4), 1639-1652. doi: 10.1111/1462-2920.13690
795	Pérez-Izquierdo, L., Zabal-Aguirre, M., González-Martínez, S. C., Buée, M., Verdú, M.,
796	Rincón, A., & Goberna, M. (2019). Plant intraspecific variation modulates nutrient
797	cycling through its below-ground rhizospheric microbiome. Journal of Ecology, 107(4),
798	1594-1605. doi: 10.1111/1365-2745.13202
799	Pérez-Valera, E., Verdú, M., Navarro-Cano, J. A., & Goberna, M. (2018). Resilience to fire of
800	phylogenetic diversity across biological domains. Molecular Ecology, 27(13), 2896-
801	2908. doi: 10.1111/mec.14729

802	Pinosio, S., González-Martínez, S. C., Bagnoli, F., Cattonaro, F., Grivet, D., Marroni, F.,
803	Vendramin, G. G. (2014). First insights into the transcriptome and development of new
804	genomic tools of a widespread circum-Mediterranean tree species, Pinus halepensis
805	Mill. Molecular Ecology Resources, 14(4), 846–856. doi: 10.1111/1755-0998.12232
806	Prieto, I., Roldán, A., Huygens, D., del Mar Alguacil, M., Navarro-Cano, J. A., & Querejeta,
807	J. I. (2016). Species-specific roles of ectomycorrhizal fungi in facilitating interplant
808	transfer of hydraulically redistributed water between <i>Pinus halepensis</i> saplings and
809	seedlings. <i>Plant and Soil</i> , 406(1–2), 15–27. doi: 10.1007/s11104-016-2860-y
810	Querejeta, J. I., Egerton-Warburton, L. M., & Allen, M. F. (2007). Hydraulic lift may buffer
811	rhizosphere hyphae against the negative effects of severe soil drying in a California Oak
812	savanna. Soil Biology and Biochemistry, 39(2), 409–417. doi:
813	10.1016/j.soilbio.2006.08.008
814	R Core Team. (2014). R Core Team. R: A Language and Environment for Statistical
815	Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
816	Radeloff, V. C., Mladenoff, D. J., Guries, R. P., & Boyce, M. S. (2004). Spatial patterns of
817	cone serotiny in <i>Pinus banksiana</i> in relation to fire disturbance. <i>Forest Ecology and</i>
818	Management, 189, 133–141. doi: 10.1016/j.foreco.2003.07.040
819	Ray, P., & Craven, K. D. (2016). Sebacina vermifera: a unique root symbiont with vast
820	agronomic potential. World Journal of Microbiology and Biotechnology, 32(1), 1–10.
821	doi: 10.1007/s11274-015-1970-7
822	Rincón, A., Santamaría-Pérez, B., Ocaña, L., & Verdú, M. (2014). Structure and phylogenetic
823	diversity of post-fire ectomycorrhizal communities of maritime pine. <i>Mycorrhiza</i> , 24,
824	131–141. doi: 10.1007/s00572-013-0520-0
825	Rincón, A., & Pueyo, J. J. (2010). Effect of fire severity and site slope on diversity and
826	structure of the ectomycorrhizal fungal community associated with post-fire regenerated
827	<i>Pinus pinaster</i> Ait. seedlings. <i>Forest Ecology and Management</i> , 260(3), 361–369. doi:
828	10.1016/j.foreco.2010.04.028
829	Rincón, A., Santamaría-Pérez, B., Rabasa, S. G., Coince, A., Marçais, B., & Buée, M. (2015).
830	Compartmentalized and contrasted response of ectomycorrhizal and soil fungal
831	communities of Scots pine forests along elevation gradients in France and Spain.
832	Environmental Microbiology, 17, 3009–3024. doi: 10.1111/1462-2920.12894
833	Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Fierer,
834	N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil.
835	<i>Isme Journal</i> , 4, 1340–1351. doi: 10.1038/ismej.2010.58
836	Ruíz, P., Álvarez-Uria, P., & Zavala, M. A. (2009). 9540 Pinares mediterráneos de pinos
837	mesogeanos endémicos. In VV. AA., Bases ecológicas preliminares para la conservación
838	de los tipos de hábitat de interés comunitario en España. (p. 112). Madrid: Ministerio de
839	Medio Ambiente, y Medio Rural y Marino.
840	Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G.,
841	Roschitzki, B., Riedel, K. (2012). Who is who in litter decomposition?
842	Metaproteomics reveals major microbial players and their biogeochemical functions. <i>The</i>
843	<i>ISME Journal</i> , 6(9), 1749–1762. doi: 10.1038/ismej.2012.11
844	Selosse, M. A., Bauer, R., & Moyersoen, B. (2002). Basal hymenomycetes belonging to the
845	Sebacinaceae are ectomycorrhizal on temperate deciduous trees. <i>New Phytologist</i> ,
846	<i>155</i> (1), 183–195. doi: 10.1046/j.1469-8137.2002.00442.x
847	Smith, S., & Read, D. (Eds.). (2008). <i>Mycorrhizal Symbiosis</i> . Academic Press: London.
848	Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., Heinonsalo,
849	J. (2015). Fungal Community Shifts in Structure and Function across a Boreal Forest


850	Fire Chronosequence. Applied and Environmental Microbiology, 81(22), 7869–7880.
851	doi: 10.1128/AEM.02063-15.Editor
852	Talbot, J. M., Allison, S. D., & Treseder, K. K. (2008). Decomposers in disguise: Mycorrhizal
853	fungi as regulators of soil C dynamics in ecosystems under global change. Functional
854	<i>Ecology</i> , 22(6), 955–963. doi: 10.1111/j.1365-2435.2008.01402.x
855	Tapias, R., Climent, J., Pardos, J. a., & Gil, L. (2004). Life histories of Mediterranean pines.
856	Plant Ecology, 171(Richardson 1988), 53-68. doi:
857	10.1023/B:VEGE.0000029383.72609.f0
858	Taylor, D. L., & Bruns, T. D. (1999). Community structure of ectomycorrhizal fungi in a
859	Pinus muricata forest: Minimal overlap between the mature forest and resistant
860	propagule communities. <i>Molecular Ecology</i> , 8(11), 1837–1850. doi: 10.1046/j.1365-
861	294X.1999.00773.x
862	Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R.,
863	Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213),
864	1256688. doi: 10.1126/science.1256688
865	Tedersoo, L., Hansen, K., Perry, B. A., & Kjøller, R. (2006). Molecular and morphological
866	diversity of pezizalean ectomycorrhiza. New Phytologist, 170(3), 581–596. doi:
867	10.1111/j.1469-8137.2006.01678.x
868	Tedersoo, L., Mett, M., Ishida, T. A., & Bahram, M. (2013). Phylogenetic relationships
869	among host plants explain differences in fungal species richness and community
870	composition in ectomycorrhizal symbiosis. <i>New Phytologist</i> , 199(3), 822–831. doi:
871	10.1111/nph.12328
872 873	Tedersoo, L., & Smith, M. E. (2013). Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. <i>Fungal Biology</i>
874	<i>Reviews</i> , 27(3–4), 83–99. doi: 10.1016/j.fbr.2013.09.001
875	Torres, P., & Honrubia, M. (1997). Changes and effects of a natural fire on ectomycorrhizal
876	inoculum potential of soil in a Pinus halepensis forest. 96, 189–196.
877	Twieg, B. D., Durall, D. M., & Simard, S. W. (2007). Ectomycorrhizal fungal succession in
878	mixed temperate forests. New Phytologist, 176(2), 437–447. doi: 10.1111/j.1469-
879	8137.2007.02173.x
880	van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015).
881	Mycorrhizal ecology and evolution: The past, the present, and the future. New
882	<i>Phytologist</i> , 205(4), 1406–1423. doi: 10.1111/nph.13288
883	Verdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin
884	woody plant communities. Journal of Ecology, 95(6), 1316–1323. doi: 10.1111/j.1365-
885	2745.2007.01300.x
886	Vieira, J., Campelo, F., Rossi, S., Carvalho, A., Freitas, H., & Nabais, C. (2015). Adjustment
887	capacity of maritime pine cambial activity in drought-prone environments. PLoS ONE,
888	10(5), 1–15. doi: 10.1371/journal.pone.0126223
889	Walkley, A., & Black, I. (1934). An examination of the Degtjareff method for determining
890	soil organic matter, and a proposed modification of the chromic acid titration method.
891	<i>Soil Science</i> , <i>37</i> (1), 29–38.
892	Yamanaka, T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal
893	ammonia fungi in vitro. <i>Mycologia</i> , 95(4), 584–589. doi: 10.2307/3761934
894	Zarea, M. J., Miransari, M., & Karimi, N. (2014). <i>Plant Physiological Mechanisms of Salt</i>
895	<i>Tolerance Induced by Mycorrhizal Fungi and</i> Piriformospora indica. doi: 10.1007/978-
896	1-4939-0721-2

1	898	Data Accessibility
1	899	Data were deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) as
(900	PRJNA324224.
	901	
(902	Author contribution
(903	AR and MV designed the experiment; LPI, MZA and AR collected the data; LPI and MB
0	904	performed the bioinformatics analysis, LPI performed the statistical analyses. LPI and AR
0	905	wrote the first draft of the manuscript, and all authors contributed substantially to revisions.
0	906	
0	907	
0	908	
0	909	
0	910	wrote the first draft of the manuscript, and all authors contributed substantially to revisions.
	911	
	912	
(913	
0	914	
0	915	
(916	
(917	
(918	
(919	
(920	
	921	

Table 1. Alpha-diversity of representative ectomycorrhizal (ECM) fungal families analysed by General Linear Models (GLMs) (p<0.05). Main effects of the pine species (Ppi =Pinus *pinaster* and Pha =*Pinus halepensis*) (left) and the fire regime (LoFi = low fire recurrence and HiFi = high fire recurrence) (right) are shown. The site was nested within the fix factor fire regime in the GLMs. Data represent means +/- SE. Arrows indicate significantly higher α -diversity, and "=" indicates no variation between pine species according to the GLM (F values; *p<0.05; **p<0.01; ***p<0.001). In the separate analyses on the right, for each pine forest, different letters denote significant differences between fire regimes (p<0.05) (in bold). A = Ascomycetes (orange); B = Basidiomycetes (green).


	Pine Forest		Forest	P. p	P. pinaster		P. halepensis	
	Ppi	Pha	F (p-value)	LoFi	HiFi	LoFi	HiFi	
Amanitaceae ^B	1		9.2**	0.1 ± 0.1 a	0.9 ± 0.2 b	0.1 ± 0.1	0.2 ± 0.1	
Atheliaceae ^B	♠		6.8*	9.7 ± 0.6 b	6.7 ± 0.6 a	6.3 ± 0.5	5.9 ± 0.4	
Bankeraceae ^B	=	=	2.0	1.8 ± 0.4	1.3 ± 0.3	1.7 ± 0.5 b	0.9 ± 0.2 a	
<i>Cantharellaceae</i> ^B	♠		41.7***	1.0 ± 0.2 a	2.8 ± 0.4 b	0.7 ± 0.2	0.5 ± 0.2	
Clavariaceae ^B	♠		36.9***	0.8 ± 0.2	1.2 ± 0.4	0.3 ± 0.2 b	0.1 ± 0.1 a	
Clavulinaceae ^B	=	=	2.4	2.9 ± 0.3 b	1.7 ± 0.3 a	2.7 ± 0.5 b	1.3 ± 0.3 a	
<i>Cortinariaceae</i> ^B	♠		16.2***	2.2 ± 0.7 b	0.4 ± 0.2 a	0.6 ± 0.4 b	0.2 ± 0.1 a	
<i>Gloniaceae</i> ^A	♠		5.7*	2.5 ± 0.3 b	1.2 ± 0.2 a	1.7 ± 0.4 b	0.9 ± 0.3 a	
<i>Hydnaceae</i> ^B	=	=	0.8	0.3 ± 0.1	0.2 ± 0.1	0.6 ± 0.2 b	0.2 ± 0.1 a	
<i>Inocybeaceae</i> ^B	=	=	1.4	5.5 ± 0.8 b	3.0 ± 0.5 a	3.1 ± 0.3	2.8 ± 0.3	
<i>Pezizaceae</i> ^A		♠	22.8***	0.2 ± 0.1	0.2 ± 0.1	0.5 ± 0.2 a	1.1 ± 0.2 k	
P yronemataceae ^A		♠	30.7***	0.6 ± 0.2	0.9 ± 0.2	2.9 ± 0.3 b	1.6 ± 0.3 a	
Rhizopogonaceae ^B	♠		29.1***	0.9 ± 0.2 a	1.8 ± 0.2 b	0.8 ± 0.2 b	0.4 ± 0.1 a	
<i>Russulaceae</i> ^B	♠		14.0***	7.3 ± 0.6 b	5.5 ± 0.7 a	4.3 ± 0.8	4.3 ± 0.5	
Sebacinaceae ^B		♠	33.6***	5.7 ± 1.1	4.5 ± 0.4	8.7 ± 0.8	9.0 ± 0.8	
Suillaceae ^B	=	=	0.0	1.6 ± 0.3	1.2 ± 0.2	1.6 ± 0.2 b	1.2 ± 0.2 a	
<i>Telephoraceae</i> ^B	=	=	0.0	11.9 ± 1.0	11.0 ± 1.0	14.1 ± 1.8 b	10.4 ± 0.8	
<i>Tuberaceae</i> ^A	=	=	0.0	1.4 ± 0.3	1.6 ± 0.3	1.6 ± 0.3	1.4 ± 0.2	

939

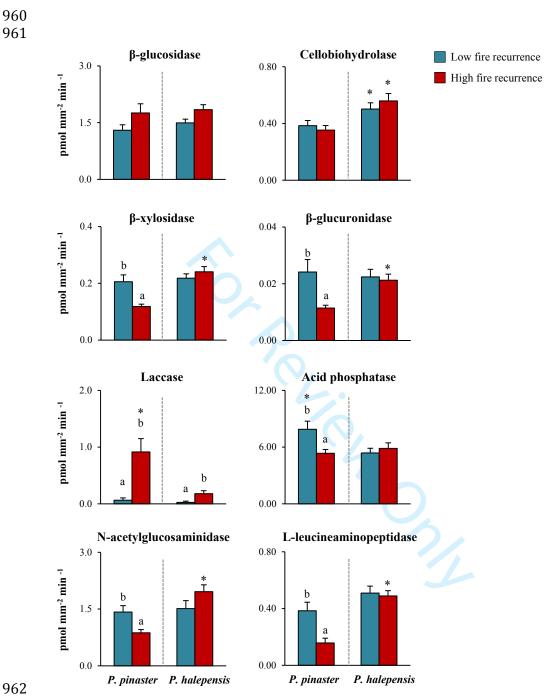

940

Figure 1. Alpha-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire recurrence populations of *Pinus pinaster* and *Pinus halepensis*, analysed by Generalized Linear Models (p<0.05). Boxes represent the interquartile range (IQR) between first and third quartiles and the horizontal line inside is the median. Whiskers denote the lowest and highest values within 1.5 x IQR from the first and third quartiles, respectively. Within each graph, different letters denote significant differences among fire regimes.

949

Figure 2. Beta-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire recurrence populations of *Pinus pinaster* (triangles) and *Pinus halepensis* (circles). The centroids within each group are represented by small white dots. Grey solid lines give the relative position of the point with respect to the respective centroid. Dotted lines reflect the area occupied by all plots of a given treatment, which is inversely proportional to the similarity of their ECM fungal communities.

964 **Figure 3.** Enzymatic activity of ectomycorrhizal root tips (means \pm SE) of low (LoFi, blue) or 965 high (HiFi, red) fire recurrence populations of Pinus pinaster and Pinus halepensis, analysed 966 by Generalized Linear Models (p<0.05). For each pine species, different letters denote 967 significant differences between fire recurrence levels, while for each LoFi/HiFi treatment, 968 asterisks denote significant differences between pine forest levels. 969

(a) ECM fungal community

1.0 1.0 Serotiny Edaphic2 (3.2) Serotiny Edaphic1 (3.8) (4.6) (4.2) Climate1 (4.0) Climate1 CCA axis 2 (6.3) $\left| \right\rangle$ Edaphic1 (3.4) Climate2 -1.0 0 (3.4) 1.0 -1.0 1.0 -1.0 CCA axis 1 CCA axis 1 (b) Enzymatic activity 0 C Edaphic1 (4.1) Δŕ RDA axis 2 Edaphic2 (24.2) Serotiny -1.0 -1.0 (5.3) RDA axis 1 1.0 -1.0 RDA axis 1 1.0 -1.0 Pinus pinaster \triangle Low fire recurrence Pinus halepensis Pinus pinaster High fire recurrence Pinus halepensis

972

Figure 4. (a) Ectomycorrhizal fungal community structure and (b) enzymatic activities
associated with root-tips of *Pinus pinaster* (triangles) and *Pinus halepensis* (circles) forests
subjected to low (blue) or high (red) fire recurrence, respectively analyzed by Canonical
Correspondence (CCA) and Redundancy (RDA) analyses. In all cases, the weight, direction

978 and separate effects of serotiny, climatic and edaphic conditions is represented by vectors (see 979 model details in Table S4). Serotiny degree is the number of closed cones by total number of 980 cones in the tree. Edaphic and climatic conditions are represented by the first two axes 981 (Edaphic1 and Edaphic2; Climate1 and Climate2) of Principal Coordinates Analyses (PCA) 982 performed considering the pH, electric conductivity and potassium, nitrogen, phosphorus and 983 organic matter content in the first case, and mean temperature, mean precipitation and altitude 984 in the second case (Figure S2). Only significant variables are shown, *p<0.05, **p<0.01, 985 ***p<0.001.

to Review Only

986 Supplementary Figures 987 988 Figure S1

989

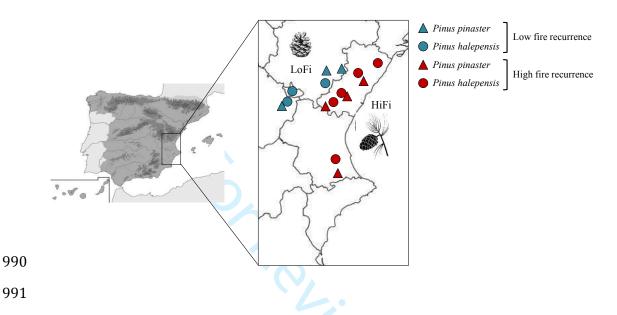
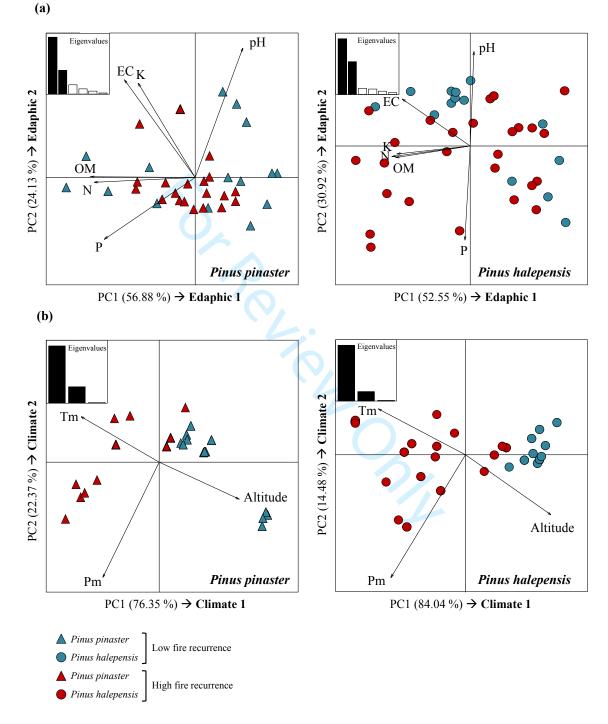
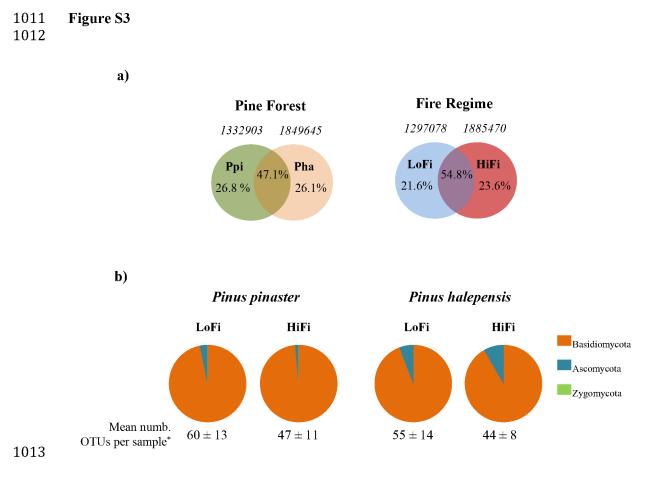
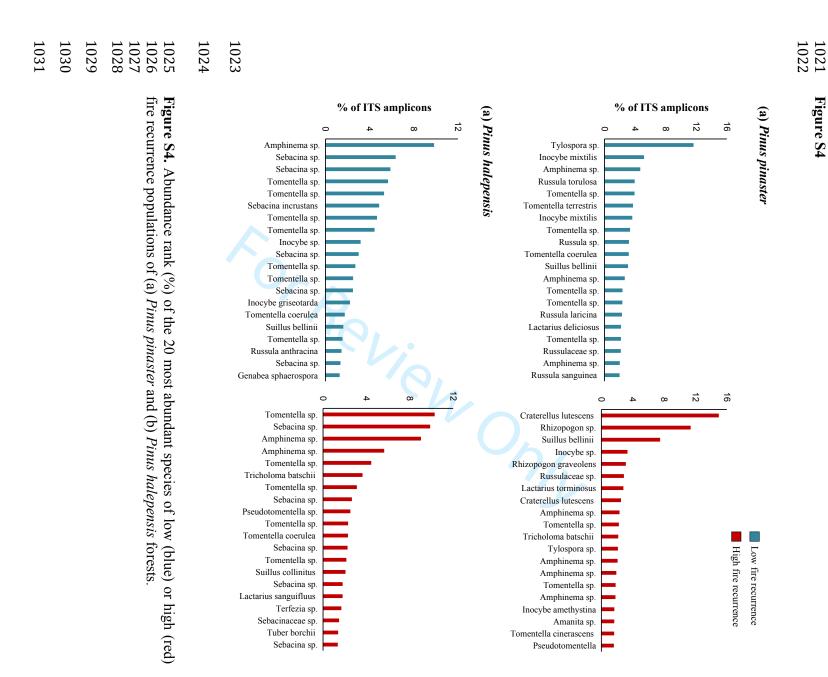



Figure S1. Location of the fifteen study sites with pine populations of *Pinus pinaster* Ait.
(triangles) and *Pinus halepensis* Mill. (circles), growing in areas of low (LoFi, blue) and high
(HiFi, red) fire recurrence, in eastern Spain. The distinct historical fire regime has induced a
sharp serotiny divergence within these pine populations along time. Serotinous populations
associate to HiFi while non-serotinous populations associate to LoFi.

998


1000 Figure S2 1001


Figure S2. Principal component analyses (PCA) performed with (a) the edaphic variables pH, electric conductivity (EC), potassium (K), nitrogen (N), phosphorus (P) and organic matter (OM), and (b) the climate-related variables altitude, mean temperature (Tm) and mean

precipitation (Pm) of each pine forest. The first two axes of each analysis explaining the
maximum of variance (in parenthesis) were used as edaphic or climatic indexes in models
(i.e., proxies of edaphic and climatic conditions of each pine forest *Pinus pinaster* or *Pinus halepensis*).

to Review Only

1015 **Figure S3.** (a) Number of sequences (*italics*) and percentage of ectomycorrhizal (ECM) 1016 fungal OTUs by pine forest (Ppi = *Pinus pinaster* and Pha = *Pinus halepensis*) and fire regime 1017 (HiFi and LoFi fire recurrence). (b) Percentages of fungal phyla for each pine species and fire 1018 regime. *Mean \pm SD. (See Table S2 for percentages and abundance of other taxonomic ranks 1019 across treatments).

1032	High Fire regime determines the structure and function of ectomycorrhizal fungal
1033	communities of Mediterranean pine forestsfire recurrence reduces ectomycorrhizal
1034	fungal diversity of Mediterranean pine forests
1035	
1036	Pérez-Izquierdo L1*, Zabal-Aguirre M1, Verdú M2, Buée M3, Rincón A1
1037	
1038	¹ Instituto de Ciencias Agrarias, ICA-CSIC. Serrano 115bis, 28006. Madrid, Spain.
1039	² CIDE-CSIC-UV-GV, Ctra Moncada-Náquera km4.5, 46113, Moncada-Valencia, Spain.
1040	³ INRA, UMR1136 INRA Nancy – Université de Lorraine, Interactions Arbres-
1041	Microorganismes Labex ARBRE, 54280 Champenoux, France.
1042	
1043	
1044	Corresponding author: Leticia Pérez-Izquierdo
1045	*Current address:
1043	
1046	Department of Soil and Environment, SLU, Lennart Hjelms väg 9, SE-75007 Uppsala,
1047	Sweden.
1048	E-mail: leticia.perez@slu.se
1049	
1050	Running title: ECM fungi Mycorrhizas in fire-prone Mediterranean ecosystems
1051	Ramming duter Deriff range <u>respectruments</u> in the prone freditorianean coosystems
1052	
1053	
1054	Competing interests
1055	The authors declare that they have no competing interests
1056	
1057	
1058	
1059	

1061 1062 Abstract 1063 Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean 1064 ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In 1065 Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) 1066 fungi, essential for ecosystem dynamics, might be drastically threatened by fire. We tested 1067 how fire regime alters the structure and function of ECM communities of Pinus pinaster and 1068 Pinus halepensis Mediterranean forests, and analyzed the relative contribution of 1069 environmental (climate, soil properties) and tree-mediated (serotiny) factorseffectors. For 1070 both pines, high fire recurrence significantly reduced local and regional ECM fungal diversity, 1071 although certain fungal species were favored by recurrent fire. The high fire recurrence also 1072 associated a general decline of ECM root-tip enzymatic activity for *Pinus pinaster*, while it 1073 did not imply major functional changes for *Pinus halepensis*. Separated effects of fire regime 1074 related-factorseffectors such as climate, soil properties or tree phenotype drove these 1075 processes. In addition to the main influence of climate, the tree fire-adaptive trait serotiny 1076 recovered a great portion of the variation in structure and function of fungal communities associated with the fire regime. Edaphic conditions (especially pH, tightly linked to bedrock 1077 1078 type) were an important driver shaping ECM fungal communities, but mainly at the local 1079 scale and likely independently of the fire regime. Our results show that fire regime strongly 1080 impacts ECM fungal communities, and reveal complex feedbacks among trees, mutualistic 1081 fungi and surrounding environment in fire-prone Mediterranean forest ecosystems.

1082

1085	
1086	Introduction
1087	Mediterranean climate is characterized by a marked seasonality with mild winters and hot dry
1088	summers, which gives rise to one of the most fire-prone ecosystems in the world (Pausas,
1089	2004). The evolutionary history of these ecosystems is tightly linked to fire (Keeley, Bond,
1090	Bradstock, Pausas, & Rundel, 2011). Recurrent burning has markedly structured plant
1091	communities in this area (Verdú & Pausas, 2007), where many species have developed
1092	evolutionary mechanisms of resistance and resilience to fire (Pausas, 2015; Tapias, Climent,
1093	Pardos, & Gil, 2004). A good example of fire-adaptive trait is serotiny, i.e., the retention of
1094	mature seeds in closed cones for more than a year until dispersion and germination is
1095	activated by fire, evolved by some representative Mediterranean pine species (Budde et al.,
1096	2014; Hernández-Serrano, Verdú, González-Martínez, & Pausas, 2013) and other conifers in
1097	fire-dominated systems (Greene et al., 1999). Fire generates phenotypic divergence on
1098	serotiny, an heritable trait in Mediterranean pines, ultimately producing local adaptation
1099	(Hernández-Serrano et al., 2014). There is evidence that serotiny is related to differences in
1100	fire regime, increasing with the frequency of stand-replacing fires (Hernández-Serrano et al.,
1101	2013; Radeloff, Mladenoff, Guries, & Boyce, 2004). Changes in the fire regime are closely
1102	linked to climate (Pausas, 2004), and predicted climate change scenarios make Mediterranean
1103	ecosystems especially vulnerable. Temperature rise and rainfall decrease are expected to
1104	increaserise drought risk and consequently forest wildfires, altering the structure and
1105	successional dynamics of Mediterranean forests (Lindner et al., 2010).
1106	Ecosystem development is driven by interactions among climatic conditions, edaphic

Ecosystem development is driven by interactions among climatic conditions, edaphic environment and biotic communities. Given the role of fungi in organic matter turnover and nutrient cycling, they are key players in the plant-soil-microbial feedbacks that determine

1109 ecosystem development after disturbances (Clemmensen et al., 2015). Specifically, 1110 mutualistic ectomycorrhizal (ECM) fungi, which are tightly linked to the host through 1111 specialized symbiotic structures, mediate the uptake and transfer of water and nutrients to 1112 trees (Smith & Read, 2008). They channel the photosynthetic carbon (C) fixed by trees into 1113 the belowground, influencing soil Cearbon storage and nutrient cycling (Clemmensen et al., 1114 2013; Talbot, Allison, & Treseder, 2008). This symbiosis can provide up to the 80% of 1115 nutrients to trees and alleviate their hydric stress (Kivlin, Emery, & Rudgers, 2013; van der 1116 Heijden, Martin, Selosse, & Sanders, 2015), and therefore can be especially relevant in severe 1117 environments e.g., recurrent fire and drought conditions in Mediterranean ecosystems 1118 (Egerton-Warburton, Querejeta, & Allen, 2007; Prieto et al., 2016; Querejeta, Egerton-1119 Warburton, & Allen, 2007). 1120 Fire affects ECM communities are affected by fire mainly through vegetation damages and 1121 altered soil properties (Buscardo et al., 2015; Hart, DeLuca, Newman, MacKenzie, & Boyle, 1122 2005; Rincón & Pueyo, 2010), conditions that may favor fire-tolerantprone fungi (Glassman, 1123 Levine, Dirocco, Battles, & Bruns, 2016; Rincón, Santamaría-Pérez, Ocaña, & Verdú, 2014). 1124 Certain fungi can remain for long time in the soil spore banks and be advantaged after fire, as 1125 it has been shown in closed-cone pine forest populations with historical highly recurrent and 1126 intense fires- (Baar, Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 1127 2015). Fire usually decreases root mycorrhizal colonization and fungal richness (Dove & 1128 Hart, 2017)-. -However, exceptions of high colonization rates after fire have been seen for 1129 seedlings of fire adapted Mediterranean pines. More generally, fire drastically disrupts the 1130 species composition of the mycorrhizal communities, usually leading to their simplification 1131 with the dominance of pioneer fungi (Dove & Hart, 2017; Buscardo et al., 2015; de Román & 1132 de Miguel, 2005; A. Rincón et al., 2014; Torres & Honrubia, 1997) (Torres and Honrubia

1133 1997; de Román and de Miguel 2005; Martin-Pinto et al. 2006; Buscardo et al. 2015; Rincón 1134 and Puevo 2010; Rincón et al. 2014; Vasquez-Gassibe et al. 2016). Certain fungi can remain 1135 for long time in the soil spores banks and be advantaged after fire, as it has been shown in 1136 closed-cone pine forest populations with historical highly recurrent and intense fires (Baar, 1137 Horton, Kretzer, & Runs, 1999; Bruns et al., 2009; Glassman et al., 2016, 2015). 1138 Additionally Moreover, because intraspecific plant genotypic and phenotypic variation affects 1139 the structure of their associated ECM fungi (Gehring & Whitham, 1991; Pérez-Izquierdo et 1140 al., 2017, 2019; van der Heijden et al., 2015) it is and plausibley that - genetically fire-driven 1141 changes in trees, such as serotiny degree, may co-affect these mutualistic communities for 1142 example by determining the Ccarbon available to exchange in symbiosis. Nevertheless, fires 1143 recurrently affect big areas of Mediterranean ecosystems, yet the cumulative effects of 1144 recurrent wildfires on ECM fungal communities are less known than those of single wildfires 1145 (Buscardo et al., 2015).

1146 In our study, we targeted forests of two representative Mediterranean tree species, Maritime 1147 pine (*Pinus pinaster* Ait.) and Aleppo pine (*Pinus halepensis Mill.*), amply distributed in the 1148 Iberian Peninsula. While the Maritime pine usually grows in acid soils at 700-1700 m 1149 altitude, the Aleppo pine grows in basic substrate and below 800 m (Ruíz, Álvarez-Uria, & 1150 Zavala, 2009). Pinus halepensis is typically distributed in warm and dry areas, even under 1151 extreme drought induced either by climate or soil constituents (e.g., marls, gypsum, rocky 1152 slopes) (Ruíz et al., 2009). Both pine species have a life history related to fire adaptation 1153 (Tapias et al., 2004) displaying great post-fire colonizing abilities (Barbéro, Loisel, & Quézel, 1154 1998) and showing fire-adaptive traits such as serotiny (Pausas, 2015). The natural 1155 regeneration and dynamics of these pine forests critically relaieves on ECM fungal 1156 communities, because pine species are obligatory ectomycorrhizal (Nuñez, Horton, &

Simberloff, 2009; Smith & Read, 2008). Recurrent fires, tightly linked to climate in these

1157

1158 Mediterranean areas, might act as an environmental filter, culling plant and microbial species 1159 unable to tolerate conditions at a particular location and thus preventing their establishment or 1160 persistence (Kraft et al., 2015). 1161 Based on all these premises, we expected that-ii) due to the habitat filtering imposed by the 1162 fire regime and subjacent Mediterranean climatic conditions, the ECM fungal communities in 1163 sites subjected to high fire recurrence sites -(HiFi hereafter) would be less diverse and more 1164 homogeneous than those in sites exposed to low fire recurrence sites (LoFi hereafter), -and 1165 thatthis it would -imply different functional outcomes. Conversely, increasing diversity might 1166 act as an insurance for ecosystem functions during extreme perturbations (e.g. fire and/or 1167 drought). 1168 In theour study area, the- distinct historical fire regime recurrence frequency has induced a 1169 sharp serotiny divergence in trees -within the HiFi and LoFi populations along time 1170 (Hernández-Serrano et al., 2013). Serotiny has been proven to beas a heritable trait -associated 1171 with the genotype of trees (Budde et al., 2014; Castellanos, González-Martínez, & Pausas, 1172 2015; A. Hernández-Serrano et al., 2013)-. Despite the low specificity of the mycorrhizal 1173 symbiosis for pines (Smith & Read, 2008), Because different tree genotypes can influence 1174 their associated ECM fungi (Gehring & Whitham, 1991; Pérez-Izquierdo et al., 2017),-1175 weThis led us to further hypothesize that, at the finer scale of individuals, iii) the trees 1176 differing in their serotiny degree of trees, i.e., genotypic fire-adaptation, would will explain 1177 affect differentially the structural and functional divergences of harbor dissimilar-ECM fungal 1178 communities. Moreover, given expectable changes in nutrient availability and ECM structural 1179 shifts, we assumed (iii) different functional outcomes among root-tip ECM fungi associated

1180 with pines growing under distinct fire regime, i.e., either increased or decreased nutrient 1181 mobilization depending on fungal and/or tree adaptation to the new environmental conditions. 1182 In order to address these predictions, we characterized the structure of root-tip ECM fungal 1183 communities of natural P. pinaster and P. halepensis forests (Hernández-Serrano et al., 2013). 1184 For both pine forests, serotinous populations growing under a warm and dry Mediterranean 1185 climate subjected to high fire frequency and non-serotinous populations growing under a 1186 subhumid climate where fires are rare (Verdú & Pausas, 2007) were surveyed (Figure S1). 1187 Additionally, we determined, on excised ECM root-tips, potential fungal enzymatic traits 1188 related to Cearbon turnover and mobilization of nutrients. These are processes directly 1189 implicated in the exchange of resources that support most mycorrhizal symbioses and many 1190 essential ecosystem functions (Johnson et al. 2012). Liez

1191

1192 **Material and Methods**

1193 *Study sites and sampling*

1194 Surveys were conducted in natural forests of *P. pinaster* (Ppi) and of *P. halepensis* (Pha) 1195 located in eastern Spain (Figure S1). We selected nNine pine populations are-located in high 1196 fire recurrence sites where crown-fires are historically frequent and most regeneration events 1197 are driven by fire (HiFi populations), while the other selected six populations wereare located 1198 in low fire recurrence areas where most regeneration events are independent of fire because 1199 fire events are rare (LoFi populations) (Hernández-Serrano et al., 2013; Pausas et al., 2004). 1200 The serotiny degree of these pine populations growing under distinct fire regime has been 1201 accurately characterized in Hernández-Serrano et al., 2013 (Table S1). Briefly, serotiny was 1202 estimated considering both the cone age and the proportion of serotinous cones the number of 1203 closed cones, those remaining closed after maturation, with respect to the total number (open

1 <mark>2</mark> 04	and closed). In the study area, fire is tightly linked to Mediterranean climatic conditions (i.e.,
1205	drought) (Pausas, Bradstock, Keith, Keeley, & Network, 2004), and fire history makes it
1206	possible a clear differentiation of sites with a much shorter fire return interval than others
1207	(Abdel Malak & Pausas, 2006) Recent fire history information (Pausas & Fernández-Muñoz,
1208	2012; Pausas, 2004) shows that more than 50% of the study area at HiFi conditions burned at
1209	least once during the 1978-2001 period, while for LoFi conditions, the proportion was about
1210	15% (Abdel Malak & Pausas, 2006)From a microevolutionary point of view, this distinct
1211	fire regime has induced a sharp serotiny divergence within these populations (Hernández-
1212	Serrano et al., 2013). More than 500 genes were differentially expressed across the two pine
1213	accessions from HiFi and LoFi populations (Pinosio et al., 2014) and three high-
1214	differentiation outlier single nucleotide polymorphisms-SNPs were identified between HiFi
1215	and LoFi stands, suggesting fire-related selection at the regional scale (Budde et al., 2017).
1216	Thus, despite the lack of long-term fire statistics for the specific study sites, there is strong
1217	evidence that the fire interval is much shorter in HiFi areas than in LoFi. Nine pine
1218	populations are located in high fire recurrence sites where crown-fires are historically
1219	frequent and most regeneration events are driven by fire (HiFi populations), while the other
1220	six populations are located in low fire recurrence areas where most regeneration events are
1221	independent of fire because fire events are rare (LoFi populations) (Hernández-Serrano et al.,
1222	2013; Pausas et al., 2004). The serotiny degree of these pine populations growing under
1223	distinct fire regime has been accurately characterized in Hernández-Serrano et al., 2013
1224	(Table S1). Briefly, serotiny was estimated considering both the cone age and the proportion
1225	of serotinous cones, i.e., the number of closed cones, those remaining closed after maturation,
1226	with respect to the total fully ripe (open and closed) of-cones -(see Hernández-Serrano et al.,
1227	2013 for details). The characteristics of pine populations related to productivity (diameter at
1	

breast height; DBH), fire-adaptation traits (bark thickness and serotiny degree), as well as
location and local environmental variables are described in Table S1. <u>All the selected stands</u>

1230 were mature pine populations, with DBH between 20.8 and 35.4 cm corresponding to trees of

1231 more than 40 yr (Camarero, Olano, & Parras, 2010; Vieira et al., 2015).

1232 In Mayspring 2013, five trees per population separated by more than 10 m were selected 1233 from a total of 15 populations (n = 75). Under each tree, the litter was removed and samples 1234 were obtained, approximately 1 m far from the trunk, by excavating 10 x 10 x 20 cm soil 1235 holes at the four orientations (north, south, east and west). The four samples per tree were 1236 pooled into a combined sample and kept at 4 °C in plastic bags until processing. Once in the 1237 lab, roots were separated from soil, coarse roots discarded (diameter > 2 mm), and remaining 1238 roots gently washed with tap water over 2 and 0.5 mm sieves for collecting root tips. All 1239 ectomycorrhizal (ECM) root tips per each sample were carefully selected (Rincón et al., 1240 2014), cleaned and sorted per sample under a stereomicroscope for further enzymatic and 1241 molecular analyses. Remaining soil was air dried and sieved (2 mm) for analysis.

1242 The gravimetric soil moisturerelative humidity (RH) of soil samples was determined by 1243 drying at 1065 °C for 48 h. Air-dried soils were measured for pH (2 g of soils 1:5, w:v-in 10 1244 ml of H_2O , 1:5, w:v), electrical conductivity (EC) (1:5, w:v in H_2O), organic matter (OM) 1245 (Walkley & Black, 1934), total N (Kjeldahl method). Extractable P was determined by the 1246 Bray & Kurtz (1945) method, after extraction in an ammonium fluoride and chloride acid 1247 solution. Extractable potassium (K) was determined after nitric acid digestion according to 1248 Isaac & Kerber (1971). Both P and K extracts were measured by inductively coupled plasma 1249 spectrometry (Optima 4300DV, Perkin-Elmer, Waltham, MA, EE.UU.).

1250 Enzymatic tests

1251 The fungal community functioning was evaluated on excised ECM root tips by measuring 1252 activities of eight hydrolytic and oxidative exoenzymes secreted by fungi. Seven enzymatic 1253 tests were based on fluorogenic substrate release, methylumbelliferone (MU) e.g. β -1254 glucosidase (EC 3.2.1.3 at ExPasy-Enzyme database) and cellobiohydrolase (EC 3.2.1.91) 1255 that degrade cellulose, β -xylosidase (EC 3.2.1.37) and β -glucuronidase (EC 3.2.1.31) implied 1256 in the degradation of hemicellulose, acid phosphatase (EC 3.1.3.2) involved in the 1257 mobilization of phosphorus, N-acetylglucosaminidase or chitinase (EC 3.2.1.14) which 1258 hydrolyses chitin, or methylcoumarine (AMC) for L-leucineaminopeptidase (3.4.11.1) related 1259 to the mobilization of nitrogen from peptidic substrates. The Laccase (1.10.3.2) activity was 1260 determined by a photometric assay based on ABTS substrate (2,2'-Azino-bis (3-ethylbenzo-1261 thiazolin-6-sulfonic acid). This enzyme is related to the degradation of recalcitrant 1262 compounds such as lignin. Enzymatic activities were determined following the protocol 1263 described by Courty, Pritsch, Schloter, Hartmann, & Garbaye (2005), with modifications. A 1264 total of 280 ECM-tips were randomly collected per sample and separated in subsets of 7 1265 ECM-tips with 5 replicates per each enzymatic test. Each replicate thus consisted of a tube 1266 with 7 pooled ECM-tips that were incubated in buffer during the corresponding time for each 1267 enzyme (Courty et al., 2005), after which $100 \,\mu$ of the respective enzymatic reaction mix was 1268 added to 100 µl of stopping buffer in 96-well microplates. Enzymatic activities were 1269 measured in a Victor microplate reader (Perkin-Elmer Life Sciences, Massachusetts, USA), 1270 with 355/460 nm excitation/emission wavelengths for the fluorogenic assays and 415 nm for 1271 laccase. After reading, the ECM-tips of each replicate were scanned and their area calculated 1272 with the software ImageJ 1.49. Enzymatic activities were expressed in pmol min⁻¹mm⁻².

1273 Molecular analyses

1274	Per each measured enzyme, the ECM-tips were pooled (7 ECM-tips subsets x 5 replicates =
1275	35), added of a pinch of polyvinylpolypyrrolidone (PVPP), and the DNA extracted with the
1276	Invisorb®DNA Plant HTS 96 Kit/C kit (Invitek GmbH, Berlin, Germany), making a total of
1277	600 DNA extractions (75 tree samples x 8 enzymes) corresponding to 280 root tips per tree.
1278	The internal transcribed spacer region ITS-1 of the nuclear ribosomal DNA was amplified
1279	with the primer pair ITS1F-ITS2 (Gardes & Bruns, 1993) adapted for Illumina-MiSeq. PCR
1280	amplifications (3 min 94 °C, 30 cycles of 1 min 94 °C, 30 s 53 °C and 45 s 72 °C, with a final
1281	step of 10 min 72 °C) were conducted in a Verity Thermal Cycler (Life Technologies), and
1282	eEach sample was amplified in three independent 20 μ l PCR reactions, each containing 2 μ l
1283	of 10x polymerase buffer, 2.4 μ l of 25 mM MgCl ₂ , 1.12 μ l of 10 mg ml ⁻¹ BSA, 0.4 μ l of 10
1284	mM Nucleotide Mix, 0.4 µl of 10 mM forward/reverse primers and 0.2 µl of AmpliTaqGold
1285	polymerase (5 U ml ⁻¹) (Applied Biosystems, Carlsbad, CA, USA). Negative controls without
1286	DNA were included in all runs to detect possible contaminations. The PCR conditions were as
1287	follow: 3 min 94 °C, 30 cycles of 1 min 94 °C, 30 s 53 °C and 45 s 72 °C, with a final step of
1288	10 min 72 °C. Independent reactions were combined per sample, and each PCR product was
1289	purified (UltraClean PCR clean-up kit of MoBio, Carlsbad, CA, USA), quantified
1290	(PicoGreen, Life Technologies, Carlsbad, CA, USA), and finally pooled in an equimolar
1291	library containing 75 samples. Sequencing was carried out on an Illumina MiSeq sequencer (2
1292	\times 300 bp paired-end reads) in an external service (Parque Científico de Madrid, Spain).

1293 *Bioinformatic analyses*

1294 Sequences were de-multiplexed according to their tags, filtered and trimmed using the 1295 *fastq_filter* command and *fastq_truncqual* option of Usearchv.7.0.1001 (Edgar, 2013) for 1296 eliminating quality scores ≤ 10 . We used FLASH_was used to merge reads with a minimum 1297 <u>overlap of at 97 % of similarity using 110 bp and 160 of minimum and maximum overlap</u> 1298 respectively, resulting inand the 58.3 % of retained sequences was retained (4205677 out of 1299 the initial set of 7215915 sequences). Then, sSequences were dereplicated with the 1300 *derep fullength* Usearch command. De-replicated sequences were then-sorted by decreasing 1301 abundance, and singletons discarded with the sortbysize Usearch command. Finally, 4116377 1302 sequences (57 %) were retained. OMolecular operational taxonomic units (MOTUs) were 1303 generated from abundance-sorted sequences using the *cluster otus* Usearch command with a 1304 97 % similarity threshold. Extracted ITS sequences were then mapped against the MOTU 1305 representative sequences using the usearch global Usearch command. Taxonomic 1306 assignation of representative sequences for each MOTU was done by using the Basic Local 1307 Alignment Search Tool (BLAST) (Altschul, Gish, Miller, Myers, & Lipman, 1990) according 1308 toagainst the 7.2 UNITE database (Kõljalg et al., 2013). Fungal taxonomic assignment served 1309 to identify those MOTUs closely related to recognized ECM taxa (Nguyen et al., 2016; 1310 Tedersoo et al., 2014; Tedersoo & Smith, 2013). The 86 % of the inferred sequences 1311 corresponded to ECM fungi and these were used for all subsequent analyses.

1312

1313 Statistical analyses

1314 To test the hypothesis 1, the effect of the fire recurrence frequency (HiFi vs LoFi) on the 1315 structure (i.e., alpha and beta-diversity) and functioning (i.e., enzymatic activities) of ECM 1316 fungal communities (hypothesis 1) was separately evaluated by pine forest. Beta-diversity of 1317 total and by phyla ECM fungal communities of the different pine populations was calculated 1318 with the functions betadisper and permutest of the vegan package (Anderson, Ellingsen, & 1319 McArdle, 2006; Oksanen et al., 2015), and visualized results of the dissimilarity betadisper 1320 object were plotted by Principal Component Analyses (PCeoA).-graphs. Beta-diversity was 1321 calculated on Bray-Curtis abundance matrix of OTUs previously normalized by variance

1322 stabilization according to McMurdie and Holmes (2014) by using the DESeq package1323 (Anders & Huber, 2012).

1324 Alpha-diversity was analysed by General Linear Models (GLMs) (p < 0.05) with the number of 1325 fungal OTUs as response variable. In these models, the square root of the total number of 1326 sequences obtained per sample was included as a covariate to account for differences in 1327 sequencing depth (Tedersoo et al., 2014). Models at lower taxonomic levels were also 1328 performed (i.e., phyla and families). In all cases, before modelling, Shapiro and Levene tests 1329 were performed to test the normality and homocedasticity of data, and variables were log or 1330 square root transformed when needed. Firstly, we modelled the effect of the variable pine 1331 forest on ECM fungal alpha-diversity, using pine forest as fixed factor and the site nested 1332 within pine forestand the site as random factor (i.e., pine population). Subsequent GLMs 1333 analyses were separately performed for each pine species. In these models, the fire regime 1334 was introduced as fixed factor and the site (i.e., pine population) nested within fire regime (n 1335 = 35 *P. pinaster* trees and n = 40 *P. halepensis* trees). Same GLM syntaxes were used to test 1336 the effect of fire recurrencefrequency on the different root-tip enzymatic activities. 1337 Correlations between enzymatic activities and ECM fungal community assemblages of the 1338 pine populations were analyzed by Mantel tests with ade4 R package.

To identify representative fungal OTUs of each fire regime per pine species, the Indicator Species Analysis (with OTUs >100 reads to avoid spurious relations) was carried out (p<0.05) with the function *multipatt* of the indicspecies R package (Cáceres, Legendre, & He, 2013).

1343 <u>Climatic and edaphic characteristics are intimately associated with fire regime in</u>
1344 <u>Mediterranean ecosystems (Pausas et al., 2004). So, to separate the edaphic and climatic</u>
1345 <u>effects from that of the fire regime, we performed CCA on Hellinger-transformed relative</u>

1346	fungal abundance data and RDA with the Euclidean distance matrix of enzymatic activities
1347	both with forward selection of explanatory variables. We used different analyses due to their
1348	different data assumptions, RDA assumes a linear relationship between predictors and data
1349	while CCA assumes a unimodal response curve. In these models, the variable fire regime and
1350	the edaphic and climatic indexes were included. Previously, to reduce the dimensionality of
1351	environmental data, Principal Component Analyses (PCA) were independently run for
1352	edaphic variables (pH, OM, EC, N, P, K) and climatic variables (mean annual temperature,
1353	mean annual precipitation and altitude), and the first two axes, explaining the maximum
1354	amount of variance, of respective PCAs were used as edaphic or climatic indexes (Figure S2).
1355	
1356	To test our hypothesis 2, effect of tree serotiny degree (i.e., genotypic fire-adaptation) on
1357	ECM fungal community, two additional models with the factor serotiny and the edaphic and
1358	climatic indexes were included. As before, we performed a CCA model on Hellinger-
1359	transformed relative fungal abundance data and a RDA model with the Euclidean distance
1360	matrix of enzymatic activities both with forward selection of explanatory variables.
1361	Since the distribution of the two pine species considered in our study is closely linked to the
1362	bedrock type, i.e., P. pinaster preferentially settled on siliceous soils, while P. halepensis
1363	include both siliceous and calcareous soils_(AHernández-Serrano et al., 2013)-(Ojeda,
1364	Pausas, & Verdú, 2010), we made additional analyses for testing possible confounding effects
1365	of pine species and bedrock type (both factors included in the variable pine forest). For this,
1366	the pine species effect on ECM fungal community structure and enzymatic activities was
1367	respectively checked by Canonical Correspondence (CCA) and Redundancy (RDA) analyses,
1368	only with data of Sinarcas, the unique location where populations of both pine species grow
1369	under a common bedrock environment (Table S1). No significant effects of the pine species

1370	identity on the ECM fungal community structure (CCA: $n=218$; explained variation %=12.4;
1371	P=0.204) or on the enzymatic profile (RDA: n=8; explained variation %=44.4; P=0.094) in
1372	the location Sinarcas were observed.
1373	Ordinations were done with the software CANOCO v.5.0 (Biometris Plant Research
1374	International, Wageningen, Netherlands), and the rest of analyses with the R software v.3.5.2
1375	(R Core Team, 2014).

1378	
1379	Results
1380	Sequencing yields and taxonomic identification of fungi
1381	A total of 501 ECM fungal MOTUs corresponding to 3182548 sequences were identified.
1382	Almost half of MOTUs were found in both pine species and ~ 26 % exclusively in one of
1383	them (Figure S32a). LoFi and HiFi pine populations shared the 54.8 % of MOTUs, while
1384	~21-23 % were only found either in LoFi or HiFi (Figure S $\underline{3}2a$). Most MOTUs belonged to
1385	Basidiomycota (89.4 %), 10.2 % to Ascomycota, and 0.4 % to Zygomycota (Figure S32b;
1386	Table S2). The taxonomic classification of OTUs allowed identifyingied 12 fungal orders, 30
1387	families and 47 genera, most of them represented across all treatments (Table newS2).
1388	The majority of the 20 most abundant fungi and of the indicator species fungi most commonly
1389	found in root tips of P. pinaster belonged to Tomentellaceae, Inocybaceae, Russulaceae, and
1390	Rhizopogonaceae and, in the case of P. halepensis, to Pezizales, Thelephoraceae and
1391	Sebacinaceae (Table <u>S2, S3; Figure S4</u>). The indicator species analysis revealed 54fungal
1392	MOTUs preferentially found associated to in P. pinaster forests and 37to in P. halepensis
1393	forests (Table S3). Besides, 31 fungi belonging to 14 different genera were indicators of LoFi
1394	populations of <i>P. pinaster</i> and -31 fungi belonging to 13 different genera were indicators of
1395	LoFi populations of P. halepensis. in each respective pine species, whileIn contrast, 11
1396	indicators from 5 different genera for P. pinaster and 6 from 5 different genera for P.
1397	halepensis were associated with HiFi populations of P. pinaster and P. halepensis
1398	respectively-indicators (Table S3).
1399	

1400 Root-tip ectomycorrhizal fungal diversity

1401	Total fungal α -diversity marginally varied between pine forestsspecies (R ² =0.13; F=3.62;
1402	P=0.062). At the phylum level, P. halepensis harboured significantly less Basidiomycetes
1403	(R ² =0.24; F=6.12; P=0.016) and marginally more Ascomycetes (R ² =0.81; F=3.88; P=0.053)
1404	were found in <i>P.Pinus halepensis</i> forest compared with than <i>P. pinaster</i> (Figure 1). The root-
1405	tips of P.inus pinaster root-tips-were enriched of Amanitaceae, Atheliaceae, Cantharellaceae,
1406	Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae and Russulaceae species, while
1407	in P. halepensis root-tips prevailed species of the families Pezizaceae, Pyronemataceae and
1408	Sebacinaceae (Table 1). At regional scale, rRoot-tip ECM fungal β-diversity of both pine
1409	forestsspecies was similar (R ² =0.01 F=1.34, P=0.265), although Basidiomycetes were more
1410	dissimilar in P. pinaster than in P. halepensis forests (R ² =0.01 F=4.4451, P=0.03304), and the
1411	opposite pattern was observed for Ascomycetes (R ² =0.03; F=11.62, P=0.001).
1412	<u>The HiFi populations harboured significantly lower ECM fungal α-diversity was significantly</u>
1413	lower in high fire recurrencefrequency (HiFi) populations compared withthan low fire
1414	recurrencefrequency (LoFi) populations in both pine forestsspecies (Figure 1a), and this
1415	difference was consistent within the two fungal phyla i.e., Ascomycetes and Basidiomycetes
1416	(Figure 1b-c). Total fungal α -diversity marginally varied between pine species (F=3.62;
1417	P=0.062). At the phylum level, P. halepensis harboured significantly less Basidiomycetes
1418	(F=6.12; P=0.016) and marginally more Ascomycetes (F=3.88; P=0.053) than P. pinaster
1419	(Figure 1). Pinus pinaster root-tips were enriched of Amanitaceae, Atheliaceae,
1420	Cantharellaceae, Clavariaceae, Cortinariaceae, Gloniaceae, Rhizopogonaceae and
1421	Russulaceae species, while in P. halepensis root-tips prevailed species of the families
1422	<i>Pezizaceae</i> , <i>Pyronemataceae</i> and <i>Sebacinaceae</i> (Table 1). Although the α -diversity of many
1423	ECM fungal families decreased in HiFi populations of both pine forestspecies (Table 1), some

1424	taxa were <u>clearly more diverse</u> favoured by firein HiFi, e.g. Amanitaceae, Cantharellaceae
1425	and Rhizopogonaceae for P. pinaster, or Pezizaceae for P. halepensis (Table 1).
1426	At regional scale, a consistent reduction of ECM fungal β -diversity was observed in HiFi
1427	populations of both pine forestsspecies (i.e., more homogeneous ECM communities in HiFi
1428	than LoFi) (Figure 2a). Likewise, Basidiomycetes were less β -diverse in HiFi than LoFi
1429	populations, while no difference was observed for Ascomycetes (Figure 2b-c). Root-tip ECM
1430	fungal β-diversity of both pine species was similar (F=1.34, P=0.265), although
1431	Basidiomycetes were more dissimilar in P. pinaster than in P. halepensis forests (F=4.51,
1432	P=0.004), and the opposite pattern was observed for Ascomycetes (F=11.62, P=0.001).
1433	
1433 1434	Potential enzymatic activity of ECM root-tips
	Potential enzymatic activity of ECM root-tips The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi
1434	
1434 1435	The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi
1434 1435 1436	The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi populations, the enzymatic activity of ECM root tips was very similar for both pines, except
1434 1435 1436 1437	The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi populations, the enzymatic activity of ECM root tips was very similar for both pines, except in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in <i>P</i> .
1434 1435 1436 1437 1438	The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi populations, the enzymatic activity of ECM root tips was very similar for both pines, except in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in <i>P. halepensis</i> compared with <i>P. pinaster</i> (Figure 3). By contrast, in HiFi populations, the activity
1434 1435 1436 1437 1438 1439	The enzymatic activity of the ECM root tips varied between pine forests (Figure 3). In LoFi populations, the enzymatic activity of ECM root tips was very similar for both pines, except in the case of cellobiohydrolase and phosphatase that were respectively higher and lower in <i>P. halepensis</i> compared with <i>P. pinaster</i> (Figure 3). By contrast, in HiFi populations, the activity of most of the C-degrading enzymes (i.e., cellobiohydrolase, β -xylosidase and β -

1443 The ECM fungal species assemblage of *P. pinaster* root-tips_<u>was</u>-significantly 1444 <u>correlatedassociated</u> with their enzymatic profile (Mantel r=0.14; P=0.003)_(Figure 3a). The 1445 HiFi populations of *P. pinaster* had <u>higher</u>-increased root-tip laccase activity and 1446 <u>lowerreduced</u> hemicellulose degrading activity (i.e., β -xylosidase, β -glucuronidase), and of 1447 enzymes mobilizing nitrogen (i.e., chitinase and L-leucineaminopeptidase) and phosphorus

14	148	(i.e., acid phosphatase) (Figure 3a, Figure S3). $-\beta$ -glucosidase and laccase did correlate with
14	149	the ECM fungal families favoured in HiFi, such as Cantharellaceae or Rhizopogonaceae
14	450	(Table 1; Figure 3a). No significant relation between fungal community structure and
14	ł51	enzymatic activity was observed for P. halepensis (Mantel r=0.03; P=0.287) (Figure 3b),
14	152	although laccase activity significantly increased picked in HiFi populations (Figure 3b, Figure
14	153	\$ 3).
14	154	
14	155	Main drivers of the structure and function of ECM fungal communities
14	156	Climate, in particular temperature (Climate 1, first axis from PCA in Figure S2), together with
14	157	fire regime recurrence frequency, and the tree fire-adaptive trait serotiny-were revealed as
14	458	major fire regime factors determining effectors on ECM fungal communities of Mediterranean
14	159	pine forests (Table S4A; Figure 4a) As hypothesized, tThe CCA analysis clearly showed that
14	460	sThe tree trait serotiny (selected by fire regime) did also affectted the structure of explained
14	461	differences in-root-tip ECM fungal communitiesy structure (Table S42B; Table 2B; Figure
14	462	4a). Higher levels of serotiny significantly correlated with the ECM fungal community
14	463	structureies - inof between LoFi and HiFi populations ofin apart from the climatic effects,
14	464	both in P. pinaster and P. halepensis forests forests (Table S42B; Figure 4a). Contrarily, the
14	465	edaphic effects were likely related to differences among plots inside LoFi or HiFi populations.
14	466	i.ethe (Table 2; Figure 4a)strength and direction of edaphic vectors along plots displayed in
14	467	Figure 4a.
14	468	Regarding ECM functionality (i.e., enzymatic activities), the fire recurrence together with the
14	469	climatic variables explained did not affected root-tip enzymatic activity in P.inus pinaster
14	170	forest any pine forest (Table S42A; Figure 4b). Moreover, tThe serotiny degree of P. pinaster
14	ł71	populations significantly correlated with the ECM root-tip enzymatic profile in HiFi

populations, while soil characteristics mainly drove variations in enzymes among sites inside
LoFi and HiFi populations (<u>Table S42B</u>; Figure 4b). For *P. halepensis*, root-tip enzymatic
activity was essentially driven by the surrounding edaphic environment (<u>Table S42</u>; Figure 4b), mainly by high pH and low phosphorus availability (see PC2 in Figure S24a).

1476

1477 Discussion

1478 Mutualistic feedbacks between trees and ectomycorrhizal fungi that are essential for 1479 ecosystem dynamics can be highly vulnerable to fire in Mediterranean ecosystems. Our 1480 results show that the fire regime shapes the structure and functioning of root-tip ECM fungal 1481 communities in fire-prone Mediterranean forests. According to our H1D, dDivergent ECM 1482 fungal communities associateted with P. pinaster and P. halepensis, which -are highly 1483 influenced by the bedrock typeedaphic environment (siliceous vs. calcareous), and by the 1484 strong habitat filter imposed by the fire regime and the Mediterranean climatethese fungal 1485 communities differently respond to the fire regime. According to our first hypothesis, -As we 1486 hypothesized (H2h), high fire recurrence reduces ECM fungal diversity and has a 1487 homogenizing effect of ECM fungalon these communities, which leads to a reduced 1488 enzymatic activity for one of the pine species P. pinaster (but not for P. halepensis). 1489 Confirming our second hypothesis, this effect is evidenced at the finer scale of individuals 1490 since the serotiny degree of trees, i.e., genotypic fire-adaptation, does significantly affect the 1491 structure (for both *P. pinaster* and *P. halepensis*) and functioning (in the case of *P. pinaster*) 1492 of ECM fungal communities. In this work, rR Our results demonstrate that relative. An overall 1493 simplification of the ECM community structure is observed under high fire recurrence, which 1494 associates a general enzymatic activity decline for P. pinaster but not for P.halepensis. 1495 Separated effects-contribution on ECM fungal communities of main variables related to fire-

related effectors such as climate, soil properties <u>andor</u> the tr<u>ee trait ee phenotype (serotiny</u>
 degree) <u>structuring ECM fungal communities</u> have bee<u>havecanen</u>n <u>able to be</u> disentangled in
 this study.

- 1499
- 1500
- 1501 ECM communities in P. pinaster and P. halepensis forests

1502 The tree species had a marginal effect on ECM fungal communities probably blurred by the 1503 strong effect of the local environmental conditions. -- The contrasted local environment rather 1504 than the tree species was the main driver of the differences in ECM fungal assemblages 1505 observed between *P. pinaster* and *P. halepensis* forests The degree of tree host specificity for 1506 ECM fungi seems to be correlated with the phylogenetic distances between hosts (Leho 1507 Tedersoo, Mett, Ishida, & Bahram, 2013). However, it has been shown that the genus Pinus 1508 associates with specialized ECM fungi, in particular within the genera Suillus and Rhizopogon 1509 (Smith & Read, 2008) and Opposite to other mutualistic relationships, the mycorrhizal 1510 symbiosis is low specific e.g., for Pinus spp. it can reach the genus level (Smith & Read, 1511 2008). However, the tree species identity or even that even the Pinus tree genotype has been 1512 previously demonstrated to play an essential role in structuring ECM fungal communities 1513 (Gehring, Mueller, Haskins, Rubow, & Whitham, 2014; Leticia-Pérez-Izquierdo et al., 2017, 1514 2019) (Aponte, García, Marañón, & Gardes, 2010; Barbi et al., 2016; Pérez-Izquierdo et al., 1515 $\frac{2017}{1}$. Given the importance of pH shaping fungal communities (Coince et al., 2014; 1516 Glassman, Wang, & Bruns, 2017; Ana-Rincón et al., 2015; L-Tedersoo et al., 2014) (Coince 1517 et al., 2014; Rincón et al., 2015; Rousk et al., 2010; Tedersoo et al., 2014), these divergent 1518 observations could be interpreted as context-dependent, i.e., in our study, soil pH (ranging 1519 from 5.1 to 8) was two points-higher, -even in Sinarcas where both pine species grew under a

1520	similar local environment, than in the mentioned studies (average pH of 5)-even in Sinarcas,
1521	where both pine species grew under a similar local environment. Thus, together with climate
1522	limitations, the bedrock influence, mainly siliceous for P. pinaster, and calcareous for P.
1523	halepensis, was a The strong environmental filter imposed by -the bedrock influence, mainly
1524	siliceous for P. pinaster and calcareous for P. halepensis (Ojeda, Pausas, & Verdú,
1525	2010)(Ojeda, Pausas, & Verdú, 2010), for their associated ECM fungal communities,
1526	probably overtaken other possible effect of the tree species. This was also reflected in more
1527	diverse and more heterogeneous Ascomycetes species together with less diverse and more
1528	homogeneous Basidiomycetes in the case of P. halepensis, whereas,tT and the opposite
1529	pattern was observed for P. pinaster. In fact, Ascomycetes have been often associated with
1530	environmental stressful conditions, by traits such as their melanin production capacity (Koide,
1531	Fernandez, & Malcolm, 2014; Treseder & Lennon, 2015). Accordingly, wWe observed a
1532	preferential association of P. halepensis with fungal species of the genus Sebacina and the
1533	order Pezizales. So far, noany tree host specificity has been observed among the Sebacina
1534	species (Ray & Craven, 2016; Selosse, Bauer, & Moyersoen, 2002). Given the reported
1535	positive effects of sebacinous fungi against stresses such as herbivorye, salinity or drought
1536	(Barazani & Baldwin, 2013; Ray & Craven, 2016; Zarea, Miransari, & Karimi, 2014), they
1537	could play a key role in the resistance of P. halepensis to limited nutrient availability (i.e.,
1538	related to high soil pH) and the restrictive conditions imposed by the Mediterranean climate.
1539	Similarly, ascomycetous ECM Pezizales, which tend to be favoured in basic soils, have traits
1540	that such as their melanin production capacity that make them perfect symbionts under
1541	stressful conditions- including post-fire scenariosones (Koide, Fernandez, & Malcolm, 2014;
1542	Lamit et al., 2014; A. Rincón et al., 2014; Ana-Rincón & Pueyo, 2010; Leho Tedersoo,
1543	Hansen, Perry, & Kjøller, 2006; Torres & Honrubia, 1997) (Lamit, Holeski, Flores-Rentería,
I.	

Whitham, & Gehring, 2016; Tedersoo, Hansen, Perry, & Kjøller, 2006). On the other hand,
species from the genera *Rhizopogon*, *Craterellus*, *Cenoccocum*, *Russula* and *Lactarius* were
enriched under *P. pinaster* (less basic pH). Although ECM fungi tolerate a wide range of pH
(Rousk et al., 2010), most of these fungi grow better under acidophilic conditions (Yamanaka,
2003).

1549

1550 Structural and functional shifts of root-tip ECM fungal communities due to the fire regime

1551 As we firstly hypothesized, for both pine species, the local and regional diversity of root-tip

1552 ECM fungi significantly declined in populations where fires are historically frequent, and this

1553 implied functional outcomes e.g., -laccase activity of ECM root-tips increased in HiFi

1554 populations of both pine forests.

1555 Many fire studies have ascribed decreases in fungal diversity to the reduction of heat resistant 1556 propagules, elimination of rare species from the spore bank, the scarcity of suitable hosts, the 1557 direct burning of mycelium and roots, and/or the disturbed soil properties (Glassman et al., 1558 2016; Holden, Gutierrez, & Treseder, 2013; Rincón & Pueyo, 2010). These processes do have 1559 a great importance on ECM fungal communities in the short term after relatively post-1560 disturbance-short term, giving the way to other processes such as dispersion through time 1561 (Dooley & Treseder, 2011; Kipfer, Moser, Egli, Wohlgemuth, & Ghazoul, 2011; Rincón et 1562 al., 2014; Sun et al., 2015), similar to that reported in succession studies, where fungal 1563 richness increases with forest age (Kyaschenko, Clemmensen, Hagenbo, Karltun, & Lindahl, 1564 2017; Twieg, Durall, & Simard, 2007). In our study, it does not seems not a plausible 1565 explanation that ECM fungal diversity has we not been yet restored since the last fire (at least 1566 more than 40 years ago), because typical late-stage species such as Amanita or Lactarius 1567 (Cairney & Chambers, 2013; Taylor & Bruns, 1999) were indicators in HiFi areas. On the

contrary, our results suggest that, the initial ruderal symbionts that facilitate the establishment

1568

1569 of seedlings are replaced over time by ECM fungi that respond more efficiently to the new 1570 environmental conditions, probably driving plant-soil feedbacks to different directions-and 1571 creating a different soil ecosystem (Duhamel et al., 2019). 1572 The ECM species composition diverged between fire regimes and, although fungal diversity 1573 decreased with high fire recurrence, some fungal families were more diverse in HiFi 1574 populationselearly favoured by fire, e.g. Amanitaceae, Cantharellaceae and Rhizopogonaceae 1575 for P. pinaster, or Pezizaceae for P. halepensis. Different authors have proposed that in 1576 ecosystems subjected to frequent fires, the positive response of microorganisms would 1577 indicate a selection of the fire-tolerant ones over time (Buscardo et al., 2015; Dooley & 1578 Treseder, 2011; Rincón et al., 2014). Fire recurrence in Mediterranean forests is intimately 1579 linked to temperature and drought (Pausas, 2004), so as expected, in our work, climate was a 1580 strong determinant of fire regime effects on fungal communities. Similar to that described for 1581 plant communities (Pausas & Verdú, 2008; Verdú & Pausas, 2007), Aall these results, 1582 together with the observed decline in ECM fungal β -diversity, seem to indicate that the 1583 habitat filtering was likely the dominant ecological process assembling root-tip ECM fungal 1584 communities under high fire recurrence, while without the fire pressure (i.e., low fire 1585 recurrence) and milder climate conditions, competition among fungi could prevail, si-milar to 1586 that described across biological groups (Pérez-Valera, Verdú, Navarro-Cano, & Goberna, 1587 2018; Verdú & Pausas, 2007). The diversity of plant and microbial communities is regulated 1588 by sequentially operating assembly rules: abiotic filtering is an omnipresent structuring force, 1589 and biological interactions e.g., competition, further fine-tunes the community assemblages 1590 (Pérez-Valera et al., 2018; Verdú & Pausas, 2007). 1591

1592	Fire regime and climate can filter directly different Beyond co-variation of biotic organisms
1593	(i.e., trees and ECM fungi) filtered by the fire regime and climate, however our results did
1594	provide significant clues about indirect plant-mediated effects of high fire recurrence on ECM
1595	fungal communities. We observed that serotiny, previously demonstrated to beas a tree
1596	heritable trait shaped by recurrent fires_(Budde et al., 2014; Castellanos, González-Martínez,
1597	& Pausas, 2015; Ana-Hernández-Serrano et al., 2014), significantly explained the
1598	variation variation of ECM fungal communities, aside from the accounted climatic effects for both
1599	pine species. This could be attributed to climatic constraints in the channel of Cearbon from
1600	the tree towards the ECM fungi, although, on the other hand, serotiny is a trait that requires
1601	resources (water and <u>Cearbon</u>) for maintaining a large amount of seeds alive in the canopy
1602	with a cost for the plant (Cramer & Midgley, 2009; Harris & Pannell, 2010). Thus, we
1603	suggestAnother possible explanation is that the ability of the different tree
1604	genotypes/phenotypes to preferentially allocate photosynthates to the more beneficial ECM
1605	fungi, or to those with low Ccarbon demands and/or high abilities to cope with hydric/nutrient
1606	stress is can be the prevailing mechanism explaining such plant-mediated effects (Bever,
1607	Richardson, Lawrence, Holmes, & Watson, 2009; Gehring et al., 2014). This was further to
1608	some extent supported by our results, at least in P. pinaster, for which a direct effect of tree
1609	phenotype (serotiny) on enzymatic responses of ECM fungi, but no effect of climatic
1610	variables was observed. We have previously shown that particular P. pinaster genotypes can
1611	impact enzymatic activities through changes in the composition of the associated microbial
1612	communities (Pérez-Izquierdo et al., 2017, 2019). Additionally, it cannot be ruled out that, as
1613	for serotiny, the fire recurrence negatively affects other tree traits_,-such as root development
1614	and/or architecture_constraining_, which would consecutively reduce the space for ECM
1615	fungal colonization, which would make mechanisms like priority effects particularly
1	

1616 important making that mechanisms such as priority effects could gain importance (Kennedy,

1617 Peay, & Bruns, 2009; Peay, Belisle, & Fukami, 2012). In any case, further experimentation

- 1618 would be needed to shed light on these assumptions.
- 1619

1620 The increased fire recurrence affected ecosystem functions differently in the two pine species 1621 by reducing most enzymatic activities in the case of *P. pinaster*, but not for *P. halepensis*. 1622 This suggests functional redundancy between HiFi and LoFi ECM fungal communities 1623 associated with *P. halepensis* in low and high fire recurrencefrequency sites, since diversity 1624 and assemblage shifts were not translated into functional changes (Jones et al., 2010). These 1625 results might indicate a high capacity of *P. halepensis* forests to recover its functionality 1626 among recurrent fires in warmer areas probably by shifting plant-microbial feedbacks to 1627 readjust to the environment (Clemmensen et al., 2015; Johnstone et al., 2010). The edaphic 1628 conditions (mainly pH and P) were a-main factorseffector explaining differences in enzymatic 1629 profiles <u>-indistinctively in LoFi and HiFi populations among populations of both pine species</u>. 1630 Among their multiple functions, an outstanding feature of ectomycorrhizal fungi is s_{τ} 1631 emphasizing again the main role of the bedrock type in nutrient availability and ecosystem 1632 functionality in Mediterranean forests. Ectomycorrhizal fungi display multiple functions, 1633 among them, theiry are ability to able to such as mobilizeing nutrients from the soil (Smith & 1634 Read, 2008)-. for the host, with particular N mining abilities where litter N is hard to access 1635 (Smith & Wang 2019; Fernandez et al., 2020), as could be also the case for pine litter in our 1636 study. Because of their direct access to C from the host, they are able to invest energy (i.e., 1637 enzymatic production) to mine for N and/or P from hardly accessible sources (Fernandez, 1638 See, & Kennedy, 2020; Lindahl & Tunlid, 2015) which are often limiting nutrients in forests, 1639 as it could be the case for pine litter and/or basic soils in our study together with recalcitrant

1640 pine litterin our study. Our results show that the ECM enzymatic production is mainly 1641 regulated by the availability of P which is in turn highly dependent on the bedrock type in 1642 Mediterranean ecosystems. Ectomycorrhizal fungi act on soil nutrient and carbon dynamics 1643 directly affecting tree productivity, and contributing soil organic matter and priming or 1644 inhibiting its turnover in soils (Clemmensen et al., 2013; Fernandez et al., 2020), which can 1645 be of prime importance in Mediterranean soil formation. Our findings are in line with 1646 previous studies indicating that the availability of resources in surrounding soil and together 1647 with tree host genetics strongly regulates ECMmicrobial enzymatic production in surrounding 1648 soilare among the key factors affecting the enzymatic activity of ECM fungal communities 1649 (Aponte, García, Marañón, & Gardes, 2010; P.-E. Courty et al., 2016; Pierre Emmanuel 1650 Courty et al., 2011; Schneider et al., 2012). 1651 As previously mentioned, the laccase activity of ECM root-tips increased in high fire 1652 recurrence populations of both pines-forests. Laccase is an oxidative enzyme related to several 1653 processes like the degradation of recalcitrant C compounds (i.e., lignin), but also to the 1654 production of melanin by fungi (Baldrian, 2006; Eisenman et al., 2007). Melanin is a group of 1655 complex polymers deposited in the cell wall associated with resistance to stresses such as 1656 drought (Koide et al., 2014) and moderately resistant to decomposition (Fernandez, Heckman, 1657 Kolka, & Kennedy, 2019). It is also possible that in our study sites, changes in traits like 1658 production of melanin by fungi or more litter tannins by trees associated to the fire regime and 1659 climatic stress might have affected organic matter turnover and feedback cycles, issues that

1660 would deserve further analyses. In fact, in a 2-million-year chronosequence, Albornoz et al.

1661 (2016) showed strong variation of ECM fungal communities even within the same hosts,

1662 attributable not only to short-term fungal edaphic specialization or different inoculum density

and composition, but also likely to a much longer-term ecosystem-level feedbacks among soil,

- 1664 plants and ECM fungi during pedogenesis.
- 1665

1666 Conclusions

1667 In P. pinaster and P. halepensis Mediterranean forests, the high fire recurrencefrequency 1668 filters the ECM fungal community composition, even favoring some ECM fungal species, but 1669 reduces local and regional ECM diversity. Factors such as climate, which is intimately related 1670 to fire, and soil properties in particular pH, affect ECM fungal communities composition and 1671 their enzymatic functions. Separated effects of fire-regime related effectors such as climate, 1672 soil properties or the tree phenotype are driving these processes in Mediterranean ecosystems. 1673 Aside from the climatic filter, local adaptation in pine populations to recurrent fires (i.e., 1674 increased serotiny) selects for different ECM fungal communities, accompanying different 1675 functional responses. ECM fungal communities associated with serotinous P. pinaster trees 1676 imply a reduced enzymatic activity, but for P. halepensis, a functional redundancy in LoFi 1677 and HiFi fire regimes likely exists. Edaphic variables, highly linked to the bedrock type in 1678 Mediterranean ecosystems, are main drivers of ECM fungal structure and functioning but 1679 generally independent of the fire regime. The bedrock material is also a main factor driving 1680 differences in ECM fungal communities associated with P. pinaster and P. halepensis, 1681 overriding the possible effect of the tree species. Although fire is already a main ecological 1682 factor shaping in the Mediterranean ecosystemsarea, changes in fire frequency because of 1683 predicted warmer and longer dry periods have the potential to affect the plants and their 1684 symbionts altering the structure, functioning and successional dynamics of Mediterranean 1685 forests ecosystems. -The observed fire regime-related structural and functional shifts in ECM 1686 fungal communities might have essential implications for Mediterranean pine forests

- 1687 dynamics, which should be carefully considered to promote the sustainable management of
- 1688 these vulnerable ecosystems and to maintain their resilience under future climatic scenarios.

to peries only

1690	
1691	Acknowledgements
1692	We gratefully acknowledge A. Hernández-Serrano, A. Montesinos and D.A. Rodríguez
1693	for their help in field, L. López for its support in the lab work and E. Sentausa for assistance
1694	in data analyses. This work was supported by the projects MyFUNCO (CGL2011-29585-
1695	C02-02) and by the project-PiroPheno (CGL2017-89751-R) founded by the Spanish Ministry
1696	for Economy and Competitiveness (MINECO) _a and by the LABoratoire d'EXcellence Arbre
1697	(LABEX Arbre). LPI held a pre-doctoral fellowship awarded by MINECO. We also
1698	acknowledge three anonymous reviewers for their constructive comments that highly
1699	improved the quality of the manuscript.

1701	
1702	References
1703	Abdel Malak, D., & Pausas, J. G. (2006). Fire regime and post-fire Normalized Difference
1704	Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin).
1705	International Journal of Wildland Fire, Vol. 15, pp. 407–413. doiRetrieved from:
1706	-org/10.1071/WF05052
1707	Albornoz, F. E., Teste, F. P., Lambers, H., Bunce, M., Murray, D. C., White, N. E., &
1708	Laliberté, E. (2016). Changes in ectomycorrhizal fungal community composition and
1709	declining diversity along a 2-million-year soil chronosequence. <i>Molecular Ecology</i> ,
1710	25(19), 4919–4929. doi: 10.1111/mec.13778
1711	Anders, S., & Huber, W. (2012). Differential expression of RNA-Seq data at the gene level-
1712	the DESeq package.
1713	Retrieved from
1714	http://watson.nci.nih.gov/bioc_mirror/packages/2.11/bioc/vignettes/DESeq/inst/doc/DES
1715	eq.pdf
1716	Anderson, M., Ellingsen, K., & McArdle, B. (2006). Multivariate dispersion as a measure of
1717	beta diversity. <i>Ecology Letters</i> , 9(6), 683–693. <u>Retrieved from</u>
1718	http://onlinelibrary.wiley.com/doi:/10.1111/j.1461-0248.2006.00926.x/full
1719	Aponte, C., García, L. V., Marañón, T., & Gardes, M. (2010). Indirect host effect on
1720	ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities
1721	on the roots of co-occurring Mediterranean oaks. Soil Biology and Biochemistry, 42(5),
1722	788–796. doi: 10.1016/j.soilbio.2010.01.014
1723	Baar, J., Horton, T. R., Kretzer, A. M, & Runs, T. D. (1999). Mycorrhizal colonization of
1724	Pinus muricata from resistant propagules after a stand-replacing wildfire. New
1725	<i>Phytologist</i> , 143(2), 409–418. <u>Doi: 10.1046/j.1469-8137.1999.00452.x</u>
1726	Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews,
1727	<i>30</i> , 215–242. doi: 10.1111/j.1574-4976.2005.00010.x
1728	Barazani, O., & Baldwin, I. T. (2013). A Mixed Bag: The Plant Growth-Promoting Sebacina
1729	vermifera Impairs Defense Mechanisms Against Herbivores Oz. In Piriformospora
1730	<i>indica</i> (pp. 251–261). doi: 10.1007/978-3-642-33802-1
1731	Barbéro, M., Loisel, R., & Quézel, P. (1998). Pines of the Mediterranean basin. In DM
1732	Richardson (Ed.), <i>Ecology and biogeography of Pinus</i> (pp. 153–170).
1733	Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J., & Watson, M. (2009).
1734	Preferential allocation to beneficial symbiont with spatial structure maintains
1735	mycorrhizal mutualism. <i>Ecology Letters</i> , 12(1), 13–21. doi: 10.1111/j.1461-
1736	0248.2008.01254.x
1737	Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of
1738	phosphorus in soils. Soil Science, 59(1), 39–46. Retrieved from
1739	http://journals.lww.com/soilsci/Fulltext/1945/01000/DETERMINATION_OF_TOTAL,_
1740 1741	ORGANIC, AND AVAILABLE.6.aspx Bruns T. D. Beav, K. G. Boymton, P. I. Grubisha, I. C. Hynson, N. A. Nguyan, N. H. &
1741	Bruns, T. D., Peay, K. G., Boynton, P. J., Grubisha, L. C., Hynson, N. A., Nguyen, N. H., &
1742 1743	Rosenstock, N. P. (2009). Inoculum potential of <i>Rhizopogon</i> spores increases with time over the first 4 yr of a 99-yr spore burial experiment. <i>New Phytologist</i> , <i>181</i> (2), 463–470.
1743	doi: 10.1111/j.1469-8137.2008.02652.x
1744 1745	Budde, K. B., González-Martínez, S. C., Navascués, M., Burgarella, C., Mosca, E., Lorenzo,
1745	Z., Heuertz, M. (2017). Increased fire frequency promotes stronger spatial genetic

1747	structure and natural selection at regional and local scales in <i>Pinus halepensis</i> Mill.
1748	Annals of Botany, 119(6), 1061-1072. doi: 10.1093/aob/mcw286
1749	Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J. G., Vendramin, G. G., Verdú,
1750	M., & González-Martínez, S. C. (2014). In situ genetic association for serotiny, a fire-
1751	related trait, in Mediterranean maritime pine (Pinus pinaster). New Phytologist, 201(1),
1752	230–241. doi: 10.1111/nph.12483
1753	Buscardo, E., Rodriguez-Echeverria, S., Freitas, H., De Angelis, P., Pereira, J. S., & Muller,
1754	L. A. H. (2015). Contrasting soil fungal communities in Mediterranean pine forests
1755	subjected to different wildfire frequencies. Fungal Diversity, 70(1), 85–99. doi:
1756	10.1007/s13225-014-0294-5
1757	Cáceres, M. D., Legendre, P., & He, F. (2013). Dissimilarity measurements and the size
1758	structure of ecological communities. Methods in Ecology and Evolution, 4(12), 1167–
1759	1177. Retrieved from http://onlinelibrary.wiley.com/doi: /10.1111/2041-210X.12116/full
1760	Cairney, J. W., & Chambers, S. M. (2013). Ectomycorrhizal fungi: key genera in profile.
1761	Springer Science & Business Media.
1762	Camarero, J. J., Olano, J. M., & Parras, A. (2010). Plastic bimodal xylogenesis in conifers
1763	from continental Mediterranean climates. New Phytologist, 185(2), 471–480. doi:
1764	10.1111/j.1469-8137.2009.03073.x
1765	Castellanos, M. C., González-Martínez, S. C., & Pausas, J. G. (2015). Field heritability of a
1766	plant adaptation to fire in heterogeneous landscapes. <i>Molecular Ecology</i> , 24(22), 5633–
1767	5642. doi: 10.1111/mec.13421
1768	Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H.,
1769	Lindahl, B. D. (2013). Roots and Associated Fungi Drive Long-Term Carbon
1770	Sequestration in Boreal Forest. <i>Science</i> , <i>339</i> (6127), 1615–1618. doi:
1771	10.1126/science.1231923
1772	Clemmensen, K _{arina} E _. , Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl,
1773	B. D. (2015). Carbon sequestration is related to mycorrhizal fungal community shifts
1774	during long-term succession in boreal forests. <i>New Phytologist</i> , 205, 1525–1536. doi:
1775	doi:10.1111/nph.13208
1776	Coince, A., Cordier, T., Lengellé, J., Defossez, E., Vacher, C., Robin, C., Marçais, B.
1777	(2014). Leaf and root-associated fungal assemblages do not follow similar elevational
1778	diversity patterns. <i>PloS One</i> , 9(6), e100668. doi: 10.1371/journal.pone.0100668
1779	Courty, PE., Munoz, F., Selosse, MA., Duchemin, M., Criquet, S., Ziarelli, F.,
1780	Richard, F. (2016). Into the functional ecology of ectomycorrhizal communities:
1781	Environmental filtering of enzymatic activities. <i>Journal of Ecology</i> , 104(6), 1585–1598.
1782	doi: 10.1111/1365-2745.12633
1783	Courty, P E, Pritsch, K., Schloter, M., Hartmann, A., & Garbaye, J. (2005). Activity profiling
1784	of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. <i>New</i>
1785	<i>Phytologist</i> , <i>167</i> (1), 309–319. doi:-DOI 10.1111/j.1469-8137.2005.01401.x
1786	Courty, P.ierre E.Emmanuel, Labbé, J., Kohler, A., Marçais, B., Bastien, C., Churin, J., Le
1787	Tacon, F. (2011). Effect of poplar genotypes on mycorrhizal infection and secreted
1788	
	enzyme activities in mycorrhizal and non-mycorrhizal roots. <i>Journal of Experimental</i>
1789	Botany, 62(1), 249–260. doi: 10.1093/jxb/erq274
1790 1701	Cramer, M. D., & Midgley, J. J. (2009). Maintenance costs of serotiny do not explain weak
1791	serotiny. Austral Ecology, 34, 653–662. doi: 10.1111/j.1442-9993.2009.01971.x
1792	de Román, M., & de Miguel, A. M. (2005). Post-fire, seasonal and annual dynamics of the
1793	ectomycorrhizal community in a <i>Quercus ilex</i> L. forest over a 3-year period.
1794	<i>Mycorrhiza</i> , 15, 471–482. doi: 10.1007/s00572-005-0353-6

1795 Dooley, S. R., & Treseder, K. K. (2011). The effect of fire on micro	obial biomass: a meta-
analysis of field studies. <i>Biogeochemistry</i> , 109(1–3), 49–61. de	oi: 10.1007/s10533-011-
1797 9633-8	
1798 Dove, N. C., & Hart, S. C. (2017). Fire reduces fungal species richt	ness and in situ
1799 mycorrhizal colonization: A meta-analysis. <i>Fire Ecology</i> , 13(2)	
1800 10.4996/fireecology.130237746	//
1801 Duhamel, M., Wan, J., Bogar, L. M., Segnitz, R. M., Dncritts, N. C	& Peav K G (2019)
1802 Plant selection initiates alternative successional trajectories in	• • • • • •
1803 community after disturbance. <i>Ecological Monographs</i> , 89(3),	
1804 10.1002/ecm.1367	c onsort u on
1805 Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences fro	m microbial amplicon
1806 reads. <i>Nature Methods</i> , <i>10</i> (10), 996–998. doi: 10.1038/nmeth.	1
1807 Egerton-Warburton, L. M., Querejeta, J. I., & Allen, M. F. (2007).	
1808 networks provide a potential pathway for the transfer of hydra	
1809 between plants. <i>Journal of Experimental Botany</i> , 58(6), 1473–	-
1809 between plants. <i>Sournal of Experimental Bolany</i> , 58(0), 1475– 1810 10.1093/jxb/erm009	-1485. dol.
1810 10.1095/Jx0/effil009 1811 Eisenman, H. C., Mues, M., Weber, S. E., Frases, S., Chaskes, S., C	Carfon G. & Casadavall
1811Eisenman, H. C., Mues, M., Weber, S. E., Frases, S., Chaskes, S., C1812A. (2007). Cryptococcus neoformans laccase catalyses melanities	
1813 and L -DOPA. <i>Microbiology</i> , <i>153</i> , 3954–3962. doi: 10.1099/n	
1814 Fernandez, C. W., Heckman, K., Kolka, R., & Kennedy, P. G. (201	2
1815 accelerated decay of mycorrhizal necromass with peatland was	rming. Ecology Letters, 22,
1816 498–505. doi: 10.1111/ele.13209	1 1 1 1
1817 Fernandez, C. W., See, C. R., & Kennedy, P. G. (2020). Decelerate	
1818 ectomycorrhizal fungi is controlled by substrate quality and co	ommunity composition.
1819 New Phytologist, 226(2), 569–582. doi: 10.1111/nph.16269	
1820 Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced spe	
1821 application to the identification of mycorrhizae and rusts. <i>Mole</i>	ecular Ecology, 2, 113–
1822 118. doi: doi.org/10.1111/j.1365-294X.1993.tb00005.x	
1823 Gehring, C. A., Mueller, R. C., Haskins, K. E., Rubow, T. K., & W	
1824 Convergence in mycorrhizal fungal communities due to droug	
1825 parasitism, and susceptibility to herbivory: Consequences for t	e 1
1826 Frontiers in Microbiology, 5(JUN), 1–9. doi: 10.3389/fmicb.2	
1827 Gehring, C. A., & Whitham, T. G. (1991). Herbivore-Driven Myco	
1828 Insect-Susceptible Pinyon Pine. <i>Nature</i> , <i>353</i> (6344), 556–557.	
1829 Glassman, S. I., Levine, C. R., Dirocco, A. M., Battles, J. J., & Bru	
1830 Ectomycorrhizal fungal spore bank recovery after a severe for	
1831 <i>The ISME Journal</i> , <i>10</i> , 1228–1239. doi: 10.1038/ismej.2015.1	82
1832 Glassman, S. I., Peay, K. G., Talbot, J. M., Smith, D. P., Chung, J.	
 1832 Glassman, S. I., Peay, K. G., Talbot, J. M., Smith, D. P., Chung, J. 1833 Bruns, T. D. (2015). A continental view of pine-associated ect 	A., Taylor, J. W.,
	A., Taylor, J. W., comycorrhizal fungal spore
1833 Bruns, T. D. (2015). A continental view of pine-associated ect	A., Taylor, J. W., comycorrhizal fungal spore
1833Bruns, T. D. (2015). A continental view of pine-associated ect1834banks : a quiescent functional guild with a strong biogeograph	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i>
 Bruns, T. D. (2015). A continental view of pine-associated ect banks : a quiescent functional guild with a strong biogeograph <i>Phytologist, 205,</i> 1619–1631. doi: 10.1111/nph.13240 Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental 	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i> filtering by pH and soil
 Bruns, T. D. (2015). A continental view of pine-associated ect banks : a quiescent functional guild with a strong biogeograph <i>Phytologist, 205,</i> 1619–1631. doi: 10.1111/nph.13240 Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental 	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i> filtering by pH and soil
 Bruns, T. D. (2015). A continental view of pine-associated ect banks : a quiescent functional guild with a strong biogeograph <i>Phytologist, 205,</i> 1619–1631. doi: 10.1111/nph.13240 Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental nutrients drives community assembly in fungi at fine spatial sc <i>26</i>(24), 6960–6973. doi: 10.1111/mec.14414 	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i> filtering by pH and soil cales. <i>Molecular Ecology</i> ,
 Bruns, T. D. (2015). A continental view of pine-associated ect banks : a quiescent functional guild with a strong biogeograph <i>Phytologist, 205,</i> 1619–1631. doi: 10.1111/nph.13240 Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental nutrients drives community assembly in fungi at fine spatial sc <i>26</i>(24), 6960–6973. doi: 10.1111/mec.14414 	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i> filtering by pH and soil cales. <i>Molecular Ecology</i> , Charron, I., & Simard, M. J.
 Bruns, T. D. (2015). A continental view of pine-associated ect banks : a quiescent functional guild with a strong biogeograph <i>Phytologist, 205,</i> 1619–1631. doi: 10.1111/nph.13240 Glassman, S. I., Wang, I. J., & Bruns, T. D. (2017). Environmental nutrients drives community assembly in fungi at fine spatial sc <i>26</i>(24), 6960–6973. doi: 10.1111/mec.14414 Greene, D. F., Zasada, J. C., Sirois, L., Kneeshaw, D., Morin, H., C. 	A., Taylor, J. W., comycorrhizal fungal spore ic pattern. <i>New</i> filtering by pH and soil cales. <i>Molecular Ecology</i> , Charron, I., & Simard, M. J. rican boreal forest tree

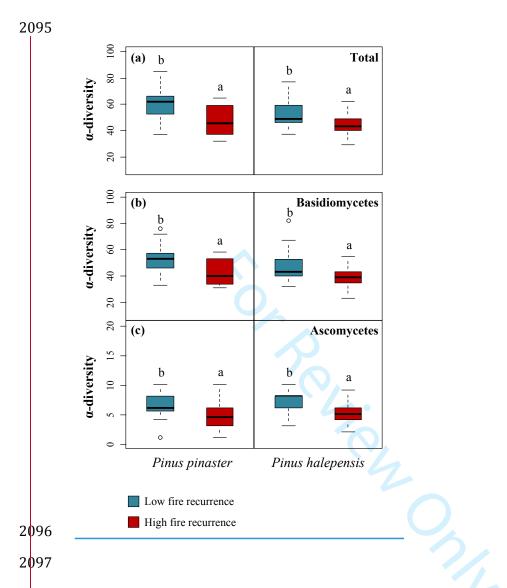
1843	dimorphism in the woody dioecious genus Leucadendron. Journal of Ecology, 98, 509-
1844	515. doi: 10.1111/j.1365-2745.2009.01623.x
1845	Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-
1846	fire vegetative dynamics as drivers of microbial community structure and function in
1847	forest soils. Forest Ecology and Management, 220(1-3), 166-184. doi:
1848	10.1016/j.foreco.2005.08.012
1849	Hernández-Serrano, A., Verdú, M., González-Martínez, S. C., & Pausas, J. G. (2013). Fire
1850	structures pine serotiny at different scales. American Journal of Botany, 100(12), 2349-
1851	2356. doi: 10.3732/ajb.1300182
1852	Hernández-Serrano, A.na, Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez,
1853	S. C., & Pausas, J. G. (2014). Heritability and quantitative genetic divergence of
1854	serotiny, a fire-persistence plant trait. Annals of Botany, 114(3), 571-577. doi:
1855	10.1093/aob/mcu142
1856	Holden, S. R., Gutierrez, A., & Treseder, K. K. (2013). Changes in Soil Fungal Communities,
1857	Extracellular Enzyme Activities, and Litter Decomposition Across a Fire
1858	Chronosequence in Alaskan Boreal Forests. Ecosystems, 16(1), 34-46. doi:
1859	10.1007/s10021-012-9594-3
1860	Isaac, R. A., & Kerber, J. D. (1971). Atomic absorption and flame photometry: Techniques
1861	and uses in soil, plant and water analysis. In Walsh LM (ed). Soil Science Society
1862	America. Madison. WI. (Ed.), Instrumental Methods for Analysis of Soils and Plant
1863	Tissue.
1864	Johnson, D., Martin, F., Cairney, J. W. G., & Anderson, I. C. (2012). The importance of
1865	individuals: Intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New
1866	<i>Phytologist</i> , 194(3), 614–628. doi: 10.1111/j.1469-8137.2012.04087.x
1867	Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., &
1868	Turetsky, M. (2010). Fire, climate change, and forest resilience in interior AlaskaThis
1869	article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal
1870	Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian
1871	Journal of Forest Research, 40(7), 1302–1312. doi: 10.1139/X10-061
1872	Jones, M. D., Twieg, B. D., Ward, V., Barker, J., Durall, D. M., & Simard, S. W. (2010).
1873	Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme
1874	activity after wildfire or clearcut logging. Functional Ecology, 24(5), 1139–1151. doi:
1875	10.1111/j.1365-2435.2010.01699.x
1876	Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., & Rundel, P. W. (2011). Fire in
1877	Mediterranean ecosystems: ecology, evolution and management. Cambridge University
1878	Press.
1879	Kennedy, P. G., Peay, K. G., & Bruns, T. D. (2009). Root tip competition among
1880	ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology, 90(8), 2098-
1881	2107. doi: 10.1890/08-1291.1
1882	Kipfer, T., Moser, B., Egli, S., Wohlgemuth, T., & Ghazoul, J. (2011). Ectomycorrhiza
1883	succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central
1884	Alps. Oecologia, 167(1), 219–228. doi: 10.1007/s00442-011-1981-5
1885	Kivlin, S. N., Emery, S. M., & Rudgers, J. A. (2013). Fungal symbionts alter plant responses
1886	to global change. American Journal of Botany, 100(7), 1445-1457. doi:
1887	10.3732/ajb.1200558
1888	Koide, R. T., Fernandez, C., & Malcolm, G. (2014). Determining place and process:
1889	Functional traits of ectomycorrhizal fungi that affect both community structure and
1890	ecosystem function. New Phytologist, 201(2), 433-439. doi: 10.1111/nph.12538

Molecular Ecology

1891	Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M.,					
1892	Larsson, K. H. (2013). Towards a unified paradigm for sequence-based identification of					
1893	fungi. Molecular Ecology, 22(21), 5271–5277. doi: 10.1111/mec.12481					
1894	Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015).					
1895	Community assembly, coexistence and the environmental fi ltering metaphor.					
1896	Functional Ecology, 29, 592–599. doi: 10.1111/1365-2435.12345					
1897	Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E., & Lindahl, B. D. (2017). Shift					
1898	in fungal communities and associated enzyme activities along an age gradient of					
1899	managed Pinus sylvestris stands. The ISME Journal, 11, 863-874. doi:					
1900	10.1038/ismej.2016.184					
1901	Lamit, L. J., Lau, M. K., Sthultz, C. M., Wooley, S. C., Whitham, T. G., & Gehring, C. A.					
1902	(2014). Tree genotype and genetically based growth traits structure twig endophyte					
1903	communities. American Journal of Botany, 101(3), 467–478. doi: 10.3732/ajb.1400034					
1904	Lindahl, B. D., & Tunlid, A. (2015). Ectomycorrhizal fungi – potential organic matter					
1905	decomposers, yet not saprotrophs. 205, 1443–1447. doi: 10.1111/nph.13201					
1906	Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J.,					
1907	Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of					
1908	European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. doi:					
1909	10.1016/j.foreco.2009.09.023					
1910	McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: why rarefying microbiome data					
1911	is inadmissible. PLoS Computational Biology, 10(4), e1003531. doi:					
1912	10.1371/journal.pcbi.1003531					
1913	Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Kennedy, P. G.					
1914	(2016). FUNGuild: An open annotation tool for parsing fungal community datasets by					
1915	ecological guild. Fungal Ecology, 20, 241-248. doi: 10.1016/j.funeco.2015.06.006					
1916	Nuñez, M. A., Horton, T. R., & Simberloff, D. (2009). Lack of belowground mutualisms					
1917	hinders Pinaceae invasions. <i>Ecology</i> , 90(9), 2352–2359. doi: 10.1890/08-2139.1					
1918	Ojeda, F., Pausas, J. G., & Verdú, M. (2010). Soil shapes community structure through fire.					
1919	Oecologia, 163(3), 729–735. doi: 10.1007/s00442-009-1550-3					
1920	Oksanen, A. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O.,					
1921	Wagner, H. (2015). Vegan community ecology package: ordination methods, diversity					
1922	analysis and other functions for community and vegetation ecologists. Version 2.3-1. In					
1923	R package version 2.3-1.					
1924	Pausas, J.G. (2015). Evolutionary fire ecology: Lessons learned from pines. Trends in Plant					
1925	Science, 20(5), 318-324. doi: 10.1016/j.tplants.2015.03.001					
1926	Pausas, J.uli G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western					
1927	Mediterranean Basin: From fuel-limited to drought-driven fire regime. Climatic Change,					
1928	110(1-2), 215-226. doi: 10.1007/s10584-011-0060-6					
1929	Pausas, J.uli G. (2004). Changes in fire and climate in the eastern Iberian Peninsula					
1930	(Mediterranean basin). Climatic Change, 63, 337–350.					
1931	Pausas, J.uli G, Bradstock, R. A., Keith, D. A., & Keeley, J. E. (2004). Plant functional traits					
1932	in relation to fire in corwn-fire ecosystems. Ecology, 85(4), 1085-1100. doi: 10.1890/02-					
1933	4094					
1934	Peay, K. G., Belisle, M., & Fukami, T. (2012). Phylogenetic relatedness predicts priority					
1935	effects in nectar yeast communities. Proceedings. Biological Sciences / The Royal					
1936	Society, 279(1729), 749-758. doi: 10.1098/rspb.2011.1230					
1937	Pérez-Izquierdo, L, Zabal-Aguirre, M., Flores-Rentería, D., González-Martínez, S., Buée, M.,					
1938	& Rincón, A. (2017). Functional outcomes of fungal community shifts driven by tree					

1939	genotype and spatial-temporal factors in Mediterranean pine forests. Environmental
1940	<i>Microbiology</i> , <u>19(4)</u> , <u>1639-1652.</u> , doi: 10.1111/1462-2920.13690
1941	Pérez-Izquierdo, Leticia, Zabal-Aguirre, M., Flores-Rentería, D., González-Martínez, S. C.,
1942	Buée, M., & Rincón, A. (2017). Functional outcomes of fungal community shifts driven
1943	by tree genotype and spatial temporal factors in Mediterranean pine forests.
1944	Environmental Microbiology, 19(4), 1639–1652. doi: 10.1111/1462-2920.13690
1945	Pérez-Izquierdo, L. eticia, Zabal-Aguirre, M., González-Martínez, S. C., Buée, M., Verdú, M.,
1946	Rincón, A., & Goberna, M. (2019). Plant intraspecific variation modulates nutrient
1947	cycling through its below-ground rhizospheric microbiome. <i>Journal of Ecology</i> , 107(4),
1948	1594-1605. doi: 10.1111/1365-2745.13202
1949	Pérez-Valera, E., Verdú, M., Navarro-Cano, J. A., & Goberna, M. (2018). Resilience to fire of
1950	phylogenetic diversity across biological domains. <i>Molecular Ecology</i> , 27(13), 2896–
1951	2908. doi: 10.1111/mec.14729
1952	Pinosio, S., González-Martínez, S. C., Bagnoli, F., Cattonaro, F., Grivet, D., Marroni, F.,
1953	Vendramin, G. G. (2014). First insights into the transcriptome and development of new
1954	genomic tools of a widespread circum-Mediterranean tree species, <i>Pinus halepensis</i>
1955	Mill. <i>Molecular Ecology Resources</i> , 14(4), 846–856. doi: 10.1111/1755-0998.12232
1956	Prieto, I., Roldán, A., Huygens, D., del Mar Alguacil, M., Navarro-Cano, J. A., & Querejeta,
1957	J. I. (2016). Species-specific roles of ectomycorrhizal fungi in facilitating interplant
1958	transfer of hydraulically redistributed water between <i>Pinus halepensis</i> saplings and
1950	seedlings. <i>Plant and Soil</i> , 406(1–2), 15–27. doi: 10.1007/s11104-016-2860-y
1960	Querejeta, J. I., Egerton-Warburton, L. M., & Allen, M. F. (2007). Hydraulic lift may buffer
1961	rhizosphere hyphae against the negative effects of severe soil drying in a California Oak
1961	savanna. Soil Biology and Biochemistry, 39(2), 409–417. doi:
1962	10.1016/j.soilbio.2006.08.008
1964	R Core Team. (2014). R Core Team. R: A Language and Environment for Statistical
1965	Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
1966	Radeloff, V. C., Mladenoff, D. J., Guries, R. P., & Boyce, M. S. (2004). Spatial patterns of
1967	cone serotiny in <i>Pinus banksiana</i> in relation to fire disturbance. <i>Forest Ecology and</i>
1968	Management, 189, 133–141. doi: 10.1016/j.foreco.2003.07.040
1969	Ray, P., & Craven, K. D. (2016). Sebacina vermifera: a unique root symbiont with vast
1970	agronomic potential. World Journal of Microbiology and Biotechnology, 32(1), 1–10.
1971	doi: 10.1007/s11274-015-1970-7
1972	Rincón, A., Santamaría-Pérez, B., Ocaña, L., & Verdú, M. (2014). Structure and phylogenetic
1972	diversity of post-fire ectomycorrhizal communities of maritime pine. <i>Mycorrhiza</i> , 24,
1974	131–141. doi: 10.1007/s00572-013-0520-0
1974 1975	Rincón, A.na, & Pueyo, J. J. (2010). Effect of fire severity and site slope on diversity and
1976	structure of the ectomycorrhizal fungal community associated with post-fire regenerated
1970	
1977	<i>Pinus pinaster</i> Ait. seedlings. <i>Forest Ecology and Management</i> , 260(3), 361–369. doi: 10.1016/j.foreco.2010.04.028
1978 1 <mark>9</mark> 79	•
1980	Rincón, A <u>na</u> , Santamaría-Pérez, B., Rabasa, S. G., Coince, A., Marçais, B., & Buée, M. (2015). Compartmentalized and contrasted response of ectomycorrhizal and soil fungal
1981	communities of Scots pine forests along elevation gradients in France and Spain.
1982	Environmental Microbiology, 17, 3009–3024. doi: 10.1111/1462-2920.12894
1983	Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Fierer,
1984 1005	N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil.
1985	Isme Journal, 4, 1340–1351. doi: 10.1038/ismej.2010.58
1986	Ruíz, P., Álvarez-Uria, P., & Zavala, M. A. (2009). 9540 Pinares mediterráneos de pinos

Molecular Ecology


1987	mesogeanos endémicos. In VV. AA., Bases ecológicas preliminares para la conservación
1988	de los tipos de hábitat de interés comunitario en España. (p. 112). Madrid: Ministerio de
1989	Medio Ambiente, y Medio Rural y Marino.
1990	Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G.,
1991	Roschitzki, B., Riedel, K. (2012). Who is who in litter decomposition?
1992	Metaproteomics reveals major microbial players and their biogeochemical functions. The
1993	<i>ISME Journal</i> , 6(9), 1749–1762. doi: 10.1038/ismej.2012.11
1994	Selosse, M. A., Bauer, R., & Moyersoen, B. (2002). Basal hymenomycetes belonging to the
1995	Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist,
1996	155(1), 183–195. doi: 10.1046/j.1469-8137.2002.00442.x
1997	Smith, S., & Read, D. (Eds.). (2008). Mycorrhizal Symbiosis. Academic Press: London.
1998	Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., Heinonsalo,
1999	J. (2015). Fungal Community Shifts in Structure and Function across a Boreal Forest
2000	Fire Chronosequence. Applied and Environmental Microbiology, 81(22), 7869–7880.
2001	doi: 10.1128/AEM.02063-15.Editor
2002	Talbot, J. M., Allison, S. D., & Treseder, K. K. (2008). Decomposers in disguise: Mycorrhizal
2003	fungi as regulators of soil C dynamics in ecosystems under global change. <i>Functional</i>
2004	<i>Ecology</i> , 22(6), 955–963. doi: 10.1111/j.1365-2435.2008.01402.x
2005	Tapias, R., Climent, J., Pardos, J. a., & Gil, L. (2004). Life histories of Mediterranean pines.
2006	<i>Plant Ecology</i> , <i>171</i> (Richardson 1988), 53–68. doi:
2007	10.1023/B:VEGE.0000029383.72609.f0
2008	Taylor, D. L., & Bruns, T. D. (1999). Community structure of ectomycorrhizal fungi in a
2009	<i>Pinus muricata</i> forest: Minimal overlap between the mature forest and resistant
2010	propagule communities. <i>Molecular Ecology</i> , 8(11), 1837–1850. doi: 10.1046/j.1365-
2011	294X.1999.00773.x
2012	Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R.,
2013	Abarenkov, K. (2014). Global diversity and geography of soil fungi. <i>Science</i> , <i>346</i> (6213),
2014	1256688. doi: 10.1126/science.1256688
2015	Tedersoo, L <u>eho</u> , Hansen, K., Perry, B. A., & Kjøller, R. (2006). Molecular and
2016	morphological diversity of pezizalean ectomycorrhiza. <i>New Phytologist</i> , 170(3), 581–
2017	596. doi: 10.1111/j.1469-8137.2006.01678.x
2018	Tedersoo, <u>L.Leho</u> , Mett, M., Ishida, T. A., & Bahram, M. (2013). Phylogenetic relationships
2019	among host plants explain differences in fungal species richness and community
2020	composition in ectomycorrhizal symbiosis. <i>New Phytologist</i> , <i>199</i> (3), 822–831. doi:
2021	10.1111/nph.12328
2022	Tedersoo, L <u>eho</u> , & Smith, M. E. (2013). Lineages of ectomycorrhizal fungi revisited:
2023	Foraging strategies and novel lineages revealed by sequences from belowground. <i>Fungal</i>
2024	Biology Reviews, 27(3–4), 83–99. doi: 10.1016/j.fbr.2013.09.001
2025	Torres, P., & Honrubia, M. (1997). Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. 96, 189–196.
2026 2027	
	Twieg, B. D., Durall, D. M., & Simard, S. W. (2007). Ectomycorrhizal fungal succession in
2028	mixed temperate forests. <i>New Phytologist</i> , <i>176</i> (2), 437–447. doi: 10.1111/j.1469-
2029	8137.2007.02173.x
2030	van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015).
2031	Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist 205(4), 1406, 1423, doi: 10.1111/nph.13288
2032	Phytologist, 205(4), 1406–1423. doi: 10.1111/nph.13288 Vardí, M., & Bausag, J. G. (2007). Eira drives phylogenetic elustering in Mediterranean Pasin.
2033 2034	Verdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. <i>Journal of Ecology</i> , <i>95</i> (6), 1316–1323. doi: 10.1111/j.1365-

- 2035 2745.2007.01300.x
- 2036 Vieira, J., Campelo, F., Rossi, S., Carvalho, A., Freitas, H., & Nabais, C. (2015). Adjustment 2037 capacity of maritime pine cambial activity in drought-prone environments. *PLoS ONE*, 2038 10(5), 1–15. doi: 10.1371/journal.pone.0126223
- 2039 Walkley, A., & Black, I. (1934). An examination of the Degtjareff method for determining 2040 soil organic matter, and a proposed modification of the chromic acid titration method. 2041 Soil Science, 37(1), 29–38. Retrieved from
- 2042 http://journals.lww.com/soilsci/Abstract/1934/01000/AN_EXAMINATION_OF_THE-2043 **DEGTJAREFF METHOD FOR.3.aspx**
- Yamanaka, T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal 2044 2045 ammonia fungi in vitro. Mycologia, 95(4), 584-589. doi: 10.2307/3761934
- im, rrhizal. 2046 Zarea, M. J., Miransari, M., & Karimi, N. (2014). Plant Physiological Mechanisms of Salt 2047 Tolerance Induced by Mycorrhizal Fungi and Piriformospora indica. doi: 10.1007/978-2048 1-4939-0721-2
- 2049
- 2050 2051

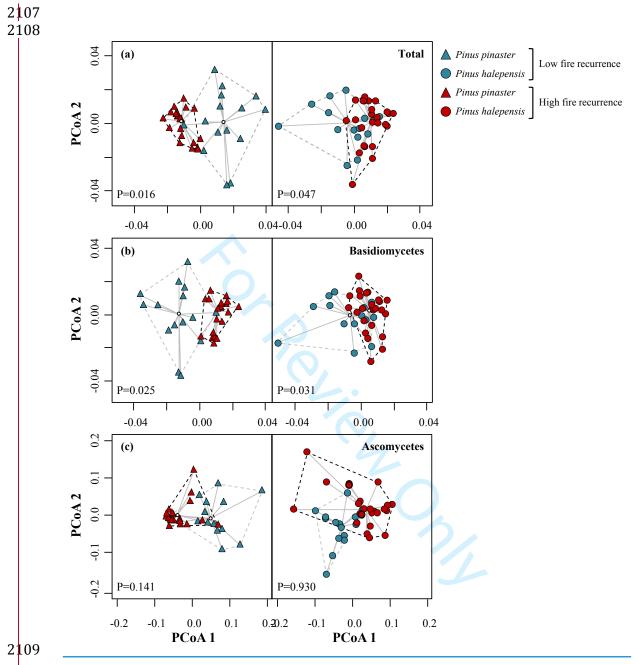
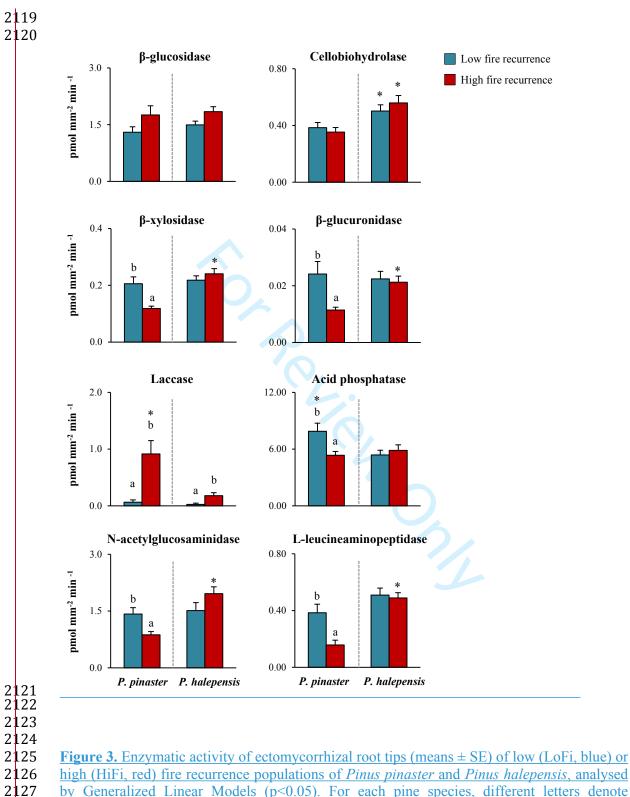

2053	
2054	Data Accessibility
2055	Data were deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) as
2056	PRJNA324224.
2057	
2058	Author contribution
2059	AR and MV designed the experiment; LPI, MZA and AR collected the data; LPI and MB
2060	performed the bioinformatics analysis, LPI performed the statistical analyses. LPI and AR
2061	wrote the first draft of the manuscript, and all authors contributed substantially to revisions.
2062	
2063	
2064	
2065	
2066	
2067	wrote the first draft of the manuscript, and all authors contributed substantially to revisions.
2068	
2069	
2070	
2071	
2072	
2073	
2074	
2075	
2076	

Table 1. Alpha-diversity of representative ectomycorrhizal (ECM) fungal families analysed by General Linear Models (GLMs) (p<0.05). Main effects of the pine species (Ppi =*Pinus pinaster* and Pha =*Pinus halepensis*) (left) and the fire regime (LoFi = low fire recurrence and HiFi = high fire recurrence) (right) are shown. The site was nested within the fix factor fire regime in the <u>Generalized Linear Models (GLMs</u>). Data represent means +/- SE. Arrows indicate significantly higher α -diversity, and "=" indicates no variation between pine species according to the GLM (F values; *p<0.05; **p<0.01; ***p<0.001). In the separate analyses on the right, for each pine forest, different letters denote significant differences between fire regimes (p<0.05) (in bold). A = Ascomycetes (orange); B = Basidiomycetes (green).


		Pine l	Forest		P. pir	naster	P. hal	epensis
	Ppi	Pha	F (p-value)		LoFi	HiFi	LoFi	HiFi
<i>Amanitaceae</i> ^B	♠		9.2**		0.1 ± 0.1 a	0.9 ± 0.2 b	0.1 ± 0.1	0.2 ± 0.1
<i>Atheliaceae</i> ^B	♠		6.8*		9.7 ± 0.6 b	6.7 ± 0.6 a	6.3 ± 0.5	5.9 ± 0.4
Bankeraceae ^B	=	=	2.0		1.8 ± 0.4	1.3 ± 0.3	$1.7\pm0.5~b$	$0.9\pm0.2~a$
<i>Cantharellaceae</i> ^B	♠		41.7***		1.0 ± 0.2 a	$\textbf{2.8} \pm \textbf{0.4} ~ \textbf{b}$	0.7 ± 0.2	0.5 ± 0.2
<i>Clavariaceae</i> ^B	♠		36.9***		0.8 ± 0.2	1.2 ± 0.4	0.3 ± 0.2 b	0.1 ± 0.1 a
Clavulinaceae ^B	=	=	2.4		2.9 ± 0.3 b	1.7 ± 0.3 a	$\textbf{2.7} \pm \textbf{0.5} \text{ b}$	1.3 ± 0.3 a
<i>Cortinariaceae</i> ^B	♠		16.2***		$2.2 \pm 0.7 \text{ b}$	0.4 ± 0.2 a	0.6 ± 0.4 b	0.2 ± 0.1 a
Gloniaceae ^A	♠		5.7*		2.5 ± 0.3 b	1.2 ± 0.2 a	1.7 ± 0.4 b	0.9 ± 0.3 a
<i>Hydnaceae</i> ^B	=	=	0.8		0.3 ± 0.1	0.2 ± 0.1	0.6 ± 0.2 b	0.2 ± 0.1 a
<i>Inocybeaceae</i> ^B	=	=	1.4		$5.5\pm0.8~b$	3.0 ± 0.5 a	3.1 ± 0.3	2.8 ± 0.3
Pezizaceae ^A		♠	22.8***		0.2 ± 0.1	0.2 ± 0.1	0.5 ± 0.2 a	1.1 ± 0.2 b
Pyronemataceae ^A		♠	30.7***		0.6 ± 0.2	0.9 ± 0.2	2.9 ± 0.3 b	1.6 ± 0.3 a
<i>Rhizopogonaceae</i> ^B	♠		29.1***		0.9 ± 0.2 a	1.8 ± 0.2 b	$0.8\pm0.2~b$	0.4 ± 0.1 a
<i>Russulaceae</i> ^B	♠		14.0***		7.3 ± 0.6 b	$5.5 \pm 0.7 \ a$	4.3 ± 0.8	4.3 ± 0.5
Sebacinaceae ^B		♠	33.6***		5.7 ± 1.1	4.5 ± 0.4	8.7 ± 0.8	9.0 ± 0.8
<i>Suillaceae</i> ^B	=	=	0.0		1.6 ± 0.3	1.2 ± 0.2	1.6 ± 0.2 b	1.2 ± 0.2 a
<i>Telephoraceae</i> ^B	=	=	0.0		11.9 ± 1.0	11.0 ± 1.0	14.1 ± 1.8 b	10.4 ± 0.8 a
<i>Tuberaceae</i> ^A	=	=	0.0		1.4 ± 0.3	1.6 ± 0.3	1.6 ± 0.3	1.4 ± 0.2

2098 Figure 1. Alpha-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 2099 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 2100 recurrenceLoFi (bluelight bars) and HiFi (dark bars) populations of Pinus pinaster and Pinus 2101 halepensis, analysed by Generalized Linear Models (p<0.05). Boxes represent the 2102 interquartile range (IQR) between first and third quartiles and the horizontal line inside is the 2103 median. Whiskers denote the lowest and highest values within 1.5 x IQR from the first and 2104 third quartiles, respectively. Within each graph, different letters denote significant differences 2105 among fire regimes.

2111 Figure 2. Beta-diversity of (a) total, (b) Basidiomycetes and (c) Ascomycetes 2112 ectomycorrhizal fungal communities associated with root-tips of low (blue) or high (red) fire 2113 recurrence LoFi (greyblue) and HiFi (blackred) populations of Pinus pinaster (triangles) and 2114 Pinus halepensis (circles). The centroids within each group are represented by small white 2115 dots. Grey solid lines give the relative position of the point with respect to the respective 2116 centroid. Dotted lines reflect the area occupied by all plots of a given treatment, which is 2117 inversely proportional to the similarity of their ECM fungal communities.

2127 by Generalized Linear Models (p<0.05). For each pine species, different letters denote
 2128 significant differences between fire recurrence levels, while for each LoFi/HiFi treatment,
 2129 asterisks denote significant differences between pine forest levels.

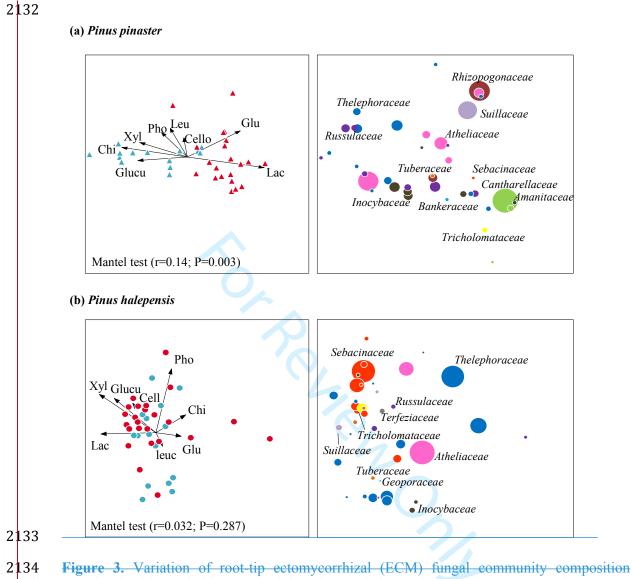
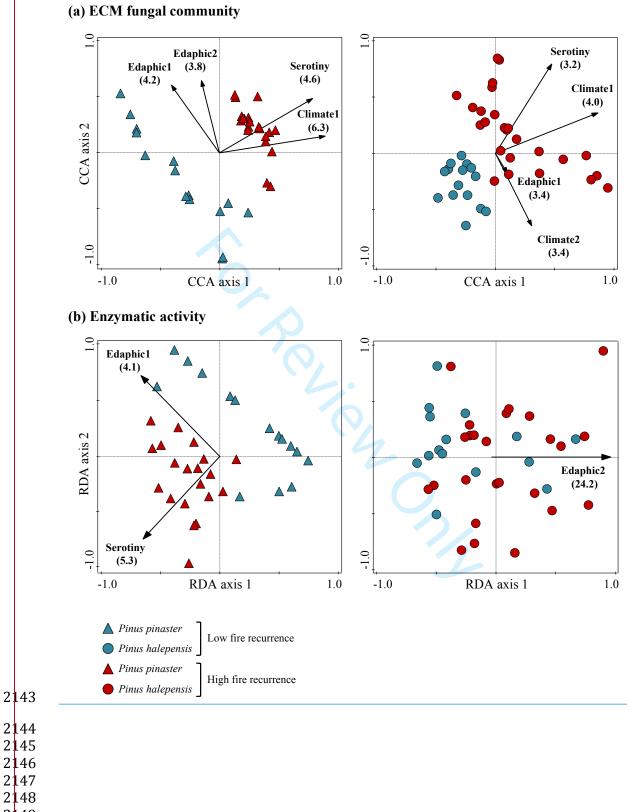
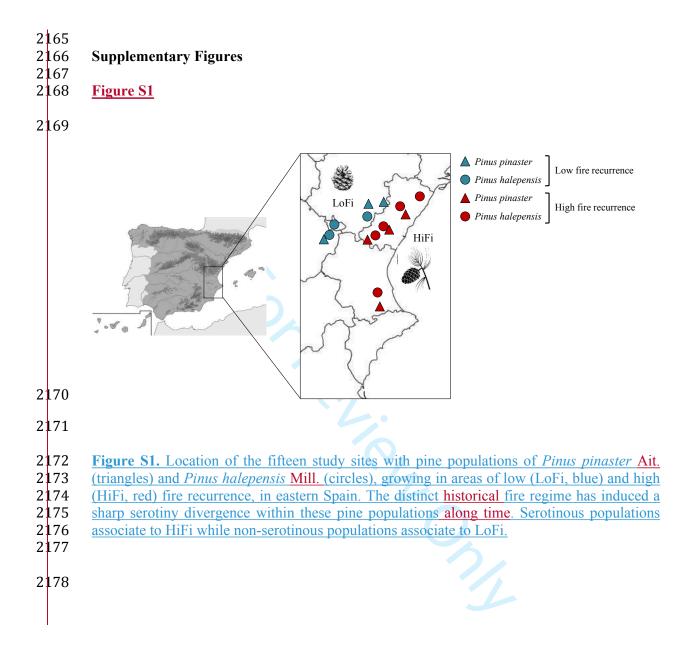
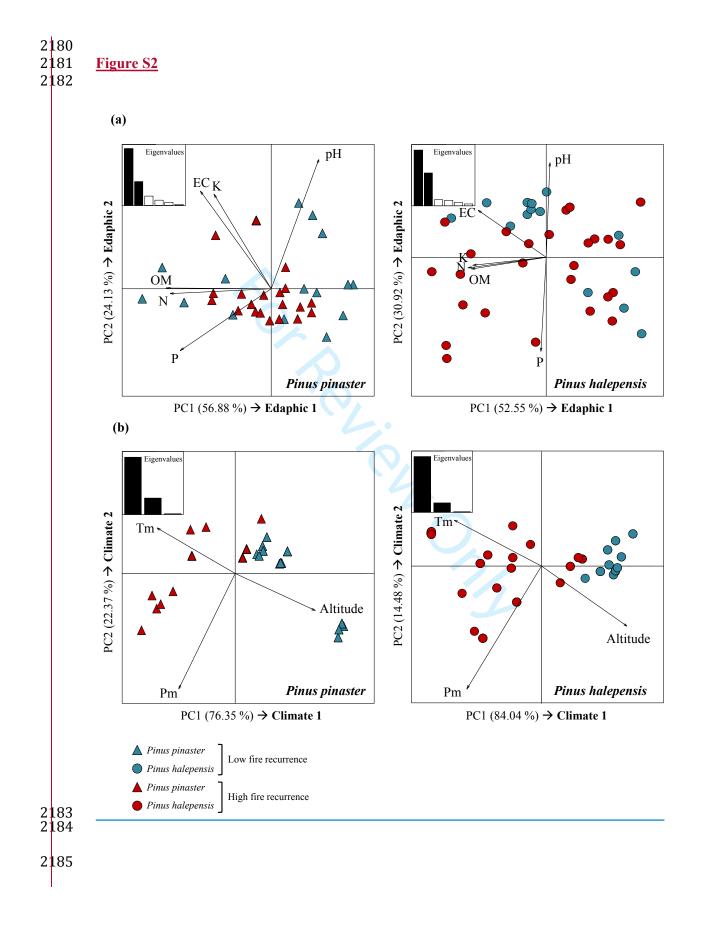
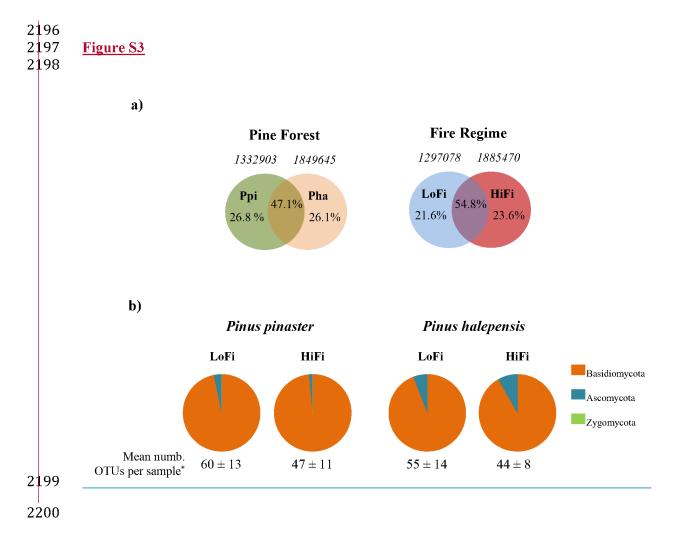
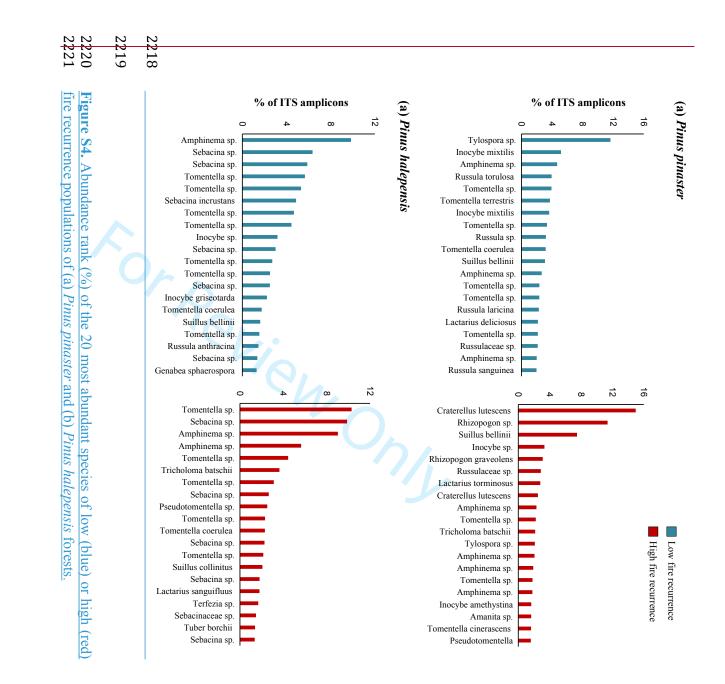





Figure 3. Variation of root-tip ectomycorrhizal (ECM) fungal community composition associated with LoFi (blue) and HiFi (red) populations of (a) *Pinus pinaster* and (b) *Pinus halepensis* by sample plots (left) and fungal families (right) and correlation with enzymatic activities, analyzed by Detrended Correspondence Analysis (DCA). Vectors represent the weight and direction of enzymatic activities plotted in the ordination space. In the fungal species graphs on the right, only the most abundant taxa (proportional to the diameter of the circles) are shown. The correlation between ECM fungal community structure and enzymatic activities dissimilarity matrices is shown through Mantel test.



2151 Figure 4. Distribution of (a) E-ectomycorrhizal (ECM)-fungal community structure and (b) 2152 enzymatic activitiesy composition associated with root-tips of LoFi (blue) and HiFi (red) 2153 Pinus pinaster (triangles) and Pinus halepensis (circles) forests subjected to low (blue) or 2154 high (red) fire recurrence, analyzed by Canonical Correspondence Analysis (CCA), and (b) 2155 their enzymatic profiles analyzed respectively analyzed by Canonical Correspondence (CCA) 2156 and Redundancy (RDA) aAnalyseis. In all cases, (RDA) showing the weight, direction and 2157 separate effects of serotiny, climatic and edaphic conditions in sample plots is represented by vectors (see model details in Table S4). Serotiny degree is the number of closed cones by total 2158 2159 number of cones in the tree. Edaphic and climatic conditions are represented by the first two 2160 axes (Edaphic1 and Edaphic2; Climate1 and Climate2) of Principal Coordinates Analyses 2161 (PCA) performed considering the pH, electric conductivity and potassium, nitrogen, ne conk ne secona J.05, 2162 phosphorus and organic matter content in the first case, and mean temperature, mean 2163 precipitation and altitude in the second case (Figure S24). Only significant variables are 2164 ***p<0.001. shown,



2186	
2187	
2 <mark>1</mark> 88	Figure S21. Principal component analyses (PCA) performed with (a) the edaphic variables
2189	pH, electric conductivity (EC), potassium (K), nitrogen (N), phosphorus (P) and organic
2190	matter (OM), and (b) the climate-related variables altitude, mean temperature (Tm) and mean
2191	precipitation (Pm) of each pine forest. The first two axes of each analysis explaining the
2192	maximum of variance (in parenthesis) were used as edaphic or climatic indexes in models
2193	(i.e., proxies of edaphic and climatic conditions of each pine forest <i>Pinus pinaster</i> or <i>Pinus</i>
2 <mark>1</mark> 94	halepensis).

Figure S32. (a) Number of sequences (*italics*) and percentage of ectomycorrhizal (ECM) fungal MOTUs by pine forest (Ppi = *Pinus pinaster* and Pha = *Pinus halepensis*) and fire regime (HiFi and LoFi fire recurrence frequency). (b) Percentages of fungal phyla for each pine species and fire regime. *Mean \pm SD. (See Table S2 for percentages and abundance of other taxonomic ranks across treatments).

2207 2208 2209	<u>Figure S4</u>	
2210		
2211		
2212		
2213		
2214		
2215		
2216		
2217		

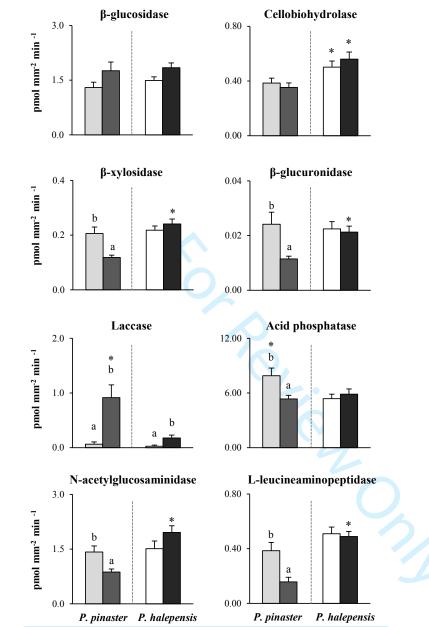


Figure S3. Enzymatic activity of ectomycorrhizal root tips (means ± SE) of LoFi (light bars)
 and HiFi (dark bars) populations (low and high fire recurrence, respectively) of *Pinus pinaster* (Ppi) and *Pinus halepensis* (Pha), analysed by Generalized Linear Models (p<0.05). For each
 pine species, different letters denote significant differences between fire recurrence levels,
 while for each LoFi/HiFi treatment, asterisks denote significant differences between pine
 forest levels.